1
|
Ernst C, Andreassen PR, Giger GH, Nguyen BD, Gäbelein CG, Guillaume-Gentil O, Fattinger SA, Sellin ME, Hardt WD, Vorholt JA. Direct Salmonella injection into enteroid cells allows the study of host-pathogen interactions in the cytosol with high spatiotemporal resolution. PLoS Biol 2024; 22:e3002597. [PMID: 38684033 PMCID: PMC11057982 DOI: 10.1371/journal.pbio.3002597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Intestinal epithelial cells (IECs) play pivotal roles in nutrient uptake and in the protection against gut microorganisms. However, certain enteric pathogens, such as Salmonella enterica serovar Typhimurium (S. Tm), can invade IECs by employing flagella and type III secretion systems (T3SSs) with cognate effector proteins and exploit IECs as a replicative niche. Detection of flagella or T3SS proteins by IECs results in rapid host cell responses, i.e., the activation of inflammasomes. Here, we introduce a single-cell manipulation technology based on fluidic force microscopy (FluidFM) that enables direct bacteria delivery into the cytosol of single IECs within a murine enteroid monolayer. This approach allows to specifically study pathogen-host cell interactions in the cytosol uncoupled from preceding events such as docking, initiation of uptake, or vacuole escape. Consistent with current understanding, we show using a live-cell inflammasome reporter that exposure of the IEC cytosol to S. Tm induces NAIP/NLRC4 inflammasomes via its known ligands flagellin and T3SS rod and needle. Injected S. Tm mutants devoid of these invasion-relevant ligands were able to grow in the cytosol of IECs despite the absence of T3SS functions, suggesting that, in the absence of NAIP/NLRC4 inflammasome activation and the ensuing cell death, no effector-mediated host cell manipulation is required to render the epithelial cytosol growth-permissive for S. Tm. Overall, the experimental system to introduce S. Tm into single enteroid cells enables investigations into the molecular basis governing host-pathogen interactions in the cytosol with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Chantal Ernst
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Gabriel H. Giger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Bidong D. Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | - Stefan A. Fattinger
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mikael E. Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Degabriel M, Valeva S, Boisset S, Henry T. Pathogenicity and virulence of Francisella tularensis. Virulence 2023; 14:2274638. [PMID: 37941380 PMCID: PMC10653695 DOI: 10.1080/21505594.2023.2274638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Tularaemia is a zoonotic disease caused by the Gram-negative bacterium, Francisella tularensis. Depending on its entry route into the organism, F. tularensis causes different diseases, ranging from life-threatening pneumonia to less severe ulceroglandular tularaemia. Various strains with different geographical distributions exhibit different levels of virulence. F. tularensis is an intracellular bacterium that replicates primarily in the cytosol of the phagocytes. The main virulence attribute of F. tularensis is the type 6 secretion system (T6SS) and its effectors that promote escape from the phagosome. In addition, F. tularensis has evolved a peculiar envelope that allows it to escape detection by the immune system. In this review, we cover tularaemia, different Francisella strains, and their pathogenicity. We particularly emphasize the intracellular life cycle, associated virulence factors, and metabolic adaptations. Finally, we present how F. tularensis largely escapes immune detection to be one of the most infectious and lethal bacterial pathogens.
Collapse
Affiliation(s)
- Manon Degabriel
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Stanimira Valeva
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Sandrine Boisset
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
- Univ. Grenoble Alpes, CHU Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| |
Collapse
|
3
|
Ziveri J, Chhuon C, Jamet A, Rytter H, Prigent G, Tros F, Barel M, Coureuil M, Lays C, Henry T, Keep NH, Guerrera IC, Charbit A. Critical Role of a Sheath Phosphorylation Site On the Assembly and Function of an Atypical Type VI Secretion System. Mol Cell Proteomics 2019; 18:2418-2432. [PMID: 31578219 PMCID: PMC6885697 DOI: 10.1074/mcp.ra119.001532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
The bacterial pathogen Francisella tularensis possesses a noncanonical type VI secretion system (T6SS) that is required for phagosomal escape in infected macrophages. KCl stimulation has been previously used to trigger assembly and secretion of the T6SS in culture. By differential proteomics, we found here that the amounts of the T6SS proteins remained unchanged upon KCl stimulation, suggesting involvement of post-translational modifications in T6SS assembly. A phosphoproteomic analysis indeed identified a unique phosphorylation site on IglB, a key component of the T6SS sheath. Substitutions of Y139 with alanine or phosphomimetics prevented T6SS formation and abolished phagosomal escape whereas substitution with phenylalanine delayed but did not abolish phagosomal escape in J774-1 macrophages. Altogether our data demonstrated that the Y139 site of IglB plays a critical role in T6SS biogenesis, suggesting that sheath phosphorylation could participate to T6SS dynamics.Data are available via ProteomeXchange with identifier PXD013619; and on MS-Viewer, key lkaqkllxwx.
Collapse
Affiliation(s)
- Jason Ziveri
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Cerina Chhuon
- Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Anne Jamet
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Héloïse Rytter
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Guénolé Prigent
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Fabiola Tros
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Monique Barel
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Mathieu Coureuil
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Claire Lays
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm, U1111, University Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Labex ECOFECT, Eco-evolutionary dynamics of infectious diseases, F-69007, LYON, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm, U1111, University Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Labex ECOFECT, Eco-evolutionary dynamics of infectious diseases, F-69007, LYON, France
| | - Nicholas H Keep
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences Birkbeck, University of London, United Kingdom
| | - Ida Chiara Guerrera
- Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France.
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France.
| |
Collapse
|
4
|
Steele SP, Chamberlain Z, Park J, Kawula TH. Francisella tularensis enters a double membraned compartment following cell-cell transfer. eLife 2019; 8:e45252. [PMID: 31017571 PMCID: PMC6499538 DOI: 10.7554/elife.45252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022] Open
Abstract
Previously, we found that phagocytic cells ingest bacteria directly from the cytosol of infected cells without killing the initially infected cell (Steele et al., 2016). Here, we explored the events immediately following bacterial transfer. Francisella tularensis bacteria acquired from infected cells were found within double-membrane vesicles partially composed from the donor cell plasma membrane. As with phagosomal escape, the F. tularensis Type VI Secretion System (T6SS) was required for vacuole escape. We constructed a T6SS inducible strain and established conditions where this strain is trapped in vacuoles of cells infected through bacterial transfer. Using this strain we identified bacterial transfer events in the lungs of infected mice, demonstrating that this process occurs in infected animals. These data and electron microscopy analysis of the transfer event revealed that macrophages acquire cytoplasm and membrane components of other cells through a process that is distinct from, but related to phagocytosis.
Collapse
Affiliation(s)
- Shaun P Steele
- School of Global Animal HealthWashington State UniversityPullmanUnited States
| | - Zach Chamberlain
- School of Global Animal HealthWashington State UniversityPullmanUnited States
| | - Jason Park
- School of Global Animal HealthWashington State UniversityPullmanUnited States
| | - Thomas H Kawula
- School of Global Animal HealthWashington State UniversityPullmanUnited States
| |
Collapse
|
5
|
Alam A, Golovliov I, Javed E, Sjöstedt A. ClpB mutants of Francisella tularensis subspecies holarctica and tularensis are defective for type VI secretion and intracellular replication. Sci Rep 2018; 8:11324. [PMID: 30054549 PMCID: PMC6063899 DOI: 10.1038/s41598-018-29745-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis, a highly infectious, intracellular bacterium possesses an atypical type VI secretion system (T6SS), which is essential for the virulence of the bacterium. Recent data suggest that the HSP100 family member, ClpB, is involved in T6SS disassembly in the subspecies Francisella novicida. Here, we investigated the role of ClpB for the function of the T6SS and for phenotypic characteristics of the human pathogenic subspecies holarctica and tularensis. The ∆clpB mutants of the human live vaccine strain, LVS, belonging to subspecies holarctica, and the highly virulent SCHU S4 strain, belonging to subspecies tularensis, both showed extreme susceptibility to heat shock and low pH, severely impaired type VI secretion (T6S), and significant, but impaired intracellular replication compared to the wild-type strains. Moreover, they showed essentially intact phagosomal escape. Infection of mice demonstrated that both ΔclpB mutants were highly attenuated, but the SCHU S4 mutant showed more effective replication than the LVS strain. Collectively, our data demonstrate that ClpB performs multiple functions in the F. tularensis subspecies holarctica and tularensis and its function is important for T6S, intracellular replication, and virulence.
Collapse
Affiliation(s)
- Athar Alam
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Eram Javed
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden.
| |
Collapse
|
6
|
Brock SR, Parmely MJ. Francisella tularensis Confronts the Complement System. Front Cell Infect Microbiol 2017; 7:523. [PMID: 29312899 PMCID: PMC5742141 DOI: 10.3389/fcimb.2017.00523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022] Open
Abstract
Francisella tularensis has developed a number of effective evasion strategies to counteract host immune defenses, not the least of which is its ability to interact with the complement system to its own advantage. Following exposure of the bacterium to fresh human serum, complement is activated and C3b and iC3b can be found covalently attached to the bacterial surface. However, the lipopolysaccharide and capsule of the F. tularensis cell wall prevent complement-mediated lysis and endow the bacterium with serum resistance. Opsonization of F. tularensis with C3 greatly increases its uptake by human neutrophils, dendritic cells and macrophages. Uptake occurs by an unusual looping morphology in human macrophages. Complement receptor 3 is thought to play an important role in opsonophagocytosis by human macrophages, and signaling through this receptor can antagonize Toll-like receptor 2-initiated macrophage activation. Complement C3 also determines the survival of infected human macrophages and perhaps other cell types. C3-opsonization of F. tularensis subsp. tularensis strain SCHU S4 results in greatly increased death of infected human macrophages, which requires more than complement receptor engagement and is independent of the intracellular replication by the pathogen. Given its entry into the cytosol of host cells, F. tularensis has the potential for a number of other complement-mediated interactions. Studies on the uptake C3-opsonized adenovirus have suggested the existence of a C3 sensing system that initiates cellular responses to cytosolic C3b present on invading microbes. Here we propose that C3 peptides enter the cytosol of human macrophages following phagosome escape of F. tularensis and are recognized as intruding molecular patterns that signal host cell death. With the discovery of new roles for intracellular C3, a better understanding of tularemia pathogenesis is likely to emerge.
Collapse
Affiliation(s)
- Susan R Brock
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael J Parmely
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
7
|
Eshraghi A, Kim J, Walls AC, Ledvina HE, Miller CN, Ramsey KM, Whitney JC, Radey MC, Peterson SB, Ruhland BR, Tran BQ, Goo YA, Goodlett DR, Dove SL, Celli J, Veesler D, Mougous JD. Secreted Effectors Encoded within and outside of the Francisella Pathogenicity Island Promote Intramacrophage Growth. Cell Host Microbe 2017; 20:573-583. [PMID: 27832588 PMCID: PMC5384264 DOI: 10.1016/j.chom.2016.10.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/18/2016] [Accepted: 10/13/2016] [Indexed: 01/10/2023]
Abstract
The intracellular bacterial pathogen Francisella tularensis causes tularemia, a zoonosis that can be fatal. The type VI secretion system (T6SS) encoded by the Francisella pathogenicity island (FPI) is critical for the virulence of this organism. Existing studies suggest that the complete repertoire of T6SS effectors delivered to host cells is encoded by the FPI. Using a proteome-wide approach, we discovered that the FPI-encoded T6SS exports at least three effectors encoded outside of the island. These proteins share features with virulence determinants of other pathogens, and we provide evidence that they can contribute to intramacrophage growth. The remaining proteins that we identified are encoded within the FPI. Two of these FPI-encoded proteins constitute effectors, whereas the others form a unique complex required for core function of the T6SS apparatus. The discovery of secreted effectors mediating interactions between Francisella and its host significantly advances our understanding of the pathogenesis of this organism.
Collapse
Affiliation(s)
- Aria Eshraghi
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jungyun Kim
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hannah E Ledvina
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Cheryl N Miller
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Kathryn M Ramsey
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John C Whitney
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Matthew C Radey
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - S Brook Peterson
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Brittany R Ruhland
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Bao Q Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Young Ah Goo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - David R Goodlett
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - David Veesler
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, School of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Marecic V, Shevchuk O, Ozanic M, Mihelcic M, Steinert M, Jurak Begonja A, Abu Kwaik Y, Santic M. Isolation of F. novicida-Containing Phagosome from Infected Human Monocyte Derived Macrophages. Front Cell Infect Microbiol 2017; 7:303. [PMID: 28725638 PMCID: PMC5496951 DOI: 10.3389/fcimb.2017.00303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/20/2017] [Indexed: 11/28/2022] Open
Abstract
Francisella is a gram-negative bacterial pathogen, which causes tularemia in humans and animals. A crucial step of Francisella infection is its invasion of macrophage cells. Biogenesis of the Francisella-containing phagosome (FCP) is arrested for ~15 min at the endosomal stage, followed by gradual bacterial escape into the cytosol, where the microbe proliferates. The crucial step in pathogenesis of tularemia is short and transient presence of the bacterium within phagosome. Isolation of FCPs for further studies has been challenging due to the short period of time of bacterial residence in it and the characteristics of the FCP. Here, we will for the first time present the method for isolation of the FCPs from infected human monocytes-derived macrophages (hMDMs). For elimination of lysosomal compartment these organelles were pre-loaded with dextran coated colloidal iron particles prior infection and eliminated by magnetic separation of the post-nuclear supernatant (PNS). We encountered the challenge that mitochondria has similar density to the FCP. To separate the FCP in the PNS from mitochondria, we utilized iodophenylnitrophenyltetrazolium, which is converted by the mitochondrial succinate dehydrogenase into formazan, leading to increased density of the mitochondria and allowing separation by the discontinuous sucrose density gradient ultracentrifugation. The purity of the FCP preparation and its acquisition of early endosomal markers was confirmed by Western blots, confocal and transmission electron microscopy. Our strategy to isolate highly pure FCPs from macrophages should facilitate studies on the FCP and its biogenesis.
Collapse
Affiliation(s)
- Valentina Marecic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Olga Shevchuk
- Department of Microbiology, Institut für Mikrobiologie, Technische Universität Braunschweig and Helmholtz Center for Infection ResearchBraunschweig, Germany.,Department of Biotechnology, University of RijekaRijeka, Croatia
| | - Mateja Ozanic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Mirna Mihelcic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| | - Michael Steinert
- Department of Microbiology, Institut für Mikrobiologie, Technische Universität Braunschweig and Helmholtz Center for Infection ResearchBraunschweig, Germany
| | | | - Yousef Abu Kwaik
- Department of Microbiology and Immunology and Center for Predictive MedicineLouisville, KY, United States
| | - Marina Santic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of RijekaRijeka, Croatia
| |
Collapse
|
9
|
Bröms JE, Meyer L, Sjöstedt A. A mutagenesis-based approach identifies amino acids in the N-terminal part of Francisella tularensis IglE that critically control Type VI system-mediated secretion. Virulence 2016; 8:821-847. [PMID: 27830989 PMCID: PMC5626337 DOI: 10.1080/21505594.2016.1258507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Gram-negative bacterium Francisella tularensis is the etiological agent of the zoonotic disease tularemia. Its life cycle is characterized by an ability to survive within phagocytic cells through phagosomal escape and replication in the cytosol, ultimately causing inflammasome activation and host cell death. Required for these processes is the Francisella Pathogenicity Island (FPI), which encodes a Type VI secretion system (T6SS) that is active during intracellular infection. In this study, we analyzed the role of the FPI-component IglE, a lipoprotein which we previously have shown to be secreted in a T6SS-dependent manner. We demonstrate that in F. tularensis LVS, IglE is an outer membrane protein. Upon infection of J774 cells, an ΔiglE mutant failed to escape from phagosomes, and subsequently, to multiply and cause cytopathogenicity. Moreover, ΔiglE was unable to activate the inflammasome, to inhibit LPS-stimulated secretion of TNF-α, and showed marked attenuation in the mouse model. In F. novicida, IglE was required for in vitro secretion of IglC and VgrG. A mutagenesis-based approach involving frameshift mutations and alanine substitution mutations within the first ∼ 38 residues of IglE revealed that drastic changes in the sequence of the extreme N-terminus (residues 2-6) were well tolerated and, intriguingly, caused hyper-secretion of IglE during intracellular infection, while even subtle mutations further downstream lead to impaired protein function. Taken together, this study highlights the importance of IglE in F. tularensis pathogenicity, and the contribution of the N-terminus for all of the above mentioned processes.
Collapse
Affiliation(s)
- Jeanette E Bröms
- a Department of Clinical Microbiology , Clinical Bacteriology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University , Umeå , Sweden
| | - Lena Meyer
- a Department of Clinical Microbiology , Clinical Bacteriology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University , Umeå , Sweden
| | - Anders Sjöstedt
- a Department of Clinical Microbiology , Clinical Bacteriology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University , Umeå , Sweden
| |
Collapse
|
10
|
Rigard M, Bröms JE, Mosnier A, Hologne M, Martin A, Lindgren L, Punginelli C, Lays C, Walker O, Charbit A, Telouk P, Conlan W, Terradot L, Sjöstedt A, Henry T. Francisella tularensis IglG Belongs to a Novel Family of PAAR-Like T6SS Proteins and Harbors a Unique N-terminal Extension Required for Virulence. PLoS Pathog 2016; 12:e1005821. [PMID: 27602570 PMCID: PMC5014421 DOI: 10.1371/journal.ppat.1005821] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/20/2016] [Indexed: 12/12/2022] Open
Abstract
The virulence of Francisella tularensis, the etiological agent of tularemia, relies on an atypical type VI secretion system (T6SS) encoded by a genomic island termed the Francisella Pathogenicity Island (FPI). While the importance of the FPI in F. tularensis virulence is clearly established, the precise role of most of the FPI-encoded proteins remains to be deciphered. In this study, using highly virulent F. tularensis strains and the closely related species F. novicida, IglG was characterized as a protein featuring a unique α-helical N-terminal extension and a domain of unknown function (DUF4280), present in more than 250 bacterial species. Three dimensional modeling of IglG and of the DUF4280 consensus protein sequence indicates that these proteins adopt a PAAR-like fold, suggesting they could cap the T6SS in a similar way as the recently described PAAR proteins. The newly identified PAAR-like motif is characterized by four conserved cysteine residues, also present in IglG, which may bind a metal atom. We demonstrate that IglG binds metal ions and that each individual cysteine is required for T6SS-dependent secretion of IglG and of the Hcp homologue, IglC and for the F. novicida intracellular life cycle. In contrast, the Francisella-specific N-terminal α-helical extension is not required for IglG secretion, but is critical for F. novicida virulence and for the interaction of IglG with another FPI-encoded protein, IglF. Altogether, our data suggest that IglG is a PAAR-like protein acting as a bi-modal protein that may connect the tip of the Francisella T6SS with a putative T6SS effector, IglF. Francisella tularensis is a highly pathogenic bacterium causing tularemia. Its ability to cause disease is linked to its ability to replicate in the macrophage cytosol. The intracellular life cycle of Francisella is controlled by a type VI secretion system (T6SS), which is thought to inject effectors into the host cell to allow bacterial escape into the host cytosol. The molecular mechanisms behind this process are still largely unclear. In this work, we identify IglG as a protein with two important domains, one conserved in proteins from more than 250 bacterial species (DUF4280, renamed here as PAAR-like domain) and one specific for the Francisella genus. Using protein sequence analysis and three-dimensional structure predictions, comparative modeling and biochemistry approaches, our data demonstrate that IglG is a metal-binding protein that based on its PAAR-like domain might cap the VgrG spike of the T6SS and act as a membrane-puncturing protein. Furthermore, we identified that the Francisella-specific domain is directly involved in forming a protein complex with another virulence protein, IglF. This work, in addition to enhancing the molecular understanding of the Francisella T6SS, defines the features of the conserved DUF4280, a novel PAAR-like domain involved in type VI secretion (T6S) of many bacterial species.
Collapse
Affiliation(s)
- Mélanie Rigard
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jeanette E. Bröms
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Amandine Mosnier
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Maggy Hologne
- Institut des Sciences Analytiques, CNRS, UMR 5280, Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, Villeurbanne, France
| | - Amandine Martin
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Lena Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Claire Punginelli
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Claire Lays
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Olivier Walker
- Institut des Sciences Analytiques, CNRS, UMR 5280, Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, Villeurbanne, France
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France
- Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Philippe Telouk
- University of Lyon, Lyon, France
- Laboratoire de Geologie de Lyon; Ecole Normale Supérieure de Lyon, Lyon, France
| | - Wayne Conlan
- National Research Council Canada, Human Health Therapeutics Portfolio, Ottawa, Ontario, Canada
| | - Laurent Terradot
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
- * E-mail: (LT); (AS); (TH)
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- * E-mail: (LT); (AS); (TH)
| | - Thomas Henry
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS, UMR5308, Lyon, France
- University of Lyon, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail: (LT); (AS); (TH)
| |
Collapse
|