1
|
Song L, Schwinn LS, Barthel J, Ketter V, Lechler P, Linne U, Rastan AJ, Vogt S, Ruchholtz S, Paletta JRJ, Günther M. Implant-Derived S. aureus Isolates Drive Strain-Specific Invasion Dynamics and Bioenergetic Alterations in Osteoblasts. Antibiotics (Basel) 2025; 14:119. [PMID: 40001363 PMCID: PMC11852183 DOI: 10.3390/antibiotics14020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Implants are integral to modern orthopedic surgery. The outcomes are good, but infections remain a serious issue. Staphylococcus aureus (S. aureus), along with Staphylococcus epidermidis, are predominant pathogens responsible for implant-associated infections, as conventional antibiotic treatments often fail due to biofilm formation or the pathogens' ability to invade cells and to persist intracellularly. Objectives: This study therefore focused on interactions of S. aureus isolates from infected implants with MG63 and SaOS2 osteoblasts by investigating the adhesion, invasion, and the impact on the bioenergetics of osteoblasts. Methods and Results: We found that the ability of S. aureus to adhere to osteoblasts depends on the isolate and was not associated with a single gene or expression pattern of characteristic adhesion proteins, and further, was not correlated with invasion. However, analysis of invasion capabilities identified better invasion conditions for S. aureus isolates with the SaOS2 osteoblastic cells. Interestingly, metabolic activity of osteoblasts remained unaffected by S. aureus infection, indicating cell survival. In contrast, respiration assays revealed an altered mitochondrial bioenergetic turnover in infected cells. While basal as well as maximal respiration in MG63 osteoblasts were not influenced statistically by S. aureus infections, we found increased non-mitochondrial respiration and enhanced glycolytic activity in the osteoblasts, which was again, more pronounced in the SaOS2 osteoblastic cells. Conclusions: Our findings highlight the complexity of S. aureus-host interactions, where both the pathogen and the host cell contribute to intracellular persistence and survival, representing a major factor for therapeutic failures.
Collapse
Affiliation(s)
- Lei Song
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Lea-Sophie Schwinn
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Juliane Barthel
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Vanessa Ketter
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Philipp Lechler
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Uwe Linne
- Faculty of Chemistry, Philipps-University Marburg, 35032 Marburg, Germany
| | - Ardawan J. Rastan
- Department of Cardiac and Thoracic Vascular Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Sebastian Vogt
- Department of Cardiac and Thoracic Vascular Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Steffen Ruchholtz
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Jürgen R. J. Paletta
- Center of Orthopedics and Trauma Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| | - Madeline Günther
- Department of Cardiac and Thoracic Vascular Surgery, Philipps-University Marburg, Universitätsklinikum Gießen and Marburg GmbH, 35043 Marburg, Germany
| |
Collapse
|
2
|
Kates SL, Owen JR, Xie C, Ren Y, Muthukrishnan G, Schwarz EM. Vaccines: Do they have a role in orthopedic trauma? Injury 2024; 55 Suppl 6:111631. [PMID: 39482036 DOI: 10.1016/j.injury.2024.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 11/03/2024]
Abstract
Although vaccines have been hailed as one of the greatest advances in medicine based on their unparalleled cost-effectiveness in eradicating life-threatening infectious diseases, their role in orthopedic trauma-related infections is unclear. This is largely because vaccines are primarily made against pathogens that cause communicable diseases rather than opportunistic infections secondary to trauma, and most successful vaccines are against viruses rather than biofilm forming bacteria. Nonetheless, the tremendous costs to patients and healthcare systems warrant orthopedic trauma vaccine research, which has been a focal topic in recent international consensus meetings on musculoskeletal infection. This subject was also covered at the 2023 Osteosynthesis and Trauma Care Foundation (OTCF) meeting in Rome, Italy, and the purpose of this supplement article is to (1) highlight the osteoimmunology, animal models, translational research and clinical pilots that were discussed, (2) the proposed future directions that could lead to diagnostics and prognostics that are critically needed for evidence-based decision making, and (3) vaccines and passive-immunization strategies that could potentially be utilized to treat patients with orthopedic infections.
Collapse
Affiliation(s)
- Stephen L Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - John R Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Youliang Ren
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
3
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Charria-Girón E, Zeng H, Gorelik TE, Pahl A, Truong KN, Schrey H, Surup F, Marin-Felix Y. Arcopilins: A New Family of Staphylococcus aureus Biofilm Disruptors from the Soil Fungus Arcopilus navicularis. J Med Chem 2024; 67:15029-15040. [PMID: 39141525 PMCID: PMC11403616 DOI: 10.1021/acs.jmedchem.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Biofilms represent a key challenge in the treatment of microbial infections; for instance, Staphylococcus aureus causes chronic or fatal infections by forming biofilms on medical devices. Herein, the fungus Arcopilus navicularis was found to produce a novel family of PKS-NRPS metabolites that are able to disrupt preformed biofilms of S. aureus. Arcopilins A-F (1-6), tetramic acids, and arcopilin G (7), a 2-pyridone, were elucidated using HR-ESI-MS and one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy. Their absolute configuration was established by the synthesis of MPTA-esters for 2, analysis of 1H-1H coupling constants, and ROESY correlations, along with comparison with the crystal structure of 7. Arcopilin A (1) not only effectively disrupts preformed biofilms of S. aureus but also potentiates the activity of gentamicin and vancomycin up to 115- and 31-fold times, respectively. Our findings demonstrate the potential application of arcopilins for the conjugated treatment of infections caused by S. aureus with antibiotics unable to disrupt preformed biofilms.
Collapse
Affiliation(s)
- Esteban Charria-Girón
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Haoxuan Zeng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Tatiana E Gorelik
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Alexandra Pahl
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Khai-Nghi Truong
- Rigaku Europe SE, Hugenottenallee 167, 63263 Neu-Isenburg, Germany
| | - Hedda Schrey
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
5
|
Zeng H, Stadler M, Decock C, Matasyoh JC, Schrey H, Müsken M. Discovery of novel secondary metabolites from the basidiomycete Lentinus cf. sajor-caju and their inhibitory effects on Staphylococcus aureus biofilms. Fitoterapia 2024; 175:105904. [PMID: 38508498 DOI: 10.1016/j.fitote.2024.105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Three novel derivatives of microporenic acid, microporenic acids H-J, were identified from submerged cultures of a Lentinus species obtained from a basidiome collected during a field trip in the tropical rainforest in Western Kenya. Their structures were elucidated via HR-ESIMS spectra and 1D/2D NMR spectroscopic analyses, as well as by comparison with known derivatives. Applying biofilm assays based on crystal violet staining and confocal microscopy, two of these compounds, microporenic acids H and I, demonstrated the ability to inhibit biofilm formation of the opportunistic pathogen Staphylococcus aureus. Thereby, they were effective in a concentration range that did not affect planktonic growth. Additionally, microporenic acid I enhanced the anti-biofilm activity of the antibiotics vancomycin and gentamicin when used in combination. This opens up possibilities for the use of these compounds in combination therapy to prevent the formation of S. aureus biofilms.
Collapse
Affiliation(s)
- Haoxuan Zeng
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, Braunschweig 38124, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, Braunschweig 38106, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, Braunschweig 38124, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, Braunschweig 38106, Germany
| | - Cony Decock
- Mycothèque de l'Université Catholique de Louvain (BCCM/MUCL), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Hedda Schrey
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, Braunschweig 38124, Germany; Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, Braunschweig 38106, Germany.
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research GmbH (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, Braunschweig 38124, Germany.
| |
Collapse
|
6
|
Le KY, Otto M. Approaches to combating methicillin-resistant Staphylococcus aureus (MRSA) biofilm infections. Expert Opin Investig Drugs 2024; 33:1-3. [PMID: 38205812 PMCID: PMC10923051 DOI: 10.1080/13543784.2024.2305136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Affiliation(s)
- Katherine Y. Le
- Guest Researcher, Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 50 S Drive, Bethesda, MD 20814, USA
- Research Fellow, Division of Infectious Diseases, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY 10016, USA
- Attending Physician, Division of General Internal Medicine, Department of Medicine, New York University Grossman School of Medicine, 550 1st Ave., New York, NY 10016, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 50 S Drive, Bethesda, MD 20814, USA
| |
Collapse
|
7
|
Thom RE, Williamson ED, Casulli J, Butcher WA, Burgess G, Laws TR, Huxley P, Ashfield R, Travis MA, D’Elia RV. Assessment of CD200R Activation in Combination with Doxycycline in a Model of Melioidosis. Microbiol Spectr 2023; 11:e0401622. [PMID: 37199641 PMCID: PMC10269878 DOI: 10.1128/spectrum.04016-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Antimicrobial resistance continues to be a global issue. Pathogens, such as Burkholderia pseudomallei, have evolved mechanisms to efflux certain antibiotics and manipulate the host response. New treatment strategies are therefore required, such as a layered defense approach. Here, we demonstrate, using biosafety level 2 (BSL-2) and BSL-3 in vivo murine models, that combining the antibiotic doxycycline with an immunomodulatory drug that targets the CD200 axis is superior to antibiotic treatment in combination with an isotype control. CD200-Fc treatment alone significantly reduces bacterial burden in lung tissue in both the BSL-2 and BSL-3 models. When CD200-Fc treatment is combined with doxycycline to treat the acute BSL-3 model of melioidosis, there is a 50% increase in survival compared with relevant controls. This benefit is not due to increasing the area under the concentration-time curve (AUC) of the antibiotic, suggesting the immunomodulatory nature of CD200-Fc treatment is playing an important role by potentially controlling the overactive immune response seen with many lethal bacterial infections. IMPORTANCE Traditional treatments for infectious disease have focused on the use of antimicrobial compounds (e.g. antibiotics) that target the infecting organism. However, timely diagnosis and administration of antibiotics remain crucial to ensure efficacy of these treatments especially for the highly virulent biothreat organisms. The need for early antibiotic treatment, combined with the increasing emergence of antibiotic resistant bacteria, means that new therapeutic strategies are required for organisms that cause rapid, acute infections. Here, we show that a layered defense approach, where an immunomodulatory compound is combined with an antibiotic, is better than an antibiotic combined with a relevant isotype control following infection with the biothreat agent Burkholderia pseudomallei. This approach has the potential to be truly broad spectrum and since the strategy includes manipulation of the host response it's application could be used in the treatment of a wide range of diseases.
Collapse
Affiliation(s)
- R. E. Thom
- CBR Division Defence Science and Technology Laboratory Porton Down, Salisbury, United Kingdom
| | - E. D. Williamson
- CBR Division Defence Science and Technology Laboratory Porton Down, Salisbury, United Kingdom
| | - J. Casulli
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - W. A. Butcher
- CBR Division Defence Science and Technology Laboratory Porton Down, Salisbury, United Kingdom
| | - G. Burgess
- CBR Division Defence Science and Technology Laboratory Porton Down, Salisbury, United Kingdom
| | - T. R. Laws
- CBR Division Defence Science and Technology Laboratory Porton Down, Salisbury, United Kingdom
| | - P. Huxley
- Ducentis BioTherapeutics Ltd., Oxford, Oxfordshire, United Kingdom
| | - R. Ashfield
- Ducentis BioTherapeutics Ltd., Oxford, Oxfordshire, United Kingdom
| | - M. A. Travis
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - R. V. D’Elia
- CBR Division Defence Science and Technology Laboratory Porton Down, Salisbury, United Kingdom
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
8
|
Abdelhamid AG, Yousef AE. Combating Bacterial Biofilms: Current and Emerging Antibiofilm Strategies for Treating Persistent Infections. Antibiotics (Basel) 2023; 12:1005. [PMID: 37370324 DOI: 10.3390/antibiotics12061005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilms are intricate multicellular structures created by microorganisms on living (biotic) or nonliving (abiotic) surfaces. Medically, biofilms often lead to persistent infections, increased antibiotic resistance, and recurrence of infections. In this review, we highlighted the clinical problem associated with biofilm infections and focused on current and emerging antibiofilm strategies. These strategies are often directed at disrupting quorum sensing, which is crucial for biofilm formation, preventing bacterial adhesion to surfaces, impeding bacterial aggregation in viscous mucus layers, degrading the extracellular polymeric matrix, and developing nanoparticle-based antimicrobial drug complexes which target persistent cells within the biofilm core. It is important to acknowledge, however, that the use of antibiofilm agents faces obstacles, such as limited effectiveness in vivo, potential cytotoxicity to host cells, and propensity to elicit resistance in targeted biofilm-forming microbes. Emerging next generation antibiofilm strategies, which rely on multipronged approaches, were highlighted, and these benefit from current advances in nanotechnology, synthetic biology, and antimicrobial drug discovery. The assessment of current antibiofilm mitigation approaches, as presented here, could guide future initiatives toward innovative antibiofilm therapeutic strategies. Enhancing the efficacy and specificity of some emerging antibiofilm strategies via careful investigations, under conditions that closely mimic biofilm characteristics within the human body, could bridge the gap between laboratory research and practical application.
Collapse
Affiliation(s)
- Ahmed G Abdelhamid
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Mohiuddin SG, Ghosh S, Kavousi P, Orman MA. Proton Motive Force Inhibitors Are Detrimental to Methicillin-Resistant Staphylococcus aureus Strains. Microbiol Spectr 2022; 10:e0202422. [PMID: 35943153 PMCID: PMC9430991 DOI: 10.1128/spectrum.02024-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains are tolerant of conventional antibiotics, making them extremely dangerous. Previous studies have shown the effectiveness of proton motive force (PMF) inhibitors at killing bacterial cells; however, whether these agents can launch a new treatment strategy to eliminate antibiotic-tolerant cells mandates further investigation. Here, using known PMF inhibitors and two different MRSA isolates, we showed that the bactericidal potency of PMF inhibitors seemed to correlate with their ability to disrupt PMF and permeabilize cell membranes. By screening a small chemical library to verify this correlation, we identified a subset of chemicals (including nordihydroguaiaretic acid, gossypol, trifluoperazine, and amitriptyline) that strongly disrupted PMF in MRSA cells by dissipating either the transmembrane electric potential (ΔΨ) or the proton gradient (ΔpH). These drugs robustly permeabilized cell membranes and reduced MRSA cell levels below the limit of detection. Overall, our study further highlights the importance of cellular PMF as a target for designing new bactericidal therapeutics for pathogens. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) emerged as a major hypervirulent pathogen that causes severe health care-acquired infections. These pathogens can be multidrug-tolerant cells, which can facilitate the recurrence of chronic infections and the emergence of diverse antibiotic-resistant mutants. In this study, we aimed to investigate whether proton motive force (PMF) inhibitors can launch a new treatment strategy to eliminate MRSA cells. Our in-depth analysis showed that PMF inhibitors that strongly dissipate either the transmembrane electric potential or the proton gradient can robustly permeabilize cell membranes and reduce MRSA cell levels below the limit of detection.
Collapse
Affiliation(s)
- Sayed Golam Mohiuddin
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Sreyashi Ghosh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Pouria Kavousi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Mehmet A. Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
10
|
Klimko CP, Shoe JL, Rill NO, Hunter M, Dankmeyer JL, Talyansky Y, Schmidt LK, Orne CE, Fetterer DP, Biryukov SS, Burtnick MN, Brett PJ, DeShazer D, Cote CK. Layered and integrated medical countermeasures against Burkholderia pseudomallei infections in C57BL/6 mice. Front Microbiol 2022; 13:965572. [PMID: 36060756 PMCID: PMC9432870 DOI: 10.3389/fmicb.2022.965572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei, the gram-negative bacterium that causes melioidosis, is notoriously difficult to treat with antibiotics. A significant effort has focused on identifying protective vaccine strategies to prevent melioidosis. However, when used as individual medical countermeasures both antibiotic treatments (therapeutics or post-exposure prophylaxes) and experimental vaccine strategies remain partially protective. Here we demonstrate that when used in combination, current vaccine strategies (recombinant protein subunits AhpC and/or Hcp1 plus capsular polysaccharide conjugated to CRM197 or the live attenuated vaccine strain B. pseudomallei 668 ΔilvI) and co-trimoxazole regimens can result in near uniform protection in a mouse model of melioidosis due to apparent synergy associated with distinct medical countermeasures. Our results demonstrated significant improvement when examining several suboptimal antibiotic regimens (e.g., 7-day antibiotic course started early after infection or 21-day antibiotic course with delayed initiation). Importantly, this combinatorial strategy worked similarly when either protein subunit or live attenuated vaccines were evaluated. Layered and integrated medical countermeasures will provide novel treatment options for melioidosis as well as diseases caused by other pathogens that are refractory to individual strategies, particularly in the case of engineered, emerging, or re-emerging bacterial biothreat agents.
Collapse
Affiliation(s)
- Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jennifer L. Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Nathaniel O. Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Lindsey K. Schmidt
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Caitlyn E. Orne
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - David P. Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Sergei S. Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
11
|
Sherchand SP, Adhikari RP, Muthukrishnan G, Kanipakala T, Owen JR, Xie C, Aman MJ, Proctor RA, Schwarz EM, Kates SL. Evidence of Neutralizing and Non-Neutralizing Anti-Glucosaminidase Antibodies in Patients With S. Aureus Osteomyelitis and Their Association With Clinical Outcome Following Surgery in a Clinical Pilot. Front Cell Infect Microbiol 2022; 12:876898. [PMID: 35923804 PMCID: PMC9339635 DOI: 10.3389/fcimb.2022.876898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/20/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus osteomyelitis remains a very challenging condition; recent clinical studies have shown infection control rates following surgery/antibiotics to be ~60%. Additionally, prior efforts to produce an effective S. aureus vaccine have failed, in part due to lack of knowledge of protective immunity. Previously, we demonstrated that anti-glucosaminidase (Gmd) antibodies are protective in animal models but found that only 6.7% of culture-confirmed S. aureus osteomyelitis patients in the AO Clinical Priority Program (AO-CPP) Registry had basal serum levels (>10 ng/ml) of anti-Gmd at the time of surgery (baseline). We identified a small subset of patients with high levels of anti-Gmd antibodies and adverse outcomes following surgery, not explained by Ig class switching to non-functional isotypes. Here, we aimed to test the hypothesis that clinical cure following surgery is associated with anti-Gmd neutralizing antibodies in serum. Therefore, we first optimized an in vitro assay that quantifies recombinant Gmd lysis of the M. luteus cell wall and used it to demonstrate the 50% neutralizing concentration (NC50) of a humanized anti-Gmd mAb (TPH-101) to be ~15.6 μg/ml. We also demonstrated that human serum deficient in anti-Gmd antibodies can be complemented by TPH-101 to achieve the same dose-dependent Gmd neutralizing activity as purified TPH-101. Finally, we assessed the anti-Gmd physical titer and neutralizing activity in sera from 11 patients in the AO-CPP Registry, who were characterized into four groups post-hoc. Group 1 patients (n=3) had high anti-Gmd physical and neutralizing titers at baseline that decreased with clinical cure of the infection over time. Group 2 patients (n=3) had undetectable anti-Gmd antibodies throughout the study and adverse outcomes. Group 3 (n=3) had high titers +/- neutralizing anti-Gmd at baseline with adverse outcomes. Group 4 (n=2) had low titers of non-neutralizing anti-Gmd at baseline with delayed high titers and adverse outcomes. Collectively, these findings demonstrate that both neutralizing and non-neutralizing anti-Gmd antibodies exist in S. aureus osteomyelitis patients and that screening for these antibodies could have a value for identifying patients in need of passive immunization prior to surgery. Future prospective studies to test the prognostic value of anti-Gmd antibodies to assess the potential of passive immunization with TPH-101 are warranted.
Collapse
Affiliation(s)
| | | | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | | | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - M. Javad Aman
- Integrated BioTherapeutics, Inc., Rockville, MD, United States
| | - Richard A. Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
12
|
Ul-Hamid A, Dafalla H, Hakeem AS, Haider A, Ikram M. In-Vitro Catalytic and Antibacterial Potential of Green Synthesized CuO Nanoparticles against Prevalent Multiple Drug Resistant Bovine Mastitogen Staphylococcus aureus. Int J Mol Sci 2022; 23:2335. [PMID: 35216450 PMCID: PMC8878101 DOI: 10.3390/ijms23042335] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/07/2023] Open
Abstract
Nanoparticles prepared from bio-reduction agents are of keen interest to researchers around the globe due to their ability to mitigate the harmful effects of chemicals. In this regard, the present study aims to synthesize copper oxide nanoparticles (CuO NPs) by utilizing root extracts of ginger and garlic as reducing agents, followed by the characterization and evaluation of their antimicrobial properties against multiple drug resistant (MDR) S. aureus. In this study, UV-vis spectroscopy revealed a reduced degree of absorption with an increase in the extract amount present in CuO. The maximum absorbance for doped NPs was recorded around 250 nm accompanying redshift. X-ray diffraction analysis revealed the monoclinic crystal phase of the particles. The fabricated NPs exhibited spherical shapes with dense agglomeration when examined with FE-SEM and TEM. The crystallite size measured by using XRD was found to be within a range of 23.38-46.64 nm for ginger-doped CuO and 26-56 nm for garlic-doped CuO. Green synthesized NPs of ginger demonstrated higher bactericidal tendencies against MDR S. aureus. At minimum and maximum concentrations of ginger-doped CuO NPs, substantial inhibition areas for MDR S. aureus were (2.05-3.80 mm) and (3.15-5.65 mm), and they were measured as (1.1-3.55 mm) and (1.25-4.45 mm) for garlic-doped NPs. Conventionally available CuO and crude aqueous extract (CAE) of ginger and garlic roots reduced MB in 12, 21, and 38 min, respectively, in comparison with an efficient (100%) reduction of dye in 1 min and 15 s for ginger and garlic doped CuO NPs.
Collapse
Affiliation(s)
- Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Hatim Dafalla
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
| | - Abbas Saeed Hakeem
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
| | - Ali Haider
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture (MNSUA), Multan 66000, Pakistan;
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University, Lahore 54000, Pakistan;
| |
Collapse
|
13
|
Bisdemethoxycurcumin Reduces Methicillin-Resistant Staphylococcus aureus Expression of Virulence-Related Exoproteins and Inhibits the Biofilm Formation. Toxins (Basel) 2021; 13:toxins13110804. [PMID: 34822588 PMCID: PMC8625963 DOI: 10.3390/toxins13110804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/18/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen of nosocomial infection, which is resistant to most antibiotics. Presently, anti-virulence therapy and anti-biofilm therapy are considered to be promising alternatives. In the current work, we investigated the influence of bisdemethoxycurcumin (BDMC) on the virulence-related exoproteins and the biofilm formation using a reference strain and clinic isolated strains. Western blotting, quantitative RT-PCR, and tumor necrosis factor (TNF) release assay were performed to assess the efficacy of BDMC in reducing the expression of Staphylococcus enterotoxin-related exoproteins (enterotoxin A, enterotoxin B) and α-toxin in MRSA. The anti-biofilm activity of BDMC was evaluated through a biofilm inhibition assay. The study suggests that sub-inhibitory concentrations of BDMC significantly inhibited the expression of sea, seb, and hla at the mRNA level in MRSA. Moreover, the expression of virulence-related exoproteins was significantly decreased by down-regulating accessory gene regulator agr, and the inhibition of biofilms formation was demonstrated by BDMC at sub-inhibitory concentrations. Consequently, the study suggests that BDMC may be a potential natural antibacterial agent to release the pressure brought by antibiotic resistance.
Collapse
|
14
|
Yang T, Yang S, Ahmed T, Nguyen K, Yu J, Cao X, Zan R, Zhang X, Shen H, Fay ME, Williams EK, Lam WA, VanEpps JS, Takayama S, Song Y. Dosage-dependent antimicrobial activity of DNA-histone microwebs against Staphylococcus aureus. ADVANCED MATERIALS INTERFACES 2021; 8:2100717. [PMID: 34540532 PMCID: PMC8447838 DOI: 10.1002/admi.202100717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 05/15/2023]
Abstract
Neutrophil extracellular traps (NETs) is an antimicrobial cobweb-structured material produced by immune cells for clearance of pathogens in the body, but paradoxically associated with biofilm formation and exacerbated lung infections. To provide a better materials perspective on the pleiotropic roles played by NETs at diverse compositions/concentrations, a NETs-like material (called 'microwebs', abbreviated as μwebs) is synthesized for decoding the antimicrobial activity of NETs against Staphylococcus aureus in infection-relevant conditions. We show that μwebs composed of low-to-intermediate concentrations of DNA-histone complexes successfully trap and inhibit S. aureus growth and biofilm formation. However, with growing concentrations and histone proportions, the resulting microwebs appear gel-like structures accompanied by reduced antimicrobial activity that can even promote formation of S. aureus biofilms. Our simplified model of NETs provides a materials-based evidence on NETs-relevant pathology in the development of biofilms.
Collapse
Affiliation(s)
- Ting Yang
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shi Yang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tasdiq Ahmed
- Wallace H Coulter Department of Biomedical Engineering & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA 30332 USA
| | - Katherine Nguyen
- Wallace H Coulter Department of Biomedical Engineering & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA 30332 USA
| | - Jinlong Yu
- Department of Orthopedics, Shanghai No.6 People's hospital, Shanghai 200233, China
| | - Xuejun Cao
- State Key Laboratory of Bioreactor Engineering, Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Zan
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Shen
- Department of Orthopedics, Shanghai No.6 People's hospital, Shanghai 200233, China
| | - Meredith E Fay
- Wallace H Coulter Department of Biomedical Engineering & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA 30332 USA
| | - Evelyn Kendall Williams
- Wallace H Coulter Department of Biomedical Engineering & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA 30332 USA
| | - Wilbur A Lam
- Wallace H Coulter Department of Biomedical Engineering & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA 30332 USA
| | - J Scott VanEpps
- Department of Emergency Medicine, Michigan Center for Integrative Research in Critical Care, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Shuichi Takayama
- Wallace H Coulter Department of Biomedical Engineering & Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology & Emory School of Medicine, Atlanta, GA 30332 USA
| | - Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Suresh MK, Vasudevan AK, Biswas L, Biswas R. Protective efficacy of Alum adjuvanted Amidase protein vaccine against Staphylococcus aureus infection in multiple mouse models. J Appl Microbiol 2021; 132:1422-1434. [PMID: 34487603 DOI: 10.1111/jam.15291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
AIMS Staphylococcus aureus is an opportunistic pathogen of humans. No commercial vaccine is available to combat S. aureus infections. In this study, we have investigated the protective immune response generated by S. aureus non-covalently associated cell wall surface protein N-acetylmuramoyl-L-alanine amidase (AM) in combination with Alum (Al) and heat-killed S. aureus (hkSA) using murine models. METHODS AND RESULTS BALB/c mice were immunized with increasing concentrations of AM antigen or hkSA to determine their optimum concentration for vaccination. Fifty micrograms of AM and hkSA each were found to generate maximum anti-AM IgG antibody production. BALB/c mice were immunized next with 50 µg of AM, 50 µg of hKSA and 1 mg Al vaccine formulation. Vaccine efficacy was validated by challenging immunized BALB/c mice with S. aureus Newman and three clinical methicillin-resistant S. aureus strains. AM-hkSA-Al-immunized mice generated high anti-AM IgG antibody response with IgG1 and IgG2b as the predominant immunoglobulin subtypes. Increased survival (60%-90%) with decreased clinical disease symptoms was observed in the vaccinated BALB/c mice group. A significantly lower bacterial load and decreased kidney abscess formation was observed following the challenge with S. aureus in the vaccinated BALB/c mice group. Furthermore, the efficacy of AM-hkSA-Al vaccine was also validated using C57 BL/6 and Swiss albino mice. CONCLUSIONS Using murine infection models, we have demonstrated that AM-hkSA-Al vaccine would be effective in preventing S. aureus infections. SIGNIFICANCE AND IMPACT OF STUDY AM-hkSA-Al vaccine elicited strong immune response and may be considered for future vaccine design against S. aureus infections.
Collapse
Affiliation(s)
- Maneesha K Suresh
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Anil Kumar Vasudevan
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, AIMS - Ponekkara, Cochin, India
| | - Lalitha Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Raja Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
16
|
Song ZM, Zhang JL, Zhou K, Yue LM, Zhang Y, Wang CY, Wang KL, Xu Y. Anthraquinones as Potential Antibiofilm Agents Against Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2021; 12:709826. [PMID: 34539607 PMCID: PMC8446625 DOI: 10.3389/fmicb.2021.709826] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/04/2021] [Indexed: 12/01/2022] Open
Abstract
Biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) are one of the contributing factors to recurrent nosocomial infection in humans. There is currently no specific treatment targeting on biofilms in clinical trials approved by FDA, and antibiotics remain the primary therapeutic strategy. In this study, two anthraquinone compounds isolated from a rare actinobacterial strain Kitasatospora albolonga R62, 3,8-dihydroxy-l-methylanthraquinon-2-carboxylic acid (1) and 3,6,8-trihydroxy-1-methylanthraquinone-2-carboxylic acid (2), together with their 10 commercial analogs 3-12 were evaluated for antibacterial and antibiofilm activities against MRSA, which led to the discovery of two potential antibiofilm anthraquinone compounds anthraquinone-2-carboxlic acid (6) and rhein (12). The structure-activity relationship analysis of these anthraquinones indicated that the hydroxyl group at the C-2 position of the anthraquinone skeleton played an important role in inhibiting biofilm formation at high concentrations, while the carboxyl group at the same C-2 position had a great influence on the antibacterial activity and biofilm eradication activity. The results of crystal violet and methyl thiazolyl tetrazolium staining assays, as well as scanning electron microscope and confocal scanning laser microscopy imaging of compounds 6 and 12 treatment groups showed that both compounds could disrupt preformed MRSA biofilms possibly by killing or dispersing biofilm cells. RNA-Seq was subsequently used for the preliminary elucidation of the mechanism of biofilm eradication, and the results showed upregulation of phosphate transport-related genes in the overlapping differentially expressed genes of both compound treatment groups. Herein, we propose that anthraquinone compounds 6 and 12 could be considered promising candidates for the development of antibiofilm agents.
Collapse
Affiliation(s)
- Zhi-Man Song
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
- College of Pharmacy, Institute of Materia Medica, Dali University, Dali, China
| | - Jun-Liang Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Kun Zhou
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Lu-Ming Yue
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Kai-Ling Wang
- College of Pharmacy, Institute of Materia Medica, Dali University, Dali, China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
Lodhi FL, Saleem MI, Aqib AI, Rashid I, Qureshi ZI, Anwar MA, Ashraf F, Khan SR, Jamil H, Fatima R, Javaid MK, Muzammil I, Naseer MA, Shoaib M, Tanveer Q. Bringing resistance modulation to epidemic methicillin resistant S. aureus of dairy through antibiotics coupled metallic oxide nanoparticles. Microb Pathog 2021; 159:105138. [PMID: 34390767 DOI: 10.1016/j.micpath.2021.105138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 11/16/2022]
Abstract
The current study probed methicillin resistant S. aureus from milk of different dairy farms along with its response to multiple antibiotics, assessment of risk factors, and response to antibiotic coupled nanoparticle. XRD of Np was confirmed as miller indices (hkl) values i.e. (101), (100), (002), (110), (012) and (013) while STEM finally revealed 40-60 nm nanorods in aggregated form. Total of 6 preparations viz a viz gentamicin (G), chloramphenicol (C), zinc oxide nanoparticle (Np), gentamicin coupled Np (GNp), chloramphenicol coupled Np (CNp), and simultaneously coupling of gentamicin and chloramphenicol on Np (GCNp) were formulated for their potential to bring resistance modulation. Data analysis of this study revealed 24.59% MRSA from dairy milk appearing potentially associated (OR> 1, p < 0.05) with most of assumed risk factors. MRSA in response to various antibiotics showed highest resistance against amoxicillin (100%), penicillin (100%), vancomycin (100%), and linezolid (90%). Zone of inhibitions were increased by 249.76% (GNp), 184.86% (CNp), and 279.76% (GCNp) in case of coupled preparations. Significant reduced minimum inhibitory concentration was observed in case of GCNp (7.8125 ± 0.00 μg/mL) followed by GNp (15.00 ± 0.00 μg/mL) and CNp (41.67 ± 18.042 μg/mL) as compared to Np alone (125.00 ± 0.00 μg/mL). Minimum bactericidal concentrations for GCNp, GNp, and CNp, and Np were 31.125, 62.5, 125, and 500 μg/mL, respectively. The study thus concluded increased prevalence of MRSA while coupling of ZnO nanoparticles with antibiotics significantly brought resistance modulation to MRSA.
Collapse
Affiliation(s)
- Fizzah Laeeq Lodhi
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, 38000, Pakistan
| | - Muhammad Ijaz Saleem
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, 38000, Pakistan
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Imaad Rashid
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, 38000, Pakistan
| | - Zafar Iqbal Qureshi
- Department of Theriogenology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Muhammad Ahsan Anwar
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, 38000, Pakistan
| | - Fozia Ashraf
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, 38000, Pakistan
| | - Shanza Rauf Khan
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Huma Jamil
- Department of Theriogenology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Rabia Fatima
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Iqra Muzammil
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, 38000, Pakistan
| | - Muhammad Aamir Naseer
- Department of Clinical Medicine and Surgery, University of Agriculture Faisalabad, 38000, Pakistan
| | - Muhammad Shoaib
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Qaisar Tanveer
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture Faisalabad, 38000, Pakistan
| |
Collapse
|
18
|
Khalifa AA, Bakr HM, Farouk OA. Biomaterials and technologies in the management of periprosthetic infection after total hip arthroplasty: An updated review. JOURNAL OF MUSCULOSKELETAL SURGERY AND RESEARCH 2021; 5:142-151. [DOI: 10.25259/jmsr_51_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Although total hip arthroplasty (THA) is considered one of the most efficacious procedures for managing various hip conditions, failures due to different mechanisms are still being reported. Periprosthetic joint infection (PJI) is one of the devastating causes of failure and revision of THA. PJI carries a burden on the patient, the surgeon, and the health-care system. The diagnosis and management of PJIs carry many morbidities and increased treatment costs. The development of PJI is multifactorial, including issues related to the patient’s general condition, the surgeon’s efficiency, surgical technique, and the implants used. Recent advances in the area of diagnosis and predicting PJI as well as introducing new technologies and biomaterials update for the prevention and treatment of PJI. Local implant coatings, advancement in the bearing surfaces technologies, and new technologies such as immunotherapy and bacteriophage therapy were introduced and suggested as contemporary PJI eradication solutions. In this review, we aimed at discussing some of the newly introduced materials and technologies for the sake of PJI control.
Collapse
Affiliation(s)
- Ahmed A. Khalifa
- Department of Orthopedics, Qena Faculty of Medicine and University Hospital, South Valley University, Qena, Egypt
| | - Hatem M. Bakr
- Department of Orthopedics and Traumatology, Assiut University Hospital, Assiut, Egypt,
| | - Osama A. Farouk
- Department of Orthopedics and Traumatology, Assiut University Hospital, Assiut, Egypt,
| |
Collapse
|
19
|
Loera-Muro A, Guerrero-Barrera A, Tremblay D N Y, Hathroubi S, Angulo C. Bacterial biofilm-derived antigens: a new strategy for vaccine development against infectious diseases. Expert Rev Vaccines 2021; 20:385-396. [PMID: 33606569 DOI: 10.1080/14760584.2021.1892492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Microorganisms can develop into a social organization known as biofilms and these communities can be found in virtually all types of environment on earth. In biofilms, cells grow as multicellular communities held together by a self-produced extracellular matrix. Living within a biofilm allows for the emergence of specific properties for these cells that their planktonic counterparts do not have. Furthermore, biofilms are the cause of several infectious diseases and are frequently inhabited by multi-species. These interactions between microbial species are often critical for the biofilm process. Despite the importance of biofilms in disease, vaccine antigens are typically prepared from bacteria grown as planktonic cells under laboratory conditions. Vaccines based on planktonic bacteria may not provide optimal protection against biofilm-driven infections. AREAS COVERED In this review, we will present an overview of biofilm formation, what controls this mode of growth, and recent vaccine development targeting biofilms. EXPERT OPINION Previous and ongoing research provides evidence that vaccine formulation with antigens derived from biofilms is a promising approach to prevent infectious diseases and can enhance the protective efficacy of existing vaccines. Therefore, research focusing on the identification of biofilm-derived antigens merits further investigations.
Collapse
Affiliation(s)
- Abraham Loera-Muro
- CONACYT-CIBNOR, Centro de Investigaciones Biológicas del Noroeste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS, México
| | - Alma Guerrero-Barrera
- Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Colonia Ciudad Universitaria, Aguascalientes, AGS, México
| | - Yannick Tremblay D N
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Skander Hathroubi
- Cluster of Excellence "Matters of Activity.Image Space Material", Humboldt-Universität zu Berlin, Unter den Liden 6, 10099, Berlin, Germany.,Institüt Für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, BCS, México
| |
Collapse
|
20
|
Kates SL, Owen JR, Beck CA, Xie C, Muthukrishnan G, Daiss JL, Schwarz EM. Lack of Humoral Immunity Against Glucosaminidase Is Associated with Postoperative Complications in Staphylococcus aureus Osteomyelitis. J Bone Joint Surg Am 2020; 102:1842-1848. [PMID: 32858560 PMCID: PMC9018051 DOI: 10.2106/jbjs.20.00029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Glucosaminidase (Gmd) is known to be a protective antigen in animal models of Staphylococcus aureus osteomyelitis. We compared the endogenous anti-Gmd antibody levels in sera of patients with culture-confirmed S. aureus bone infections to their sera at 1 year after operative treatment of the infection. METHODS A novel global biospecimen registry of 297 patients with deep-wound culture-confirmed S. aureus osteomyelitis was analyzed to assess relationships between baseline anti-Gmd serum titers (via custom Luminex assay), known host risk factors for infection, and 1-year postoperative clinical outcomes (e.g., infection control, inconclusive, refracture, persistent infection, septic nonunion, amputation, and septic death). RESULTS All patients had measurable humoral immunity against some S. aureus antigens, but only 20 patients (6.7%; p < 0.0001) had high levels of anti-Gmd antibodies (>10 ng/mL) in serum at baseline. A subset of 194 patients (65.3%) who completed 1 year of follow-up was divided into groups based on anti-Gmd level: low (<1 ng/mL, 54 patients; 27.8%), intermediate (<10 ng/mL, 122 patients; 62.9%), and high (>10 ng/mL, 18 patients; 9.3%), and infection control rates were 40.7%, 50.0%, and 66.7%, respectively. The incidence of adverse outcomes in these groups was 33.3%, 16.4%, and 11.1%, respectively. Assessing anti-Gmd level as a continuous variable showed a 60% reduction in adverse-event odds (p = 0.04) for every tenfold increase in concentration. No differences in patient demographics, body mass index of >40 kg/m, diabetes status, age of ≥70 years, male sex, Charlson Comorbidity Index of >1, or Cierny-Mader host type were observed between groups, and these risk factors were not associated with adverse events. Patients with low anti-Gmd titer demonstrated a significant 2.68-fold increased odds of adverse outcomes (p = 0.008). CONCLUSIONS Deficiency in circulating anti-Gmd antibodies was associated serious adverse outcomes following operative treatment of S. aureus osteomyelitis. At 1 year, high levels of anti-Gmd antibodies were associated with a nearly 3-fold increase in infection-control odds. Additional prospective studies clarifying Gmd immunization for osteomyelitis are needed. LEVEL OF EVIDENCE Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Christopher A. Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | | | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
21
|
Chen AF. Searching for the Holy Grail of Infection Prevention: Commentary on an article by Stephen L. Kates, MD, et al.: "Lack of Humoral Immunity Against Glucosaminidase Is Associated with Postoperative Complications in Staphylococcus aureus Osteomyelitis". J Bone Joint Surg Am 2020; 102:e122. [PMID: 33148957 DOI: 10.2106/jbjs.20.01581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Antonia F Chen
- Department of Orthopaedics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Management of Chronic Bacteriuria in Neurogenic Bladders. CURRENT BLADDER DYSFUNCTION REPORTS 2020. [DOI: 10.1007/s11884-020-00611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Jiang Y, Geng M, Bai L. Targeting Biofilms Therapy: Current Research Strategies and Development Hurdles. Microorganisms 2020; 8:microorganisms8081222. [PMID: 32796745 PMCID: PMC7465149 DOI: 10.3390/microorganisms8081222] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 01/05/2023] Open
Abstract
Biofilms are aggregate of microorganisms in which cells are frequently embedded within a self-produced matrix of extracellular polymeric substance (EPS) and adhere to each other and/or to a surface. The development of biofilm affords pathogens significantly increased tolerances to antibiotics and antimicrobials. Up to 80% of human bacterial infections are biofilm-associated. Dispersal of biofilms can turn microbial cells into their more vulnerable planktonic phenotype and improve the therapeutic effect of antimicrobials. In this review, we focus on multiple therapeutic strategies that are currently being developed to target important structural and functional characteristics and drug resistance mechanisms of biofilms. We thoroughly discuss the current biofilm targeting strategies from four major aspects—targeting EPS, dispersal molecules, targeting quorum sensing, and targeting dormant cells. We explain each aspect with examples and discuss the main hurdles in the development of biofilm dispersal agents in order to provide a rationale for multi-targeted therapy strategies that target the complicated biofilms. Biofilm dispersal is a promising research direction to treat biofilm-associated infections in the future, and more in vivo experiments should be performed to ensure the efficacy of these therapeutic agents before being used in clinic.
Collapse
|
24
|
Development of a Novel and Rapid Antibody-Based Diagnostic for Chronic Staphylococcus aureus Infections Based on Biofilm Antigens. J Clin Microbiol 2020; 58:JCM.01414-19. [PMID: 32051263 DOI: 10.1128/jcm.01414-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
Prosthetic joint infections are difficult to diagnose and treat due to biofilm formation by the causative pathogens. Pathogen identification relies on microbial culture that requires days to weeks, and in the case of chronic biofilm infections, lacks sensitivity. Diagnosis of infection is often delayed past the point of effective treatment such that only the removal of the implant is curative. Early diagnosis of an infection based on antibody detection might lead to less invasive, early interventions. Our study examined antibody-based assays against the Staphylococcus aureus biofilm-upregulated antigens SAOCOL0486 (a lipoprotein), glucosaminidase (a domain of SACOL1062), and SACOL0688 (the manganese transporter MntC) for detection of chronic S. aureus infection. We evaluated these antigens by enzyme-linked immunosorbent assay (ELISA) using sera from naive rabbits and rabbits with S. aureus-mediated osteomyelitis, and then we validated a proof of concept for the lateral flow assay (LFA). The SACOL0688 LFA demonstrated 100% specificity and 100% sensitivity. We demonstrated the clinical diagnostic utility of the SACOL0688 antigen using synovial fluid (SF) from humans with orthopedic implant infections. Elevated antibody levels to SACOL0688 in clinical SF specimens correlated with 91% sensitivity and 100% specificity for the diagnosis of S. aureus infection by ELISA. We found measuring antibodies levels to SACOL0688 in SF using ELISA or LFA provides a tool for the sensitive and specific diagnosis of S. aureus prosthetic joint infection. Development of the LFA diagnostic modality is a desirable, cost-effective option, potentially providing rapid readout in minutes for chronic biofilm infections.
Collapse
|
25
|
Lee CC, Southgate R, Jiao C, Gersz E, Owen JR, Kates SL, Beck CA, Xie C, Daiss JL, Post V, Moriarty TF, Zeiter S, Schwarz EM, Muthukrishnan G. Deriving a dose and regimen for anti-glucosaminidase antibody passive-immunisation for patients with Staphylococcus aureus osteomyelitis. Eur Cell Mater 2020; 39:96-107. [PMID: 32003439 PMCID: PMC7236896 DOI: 10.22203/ecm.v039a06] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Staphylococcus aureus (S. aureus) osteomyelitis remains a major clinical problem. Anti-glucosaminidase (Gmd) antibodies (1C11) are efficacious in prophylactic and therapeutic murine models. Feasibility, safety and pharmacokinetics of 1C11 passive immunisation in sheep and endogenous anti-Gmd levels were quantified in osteomyelitis patients. 3 sheep received a 500 mg intravenous (i.v.) bolus of 1C11 and its levels in sera were determined by enzyme-linked immunosorbent assay (ELISA) over 52 d. A humanised anti-Gmd monoclonal antibody, made by grafting the antigen-binding fragment (Fab) portion of 1C11 onto the fragment crystallisable region (Fc) of human IgG1, was used to make a standard curve of mean fluorescent intensity versus concentration of anti-Gmd. Anti-Gmd serum levels were determined in 297 patients with culture-confirmed S. aureus osteomyelitis and 40 healthy controls. No complications or adverse events were associated with the sheep 1C11 i.v. infusion and the estimated circulating half-life of 1C11 was 23.7 d. Endogenous anti-Gmd antibody levels in sera of osteomyelitis patients ranged from < 1 ng/mL to 300 µg/mL, with a mean concentration of 21.7 µg/mL. The estimated circulating half-life of endogenous anti-Gmd antibodies in sera of 12 patients with cured osteomyelitis was 120.4 d. A clinically relevant administration of anti-Gmd (500 mg i.v. = 7 mg/kg/70 kg human) was safe in sheep. This dose was 8 times more than the endogenous anti-Gmd levels observed in osteomyelitis patients and was predicted to have a half-life of > 3 weeks. Anti-Gmd passive immunisation has potential to prevent and treat S. aureus osteomyelitis. Further clinical development is warranted.
Collapse
Affiliation(s)
- Charles C. Lee
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard Southgate
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Cindy Jiao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Elaine Gersz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - John R. Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Christopher A. Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA,Corresponding Author: Edward M. Schwarz, Ph.D., Burton Professor of Orthopaedics, Director of Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, Phone: (585) 275-3063, FAX: (585) 276-2177,
| | | |
Collapse
|
26
|
Coenye T, Kjellerup B, Stoodley P, Bjarnsholt T. The future of biofilm research - Report on the '2019 Biofilm Bash'. Biofilm 2019; 2:100012. [PMID: 33447799 PMCID: PMC7798458 DOI: 10.1016/j.bioflm.2019.100012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
In May 2019, 29 scientists with expertise in various subdisciplines of biofilm research got together in Leavenworth (WA, USA) at an event designated as the ‘2019 Biofilm Bash’. The goal of this informal two-day meeting was first to identify gaps in our knowledge, and then to come up with ways how the biofilm community can fill these gaps. The meeting was organized around six questions that covered the most important items brought forward by the organizers and participants. The outcome of these discussions is summarized in the present paper. We are aware that these views represent a small subset of our field, and that inevitably we will have inadvertently overlooked important developing research areas and ideas. We are nevertheless hopeful that this report will stimulate discussions and help create new ways of how we can advance our field.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.,ESCMID Study Group on Biofilms, Basel, Switzerland
| | - Birthe Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.,Department of Orthopaedics, The Ohio State University, Columbus, OH, USA.,National Biofilms Innovation Centre (NBIC), UK.,National Centre for Advanced Tribology at Southampton, University of Southampton, Southampton, UK
| | - Thomas Bjarnsholt
- ESCMID Study Group on Biofilms, Basel, Switzerland.,Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | | |
Collapse
|
27
|
Harro JM, Achermann Y, Freiberg JA, Allison DL, Brao KJ, Marinos DP, Sanjari S, Leid JG, Shirtliff ME. Clearance of Staphylococcus aureus from In Vivo Models of Chronic Infection by Immunization Requires Both Planktonic and Biofilm Antigens. Infect Immun 2019; 88:e00586-19. [PMID: 31712267 PMCID: PMC6921670 DOI: 10.1128/iai.00586-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/22/2019] [Indexed: 01/14/2023] Open
Abstract
Staphylococcus aureus is a causative agent of chronic biofilm-associated infections that are recalcitrant to resolution by the immune system or antibiotics. To combat these infections, an antistaphylococcal, biofilm-specific quadrivalent vaccine against an osteomyelitis model in rabbits has previously been developed and shown to be effective at eliminating biofilm-embedded bacterial populations. However, the addition of antibiotics was required to eradicate remaining planktonic populations. In this study, a planktonic upregulated antigen was combined with the quadrivalent vaccine to remove the need for antibiotic therapy. Immunization with this pentavalent vaccine followed by intraperitoneal challenge of BALB/c mice with S. aureus resulted in 16.7% and 91.7% mortality in pentavalent vaccine and control groups, respectively (P < 0.001). Complete bacterial elimination was found in 66.7% of the pentavalent cohort, while only 8.3% of the control animals cleared the infection (P < 0.05). Further protective efficacy was observed in immunized rabbits following intramedullary challenge with S. aureus, where 62.5% of the pentavalent cohort completely cleared the infection, versus none of the control animals (P < 0.05). Passive immunization of BALB/c mice with serum IgG against the vaccine antigens prior to intraperitoneal challenge with S. aureus prevented mortality in 100% of mice and eliminated bacteria in 33.3% of the challenged mice. These results demonstrate that targeting both the planktonic and biofilm stages with the pentavalent vaccine or the IgG elicited by immunization can effectively protect against S. aureus infection.
Collapse
Affiliation(s)
- Janette M Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
| | - Yvonne Achermann
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jeffrey A Freiberg
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
- Graduate Program in Life Sciences, Molecular Microbiology and Immunology Program, University of Maryland-Baltimore, Baltimore, Maryland, USA
| | - Devon L Allison
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
- Graduate Program in Life Sciences, Molecular Microbiology and Immunology Program, University of Maryland-Baltimore, Baltimore, Maryland, USA
| | - Kristen J Brao
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
- Graduate Program in Life Sciences, Molecular Microbiology and Immunology Program, University of Maryland-Baltimore, Baltimore, Maryland, USA
| | - Dimitrius P Marinos
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
| | - Salar Sanjari
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
| | - Jeff G Leid
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland-Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland-Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Seebach E, Kubatzky KF. Chronic Implant-Related Bone Infections-Can Immune Modulation be a Therapeutic Strategy? Front Immunol 2019; 10:1724. [PMID: 31396229 PMCID: PMC6664079 DOI: 10.3389/fimmu.2019.01724] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic implant-related bone infections are a major problem in orthopedic and trauma-related surgery with severe consequences for the affected patients. As antibiotic resistance increases in general and because most antibiotics have poor effectiveness against biofilm-embedded bacteria in particular, there is a need for alternative and innovative treatment approaches. Recently, the immune system has moved into focus as the key player in infection defense and bone homeostasis, and the targeted modulation of the host response is becoming an emerging field of interest. The aim of this review was to summarize the current knowledge of impaired endogenous defense mechanisms that are unable to prevent chronicity of bone infections associated with a prosthetic or osteosynthetic device. The presence of foreign material adversely affects the immune system by generating a local immune-compromised environment where spontaneous clearance of planktonic bacteria does not take place. Furthermore, the surface structure of the implant facilitates the transition of bacteria from the planktonic to the biofilm stage. Biofilm formation on the implant surface is closely linked to the development of a chronic infection, and a misled adaption of the immune system makes it impossible to effectively eliminate biofilm infections. The interaction between the immune system and bone cells, especially osteoclasts, is extensively studied in the field of osteoimmunology and this crosstalk further aggravates the course of bone infection by shifting bone homeostasis in favor of bone resorption. T cells play a major role in various chronic diseases and in this review a special focus was therefore set on what is known about an ineffective T cell response. Myeloid-derived suppressor cells (MDSCs), anti-inflammatory macrophages, regulatory T cells (Tregs) as well as osteoclasts all suppress immune defense mechanisms and negatively regulate T cell-mediated immunity. Thus, these cells are considered to be potential targets for immune therapy. The success of immune checkpoint inhibition in cancer treatment encourages the transfer of such immunological approaches into treatment strategies of other chronic diseases. Here, we discuss whether immune modulation can be a therapeutic tool for the treatment of chronic implant-related bone infections.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
29
|
Bottagisio M, Coman C, Lovati AB. Animal models of orthopaedic infections. A review of rabbit models used to induce long bone bacterial infections. J Med Microbiol 2019; 68:506-537. [PMID: 30875284 DOI: 10.1099/jmm.0.000952] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of infections is one of the main complications in orthopaedics, especially in the presence of implants for the osteosynthesis of compound fractures and joint prosthesis. Indeed, foreign materials and implants act as substrates for the adhesion and proliferation of bacterial strains able to produce biofilm, causing peri-implant osteomyelitis. The eradication of biofilm remains a great challenge for the host immune system, as well as for medical and surgical approaches, thus imposing the need for new prophylactic and/or therapeutic strategies in which animal models have an essential role. In vivo orthopaedic models have mainly been used to study the pathogenesis of infections, biofilm behaviour and the efficacy of antimicrobial strategies, to select diagnostic techniques and test the efficacy of novel materials or surface modifications to impede both the establishment of bone infections and the associated septic loosening of implants. Among several models of osteomyelitis and implant-related infections described in small rodents and large animals, the rabbit has been widely used as a reliable and reproducible model of orthopaedic infections. This review examines the relevance of rabbits for the development of clinically representative models by analysing the pros and cons of the different approaches published in the literature. This analysis will aid in increasing our knowledge concerning orthopaedic infections by using this species. This review will be a tool for researchers who need to approach pre-clinical studies in the field of bone infection and have to identify the most appropriate animal model to verify their scientific hypothesis.
Collapse
Affiliation(s)
- Marta Bottagisio
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Cristin Coman
- 'Cantacuzino' National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - Arianna B Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| |
Collapse
|
30
|
Hart JW, Waigh TA, Lu JR, Roberts IS. Microrheology and Spatial Heterogeneity of Staphylococcus aureus Biofilms Modulated by Hydrodynamic Shear and Biofilm-Degrading Enzymes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3553-3561. [PMID: 30707032 PMCID: PMC7005943 DOI: 10.1021/acs.langmuir.8b04252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Particle tracking microrheology was used to investigate the viscoelasticity of Staphylococcus aureus biofilms grown in microfluidic cells at various flow rates and when subjected to biofilm-degrading enzymes. Biofilm viscoelasticity was found to harden as a function of shear rate but soften with increasing height away from the attachment surface in good agreement with previous bulk results. Ripley's K-function was used to quantify the spatial distribution of the bacteria within the biofilm. For all conditions, biofilms would cluster as a function of height during growth. The effects of proteinase K and DNase-1 on the viscoelasticity of biofilms were also investigated. Proteinase K caused an order of magnitude change in the compliances, softening the biofilms. However, DNase-1 was found to have no significant effects over the first 6 h of development, indicating that DNA is less important in biofilm maintenance during the initial stages of growth. Our results demonstrate that during the preliminary stages of Staphylococcus aureus biofilm development, column-like structures with a vertical gradient of viscoelasticity are established and modulated by the hydrodynamic shear caused by fluid flow in the surrounding environment. An understanding of these mechanical properties will provide more accurate insights for removal strategies of early-stage biofilms.
Collapse
Affiliation(s)
- J. W. Hart
- School of Physics and Astronomy, Schuster Building and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - T. A. Waigh
- School of Physics and Astronomy, Schuster Building and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - J. R. Lu
- School of Physics and Astronomy, Schuster Building and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - I. S. Roberts
- Faculty
of Biology, Medicine and Health, Michael Smith Building, The University of Manchester, Dover Street, Manchester M13 9PL, U.K.
| |
Collapse
|
31
|
Hamilos DL. Biofilm Formations in Pediatric Respiratory Tract Infection Part 2: Mucosal Biofilm Formation by Respiratory Pathogens and Current and Future Therapeutic Strategies to Inhibit Biofilm Formation or Eradicate Established Biofilm. Curr Infect Dis Rep 2019; 21:8. [DOI: 10.1007/s11908-019-0657-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Jiranek W, Kigera JWM, Klatt BA, Küçükdurmaz F, Lieberman J, Moser C, Mulhall K, Nahouli H, Schwarz E, Shohat N, Tarabichi M. General Assembly, Prevention, Host Risk Mitigation - General Factors: Proceedings of International Consensus on Orthopedic Infections. J Arthroplasty 2019; 34:S43-S48. [PMID: 30348564 DOI: 10.1016/j.arth.2018.09.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
33
|
Raafat D, Otto M, Reppschläger K, Iqbal J, Holtfreter S. Fighting Staphylococcus aureus Biofilms with Monoclonal Antibodies. Trends Microbiol 2019; 27:303-322. [PMID: 30665698 DOI: 10.1016/j.tim.2018.12.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus (S. aureus) is a notorious pathogen and one of the most frequent causes of biofilm-related infections. The treatment of S. aureus biofilms is hampered by the ability of the biofilm structure to shield bacteria from antibiotics as well as the host's immune system. Therefore, new preventive and/or therapeutic interventions, including the use of antibody-based approaches, are urgently required. In this review, we describe the mechanisms by which anti-S. aureus antibodies can help in combating biofilms, including an up-to-date overview of monoclonal antibodies currently in clinical trials. Moreover, we highlight ongoing efforts in passive vaccination against S. aureus biofilm infections, with special emphasis on promising targets, and finally indicate the direction into which future research could be heading.
Collapse
Affiliation(s)
- Dina Raafat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Egypt; Current affiliation: Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Kevin Reppschläger
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Jawad Iqbal
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Silva Holtfreter
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
34
|
Yokogawa N, Ishikawa M, Nishitani K, Beck CA, Tsuchiya H, Mesfin A, Kates SL, Daiss JL, Xie C, Schwarz EM. Immunotherapy synergizes with debridement and antibiotic therapy in a murine 1-stage exchange model of MRSA implant-associated osteomyelitis. J Orthop Res 2018; 36:1590-1598. [PMID: 29405452 PMCID: PMC6541030 DOI: 10.1002/jor.23801] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/31/2017] [Indexed: 02/04/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) reinfection following revision surgery remains a major orthopaedic problem. Toward the development of immunotherapy with anti-glucosaminidase monoclonal antibodies (anti-Gmd), we aimed to: (i) develop a murine 1-stage exchange model of bioluminescent MRSA (USA300LAC::lux) contaminated femoral implants; and (ii) utilize this model to demonstrate the synergistic effects of combination vancomycin and anti-Gmd therapy on reinfection and bone healing. Following an infection surgery, the original plate and two screws were removed on day 7, and exchanged with sterile implants. Mice were randomized to five groups: (i) no infection control; (ii) infected placebo; (iii) anti-Gmd; (iv) vancomycin; and (v) combination therapy. Bioluminescent imaging (BLI) was performed on days 0, 1, 3, 5, 7, 8, 10, 12, and 14. Mice were euthanized on day 14 (day 7 post-revision), and efficacy was assessed via colony forming units (CFU) on explanted hardware, micro-CT, and histology. As monotherapies, anti-Gmd inhibited Staphylococcus abscess communities, and vancomycin reduced CFU on the implants. However, only combination therapy prevented increased BLI post-revision surgery, with a significant 6.5-fold reduction on day 10 (p < 0.05 vs. placebo), and achieved sterile implant levels by day 12. Synergistic effects were also apparent from reduced osteolysis and increased new bone formation around the screws only observed following combination therapy. Taken together, we find that: (i) this murine femoral plate 1-stage revision model can efficiently evaluate therapies to prevent reinfection; and (ii) immunotherapy plays a distinct role from antibiotics to reduce reinfection following revision surgery, such that synergy to achieve osseointegration is possible. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1590-1598, 2018.
Collapse
Affiliation(s)
- Noriaki Yokogawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Masahiro Ishikawa
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Orthopaedics Surgery, Kyoto University, Kyoto, Japan
| | - Kohei Nishitani
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Orthopaedics Surgery, Kyoto University, Kyoto, Japan
| | - Christopher A. Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY,Department of Orthopedics, University of Rochester Medical Center, Rochester, NY
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Addisu Mesfin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Orthopedics, University of Rochester Medical Center, Rochester, NY
| | - Stephen L. Kates
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, VA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Orthopedics, University of Rochester Medical Center, Rochester, NY
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Orthopedics, University of Rochester Medical Center, Rochester, NY
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY,Department of Orthopedics, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
35
|
Blanchette KA, Wenke JC. Current therapies in treatment and prevention of fracture wound biofilms: why a multifaceted approach is essential for resolving persistent infections. J Bone Jt Infect 2018; 3:50-67. [PMID: 29761067 PMCID: PMC5949568 DOI: 10.7150/jbji.23423] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic orthopedic injuries, particularly extremity wounds, are a significant cause of morbidity. Despite prophylactic antibiotic treatment and surgical intervention, persistent infectious complications can and do occur. Persistent bacterial infections are often caused by biofilms, communities of antibiotic tolerant bacteria encased within a matrix. The structural and metabolic differences in this mode of growth make treatment difficult. Herein, we describe both established and novel, experimental treatments targeted at various stages of wound healing that are specifically aimed at reducing and eliminating biofilm bacteria. Importantly, the highly tolerant nature of these bacterial communities suggests that most singular approaches could be circumvented and a multifaceted, combinatorial approach will be the most effective strategy for treating these complicated infections.
Collapse
Affiliation(s)
| | - Joseph C Wenke
- US Army Institute of Surgical Research, Ft Sam Houston, TX
| |
Collapse
|
36
|
Meeker DG, Wang T, Harrington WN, Zharov VP, Johnson SA, Jenkins SV, Oyibo SE, Walker CM, Mills WB, Shirtliff ME, Beenken KE, Chen J, Smeltzer MS. Versatility of targeted antibiotic-loaded gold nanoconstructs for the treatment of biofilm-associated bacterial infections. Int J Hyperthermia 2018; 34:209-219. [PMID: 29025325 PMCID: PMC6095133 DOI: 10.1080/02656736.2017.1392047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND We previously demonstrated that a photoactivatable therapeutic approach employing antibiotic-loaded, antibody-conjugated, polydopamine (PDA)-coated gold nanocages (AuNCs) could be used for the synergistic killing of bacterial cells within a biofilm. The approach was validated with a focus on Staphylococcus aureus using an antibody specific for staphylococcal protein A (Spa) and an antibiotic (daptomycin) active against Gram-positive cocci including methicillin-resistant S. aureus (MRSA). However, an important aspect of this approach is its potential therapeutic versatility. METHODS In this report, we evaluated this versatility by examining the efficacy of AuNC formulations generated with alternative antibodies and antibiotics targeting S. aureus and alternative combinations targeting the Gram-negative pathogen Pseudomonas aeruginosa. RESULTS The results confirmed that daptomycin-loaded AuNCs conjugated to antibodies targeting two different S. aureus lipoproteins (SACOL0486 and SACOL0688) also effectively kill MRSA in the context of a biofilm. However, our results also demonstrate that antibiotic choice is critical. Specifically, ceftaroline and vancomycin-loaded AuNCs conjugated to anti-Spa antibodies were found to exhibit reduced efficacy relative to daptomycin-loaded AuNCs conjugated to the same antibody. In contrast, gentamicin-loaded AuNCs conjugated to an antibody targeting a conserved outer membrane protein were highly effective against P. aeruginosa biofilms. CONCLUSIONS These results confirm the therapeutic versatility of our approach. However, to the extent that its synergistic efficacy is dependent on the ability to achieve both a lethal photothermal effect and the thermally controlled release of a sufficient amount of antibiotic, they also demonstrate the importance of carefully designing appropriate antibody and antibiotic combinations to achieve the desired therapeutic synergy.
Collapse
Affiliation(s)
- Daniel G. Meeker
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Tengjiao Wang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Walter N. Harrington
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Vladimir P. Zharov
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarah A. Johnson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Samir V. Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stephanie E. Oyibo
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Christopher M. Walker
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Weston B. Mills
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mark E. Shirtliff
- Department of Microbial Pathogenesis, Dental School, University of Maryland-Baltimore, Baltimore, Maryland
- Department of Microbiology and Immunology, School of Medicine, University of Maryland-Baltimore, Baltimore, Maryland
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jingyi Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
37
|
Glucovanillin: A potent inhibitor of lipase from Acinetobacter radioresistens. INFORMATICS IN MEDICINE UNLOCKED 2018. [DOI: 10.1016/j.imu.2018.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
38
|
Koo H, Allan RN, Howlin RP, Hall-Stoodley L, Stoodley P. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 2017; 15:740-755. [PMID: 28944770 PMCID: PMC5685531 DOI: 10.1038/nrmicro.2017.99] [Citation(s) in RCA: 1074] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections. The multifactorial nature of biofilm development and drug tolerance imposes great challenges for the use of conventional antimicrobials and indicates the need for multi-targeted or combinatorial therapies. In this Review, we focus on current therapeutic strategies and those under development that target vital structural and functional traits of microbial biofilms and drug tolerance mechanisms, including the extracellular matrix and dormant cells. We emphasize strategies that are supported by in vivo or ex vivo studies, highlight emerging biofilm-targeting technologies and provide a rationale for multi-targeted therapies aimed at disrupting the complex biofilm microenvironment.
Collapse
Affiliation(s)
- Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, PA, USA
| | - Raymond N Allan
- Clinical and Experimental Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Robert P Howlin
- Centre for Biological Sciences, University of Southampton, Southampton, UK
- Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Luanne Hall-Stoodley
- Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, Centre for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
- Depts. Orthopaedics and Microbiology, The Ohio State University, Columbus, Ohio, USA
- National Center for Advanced Tribology at Southampton (nCATS), Faculty of Engineering and the Environment, University of Southampton, UK
| |
Collapse
|
39
|
Aqib AI, Ijaz M, Anjum AA, Malik MAR, Mehmood K, Farooqi SH, Hussain K. Antibiotic susceptibilities and prevalence of Methicillin resistant Staphylococcus aureus (MRSA) isolated from bovine milk in Pakistan. Acta Trop 2017; 176:168-172. [PMID: 28797802 DOI: 10.1016/j.actatropica.2017.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 12/25/2022]
Abstract
The study was designed to investigate bovine milk for prevalence of an emerging zoonotic pathogen Methicillin resistant Staphylococcus aureus (MRSA), and in-vitro therapeutic response of various antibiotics against MRSA. Nine hundred (900) milk samples were collected (half from cattle and half from buffalo) from private and public farms located in various tehsils of district Faisalabad, using the convenient sampling method. Milk samples were put to biochemical identification of Staphylococcus aureus and later oxacilline disk sensitivity testing for confirmation of MRSA. The MRSA isolates were confirmed by PCR targeting mecA gene in Staphylococcus aureus. The study found 34% prevalence of MRSA in overall bovine milk from district Faisalabad with 30% and 38% prevalence in cattle and buffalo, respectively. Tehsil Samundari presented comparatively higher MRSA prevalence followed by tehsil Jaranwala and tehsil Faisalabad. However, there was non-significant difference of MRSA prevalence between cattle and buffalo, and among different tehsils. All assumed risk factors except specie were significantly associated with mastitis spread. The in-vitro drug trial against MRSA from buffalo milk presented 100% efficacy of Ciprofloxcin, Moxifloxacin, Linezolid, and Trimethoprim plus Sulphamethoxazole combination, followed by Gentamicin and Levofloxacin presenting 90%, and Amikacin becoming 80% efficacious against MRSA from buffalo milk. The MRSA isolates of cattle milk presented similar pattern with some variations of higher susceptibility against Oxytetracycline, and Fusidic acid. The conclusion of the study states uniform prevalence of MRSA in cattle and buffalo milk in study area having assumed risk factors positively associated with disease spread, while Ciprofloxcin, Moxifloxacin, Linezolid, and Trimethoprim plus Sulphamethoxazole drugs showed the highest efficacy to combat this pathogen.
Collapse
|
40
|
Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent. Antimicrob Agents Chemother 2017; 61:AAC.02666-16. [PMID: 28461319 DOI: 10.1128/aac.02666-16] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/21/2017] [Indexed: 02/07/2023] Open
Abstract
Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC90) value of ≤0.25 μg/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes, and Streptococcus agalactiae were also sensitive to disruption, with MBEC90 values ranging from 0.25 to 8 μg/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component.
Collapse
|
41
|
Søe NH, Jensen NV, Jensen AL, Koch J, Poulsen SS, Pier GB, Johansen HK. Active and Passive Immunization Against Staphylococcus aureus Periprosthetic Osteomyelitis in Rats. ACTA ACUST UNITED AC 2017; 31:45-50. [PMID: 28064219 DOI: 10.21873/invivo.11023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/24/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Staphylococcus aureus infection associated with orthopedic implants cannot always be controlled. We used a knee prosthesis model with implant-related osteomyelitis in rats to explore induction of an effective immune response with active and passive immunization. MATERIALS AND METHODS Fifty-two Sprague-Dawley rats were divided into active (N=28) and passive immunization groups (N=24). A bacterial inoculum of 103 S. aureus MN8 was injected into the tibia and the femur marrow before insertion of a non-constrained knee prosthesis in each rat. The active-immunization group received a synthetic oligosaccharide of polysaccharide poly-N-acetylglucosamine (PNAG), 9G1cNH2 and the passive-immunization group received immunization with immunoglobulin from rabbits infected with S. aureus. RESULTS/CONCLUSION Active immunization against PNAG significantly reduced the consequences of osteomyelitis infection from PNAG-producing intercellular adhesion (ica+) but not ica- S. aureus. Passive immunization resulted in better clinical assessments in animals challenged with either ica+ or ica- S. aureus, suggesting a lack of specificity in this antiserum.
Collapse
Affiliation(s)
- Niels H Søe
- Hand Section, Department of Orthopaedics, Herlev and Gentofte University Hospital, Hellerup, Denmark
| | - Nina Vendel Jensen
- Department of Anaesthesiology, Intensive Care and Operations, Herlev and Gentofte University Hospital, Hellerup, Denmark
| | - Asger Lundorff Jensen
- Biochemical Department, Faculty of Life Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne Koch
- Department of Experimental Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Steen Seier Poulsen
- Biomedical Department, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, U.S.A
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark.,The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
42
|
Staphylococcus aureus-dependent septic arthritis in murine knee joints: local immune response and beneficial effects of vaccination. Sci Rep 2016; 6:38043. [PMID: 27901071 PMCID: PMC5128924 DOI: 10.1038/srep38043] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is the major cause of human septic arthritis and osteomyelitis, which deserve special attention due to their rapid evolution and resistance to treatment. The progression of the disease depends on both bacterial presence in situ and uncontrolled disruptive immune response, which is responsible for chronic disease. Articular and bone infections are often the result of blood bacteremia, with the knees and hips being the most frequently infected joints showing the worst clinical outcome. We report the development of a hematogenous model of septic arthritis in murine knees, which progresses from an acute to a chronic phase, similarly to what occurs in humans. Characterization of the local and systemic inflammatory and immune responses following bacterial infection brought to light specific signatures of disease. Immunization of mice with the vaccine formulation we have recently described (4C-Staph), induced a strong antibody response and specific CD4+ effector memory T cells, and resulted in reduced bacterial load in the knee joints, a milder general inflammatory state and protection against bacterial-mediated cellular toxicity. Possible correlates of protection are finally proposed, which might contribute to the development of an effective vaccine for human use.
Collapse
|
43
|
Combining in vitro protein detection and in vivo antibody detection identifies potential vaccine targets against Staphylococcus aureus during osteomyelitis. Med Microbiol Immunol 2016; 206:11-22. [PMID: 27629411 PMCID: PMC5263195 DOI: 10.1007/s00430-016-0476-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/03/2016] [Indexed: 12/31/2022]
Abstract
Currently, little is known about the in vivo human immune response against Staphylococcus aureus during a biofilm-associated infection, such as osteomyelitis, and how this relates to protein production in biofilms in vitro. Therefore, we characterized IgG responses in 10 patients with chronic osteomyelitis against 50 proteins of S. aureus, analyzed the presence of these proteins in biofilms of the infecting isolates on polystyrene (PS) and human bone in vitro, and explored the relation between in vivo and in vitro data. IgG levels against 15 different proteins were significantly increased in patients compared to healthy controls. Using a novel competitive Luminex-based assay, eight of these proteins [alpha toxin, Staphylococcus aureus formyl peptide receptor-like 1 inhibitor (FlipR), glucosaminidase, iron-responsive surface determinants A and H, the putative ABC transporter SACOL0688, staphylococcal complement inhibitor (SCIN), and serine-aspartate repeat-containing protein E (SdrE)] were also detected in a majority of the infecting isolates during biofilm formation in vitro. However, 4 other proteins were detected in only a minority of isolates in vitro while, vice versa, 7 proteins were detected in multiple isolates in vitro but not associated with significantly increased IgG levels in patients. Detection of proteins was largely confirmed using a transcriptomic approach. Our data provide further insights into potential therapeutic targets, such as for vaccination, to reduce S. aureus virulence and biofilm formation. At the same time, our data suggest that either in vitro or immunological in vivo data alone should be interpreted cautiously and that combined studies are necessary to identify potential targets.
Collapse
|
44
|
Maldarelli GA, Piepenbrink KH, Scott AJ, Freiberg JA, Song Y, Achermann Y, Ernst RK, Shirtliff ME, Sundberg EJ, Donnenberg MS, von Rosenvinge EC. Type IV pili promote early biofilm formation by Clostridium difficile. Pathog Dis 2016; 74:ftw061. [PMID: 27369898 DOI: 10.1093/femspd/ftw061] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 12/20/2022] Open
Abstract
Increasing morbidity and mortality from Clostridium difficile infection (CDI) present an enormous challenge to healthcare systems. Clostridium difficile express type IV pili (T4P), but their function remains unclear. Many chronic and recurrent bacterial infections result from biofilms, surface-associated bacterial communities embedded in an extracellular matrix. CDI may be biofilm mediated; T4P are important for biofilm formation in a number of organisms. We evaluate the role of T4P in C. difficile biofilm formation using RNA sequencing, mutagenesis and complementation of the gene encoding the major pilin pilA1, and microscopy. RNA sequencing demonstrates that, in comparison to other growth phenotypes, C. difficile growing in a biofilm has a distinct RNA expression profile, with significant differences in T4P gene expression. Microscopy of T4P-expressing and T4P-deficient strains suggests that T4P play an important role in early biofilm formation. A non-piliated pilA1 mutant forms an initial biofilm of significantly reduced mass and thickness in comparison to the wild type. Complementation of the pilA1 mutant strain leads to formation of a biofilm which resembles the wild-type biofilm. These findings suggest that T4P play an important role in early biofilm formation. Novel strategies for confronting biofilm infections are emerging; our data suggest that similar strategies should be investigated in CDI.
Collapse
Affiliation(s)
- Grace A Maldarelli
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kurt H Piepenbrink
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Jeffrey A Freiberg
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yvonne Achermann
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Eric J Sundberg
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael S Donnenberg
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erik C von Rosenvinge
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
45
|
Moriarty TF, Kuehl R, Coenye T, Metsemakers WJ, Morgenstern M, Schwarz EM, Riool M, Zaat SA, Khana N, Kates SL, Richards RG. Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev 2016; 1:89-99. [PMID: 28461934 PMCID: PMC5367564 DOI: 10.1302/2058-5241.1.000037] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Orthopaedic and trauma device-related infection (ODRI) remains one of the major complications in modern trauma and orthopaedic surgery.Despite best practice in medical and surgical management, neither prophylaxis nor treatment of ODRI is effective in all cases, leading to infections that negatively impact clinical outcome and significantly increase healthcare expenditure.The following review summarises the microbiological profile of modern ODRI, the impact antibiotic resistance has on treatment outcomes, and some of the principles and weaknesses of the current systemic and local antibiotic delivery strategies.The emerging novel strategies aimed at preventing or treating ODRI will be reviewed. Particular attention will be paid to the potential for clinical impact in the coming decades, when such interventions are likely to be critically important.The review focuses on this problem from an interdisciplinary perspective, including basic science innovations and best practice in infectious disease. Cite this article: Moriarty TF, Kuehl R, Coenye T, et al. Orthopaedic device related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev 2016;1:89-99. DOI: 10.1302/2058-5241.1.000037.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nina Khana
- University Hospital of Basel, Switzerland
| | | | | |
Collapse
|
46
|
den Reijer PM, Haisma EM, Lemmens-den Toom NA, Willemse J, Koning RA, Demmers JAA, Dekkers DHW, Rijkers E, El Ghalbzouri A, Nibbering PH, van Wamel W. Detection of Alpha-Toxin and Other Virulence Factors in Biofilms of Staphylococcus aureus on Polystyrene and a Human Epidermal Model. PLoS One 2016; 11:e0145722. [PMID: 26741798 PMCID: PMC4704740 DOI: 10.1371/journal.pone.0145722] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/07/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND & AIM The ability of Staphylococcus aureus to successfully colonize (a)biotic surfaces may be explained by biofilm formation and the actions of virulence factors. The aim of the present study was to establish the presence of 52 proteins, including virulence factors such as alpha-toxin, during biofilm formation of five different (methicillin resistant) S. aureus strains on Leiden human epidermal models (LEMs) and polystyrene surfaces (PS) using a competitive Luminex-based assay. RESULTS All five S. aureus strains formed biofilms on PS, whereas only three out of five strains formed biofilms on LEMs. Out of the 52 tested proteins, six functionally diverse proteins (ClfB, glucosaminidase, IsdA, IsaA, SACOL0688 and nuclease) were detected in biofilms of all strains on both PS and LEMs. At the same time, four toxins (alpha-toxin, gamma-hemolysin B and leukocidins D and E), two immune modulators (formyl peptide receptor-like inhibitory protein and Staphylococcal superantigen-like protein 1), and two other proteins (lipase and LytM) were detectable in biofilms by all five S. aureus strains on LEMs, but not on PS. In contrast, fibronectin-binding protein B (FnbpB) was detectable in biofilms by all S. aureus biofilms on PS, but not on LEMs. These data were largely confirmed by the results from proteomic and transcriptomic analyses and in case of alpha-toxin additionally by GFP-reporter technology. CONCLUSION Functionally diverse virulence factors of (methicillin-resistant) S. aureus are present during biofilm formation on LEMs and PS. These results could aid in identifying novel targets for future treatment strategies against biofilm-associated infections.
Collapse
Affiliation(s)
- P. M. den Reijer
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| | - E. M. Haisma
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - N. A. Lemmens-den Toom
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J. Willemse
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - R. A. Koning
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - J. A. A. Demmers
- Proteomics Centre, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - D. H. W. Dekkers
- Proteomics Centre, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E. Rijkers
- Proteomics Centre, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A. El Ghalbzouri
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - P. H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - W. van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
47
|
Murugan K, Selvanayaki K, Al-Sohaibani S. Urinary catheter indwelling clinical pathogen biofilm formation, exopolysaccharide characterization and their growth influencing parameters. Saudi J Biol Sci 2016; 23:150-9. [PMID: 26858552 PMCID: PMC4705282 DOI: 10.1016/j.sjbs.2015.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/15/2015] [Accepted: 04/27/2015] [Indexed: 12/23/2022] Open
Abstract
Self-reproducing microbial biofilm community mainly involved in the contamination of indwelling medical devices including catheters play a vital role in nosocomial infections. The catheter-associated urinary tract infection (CA-UTI) causative Staphylococcus aureus, Enterobacter faecalis, and Pseudomonas aeruginosa were selectively isolated, their phenotypic as well as genotypic biofilm formation, production and monomeric sugar composition of EPS as well as sugar, salt, pH and temperature influence on their in vitro biofilm formation were determined. From 50 culture positive urinary catheters S. aureus (24%), P. aeruginosa (18%), E. faecalis (14%) and others (44%) were isolated. The performed assays revealed their varying biofilm forming ability. The isolated S. aureus ica, E. faecalis esp, and P. aeruginosa cup A gene sequencing and phylogenetic analysis showed their close branching and genetic relationship. The analyzed sugar, salt, pH, and temperature showed that the degree of CA-UTI isolates biofilm formation is an environmentally sensitive process. EPS monosaccharide HPLC analysis showed the presence of neutral sugars (ng/μl) as follows: glucose (P. aeruginosa: 44.275; E. faecalis: 4.23), lactose (P. aeruginosa: 7.29), mannitol (P. aeruginosa: 2.53; S. aureus: 2.62; E. faecalis: 2.054) and maltose (E. faecalis: 7.0042) revealing species-specific presence and variation. This study may have potential clinical relevance for the easy diagnosis and management of CA-UTI.
Collapse
Affiliation(s)
- Kasi Murugan
- Department of Botany and Microbiology, College of Science, P.O. Box 2455, King Saud University, Riyadh 11451, Saudi Arabia
| | - Krishnasamy Selvanayaki
- P.G. and Research Department of Microbiology, K. S. Rangasamy College of Arts and Science, Tiruchengode, Namakkal 637 215, Tamilnadu, India
| | - Saleh Al-Sohaibani
- Department of Botany and Microbiology, College of Science, P.O. Box 2455, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
48
|
Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther 2015; 13:1499-516. [PMID: 26646248 DOI: 10.1586/14787210.2015.1100533] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
S. aureus colonizes both artificial and tissue surfaces in humans causing chronic persistent infections that are difficult to cure. It is a notorious pathogen due to its antibiotic recalcitrance and phenotypic adaptability, both of which are facilitated by its ability to develop biofilms. S. aureus biofilms challenge conventional anti-infective approaches, most notably antibiotic therapy. Therefore there is an unmet need to develop and include parallel approaches that target S. aureus biofilm infections. This review discusses two broad anti-infective strategies: (1) preventative approaches (anti-biofilm surface coatings, the inclusion of biofilm-specific vaccine antigens); and (2) approaches aimed at eradicating established S. aureus biofilms, particularly those associated with implant infections. Advances in understanding the distinct nature of S. aureus biofilm development and pathogenesis have led to growing optimism in S. aureus biofilm targeted anti-infective strategies. Further research is needed however, to see the successful administration and validation of these approaches to the diverse types of infections caused by S. aureus biofilms from multiple clinical strains.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- a Department of Microbiology , The Ohio State University , Columbus , OH , USA
| | - Daniel J Wozniak
- a Department of Microbiology , The Ohio State University , Columbus , OH , USA.,b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA
| | - Paul Stoodley
- b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA.,d Department of Orthopedics , The Ohio State University College of Medicine , Columbus , OH , USA.,e Department of Engineering Sciences, National Centre for Advanced Tribology at Southampton (nCATS) , University of Southampton , Southampton , UK
| | - Luanne Hall-Stoodley
- b Department of Microbial Infection and Immunity , The Ohio State University College of Medicine , Columbus , OH , USA.,c The Center for Microbial Interface Biology, The Ohio State University , Columbus , OH , USA
| |
Collapse
|
49
|
Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D. Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 2015; 40:86-116. [PMID: 26432822 DOI: 10.1093/femsre/fuv038] [Citation(s) in RCA: 380] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 12/11/2022] Open
Abstract
Quorum sensing (QS) refers to the capacity of bacteria to monitor their population density and regulate gene expression accordingly: the QS-regulated processes deal with multicellular behaviors (e.g. growth and development of biofilm), horizontal gene transfer and host-microbe (symbiosis and pathogenesis) and microbe-microbe interactions. QS signaling requires the synthesis, exchange and perception of bacterial compounds, called autoinducers or QS signals (e.g. N-acylhomoserine lactones). The disruption of QS signaling, also termed quorum quenching (QQ), encompasses very diverse phenomena and mechanisms which are presented and discussed in this review. First, we surveyed the QS-signal diversity and QS-associated responses for a better understanding of the targets of the QQ phenomena that organisms have naturally evolved and are currently actively investigated in applied perspectives. Next the mechanisms, targets and molecular actors associated with QS interference are presented, with a special emphasis on the description of natural QQ enzymes and chemicals acting as QS inhibitors. Selected QQ paradigms are detailed to exemplify the mechanisms and biological roles of QS inhibition in microbe-microbe and host-microbe interactions. Finally, some QQ strategies are presented as promising tools in different fields such as medicine, aquaculture, crop production and anti-biofouling area.
Collapse
Affiliation(s)
- Catherine Grandclément
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Mélanie Tannières
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Solange Moréra
- Institut for Integrative Biology of the Cell, Department of Structural Biology, CNRS CEA Paris-Sud University, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Yves Dessaux
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Denis Faure
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
50
|
McConoughey SJ, Howlin R, Granger JF, Manring MM, Calhoun JH, Shirtliff M, Kathju S, Stoodley P. Biofilms in periprosthetic orthopedic infections. Future Microbiol 2015; 9:987-1007. [PMID: 25302955 DOI: 10.2217/fmb.14.64] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As the number of total joint arthroplasty and internal fixation procedures continues to rise, the threat of infection following surgery has significant clinical implications. These infections may have highly morbid consequences to patients, who often endure additional surgeries and lengthy exposures to systemic antibiotics, neither of which are guaranteed to resolve the infection. Of particular concern is the threat of bacterial biofilm development, since biofilm-mediated infections are difficult to diagnose and effective treatments are lacking. Developing therapeutic strategies have targeted mechanisms of biofilm formation and the means by which these bacteria communicate with each other to take on specialized roles such as persister cells within the biofilm. In addition, prevention of infection through novel coatings for prostheses and the local delivery of high concentrations of antibiotics by absorbable carriers has shown promise in laboratory and animal studies. Biofilm development, especially in an arthoplasty environment, and future diagnostic and treatment options are discussed.
Collapse
|