1
|
Xiong K, Deng L, Li Z, Gong H, Chen J, Huang M, Rao X, Cong Y. A TonB dependent transporter YncD of Salmonella enterica Serovar Typhi possesses vaccine potential. World J Microbiol Biotechnol 2024; 40:131. [PMID: 38470539 DOI: 10.1007/s11274-024-03937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Multiple TonB dependent transporters (TBDTs) contribute to bacterial virulence due to the importance roles that their substrates play in bacterial growth, and possess vaccine potential. A putative TBDT, YncD, had been identified as one of in vivo induced antigens during human infection of typhoid fever, and is required for the pathogenicity of Salmonella enterica Serovar Typhi. The present study was aimed to determine the function and immunogenicity of YncD. Homologous recombination method was used to construct an yncD-deletion mutant and cirA-iroN-fepA-deletion mutant from the wild-type S. Typhi Ty2. The growth of mutants and the wild-type strain were assessed in iron-deficient medium, as well as in human macrophage cells. Recombinant YncD protein was expressed and purified using Ni-NTA affinity chromatography and anion exchange. A mouse model was then used to evaluate the immunogenicity and protection efficacy of the recombinant YncD. Antibody levels, serum bactericidal efficiency, passive immune protection, opsonophagocysis were assayed to analyse the immunoprotection mechanism of the recombinant YncD. Our results showed that YncD is associated with the iron-uptake of S. Typhi. The yncD-deletion mutant displayed impaired growth in iron-deficient medium, comparable to that the cirA-iroN-fepA-deletion mutant did. The mutation of yncD markedly decreased bacterial growth within human macrophage cells. Moreover, subcutaneous immunization of mice with recombinant YncD elicited high levels of specific anti-YncD IgG, IgG1 and IgG2a, which protected the immunized mice against the intraperitoneal challenge of S. Typhi, and decreased bacterial burdens in the livers and spleens of the infected mice. Passive immunization using the immunized sera also efficiently protected the mice from the challenge of S. Typhi. Moreover, the immunized sera enhanced in vitro bactericidal activity of complement, and opsonophagocytosis. Our results showed that YncD displays a role in the iron-uptake of S. Typhi and possesses immunogenicity.
Collapse
Affiliation(s)
- Kun Xiong
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
| | - Luxin Deng
- Department of Blood Transfusion, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan province, 646000, China
| | - Zhan Li
- Department of Blood Transfusion, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan province, 646000, China
| | - Haiyan Gong
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
| | - Jie Chen
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
| | - Mintao Huang
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqiong, 400038, China.
| | - Yanguang Cong
- Department of Clinical Laboratory, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China.
- Dongguan Key Laboratory of Pathogenesis and Experimental Diagnosis of Infectious Diseases, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong province, 523710, China.
| |
Collapse
|
2
|
Mehta HH, Song X, Shamoo Y. Intracellular Experimental Evolution of Francisella tularensis Subsp. holarctica Live Vaccine Strain (LVS) to Antimicrobial Resistance. ACS Infect Dis 2023; 9:308-321. [PMID: 36662533 PMCID: PMC9996545 DOI: 10.1021/acsinfecdis.2c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In vitro experimental evolution has complemented clinical studies as an excellent tool to identify genetic changes responsible for the de novo evolution of antimicrobial resistance. However, the in vivo context for adaptation contributes to the success of particular evolutionary trajectories, especially in intracellular niches where the adaptive landscape of virulence and resistance are strongly coupled. In this work, we designed an ex vivo evolution approach to identify evolutionary trajectories responsible for antibiotic resistance in the Live Vaccine Strain (LVS) of Francisella tularensis subsp. holarctica while being passaged to increasing ciprofloxacin (CIP) and doxycycline (DOX) concentrations within macrophages. Overall, adaptation within macrophages advanced much slower when compared to previous in vitro evolution studies reflecting a limiting capacity for the expansion of adaptive mutations within the macrophage. Longitudinal genomic analysis identified resistance conferring gyrase mutations outside the Quinolone Resistance Determining Region. Strikingly, FupA/B mutations that are uniquely associated with in vitro CIP resistance in Francisella were not observed ex vivo, reflecting the coupling of intracellular survival and resistance during intracellular adaptation. To our knowledge, this is the first experimental study demonstrating the ability to conduct experimental evolution to antimicrobial resistance within macrophages. The results provide evidence of differences in mutational profiles of populations adapted to the same antibiotic in different environments/cellular compartments and underscore the significance of host mediated stress during resistance evolution.
Collapse
Affiliation(s)
- Heer H Mehta
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Xinhao Song
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Yousif Shamoo
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Working correlates of protection predict SchuS4-derived-vaccine candidates with improved efficacy against an intracellular bacterium, Francisella tularensis. NPJ Vaccines 2022; 7:95. [PMID: 35977964 PMCID: PMC9385090 DOI: 10.1038/s41541-022-00506-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is classified as Tier 1 Select Agent with bioterrorism potential. The efficacy of the only available vaccine, LVS, is uncertain and it is not licensed in the U.S. Previously, by using an approach generally applicable to intracellular pathogens, we identified working correlates that predict successful vaccination in rodents. Here, we applied these correlates to evaluate a panel of SchuS4-derived live attenuated vaccines, namely SchuS4-ΔclpB, ΔclpB-ΔfupA, ΔclpB-ΔcapB, and ΔclpB-ΔwbtC. We combined in vitro co-cultures to quantify rodent T-cell functions and multivariate regression analyses to predict relative vaccine strength. The predictions were tested by rat vaccination and challenge studies, which demonstrated a clear relationship between the hierarchy of in vitro measurements and in vivo vaccine protection. Thus, these studies demonstrated the potential power a panel of correlates to screen and predict the efficacy of Francisella vaccine candidates, and in vivo studies in Fischer 344 rats confirmed that SchuS4-ΔclpB and ΔclpB-ΔcapB may be better vaccine candidates than LVS.
Collapse
|
4
|
Mehta HH, Ibarra D, Marx CJ, Miller CR, Shamoo Y. Mutational Switch-Backs Can Accelerate Evolution of Francisella to a Combination of Ciprofloxacin and Doxycycline. Front Microbiol 2022; 13:904822. [PMID: 35615518 PMCID: PMC9125183 DOI: 10.3389/fmicb.2022.904822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Combination antimicrobial therapy has been considered a promising strategy to combat the evolution of antimicrobial resistance. Francisella tularensis is the causative agent of tularemia and in addition to being found in the nature, is recognized as a threat agent that requires vigilance. We investigated the evolutionary outcome of adapting the Live Vaccine Strain (LVS) of F. tularensis subsp. holarctica to two non-interacting drugs, ciprofloxacin and doxycycline, individually, sequentially, and in combination. Despite their individual efficacies and independence of mechanisms, evolution to the combination arose on a shorter time scale than evolution to the two drugs sequentially. We conducted a longitudinal mutational analysis of the populations evolving to the drug combination, genetically reconstructed the identified evolutionary pathway, and carried out biochemical validation. We discovered that, after the appearance of an initial weak generalist mutation (FupA/B), each successive mutation alternated between adaptation to one drug or the other. In combination, these mutations allowed the population to more efficiently ascend the fitness peak through a series of evolutionary switch-backs. Clonal interference, weak pleiotropy, and positive epistasis also contributed to combinatorial evolution. This finding suggests that the use of this non-interacting drug pair against F. tularensis may render both drugs ineffective because of mutational switch-backs that accelerate evolution of dual resistance.
Collapse
Affiliation(s)
- Heer H. Mehta
- Department of Biosciences, Rice University, Houston, TX, United States
| | - David Ibarra
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Christopher J. Marx
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Craig R. Miller
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston, TX, United States
- *Correspondence: Yousif Shamoo,
| |
Collapse
|
5
|
Wang J, Xiong K, Pan Q, He W, Cong Y. Application of TonB-Dependent Transporters in Vaccine Development of Gram-Negative Bacteria. Front Cell Infect Microbiol 2021; 10:589115. [PMID: 33585268 PMCID: PMC7873555 DOI: 10.3389/fcimb.2020.589115] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022] Open
Abstract
Multiple scarce nutrients, such as iron and nickel, are essential for bacterial growth. Gram-negative bacteria secrete chelators to bind these nutrients from the environment competitively. The transport of the resulting complexes into bacterial cells is mediated by TonB-dependent transporters (TBDTs) located at the outer membrane in Gram-negative bacteria. The characteristics of TBDTs, including surface exposure, protective immunogenicity, wide distribution, inducible expression in vivo, and essential roles in pathogenicity, make them excellent candidates for vaccine development. The possible application of a large number of TBDTs in immune control of the corresponding pathogens has been recently investigated. This paper summarizes the latest progresses and current major issues in the application.
Collapse
Affiliation(s)
- Jia Wang
- Department of Clinical Laboratory, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Kun Xiong
- Department of Cold Environmental Medicine, Institute of High Altitude Military Medicine, Army Medical University, Chongqiong, China
| | - Qu Pan
- Department of Microbiology, Chengdu Medical College, Chengdu, China
| | - Weifeng He
- Department of Burn, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yanguang Cong
- Department of Clinical Laboratory, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China.,Precision Medicine Center, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Sutera V, Hennebique A, Lopez F, Fernandez N, Schneider D, Maurin M. Genomic trajectories to fluoroquinolone resistance in Francisella tularensis subsp. holarctica live vaccine strain. Int J Antimicrob Agents 2020; 56:106153. [PMID: 32911069 DOI: 10.1016/j.ijantimicag.2020.106153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 07/04/2020] [Accepted: 08/29/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Fluoroquinolone (FQ)-resistant mutants were previously selected from the live vaccine strain (LVS) of Francisella tularensis (F. tularensis) subsp. holarctica. This study further characterised all genetic changes that occurred in these mutants during the evolutionary trajectory toward high-level FQ resistance, and their potential impact on F. tularensis antibiotic resistance and intracellular fitness. METHODS The whole genomes of FQ-resistant mutants were determined and compared with those of their parental strain. All detected mutations were evaluated for their potential impact on FQ resistance and intracellular multiplication of F. tularensis. RESULTS As compared with the parental LVS genome, 28 mutations were found in the derived FQ-resistant mutants. These mutations involved all genes encoding type II topoisomerases (i.e. gyrA, gyrB, parC, and parE). Interestingly, some of them were not previously associated with FQ resistance, warranting further characterisation. Mutations associated with FQ resistance were also found in other genes, including three encoding proteins involved in transport processes. Most of the detected mutations did not alter multiplication of the corresponding mutants in J774 cells. In contrast, all mutations at locus FTL_0439 encoding FupA/B, a membrane protein involved in iron transport, were associated with FQ resistance and fitness loss. CONCLUSION FQ resistance in F. tularensis is complex and may involve single or combined mutations in genes encoding type II topoisomerases, transport systems and FupA/B. In vivo studies are now required to assess the potential role of these mutations in FQ treatment failures.
Collapse
Affiliation(s)
- Vivien Sutera
- Centre National de Référence Francisella tularensis, Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, Grenoble, France; Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité Informatique - Mathématiques et Applications (TIMC-IMAG), Univ. Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Aurélie Hennebique
- Centre National de Référence Francisella tularensis, Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, Grenoble, France; Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité Informatique - Mathématiques et Applications (TIMC-IMAG), Univ. Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Fabrice Lopez
- Technological Advances for Genomics and Clinics (TAGC), Univ. Aix-Marseille II, Marseille, France; Transcriptomic and Genomic Marseille-Luminy (TGML), IBiSA platform, Marseille, France
| | - Nicolas Fernandez
- Technological Advances for Genomics and Clinics (TAGC), Univ. Aix-Marseille II, Marseille, France; Transcriptomic and Genomic Marseille-Luminy (TGML), IBiSA platform, Marseille, France
| | - Dominique Schneider
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité Informatique - Mathématiques et Applications (TIMC-IMAG), Univ. Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Max Maurin
- Centre National de Référence Francisella tularensis, Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, Grenoble, France; Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité Informatique - Mathématiques et Applications (TIMC-IMAG), Univ. Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble, France.
| |
Collapse
|
7
|
Physicochemical Evidence that Francisella FupA and FupB Proteins Are Porins. Int J Mol Sci 2020; 21:ijms21155496. [PMID: 32752076 PMCID: PMC7432831 DOI: 10.3390/ijms21155496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Responsible for tularemia, Francisella tularensis bacteria are highly infectious Gram-negative, category A bioterrorism agents. The molecular mechanisms for their virulence and resistance to antibiotics remain largely unknown. FupA (Fer Utilization Protein), a protein mediating high-affinity transport of ferrous iron across the outer membrane, is associated with both. Recent studies demonstrated that fupA deletion contributed to lower F. tularensis susceptibility towards fluoroquinolones, by increasing the production of outer membrane vesicles. Although the paralogous FupB protein lacks such activity, iron transport capacity and a role in membrane stability were reported for the FupA/B chimera, a protein found in some F. tularensis strains, including the live vaccine strain (LVS). To investigate the mode of action of these proteins, we purified recombinant FupA, FupB and FupA/B proteins expressed in Escherichia coli and incorporated them into mixed lipid bilayers. We examined the porin-forming activity of the FupA/B proteoliposomes using a fluorescent 8-aminonaphthalene-1,3,6-trisulfonic acid, disodium salt (ANTS) probe. Using electrophysiology on tethered bilayer lipid membranes, we confirmed that the FupA/B fusion protein exhibits pore-forming activity with large ionic conductance, a property shared with both FupA and FupB. This demonstration opens up new avenues for identifying functional genes, and novel therapeutic strategies against F. tularensis infections.
Collapse
|
8
|
Siebert C, Lindgren H, Ferré S, Villers C, Boisset S, Perard J, Sjöstedt A, Maurin M, Brochier-Armanet C, Couté Y, Renesto P. Francisella tularensis: FupA mutation contributes to fluoroquinolone resistance by increasing vesicle secretion and biofilm formation. Emerg Microbes Infect 2019; 8:808-822. [PMID: 31164053 PMCID: PMC6566608 DOI: 10.1080/22221751.2019.1615848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Francisella tularensis is the causative agent in tularemia for which the high prevalence of treatment failure and relapse is a major concern. Directed-evolution experiments revealed that acquisition of fluoroquinolone (FQ) resistance was linked to factors in addition to mutations in DNA gyrase. Here, using F. tularensis live vaccine strain (LVS) as a model, we demonstrated that FupA/B (Fer-Utilization Protein) expression is linked to FQ susceptibility, and that the virulent strain F. tularensis subsp. tularensis SCHU S4 deleted for the homologous FupA protein exhibited even higher FQ resistance. In addition to an increased FQ minimal inhibitory concentration, LVSΔfupA/B displayed tolerance toward bactericidal compounds including ciprofloxacin and gentamicin. Interestingly, the FupA/B deletion was found to promote increased secretion of outer membrane vesicles (OMVs). Mass spectrometry-based quantitative proteomic characterization of vesicles from LVS and LVS∆fupA/B identified 801 proteins, including a subset of 23 proteins exhibiting differential abundance between both strains which may therefore contribute to the reduced antibiotic susceptibility of the FupA/B-deleted strain. We also demonstrated that OMVs are key structural elements of LVSΔfupA/B biofilms providing protection against FQ. These results provide a new basis for understanding and tackling antibiotic resistance and/or persistence of Francisella and other pathogenic members of the Thiotrichales class.
Collapse
Affiliation(s)
- Claire Siebert
- a TIMC-IMAG UMR 5525 - UGA CNRS , Grenoble , France.,b Centre National de Référence des Francisella , Centre Hospitalo-Universitaire Grenoble Alpes , Grenoble , France
| | - Helena Lindgren
- c Laboratory for Molecular Infection Medicine Sweden and Department of Clinical Microbiology , Umeå University , Umeå , Sweden
| | - Sabrina Ferré
- d Université Grenoble Alpes, CEA, Inserm, IRIG-BGE , Grenoble , France
| | - Corinne Villers
- a TIMC-IMAG UMR 5525 - UGA CNRS , Grenoble , France.,e Université de Caen Normandie, EA4655 U2RM , Caen , France
| | - Sandrine Boisset
- a TIMC-IMAG UMR 5525 - UGA CNRS , Grenoble , France.,b Centre National de Référence des Francisella , Centre Hospitalo-Universitaire Grenoble Alpes , Grenoble , France
| | - Julien Perard
- f Université Grenoble Alpes, CNRS, CEA, BIG-LCBM , Grenoble , France
| | - Anders Sjöstedt
- c Laboratory for Molecular Infection Medicine Sweden and Department of Clinical Microbiology , Umeå University , Umeå , Sweden
| | - Max Maurin
- a TIMC-IMAG UMR 5525 - UGA CNRS , Grenoble , France.,b Centre National de Référence des Francisella , Centre Hospitalo-Universitaire Grenoble Alpes , Grenoble , France
| | - Céline Brochier-Armanet
- g Laboratoire de Biométrie et Biologie Évolutive , Université Claude Bernard Lyon 1, CNRS, UMR5558 , Villeurbanne , France
| | - Yohann Couté
- d Université Grenoble Alpes, CEA, Inserm, IRIG-BGE , Grenoble , France
| | | |
Collapse
|
9
|
Carroll CS, Moore MM. Ironing out siderophore biosynthesis: a review of non-ribosomal peptide synthetase (NRPS)-independent siderophore synthetases. Crit Rev Biochem Mol Biol 2018; 53:356-381. [DOI: 10.1080/10409238.2018.1476449] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Margo M. Moore
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
10
|
Ramakrishnan G. Iron and Virulence in Francisella tularensis. Front Cell Infect Microbiol 2017; 7:107. [PMID: 28421167 PMCID: PMC5378763 DOI: 10.3389/fcimb.2017.00107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is a Gram-negative bacterium that infects a variety of cell types including macrophages, and propagates with great efficiency in the cytoplasm. Iron, essential for key enzymatic and redox reactions, is among the nutrients required to support this pathogenic lifestyle and the bacterium relies on specialized mechanisms to acquire iron within the host environment. Two distinct pathways for iron acquisition are encoded by the F. tularensis genome- a siderophore-dependent ferric iron uptake system and a ferrous iron transport system. Genes of the Fur-regulated fslABCDEF operon direct the production and transport of the siderophore rhizoferrin. Siderophore biosynthesis involves enzymes FslA and FslC, while export across the inner membrane is mediated by FslB. Uptake of the rhizoferrin- ferric iron complex is effected by the siderophore receptor FslE in the outer membrane in a TonB-independent process, and FslD is responsible for uptake across the inner membrane. Ferrous iron uptake relies largely on high affinity transport by FupA in the outer membrane, while the Fur-regulated FeoB protein mediates transport across the inner membrane. FslE and FupA are paralogous proteins, sharing sequence similarity and possibly sharing structural features as well. This review summarizes current knowledge of iron acquisition in this organism and the critical role of these uptake systems in bacterial pathogenicity.
Collapse
Affiliation(s)
- Girija Ramakrishnan
- Department of Medicine/Division of Infectious Diseases, University of VirginiaCharlottesville, VA, USA
| |
Collapse
|
11
|
Functional Characterization of the DNA Gyrases in Fluoroquinolone-Resistant Mutants of Francisella novicida. Antimicrob Agents Chemother 2017; 61:AAC.02277-16. [PMID: 28167561 DOI: 10.1128/aac.02277-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/20/2017] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolone (FQ) resistance is a major health concern in the treatment of tularemia. Because DNA gyrase has been described as the main target of these compounds, our aim was to clarify the contributions of both GyrA and GyrB mutations found in Francisella novicida clones highly resistant to FQs. Wild-type and mutated GyrA and GyrB subunits were overexpressed so that the in vitro FQ sensitivity of functional reconstituted complexes could be evaluated. The data obtained were compared to the MICs of FQs against bacterial clones harboring the same mutations and were further validated through complementation experiments and structural modeling. Whole-genome sequencing of highly FQ-resistant lineages was also done. Supercoiling and DNA cleavage assays demonstrated that GyrA D87 is a hot spot FQ resistance target in F. novicida and pointed out the role of the GyrA P43H substitution in resistance acquisition. An unusual feature of FQ resistance acquisition in F. novicida is that the first-step mutation occurs in GyrB, with direct or indirect consequences for FQ sensitivity. Insertion of P466 into GyrB leads to a 50% inhibitory concentration (IC50) comparable to that observed for a mutant gyrase carrying the GyrA D87Y substitution, while the D487E-ΔK488 mutation, while not active on its own, contributes to the high level of resistance that occurs following acquisition of the GyrA D87G substitution in double GyrA/GyrB mutants. The involvement of other putative targets is discussed, including that of a ParE mutation that was found to arise in the very late stage of antibiotic exposure. This study provides the first characterization of the molecular mechanisms responsible for FQ resistance in Francisella.
Collapse
|
12
|
Wu X, Ren G, Gunning WT, Weaver DA, Kalinoski AL, Khuder SA, Huntley JF. FmvB: A Francisella tularensis Magnesium-Responsive Outer Membrane Protein that Plays a Role in Virulence. PLoS One 2016; 11:e0160977. [PMID: 27513341 PMCID: PMC4981453 DOI: 10.1371/journal.pone.0160977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is the causative agent of the lethal disease tularemia. Despite decades of research, little is understood about why F. tularensis is so virulent. Bacterial outer membrane proteins (OMPs) are involved in various virulence processes, including protein secretion, host cell attachment, and intracellular survival. Many pathogenic bacteria require metals for intracellular survival and OMPs often play important roles in metal uptake. Previous studies identified three F. tularensis OMPs that play roles in iron acquisition. In this study, we examined two previously uncharacterized proteins, FTT0267 (named fmvA, for Francisellametal and virulence) and FTT0602c (fmvB), which are homologs of the previously studied F. tularensis iron acquisition genes and are predicted OMPs. To study the potential roles of FmvA and FmvB in metal acquisition and virulence, we first examined fmvA and fmvB expression following pulmonary infection of mice, finding that fmvB was upregulated up to 5-fold during F. tularensis infection of mice. Despite sequence homology to previously-characterized iron-acquisition genes, FmvA and FmvB do not appear to be involved iron uptake, as neither fmvA nor fmvB were upregulated in iron-limiting media and neither ΔfmvA nor ΔfmvB exhibited growth defects in iron limitation. However, when other metals were examined in this study, magnesium-limitation significantly induced fmvB expression, ΔfmvB was found to express significantly higher levels of lipopolysaccharide (LPS) in magnesium-limiting medium, and increased numbers of surface protrusions were observed on ΔfmvB in magnesium-limiting medium, compared to wild-type F. tularensis grown in magnesium-limiting medium. RNA sequencing analysis of ΔfmvB revealed the potential mechanism for increased LPS expression, as LPS synthesis genes kdtA and wbtA were significantly upregulated in ΔfmvB, compared with wild-type F. tularensis. To provide further evidence for the potential role of FmvB in magnesium uptake, we demonstrated that FmvB was outer membrane-localized. Finally, ΔfmvB was found to be attenuated in mice and cytokine analyses revealed that ΔfmvB-infected mice produced lower levels of pro-inflammatory cytokines, including GM-CSF, IL-3, and IL-10, compared with mice infected with wild-type F. tularensis. Taken together, although the function of FmvA remains unknown, FmvB appears to play a role in magnesium uptake and F. tularensis virulence. These results may provide new insights into the importance of magnesium for intracellular pathogens.
Collapse
Affiliation(s)
- Xiaojun Wu
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Guoping Ren
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - William T. Gunning
- Department of Pathology and Electron Microscopy Facility, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - David A. Weaver
- Department of Surgery and Advanced Microscopy and Imaging Center, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Andrea L. Kalinoski
- Department of Surgery and Advanced Microscopy and Imaging Center, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Sadik A. Khuder
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Jason F. Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
13
|
Pérez N, Johnson R, Sen B, Ramakrishnan G. Two parallel pathways for ferric and ferrous iron acquisition support growth and virulence of the intracellular pathogen Francisella tularensis Schu S4. Microbiologyopen 2016; 5:453-68. [PMID: 26918301 PMCID: PMC4905997 DOI: 10.1002/mbo3.342] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
Iron acquisition mechanisms in Francisella tularensis, the causative agent of tularemia, include the Francisella siderophore locus (fsl) siderophore operon and a ferrous iron–transport system comprising outer‐membrane protein FupA and inner‐membrane transporter FeoB. To characterize these mechanisms and to identify any additional iron uptake systems in the virulent subspecies tularensis, single and double deletions were generated in the fsl and feo iron acquisition systems of the strain Schu S4. Deletion of the entire fsl operon caused loss of siderophore production that could be restored by complementation with the biosynthetic genes fslA and fslC and Major Facilitator Superfamily (MFS) transporter gene fslB. 55Fe‐transport assays demonstrated that siderophore‐iron uptake required the receptor FslE and MFS transporter FslD. A ΔfeoB′ mutation resulted in loss of ability to transport ferrous iron (55Fe2+). A ΔfeoB′ ΔfslA mutant that required added exogenous siderophore for growth in vitro was unable to grow within tissue culture cells and was avirulent in mice, indicating that no compensatory cryptic iron uptake systems were induced in vivo. These studies demonstrate that the fsl and feo pathways function independently and operate in parallel to effectively support virulence of F. tularensis.
Collapse
Affiliation(s)
- Natalie Pérez
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, 22908
| | - Richard Johnson
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, 22908
| | - Bhaswati Sen
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, 22908
| | - Girija Ramakrishnan
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, 22908
| |
Collapse
|
14
|
Rowe HM, Huntley JF. From the Outside-In: The Francisella tularensis Envelope and Virulence. Front Cell Infect Microbiol 2015; 5:94. [PMID: 26779445 PMCID: PMC4688374 DOI: 10.3389/fcimb.2015.00094] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Francisella tularensis is a highly-infectious bacterium that causes the rapid, and often lethal disease, tularemia. Many studies have been performed to identify and characterize the virulence factors that F. tularensis uses to infect a wide variety of hosts and host cell types, evade immune defenses, and induce severe disease and death. This review focuses on the virulence factors that are present in the F. tularensis envelope, including capsule, LPS, outer membrane, periplasm, inner membrane, secretion systems, and various molecules in each of aforementioned sub-compartments. Whereas, no single bacterial molecule or molecular complex single-handedly controls F. tularensis virulence, we review here how diverse bacterial systems work in conjunction to subvert the immune system, attach to and invade host cells, alter phagosome/lysosome maturation pathways, replicate in host cells without being detected, inhibit apoptosis, and induce host cell death for bacterial release and infection of adjacent cells. Given that the F. tularensis envelope is the outermost layer of the bacterium, we highlight herein how many of these molecules directly interact with the host to promote infection and disease. These and future envelope studies are important to advance our collective understanding of F. tularensis virulence mechanisms and offer targets for future vaccine development efforts.
Collapse
Affiliation(s)
- Hannah M Rowe
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Jason F Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| |
Collapse
|
15
|
Gallium Potentiates the Antibacterial Effect of Gentamicin against Francisella tularensis. Antimicrob Agents Chemother 2015; 60:288-95. [PMID: 26503658 DOI: 10.1128/aac.01240-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/18/2015] [Indexed: 12/16/2022] Open
Abstract
The reasons why aminoglycosides are bactericidal have not been not fully elucidated, and evidence indicates that the cidal effects are at least partly dependent on iron. We demonstrate that availability of iron markedly affects the susceptibility of the facultative intracellular bacterium Francisella tularensis strain SCHU S4 to the aminoglycoside gentamicin. Specifically, the intracellular depots of iron were inversely correlated to gentamicin susceptibility, whereas the extracellular iron concentrations were directly correlated to the susceptibility. Further proof of the intimate link between iron availability and antibiotic susceptibility were the findings that a ΔfslA mutant, which is defective for siderophore-dependent uptake of ferric iron, showed enhanced gentamicin susceptibility and that a ΔfeoB mutant, which is defective for uptake of ferrous iron, displayed complete growth arrest in the presence of gentamicin. Based on the aforementioned findings, it was hypothesized that gallium could potentiate the effect of gentamicin, since gallium is sequestered by iron uptake systems. The ferrozine assay demonstrated that the presence of gallium inhibited >70% of the iron uptake. Addition of gentamicin and/or gallium to infected bone marrow-derived macrophages showed that both 100 μM gallium and 10 μg/ml of gentamicin inhibited intracellular growth of SCHU S4 and that the combined treatment acted synergistically. Moreover, treatment of F. tularensis-infected mice with gentamicin and gallium showed an additive effect. Collectively, the data demonstrate that SCHU S4 is dependent on iron to minimize the effects of gentamicin and that gallium, by inhibiting the iron uptake, potentiates the bactericidal effect of gentamicin in vitro and in vivo.
Collapse
|
16
|
Lindgren H, Lindgren L, Golovliov I, Sjöstedt A. Mechanisms of heme utilization by Francisella tularensis. PLoS One 2015; 10:e0119143. [PMID: 25756756 PMCID: PMC4355490 DOI: 10.1371/journal.pone.0119143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 01/19/2015] [Indexed: 12/24/2022] Open
Abstract
Francisella tularensis is a highly virulent facultative intracellular pathogen causing the severe disease tularemia in mammals. As for other bacteria, iron is essential for its growth but very few mechanisms for iron acquisition have been identified. Here, we analyzed if and how F. tularensis can utilize heme, a major source of iron in vivo. This is by no means obvious since the bacterium lacks components of traditional heme-uptake systems. We show that SCHU S4, the prototypic strain of subspecies tularensis, grew in vitro with heme as the sole iron source. By screening a SCHU S4 transposon insertion library, 16 genes were identified as important to efficiently utilize heme, two of which were required to avoid heme toxicity. None of the identified genes appeared to encode components of a potential heme-uptake apparatus. Analysis of SCHU S4 deletion mutants revealed that each of the components FeoB, the siderophore system, and FupA, contributed to the heme-dependent growth. In the case of the former two systems, iron acquisition was impaired, whereas the absence of FupA did not affect iron uptake but led to abnormally high binding of iron to macromolecules. Overall, the present study demonstrates that heme supports growth of F. tularensis and that the requirements for the utilization are highly complex and to some extent novel.
Collapse
Affiliation(s)
- Helena Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Lena Lindgren
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
17
|
Characterization of tetratricopeptide repeat-like proteins in Francisella tularensis and identification of a novel locus required for virulence. Infect Immun 2014; 82:5035-48. [PMID: 25245806 DOI: 10.1128/iai.01620-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Francisella tularensis is a highly infectious bacterium that causes the potentially lethal disease tularemia. This extremely virulent bacterium is able to replicate in the cytosolic compartments of infected macrophages. To invade macrophages and to cope with their intracellular environment, Francisella requires multiple virulence factors, which are still being identified. Proteins containing tetratricopeptide repeat (TPR)-like domains seem to be promising targets to investigate, since these proteins have been reported to be directly involved in virulence-associated functions of bacterial pathogens. Here, we studied the role of the FTS_0201, FTS_0778, and FTS_1680 genes, which encode putative TPR-like proteins in Francisella tularensis subsp. holarctica FSC200. Mutants defective in protein expression were prepared by TargeTron insertion mutagenesis. We found that the locus FTS_1680 and its ortholog FTT_0166c in the highly virulent Francisella tularensis type A strain SchuS4 are required for proper intracellular replication, full virulence in mice, and heat stress tolerance. Additionally, the FTS_1680-encoded protein was identified as a membrane-associated protein required for full cytopathogenicity in macrophages. Our study thus identifies FTS_1680/FTT_0166c as a new virulence factor in Francisella tularensis.
Collapse
|
18
|
Pérez NM, Ramakrishnan G. The reduced genome of the Francisella tularensis live vaccine strain (LVS) encodes two iron acquisition systems essential for optimal growth and virulence. PLoS One 2014; 9:e93558. [PMID: 24695402 PMCID: PMC3973589 DOI: 10.1371/journal.pone.0093558] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/07/2014] [Indexed: 01/19/2023] Open
Abstract
Bacterial pathogens require multiple iron-specific acquisition systems for survival within the iron-limiting environment of the host. Francisella tularensis is a virulent intracellular pathogen that can replicate in multiple cell-types. To study the interrelationship of iron acquisition capability and virulence potential of this organism, we generated single and double deletion mutants within the ferrous iron (feo) and ferric-siderophore (fsl) uptake systems of the live vaccine strain (LVS). The Feo system was disrupted by a partial deletion of the feoB gene (ΔfeoB′), which led to a growth defect on iron-limited modified Muller Hinton agar plates. 55Fe uptake assays verified that the ΔfeoB′ mutant had lost the capacity for ferrous iron uptake but was still competent for 55Fe-siderophore-mediated ferric iron acquisition. Neither the ΔfeoB′ nor the siderophore-deficient ΔfslA mutant was defective for replication within J774A.1 murine macrophage-like cells, thus demonstrating the ability of LVS to survive using either ferrous or ferric sources of intracellular iron. A LVS ΔfslA ΔfeoB′ mutant defective for both ferrous iron uptake and siderophore production was isolated in the presence of exogenous F. tularensis siderophore. In contrast to the single deletion mutants, the ΔfslA ΔfeoB′ mutant was unable to replicate within J774A.1 cells and was attenuated in virulence following intraperitoneal infection of C57BL/6 mice. These studies demonstrate that the siderophore and feoB-mediated ferrous uptake systems are the only significant iron acquisition systems in LVS and that they operate independently. While one system can compensate for loss of the other, both are required for optimal growth and virulence.
Collapse
Affiliation(s)
- Natalie Marie Pérez
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Girija Ramakrishnan
- Department of Medicine, Division of Infectious Disease and International Health, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Feng Y, Napier BA, Manandhar M, Henke SK, Weiss DS, Cronan JE. A Francisella virulence factor catalyses an essential reaction of biotin synthesis. Mol Microbiol 2013; 91:300-14. [PMID: 24313380 DOI: 10.1111/mmi.12460] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2013] [Indexed: 01/09/2023]
Abstract
We recently identified a gene (FTN_0818) required for Francisella virulence that seemed likely involved in biotin metabolism. However, the molecular function of this virulence determinant was unclear. Here we show that this protein named BioJ is the enzyme of the biotin biosynthesis pathway that determines the chain length of the biotin valeryl side-chain. Expression of bioJ allows growth of an Escherichia coli bioH strain on biotin-free medium, indicating functional equivalence of BioJ to the paradigm pimeloyl-ACP methyl ester carboxyl-esterase, BioH. BioJ was purified to homogeneity, shown to be monomeric and capable of hydrolysis of its physiological substrate methyl pimeloyl-ACP to pimeloyl-ACP, the precursor required to begin formation of the fused heterocyclic rings of biotin. Phylogenetic analyses confirmed that distinct from BioH, BioJ represents a novel subclade of the α/β-hydrolase family. Structure-guided mapping combined with site-directed mutagenesis revealed that the BioJ catalytic triad consists of Ser151, Asp248 and His278, all of which are essential for activity and virulence. The biotin synthesis pathway was reconstituted reaction in vitro and the physiological role of BioJ directly assayed. To the best of our knowledge, these data represent further evidence linking biotin synthesis to bacterial virulence.
Collapse
Affiliation(s)
- Youjun Feng
- Department of Microbiology, University of Illinois at Urbana-Champaign, IL, 61801, USA; Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
20
|
Ramakrishnan G, Sen B. The FupA/B protein uniquely facilitates transport of ferrous iron and siderophore-associated ferric iron across the outer membrane of Francisella tularensis live vaccine strain. MICROBIOLOGY-SGM 2013; 160:446-457. [PMID: 24307666 DOI: 10.1099/mic.0.072835-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Francisella tularensis is a highly infectious Gram-negative pathogen that replicates intracellularly within the mammalian host. One of the factors associated with virulence of F. tularensis is the protein FupA that mediates high-affinity transport of ferrous iron across the outer membrane. Together with its paralogue FslE, a siderophore-ferric iron transporter, FupA supports survival of the pathogen in the host by providing access to the essential nutrient iron. The FupA orthologue in the attenuated live vaccine strain (LVS) is encoded by the hybrid gene fupA/B, the product of an intergenic recombination event that significantly contributes to attenuation of the strain. We used (55)Fe transport assays with mutant strains complemented with the different paralogues to show that the FupA/B protein of LVS retains the capacity for high-affinity transport of ferrous iron, albeit less efficiently than FupA of virulent strain Schu S4. (55)Fe transport assays using purified siderophore and siderophore-dependent growth assays on iron-limiting agar confirmed previous findings that FupA/B also contributes to siderophore-mediated ferric iron uptake. These assays further demonstrated that the LVS FslE protein is a weaker siderophore-ferric iron transporter than the orthologue from Schu S4, and may be a result of the sequence variation between the two proteins. Our results indicate that iron-uptake mechanisms in LVS differ from those in Schu S4 and that functional differences in the outer membrane iron transporters have distinct effects on growth under iron limitation.
Collapse
Affiliation(s)
- Girija Ramakrishnan
- Department of Medicine, Division of Infectious Disease and International Health, University of Virginia, Charlottesville, VA 22901, USA
| | - Bhaswati Sen
- Department of Medicine, Division of Infectious Disease and International Health, University of Virginia, Charlottesville, VA 22901, USA
| |
Collapse
|
21
|
Live attenuated tularemia vaccines: recent developments and future goals. Vaccine 2013; 31:3485-91. [PMID: 23764535 DOI: 10.1016/j.vaccine.2013.05.096] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/20/2013] [Accepted: 05/24/2013] [Indexed: 12/24/2022]
Abstract
In the aftermath of the 2001 anthrax attacks in the U.S., numerous efforts were made to increase the level of preparedness against a biological attack both in the US and worldwide. As a result, there has been an increase in research interest in the development of vaccines and other countermeasures against a number of agents with the potential to be used as biological weapons. One such agent, Francisella tularensis, has been the subject of a surge in the level of research being performed, leading to a substantial increase in knowledge of the pathogenic mechanisms of the organism and the induced immune responses. This information has facilitated the development of multiple new Francisella vaccine candidates. Herein we review the latest live attenuated F. tularensis vaccine efforts. Historically, live attenuated vaccines have demonstrated the greatest degree of success in protection against tularemia and the greatest promise in recent efforts to develop of a fully protective vaccine. This review summarizes recent live attenuated Francisella vaccine candidates and the lessons learned from those studies, with the goal of collating known characteristics associated with successful attenuation, immunogenicity, and protection.
Collapse
|
22
|
Abstract
Francisella tularensis, the bacterial cause of tularemia, infects the liver and replicates in hepatocytes in vivo and in vitro. However, the factors that govern adaptation of F. tularensis to the intrahepatocytic niche have not been identified. Using cDNA microarrays, we determined the transcriptional profile of the live vaccine strain (LVS) of F. tularensis grown in the FL83B murine hepatocytic cell line compared to that of F. tularensis cultured in broth. The fslC gene of the fsl operon was the most highly upregulated. Deletion of fslC eliminated the ability of the LVS to produce siderophore, which is involved in uptake of ferric iron, but it did not impair its growth in hepatocytes, A549 epithelial cells, or macrophages. Therefore, we sought an alternative means by which F. tularensis might obtain iron. Deletion of feoB, which encodes a putative ferrous iron transporter, retarded replication of the LVS in iron-restricted media, reduced its growth in hepatocytic and epithelial cells, and impaired its acquisition of iron. Survival of mice infected intradermally with a lethal dose of the LVS was slightly improved by deletion of fslC but was not altered by loss of feoB. However, the ΔfeoB mutant showed diminished ability to colonize the lungs, liver, and spleen of mice that received sublethal inocula. Thus, FeoB represents a previously unidentified mechanism for uptake of iron by F. tularensis. Moreover, failure to produce a mutant strain lacking both feoB and fslC suggests that FeoB and the proteins of the fsl operon are the only major means by which F. tularensis acquires iron.
Collapse
|
23
|
Ramond E, Gesbert G, Barel M, Charbit A. Proteins involved in Francisella tularensis survival and replication inside macrophages. Future Microbiol 2013; 7:1255-68. [PMID: 23075445 DOI: 10.2217/fmb.12.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Francisella tularensis, the etiological agent of tularemia, is a member of the γ-proteobacteria class of Gram-negative bacteria. This highly virulent bacterium can infect a large range of mammalian species and has been recognized as a human pathogen for a century. F. tularensis is able to survive in vitro in a variety of cell types. In vivo, the bacterium replicates mainly in infected macrophages, using the cytoplasmic compartment as a replicative niche. To successfully adapt to this stressful environment, F. tularensis must simultaneously: produce and regulate the expression of a series of dedicated virulence factors; adapt its metabolic needs to the nutritional context of the host cytosol; and control the innate immune cytosolic surveillance pathways to avoid premature cell death. We will focus here on the secretion or release of bacterial proteins in the host, as well as on the envelope proteins, involved in bacterial survival inside macrophages.
Collapse
Affiliation(s)
- Elodie Ramond
- Faculté de Médecine Necker, Université Paris Descartes, 156 Rue de Vaugirard, 75730 Paris, Cedex 15, France
| | | | | | | |
Collapse
|
24
|
Subversion of host recognition and defense systems by Francisella spp. Microbiol Mol Biol Rev 2012; 76:383-404. [PMID: 22688817 DOI: 10.1128/mmbr.05027-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is a gram-negative intracellular pathogen and the causative agent of the disease tularemia. Inhalation of as few as 10 bacteria is sufficient to cause severe disease, making F. tularensis one of the most highly virulent bacterial pathogens. The initial stage of infection is characterized by the "silent" replication of bacteria in the absence of a significant inflammatory response. Francisella achieves this difficult task using several strategies: (i) strong integrity of the bacterial surface to resist host killing mechanisms and the release of inflammatory bacterial components (pathogen-associated molecular patterns [PAMPs]), (ii) modification of PAMPs to prevent activation of inflammatory pathways, and (iii) active modulation of the host response by escaping the phagosome and directly suppressing inflammatory pathways. We review the specific mechanisms by which Francisella achieves these goals to subvert host defenses and promote pathogenesis, highlighting as-yet-unanswered questions and important areas for future study.
Collapse
|
25
|
Ramakrishnan G, Sen B, Johnson R. Paralogous outer membrane proteins mediate uptake of different forms of iron and synergistically govern virulence in Francisella tularensis tularensis. J Biol Chem 2012; 287:25191-202. [PMID: 22661710 DOI: 10.1074/jbc.m112.371856] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Francisella tularensis subsp. tularensis is a highly infectious bacterium causing acute disease in mammalian hosts. Mechanisms for the acquisition of iron within the iron-limiting host environment are likely to be critical for survival of this intracellular pathogen. FslE (FTT0025) and FupA (FTT0918) are paralogous proteins that are predicted to form β-barrels in the outer membrane of virulent strain Schu S4 and are unique to Francisella species. Previous studies have implicated both FupA, initially identified as a virulence factor and FslE, encoded by the siderophore biosynthetic operon, in iron acquisition. Using single and double mutants, we demonstrated that these paralogs function in concert to promote growth under iron limitation. We used a (55)Fe transport assay to demonstrate that FslE is involved in siderophore-mediated ferric iron uptake, whereas FupA facilitates high affinity ferrous iron uptake. Optimal replication within J774A.1 macrophage-like cells required at least one of these uptake systems to be functional. In a mouse model of tularemia, the ΔfupA mutant was attenuated, but the ΔfslE ΔfupA mutant was significantly more attenuated, implying that the two systems of iron acquisition function synergistically to promote virulence. These studies highlight the importance of specific iron acquisition functions, particularly that of ferrous iron, for virulence of F. tularensis in the mammalian host.
Collapse
Affiliation(s)
- Girija Ramakrishnan
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia 22901, USA.
| | | | | |
Collapse
|
26
|
Members of the Francisella tularensis phagosomal transporter subfamily of major facilitator superfamily transporters are critical for pathogenesis. Infect Immun 2012; 80:2390-401. [PMID: 22508856 DOI: 10.1128/iai.00144-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is the causative agent of tularemia. Due to its aerosolizable nature and low infectious dose, F. tularensis is classified as a category A select agent and, therefore, is a priority for vaccine development. Survival and replication in macrophages and other cell types are critical to F. tularensis pathogenesis, and impaired intracellular survival has been linked to a reduction in virulence. The F. tularensis genome is predicted to encode 31 major facilitator superfamily (MFS) transporters, and the nine-member Francisella phagosomal transporter (Fpt) subfamily possesses homology with virulence factors in other intracellular pathogens. We hypothesized that these MFS transporters may play an important role in F. tularensis pathogenesis and serve as good targets for attenuation and vaccine development. Here we show altered intracellular replication kinetics and attenuation of virulence in mice infected with three of the nine Fpt mutant strains compared with wild-type (WT) F. tularensis LVS. The vaccination of mice with these mutant strains was protective against a lethal intraperitoneal challenge. Additionally, we observed pronounced differences in cytokine profiles in the livers of mutant-infected mice, suggesting that alterations in in vivo cytokine responses are a major contributor to the attenuation observed for these mutant strains. These results confirm that this subset of MFS transporters plays an important role in the pathogenesis of F. tularensis and suggest that a focus on the development of attenuated Fpt subfamily MFS transporter mutants is a viable strategy toward the development of an efficacious vaccine.
Collapse
|
27
|
Taking the Escherichia coli TonB transmembrane domain "offline"? Nonprotonatable Asn substitutes fully for TonB His20. J Bacteriol 2011; 193:3693-701. [PMID: 21665976 DOI: 10.1128/jb.05219-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB system of Gram-negative bacteria uses the proton motive force (PMF) of the cytoplasmic membrane to energize active transport of nutrients across the outer membrane. The single transmembrane domain (TMD) anchor of TonB, the energy transducer, is essential. Within that TMD, His20 is the only TMD residue that is unable to withstand alanine replacement without a loss of activity. H20 is required for a PMF-dependent conformational change, suggesting that the importance of H20 lies in its ability to be reversibly protonated and deprotonated. Here all possible residues were substituted at position 20 (H20X substitutions). The His residue was also relocated throughout the TonB TMD. Surprisingly, Asn, a structurally similar but nonprotonatable residue, supported full activity at position 20; H20S was very weakly active. All the remaining substitutions, including H20K, H20R, H20E, and H20D, the obvious candidates to mimic a protonated state or support proton translocation, were inactive. A second-site suppressor, ExbB(A39E), indiscriminately reactivated the majority of H20 substitutions and relocations, including H20V, which cannot be made protonatable. These results suggested that the TonB TMD was not on a proton conductance pathway and thus only indirectly responds to PMF, probably via ExbD.
Collapse
|
28
|
Legionella pneumophila LbtU acts as a novel, TonB-independent receptor for the legiobactin siderophore. J Bacteriol 2011; 193:1563-75. [PMID: 21278293 DOI: 10.1128/jb.01111-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative Legionella pneumophila produces a siderophore (legiobactin) that promotes lung infection. We previously determined that lbtA and lbtB are required for the synthesis and secretion of legiobactin. DNA sequence and reverse transcription-PCR (RT-PCR) analyses now reveal the presence of an iron-repressed gene (lbtU) directly upstream of the lbtAB-containing operon. In silico analysis predicted that LbtU is an outer membrane protein consisting of a 16-stranded transmembrane β-barrel, multiple extracellular domains, and short periplasmic tails. Immunoblot analysis of cell fractions confirmed an outer membrane location for LbtU. Although replicating normally in standard media, lbtU mutants, like lbtA mutants, were impaired for growth on iron-depleted agar media. While producing typical levels of legiobactin, lbtU mutants were unable to use supplied legiobactin to stimulate growth on iron-depleted media and displayed an inability to take up iron. Complemented lbtU mutants behaved as the wild type did. The lbtU mutants were also impaired for infection in a legiobactin-dependent manner. Together, these data indicate that LbtU is involved in the uptake of legiobactin and, based upon its location, is most likely the Legionella siderophore receptor. The sequence and predicted two-dimensional (2D) and 3D structures of LbtU were distinct from those of all known siderophore receptors, which generally contain a 22-stranded β-barrel and an extended N terminus that binds TonB in order to transduce energy from the inner membrane. This observation coupled with the fact that L. pneumophila does not encode TonB suggests that LbtU is a new type of receptor that participates in a form of iron uptake that is mechanistically distinct from the existing paradigm.
Collapse
|
29
|
Asare R, Kwaik YA. Exploitation of host cell biology and evasion of immunity by francisella tularensis. Front Microbiol 2011; 1:145. [PMID: 21687747 PMCID: PMC3109322 DOI: 10.3389/fmicb.2010.00145] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 12/21/2010] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis is an intracellular bacterium that infects humans and many small mammals. During infection, F. tularensis replicates predominantly in macrophages but also proliferate in other cell types. Entry into host cells is mediate by various receptors. Complement-opsonized F. tularensis enters into macrophages by looping phagocytosis. Uptake is mediated in part by Syk, which may activate actin rearrangement in the phagocytic cup resulting in the engulfment of F. tularensis in a lipid raft rich phagosome. Inside the host cells, F. tularensis resides transiently in an acidified late endosome-like compartment before disruption of the phagosomal membrane and escape into the cytosol, where bacterial proliferation occurs. Modulation of phagosome biogenesis and escape into the cytosol is mediated by the Francisella pathogenicity island-encoded type VI-like secretion system. Whilst inside the phagosome, F. tularensis temporarily induce proinflammatory cytokines in PI3K/Akt-dependent manner, which is counteracted by the induction of SHIP that negatively regulates PI3K/Akt activation and promotes bacterial escape into the cytosol. Interestingly, F. tularensis subverts CD4 T cells-mediated killing by inhibiting antigen presentation by activated macrophages through ubiquitin-dependent degradation of MHC II molecules on activated macrophages. In the cytosol, F. tularensis is recognized by the host cell inflammasome, which is down-regulated by F. tularensis that also inhibits caspase-1 and ASC activity. During late stages of intracellular proliferation, caspase-3 is activated but apoptosis is delayed through activation of NF-κB and Ras, which ensures cell viability.
Collapse
Affiliation(s)
- Rexford Asare
- Department of Microbiology and Immunology, School of Medicine, University of Louisville Louisville, KY, USA
| | | |
Collapse
|
30
|
Kilmury SLN, Twine SM. The francisella tularensis proteome and its recognition by antibodies. Front Microbiol 2011; 1:143. [PMID: 21687770 PMCID: PMC3109489 DOI: 10.3389/fmicb.2010.00143] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/18/2010] [Indexed: 01/31/2023] Open
Abstract
Francisella tularensis is the causative agent of a spectrum of diseases collectively known as tularemia. The extreme virulence of the pathogen in humans, combined with the low infectious dose and the ease of dissemination by aerosol have led to concerns about its abuse as a bioweapon. Until recently, nothing was known about the virulence mechanisms and even now, there is still a relatively poor understanding of pathogen virulence. Completion of increasing numbers of Francisella genome sequences, combined with comparative genomics and proteomics studies, are contributing to the knowledge in this area. Tularemia may be treated with antibiotics, but there is currently no licensed vaccine. An attenuated strain, the Live Vaccine Strain (LVS) has been used to vaccinate military and at risk laboratory personnel, but safety concerns mean that it is unlikely to be licensed by the FDA for general use. Little is known about the protective immunity induced by vaccination with LVS, in humans or animal models. Immunoproteomics studies with sera from infected humans or vaccinated mouse strains, are being used in gel-based or proteome microarray approaches to give insight into the humoral immune response. In addition, these data have the potential to be exploited in the identification of new diagnostic or protective antigens, the design of next generation live vaccine strains, and the development of subunit vaccines. Herein, we briefly review the current knowledge from Francisella comparative proteomics studies and then focus upon the findings from immunoproteomics approaches.
Collapse
Affiliation(s)
- Sara L. N. Kilmury
- Institute for Biological Sciences, National Research Council CanadaOttawa, ON, Canada
| | - Susan M. Twine
- Institute for Biological Sciences, National Research Council CanadaOttawa, ON, Canada
| |
Collapse
|
31
|
Zogaj X, Klose KE. Genetic manipulation of francisella tularensis. Front Microbiol 2011; 1:142. [PMID: 21607086 PMCID: PMC3095392 DOI: 10.3389/fmicb.2010.00142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/14/2010] [Indexed: 12/20/2022] Open
Abstract
Francisella tularensis is a facultative intracellular pathogen that causes the disease tularemia. F. tularensis subsp. tularensis causes the most severe disease in humans and has been classified as a Category A select agent and potential bioweapon. There is currently no vaccine approved for human use, making genetic manipulation of this organism critical to unraveling the genetic basis of pathogenesis and developing countermeasures against tularemia. The development of genetic techniques applicable to F. tularensis have lagged behind those routinely used for other bacteria, primarily due to lack of research and the restricted nature of the biocontainment required for studying this pathogen. However, in recent years, genetic techniques, such as transposon mutagenesis and targeted gene disruption, have been developed, that have had a dramatic impact on our understanding of the genetic basis of F. tularensis virulence. In this review, we describe some of the methods developed for genetic manipulation of F. tularensis.
Collapse
Affiliation(s)
- Xhavit Zogaj
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas San Antonio San Antonio, TX, USA
| | | |
Collapse
|
32
|
Iron content differs between Francisella tularensis subspecies tularensis and subspecies holarctica strains and correlates to their susceptibility to H(2)O(2)-induced killing. Infect Immun 2010; 79:1218-24. [PMID: 21189323 DOI: 10.1128/iai.01116-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is one of the most infectious bacterial pathogens known and is classified as a category A select agent and a facultative intracellular bacterium. Why F. tularensis subsp. tularensis causes a more severe form of tularemia than F. tularensis subsp. holarctica does is not known. In this study, we have identified prominent phenotypic differences between the subspecies, since we found that F. tularensis subsp. tularensis strains contained less iron than F. tularensis subsp. holarctica strains. Moreover, strain SCHU S4 of F. tularensis subsp. tularensis was less susceptible than FSC200 and the live vaccine strain (LVS) of F. tularensis subsp. holarctica to H(2)O(2)-induced killing. The activity of the H(2)O(2)-degrading enzyme catalase was similar between the strains, whereas the iron content affected their susceptibility to H(2)O(2), since iron starvation rendered F. tularensis subsp. holarctica strains more resistant to H(2)O(2). Complementing LVS with fupA, which encodes an important virulence factor that regulates iron uptake, reduced its iron content and increased the resistance to H(2)O(2)-mediated killing. By real-time PCR, it was demonstrated that FSC200 and LVS expressed higher levels of gene transcripts related to iron uptake and storage than SCHU S4 did, and this likely explained their high iron content. Together, the results suggest that F. tularensis subsp. tularensis strains have restricted iron uptake and storage, which is beneficial for their resistance to H(2)O(2)-induced killing. This may be an important factor for the higher virulence of this subspecies of F. tularensis, as reactive oxygen species, such as H(2)O(2), are important bactericidal components during tularemia.
Collapse
|