1
|
Oshika, Bari VK. Molecular mechanism of host-yeast interactions and prevention by nanoformulation approaches. Microb Pathog 2025; 205:107663. [PMID: 40339625 DOI: 10.1016/j.micpath.2025.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/17/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
Fungal infections are a major source of morbidity and mortality in people with compromised immune systems, such as those with human immunodeficiency virus, cancer, organ transplant recipients, and patients undergoing chemotherapy in healthcare settings. According to a recent World Health Organization (WHO) fungal priority pathogens list, Cryptococcus spp., Candida spp., Aspergillus spp., and Candida auris cause severe invasive infections in human. These opportunistic pathogens cause a significant number of mycoses, which affect over a billion people annually. Around two million infections can be fatal, especially for those with compromised immune systems. To diagnose and treat mycoses, we need to understand the complex interactions between the fungus and the host during pathogenesis, the virulence-causing traits of the fungus, and how the host fights infection through the immune system. Although several antifungal drugs are available against fungal infections, their effectiveness is highly variable, with adverse effects. In addition, the increasing resistance to traditional antifungal treatments poses serious risks to the healthcare industry. Therefore, new therapeutic strategies are required to combat these potentially fatal fungal infections. Nanostructure-based formulations can improve the therapeutic efficacy of conventional medications by broadening their activities, decreasing toxicity, enhancing bioactivity, and improving biodistribution. The review highlights host and fungus interaction and how nanoformulations can be targeted against fungal infections.
Collapse
Affiliation(s)
- Oshika
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO, Ghudda, Bathinda, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO, Ghudda, Bathinda, India.
| |
Collapse
|
2
|
Timpano S, Bellicini I, Poli P, Moratto D, Cortesi M, Salvi M, Chiarini M, Padoan R, Pezzotta R, Fiorentini S, Caruso A, Giacomelli M, Badolato R. Low Th17 cells in patients with cystic fibrosis and allergic broncho-pulmonary aspergillosis. Pediatr Allergy Immunol 2025; 36:e70090. [PMID: 40238087 PMCID: PMC12002360 DOI: 10.1111/pai.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity response to the allergens of Aspergillus fumigatus, which is the most frequently isolated fungus from the sputum of cystic fibrosis (CF) patients. Because a low number of Th17 lymphocytes is associated with the risk of fungal infections, we investigated inflammatory markers, Th17 cells, and T-cell polarization in CF patients with ABPA. METHODS We analyzed the levels of inflammatory markers, blood counts, chemokines, cytokines, and T cell subsets in blood and sputum of CF subjects to elucidate the immunological factors associated with CF patients with Aspergillus fumigatus (AF) positive sputum (AFS+) or with ABPA. RESULTS We observed that AFS+ patients have higher sputum and blood IL-6 levels than AF-negative sputum (AFS-) patients. Analysis of blood memory T-helper subsets associated with Th1, Th2, and Th17 polarization among circulating CD45RA-/CD4+ memory T-cell subsets showed higher numbers of CCR4+/CCR6+/CXCR3- and CCR4+/CCR6+/CXCR3+ memory CD4 cells in AFS+ compared to AFS- subjects. Further analysis of Th17-related subsets and IL-17 secreting T cells in subjects with AFS+ showed that those with ABPA have statistically significantly lower levels of Th17 cells as compared to those without ABPA. CONCLUSION In CF, AF airway colonization is associated with increased blood counts of Th17-related subsets. However, CF patients with ABPA exhibit lower numbers of CCR4+/CCR6+/CXCR3+ memory CD4 cells and IL-17-secreting CD4 cells compared to control subjects and CF patients without AF sensitization.
Collapse
Affiliation(s)
- Silviana Timpano
- Department of Pediatrics, Cystic Fibrosis CentreASST Spedali Civili di Brescia, University of BresciaBresciaItaly
| | - Irene Bellicini
- Department of Pediatrics, Cystic Fibrosis CentreASST Spedali Civili di Brescia, University of BresciaBresciaItaly
| | - Piercarlo Poli
- Department of Pediatrics, Cystic Fibrosis CentreASST Spedali Civili di Brescia, University of BresciaBresciaItaly
| | - Daniele Moratto
- Flow Cytometry Unit, Clinical Chemistry LaboratoryASST Spedali CiviliBresciaItaly
- European Reference Network on Rare Primary Immunodeficiency Autoinflammatory and Autoimmune Diseases (ERN‐RITA)UtrechtThe Netherlands
| | - Manuela Cortesi
- Department of Pediatrics, Cystic Fibrosis CentreASST Spedali Civili di Brescia, University of BresciaBresciaItaly
| | - Marta Salvi
- Department of Pediatrics, Cystic Fibrosis CentreASST Spedali Civili di Brescia, University of BresciaBresciaItaly
| | - Marco Chiarini
- Flow Cytometry Unit, Clinical Chemistry LaboratoryASST Spedali CiviliBresciaItaly
| | - Rita Padoan
- Department of Pediatrics, Cystic Fibrosis CentreASST Spedali Civili di Brescia, University of BresciaBresciaItaly
| | - Ramona Pezzotta
- Department of Molecular and Translational Medicine, Section of MicrobiologyUniversity of BresciaBresciaItaly
| | - Simona Fiorentini
- Department of Molecular and Translational Medicine, Section of MicrobiologyUniversity of BresciaBresciaItaly
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine, Section of MicrobiologyUniversity of BresciaBresciaItaly
| | - Mauro Giacomelli
- Department of Pediatrics & “Angelo Nocivelli” Institute for Molecular Medicine, Department of Clinical and Experimental SciencesASST Spedali Civili Brescia, University of BresciaBresciaItaly
| | - Raffaele Badolato
- Department of Pediatrics, Cystic Fibrosis CentreASST Spedali Civili di Brescia, University of BresciaBresciaItaly
- European Reference Network on Rare Primary Immunodeficiency Autoinflammatory and Autoimmune Diseases (ERN‐RITA)UtrechtThe Netherlands
| |
Collapse
|
3
|
Liu TT, Zhang Z, Deng J, Shi CY, Zheng S, Jia LX, Du J, Piao C. CXCL16 knockout inhibit asthma airway inflammation by suppressing H2-DM molecular mediated antigen presentation. Cell Death Discov 2025; 11:90. [PMID: 40050290 PMCID: PMC11885808 DOI: 10.1038/s41420-025-02371-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
The inflammatory microenvironment influences dendritic cell-mediated antigen presentation to regulate asthma Th2 inflammation. The scavenger receptor is expressed on DCs and regulates antigen presentation and T priming. However, whether the transmembrane scavenger receptor (SR-PSOX/CXCL16) regulates the phenotype and antigen presentation function of DCs remains unclear. We found that CXCL16 is mainly expressed on DCs in the lung tissues of asthma patients and asthma mice. CXCL16 knockout led to the suppression of airway inflammation, mucus overproduction, and airway hyperresponsiveness in Aspergillus-induced asthma. In addition, the adoptive transfer of Aspergillus-pulsed DCs shows the CXCL16+ DCs exerted a promoting role in airway inflammation, the CXCL16- DCs inhibit airway inflammation. Additionally, RNA sequencing and flow cytometry data revealed that CXCL16 knockout inhibits airway inflammation by suppressing the antigen processing and presentation function of DCs, which was mediated by MHC II chaperone H2-DM. Furthermore, we found CXCL16 knockout suppressed dendritic cells differentiated forward to cDC2b subtype which is mainly charged with antigen presentation to T cell. In conclusion, we found that CXCL16 downregulated the capacity of DC antigen processing and presentation to suppress airway inflammation by reducing H2-DM expression which mediated DC differentiation. The study suggested that inhibition of CXCL16 can be a potential therapy for asthma.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China
- The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education, Beijing, China
- Collaborative Innovation Center for Cardiovascular Disorders, Yanji, China
| | - Zhi Zhang
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Jing Deng
- School of Basic Medical Sciences, Yanbian University, 133000, Yanji, China
| | - Chang-Yu Shi
- School of Basic Medical Sciences, Yanbian University, 133000, Yanji, China
| | - Shuai Zheng
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China
- The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education, Beijing, China
- Collaborative Innovation Center for Cardiovascular Disorders, Yanji, China
| | - Li-Xin Jia
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education, Beijing, China
- Collaborative Innovation Center for Cardiovascular Disorders, Yanji, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China
- The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education, Beijing, China
- Collaborative Innovation Center for Cardiovascular Disorders, Yanji, China
| | - Chunmei Piao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China.
- The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education, Beijing, China.
- Collaborative Innovation Center for Cardiovascular Disorders, Yanji, China.
| |
Collapse
|
4
|
Cook PC, Brown SL, Houlder EL, Furlong-Silva J, Conn DP, Colombo SAP, Baker S, Svedberg FR, Howell G, Bertuzzi M, Boon L, Konkel JE, Thornton CR, Allen JE, MacDonald AS. Mgl2 + cDC2s coordinate fungal allergic airway type 2, but not type 17, inflammation in mice. Nat Commun 2025; 16:928. [PMID: 39843887 PMCID: PMC11754877 DOI: 10.1038/s41467-024-55663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025] Open
Abstract
Fungal spores are abundant in the environment and a major cause of asthma. Originally characterised as a type 2 inflammatory disease, allergic airway inflammation that underpins asthma can also involve type 17 inflammation, which can exacerbate disease causing failure of treatments tailored to inhibit type 2 factors. However, the mechanisms that determine the host response to fungi, which can trigger both type 2 and type 17 inflammation in allergic airway disease, remain unclear. Here we find that CD11c+ DCs and CD4+ T cells are essential for development of both type 2 and type 17 airway inflammation in mice repeatedly exposed to inhaled spores. Single cell RNA-sequencing with further multi-parameter cytometry shows that allergic inflammation dramatically alters the proportion of numerous DC clusters in the lung, but that only two of these (Mgl2+ cDC2s and CCR7+ DCs) migrate to the dLNs. Targeted removal of several DC subsets shows that Mgl2+ cDC2 depletion reduces type 2, but not type 17, fungal allergic airway inflammation. These data highlight distinct DC subsets as potential therapeutic targets for the treatment of pulmonary fungal disease.
Collapse
Affiliation(s)
- Peter C Cook
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Department of Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom.
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.
| | - Sheila L Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Emma L Houlder
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Julio Furlong-Silva
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Department of Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
| | - Daniel P Conn
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Department of Biosciences, Faculty of Health and Life Sciences, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
| | - Stefano A P Colombo
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Syed Baker
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Freya R Svedberg
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Gareth Howell
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, University of Manchester, Manchester, United Kingdom
| | | | - Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christopher R Thornton
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Judith E Allen
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
5
|
Ellis DA, Jones M, Willems HME, Cheung S, Makullah M, Aimanianda V, Steele C. Fungal chitin is not an independent mediator of allergic fungal asthma severity. Am J Physiol Lung Cell Mol Physiol 2024; 327:L293-L303. [PMID: 38915287 PMCID: PMC11442099 DOI: 10.1152/ajplung.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
Chitin, a polysaccharide found in the fungal cell wall and the exoskeletons of house dust mites and cockroaches, has garnered attention as a potential immunoreactive allergen. Mammals have evolved to express chitin-degrading chitinases (acidic mammalian chitinase/AMCase and chitotriosidase) that may modulate immune responses to chitin. We have previously reported that mice deficient in AMCase (Chia-/-) demonstrated better lung function during allergic fungal asthma. As expected, we show that mice overexpressing AMCase (SPAM mice) had worse airway hyperreactivity (AHR) during allergic fungal asthma. We further demonstrate that chitin-positive Aspergillus fumigatus conidia are detectable in the allergic lung during chronic exposure. Lung function in Chia-/- and SPAM mice is directly correlated with the level of chitinase activity during chronic fungal exposure (Chia-/- mice, negligible chitinase activity, lower AHR; SPAM mice, heightened chitinase activity, higher AHR), suggesting that the breakdown of chitin promoted AHR. However, chronic exposure of normal mice to purified A. fumigatus chitin resulted in only moderate inflammatory changes in the lung that were not sufficient to induce AHR. Moreover, despite having dramatic differences in chitinase activity, chronic exposure of Chia-/- and SPAM mice to purified A. fumigatus chitin likewise did not modulate AHR. Collectively, these results indicate that chronic exposure to fungal chitin alone is incapable of driving AHR. Furthermore, our data suggest that the chitinase-mediated degradation of chitin associated with A. fumigatus conidia may facilitate unmasking and/or liberation of other fungal cell wall components that drive inflammatory responses that contribute to AHR.NEW & NOTEWORTHY Humans with asthma sensitized to fungi often have more severe asthma than those who are not fungal-sensitized. Chitin makes up a significant portion of the cell wall of fungi and has been implicated as a pathogenic factor in allergic asthma. Ellis et al. demonstrate that chronic exposure to fungal chitin alone is unable to modulate lung function, even in the presence of differential lung chitinase activity.
Collapse
Affiliation(s)
- Diandra A Ellis
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - MaryJane Jones
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Hubertine M E Willems
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Suki Cheung
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Mgayya Makullah
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Vishukumar Aimanianda
- Unité de Mycologie Moléculaire, Institut Pasteur, Université de Paris, CNRS, UMR2000, Paris, France
| | - Chad Steele
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
6
|
Remcho TP, Kolls JK. Unfolding the Role of Th17 Cells in Neutrophilic Lung Inflammation. Am J Respir Cell Mol Biol 2024; 71:137-138. [PMID: 38747688 PMCID: PMC11299083 DOI: 10.1165/rcmb.2024-0180ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Affiliation(s)
- T Parks Remcho
- Center for Translational Research in Infection and Inflammation Tulane School of Medicine New Orleans, Louisiana
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation Tulane School of Medicine New Orleans, Louisiana
| |
Collapse
|
7
|
Shankar J, Thakur R, Clemons KV, Stevens DA. Interplay of Cytokines and Chemokines in Aspergillosis. J Fungi (Basel) 2024; 10:251. [PMID: 38667922 PMCID: PMC11051073 DOI: 10.3390/jof10040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Aspergillosis is a fungal infection caused by various species of Aspergillus, most notably A. fumigatus. This fungus causes a spectrum of diseases, including allergic bronchopulmonary aspergillosis, aspergilloma, chronic pulmonary aspergillosis, and invasive aspergillosis. The clinical manifestations and severity of aspergillosis can vary depending on individual immune status and the specific species of Aspergillus involved. The recognition of Aspergillus involves pathogen-associated molecular patterns (PAMPs) such as glucan, galactomannan, mannose, and conidial surface proteins. These are recognized by the pathogen recognition receptors present on immune cells such as Toll-like receptors (TLR-1,2,3,4, etc.) and C-type lectins (Dectin-1 and Dectin-2). We discuss the roles of cytokines and pathogen recognition in aspergillosis from both the perspective of human and experimental infection. Several cytokines and chemokines have been implicated in the immune response to Aspergillus infection, including interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), CCR4, CCR17, and other interleukins. For example, allergic bronchopulmonary aspergillosis (ABPA) is characterized by Th2 and Th9 cell-type immunity and involves interleukin (IL)-4, IL-5, IL-13, and IL-10. In contrast, it has been observed that invasive aspergillosis involves Th1 and Th17 cell-type immunity via IFN-γ, IL-1, IL-6, and IL-17. These cytokines activate various immune cells and stimulate the production of other immune molecules, such as antimicrobial peptides and reactive oxygen species, which aid in the clearance of the fungal pathogen. Moreover, they help to initiate and coordinate the immune response, recruit immune cells to the site of infection, and promote clearance of the fungus. Insight into the host response from both human and animal studies may aid in understanding the immune response in aspergillosis, possibly leading to harnessing the power of cytokines or cytokine (receptor) antagonists and transforming them into precise immunotherapeutic strategies. This could advance personalized medicine.
Collapse
Affiliation(s)
- Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan 173234, Himachal Pradesh, India
| | - Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar 144001, Punjab, India;
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Shibata R, Zhu Z, Kyo M, Ooka T, Freishtat RJ, Mansbach JM, Pérez-Losada M, Camargo CA, Hasegawa K. Nasopharyngeal fungal subtypes of infant bronchiolitis and disease severity risk. EBioMedicine 2023; 95:104742. [PMID: 37536062 PMCID: PMC10415709 DOI: 10.1016/j.ebiom.2023.104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Bronchiolitis is a leading cause of infant hospitalization. Recent research suggests the heterogeneity within bronchiolitis and the relationship of airway viruses and bacteria with bronchiolitis severity. However, little is known about the pathobiological role of fungi. We aimed to identify bronchiolitis mycotypes by integrating fungus and virus data, and determine their association with bronchiolitis severity and biological characteristics. METHODS In a multicentre prospective cohort study of 398 infants (age <1 year, male 59%) hospitalized for bronchiolitis, we applied clustering approaches to identify mycotypes by integrating nasopharyngeal fungus (detected in RNA-sequencing data) and virus data (respiratory syncytial virus [RSV], rhinovirus [RV]) at hospitalization. We examined their association with bronchiolitis severity-defined by positive pressure ventilation (PPV) use and biological characteristics by nasopharyngeal metatranscriptome and transcriptome data. RESULTS In infants hospitalized for bronchiolitis, we identified four mycotypes: A) fungiM.restrictavirusRSV/RV, B) fungiM.restrictavirusRSV, C) fungiM.globosavirusRSV/RV, D) funginot-detectedvirusRSV/RV mycotypes. Compared to mycotype A infants (the largest subtype, n = 211), mycotype C infants (n = 85) had a significantly lower risk of PPV use (7% vs. 1%, adjOR, 0.21; 95% CI, 0.02-0.90; p = 0.033), while the risk of PPV use was not significantly different in mycotype B or D. In the metatranscriptome and transcriptome data, mycotype C had similar bacterial composition and microbial functions yet dysregulated pathways (e.g., Fc γ receptor-mediated phagocytosis pathway and chemokine signaling pathway; FDR <0.05). INTERPRETATION In this multicentre cohort, fungus-virus clustering identified distinct mycotypes of infant bronchiolitis with differential severity risks and unique biological characteristics. FUNDING This study was supported by the National Institutes of Health.
Collapse
Affiliation(s)
- Ryohei Shibata
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michihito Kyo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tadao Ooka
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Health Science, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA; Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, The George Washington University, Washington, DC, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Liu TT, Wang YL, Zhang Z, Jia LX, Zhang J, Zheng S, Chen ZH, Shen HH, Piao CM, Du J. Abnormal adenosine metabolism of neutrophils inhibits airway inflammation and remodeling in asthma model induced by Aspergillus fumigatus. BMC Pulm Med 2023; 23:258. [PMID: 37452319 PMCID: PMC10347753 DOI: 10.1186/s12890-023-02553-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Neutrophils consume a large amount of energy when performing their functions. Compared with other white blood cells, neutrophils contain few mitochondria and mainly rely on glycolysis and gluconeogenesis to produce ATP. The inflammatory site is hypoxic and nutrient poor. Our aim is to study the role of abnormal adenosine metabolism of neutrophils in the asthmatic airway inflammation microenvironment. METHOD In this study, an asthma model was established by intratracheal instillation of Aspergillus fumigatus extract in Ecto-5'-Nucleotidase (CD73) gene-knockout and wild-type mice. Multiple analyses from bronchoalveolar lavage fluid (BALF) were used to determine the levels of cytokines and chemokines. Immunohistochemistry was used to detect subcutaneous fibrosis and inflammatory cell infiltration. Finally, adenosine 5'-(α, β-methylene) diphosphate (APCP), a CD73 inhibitor, was pumped subcutaneously before Aspergillus attack to observe the infiltration of inflammatory cells and subcutaneous fibrosis to clarify its therapeutic effect. RESULT PAS staining showed that CD73 knockout inhibited pulmonary epithelial cell proliferation and bronchial fibrosis induced by Aspergillus extract. The genetic knockdownof CD73 significantly reduced the production of Th2 cytokines, interleukin (IL)-4, IL-6, IL-13, chemokine (C-C motif) ligand 5 (CCL5), eosinophil chemokine, neutrophil IL-17, and granulocyte colony-stimulating factor (G-CSF). In addition, exogenous adenosine supplementation increased airway inflammation. Finally, the CD73 inhibitor APCP was administered to reduce inflammation and subcutaneous fibrosis. CONCLUSION Elevated adenosine metabolism plays an inflammatory role in asthma, and CD73 could be a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Yue-Li Wang
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Zhi Zhang
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Li-Xin Jia
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Jing Zhang
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Shuai Zheng
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hua-Hao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Chun-Mei Piao
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China.
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China.
| |
Collapse
|
10
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 295] [Impact Index Per Article: 147.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
11
|
Furlong-Silva J, Cook PC. Fungal-mediated lung allergic airway disease: The critical role of macrophages and dendritic cells. PLoS Pathog 2022; 18:e1010608. [PMID: 35834490 PMCID: PMC9282651 DOI: 10.1371/journal.ppat.1010608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Fungi are abundant in the environment, causing our lungs to be constantly exposed to a diverse range of species. While the majority of these are cleared effectively in healthy individuals, constant exposure to spores (especially Aspergillus spp.) can lead to the development of allergic inflammation that underpins and worsen diseases such as asthma. Despite this, the precise mechanisms that underpin the development of fungal allergic disease are poorly understood. Innate immune cells, such as macrophages (MΦs) and dendritic cells (DCs), have been shown to be critical for mediating allergic inflammation to a range of different allergens. This review will focus on the crucial role of MΦ and DCs in mediating antifungal immunity, evaluating how these immune cells mediate allergic inflammation within the context of the lung environment. Ultimately, we aim to highlight important future research questions that will lead to novel therapeutic strategies for fungal allergic diseases.
Collapse
Affiliation(s)
- Julio Furlong-Silva
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Peter Charles Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Patel PS, Pérez-Baos S, Walters B, Orlen M, Volkova A, Ruggles K, Park CY, Schneider RJ. Translational regulation of TFH cell differentiation and autoimmune pathogenesis. SCIENCE ADVANCES 2022; 8:eabo1782. [PMID: 35749506 PMCID: PMC9232117 DOI: 10.1126/sciadv.abo1782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Little is known regarding T cell translational regulation. We demonstrate that T follicular helper (TFH) cells use a previously unknown mechanism of selective messenger RNA (mRNA) translation for their differentiation, role in B cell maturation, and in autoimmune pathogenesis. We show that TFH cells have much higher levels of translation factor eIF4E than non-TFH CD4+ T cells, which is essential for translation of TFH cell fate-specification mRNAs. Genome-wide translation studies indicate that modest down-regulation of eIF4E activity by a small-molecule inhibitor or short hairpin RN impairs TFH cell development and function. In mice, down-regulation of eIF4E activity specifically reduces TFH cells among T helper subtypes, germinal centers, B cell recruitment, and antibody production. In experimental autoimmune encephalomyelitis, eIF4E activity down-regulation blocks TFH cell participation in disease pathogenesis while promoting rapid remission and spinal cord remyelination. TFH cell development and its role in autoimmune pathogenesis involve selective mRNA translation that is highly druggable.
Collapse
Affiliation(s)
- Preeyam S. Patel
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Sandra Pérez-Baos
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Beth Walters
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Margo Orlen
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Angelina Volkova
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Kelly Ruggles
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Christopher Y. Park
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Robert J. Schneider
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
13
|
Watchorn D, Menzies-Gow A. Investigational approaches for unmet need in severe asthma. Expert Rev Respir Med 2022; 16:661-678. [PMID: 35786146 DOI: 10.1080/17476348.2022.2096593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Molecular antibodies (mAb) targeting inflammatory mediators are effective in T2-high asthma. The recent approval of Tezepelumab presents a novel mAb therapeutic option for those with T2-low asthma. AREAS COVERED We discuss a number of clinical problems pertinent to severe asthma that are less responsive to current therapies, such as persistent airflow obstruction and airway hyperresponsiveness. We discuss selected investigational approaches, including a number of candidate therapies under investigation in two adaptive platform trials currently in progress, with particular reference to this unmet need, as well as their potential in phenotypes such as neutrophilic asthma and obese asthma, which may or may not overlap with a T2-high phenotype. EXPERT OPINION The application of discrete targeting approaches to T2-low molecular phenotypes, including those phenotypes in which inflammation may not arise within the airway, has yielded variable results to date. Endotypes associated with T2-low asthma are likely to be diverse but await validation. Investigational therapeutic approaches must, likewise, be diverse if the goal of remission is to become attainable for all those living with asthma.
Collapse
Affiliation(s)
- David Watchorn
- Lung Division, Royal Brompton & Harefield Hospitals,London,UK
| | | |
Collapse
|
14
|
Palmieri F, Koutsokera A, Bernasconi E, Junier P, von Garnier C, Ubags N. Recent Advances in Fungal Infections: From Lung Ecology to Therapeutic Strategies With a Focus on Aspergillus spp. Front Med (Lausanne) 2022; 9:832510. [PMID: 35386908 PMCID: PMC8977413 DOI: 10.3389/fmed.2022.832510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Fungal infections are estimated to be the main cause of death for more than 1.5 million people worldwide annually. However, fungal pathogenicity has been largely neglected. This is notably the case for pulmonary fungal infections, which are difficult to diagnose and to treat. We are currently facing a global emergence of antifungal resistance, which decreases the chances of survival for affected patients. New therapeutic approaches are therefore needed to face these life-threatening fungal infections. In this review, we will provide a general overview on respiratory fungal infections, with a focus on fungi of the genus Aspergillus. Next, the immunological and microbiological mechanisms of fungal pathogenesis will be discussed. The role of the respiratory mycobiota and its interactions with the bacterial microbiota on lung fungal infections will be presented from an ecological perspective. Finally, we will focus on existing and future innovative approaches for the treatment of respiratory fungal infections.
Collapse
Affiliation(s)
- Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- *Correspondence: Fabio Palmieri,
| | - Angela Koutsokera
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Eric Bernasconi
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Christophe von Garnier
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Niki Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Niki Ubags,
| |
Collapse
|
15
|
Colombo SAP, Hashad R, Denning DW, Kumararatne DS, Ceron-Gutierrez L, Barcenas-Morales G, MacDonald AS, Harris C, Doffinger R, Kosmidis C. Defective interferon-gamma production is common in chronic pulmonary aspergillosis. J Infect Dis 2021; 225:1822-1831. [PMID: 34850023 DOI: 10.1093/infdis/jiab583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/25/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Immune defects in chronic pulmonary aspergillosis (CPA) are poorly characterised. We compared peripheral blood cytokine profiles in patients with CPA vs healthy controls and explored the relationship with disease severity. METHODS Interferon-gamma (IFNγ), IL-17, TNFα, IL-6, IL-12 and IL-10 were measured after in vitro stimulation of whole blood with lipopolysaccharide (LPS), phytohaemagglutinin (PHA), β-glucan, zymosan (ZYM), IL-12 or IL-18, and combinations. Clinical parameters and mortality were correlated with cytokine production. RESULTS Cytokine profiles were evaluated in 133 patients (57.1% male, mean age 61 years). In comparison to controls, patients with CPA had significantly reduced production of IFNγ in response to stimulation with β-glucan+IL-12 (312 vs 988 pg/ml), LPS+IL-12 (252 vs 1033 pg/ml), ZYM+IL-12 (996 vs 2347 pg/ml), and IL-18+IL-12 (7193 vs 12330 pg/ml). Age >60 (p=0.05, HR 1.71, 95%CI 1.00-2.91) and COPD (p=0.039, HR 1.69, 95%CI 1.03-2.78) were associated with worse survival, whereas high IFNγ production in response to beta-glucan+IL-12 stimulation (p=0.026, HR 0.48, 95%CI 0.25-0.92) was associated with reduced mortality. CONCLUSION Patients with CPA show impaired IFNγ production in peripheral blood in response to stimuli. Defective IFNγ production ability correlates with worse outcomes. Immunotherapy with IFNγ could be beneficial for patients showing impaired IFNγ production in CPA.
Collapse
Affiliation(s)
- Stefano A P Colombo
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rola Hashad
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, UK.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - David W Denning
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, UK
| | - Dinakantha S Kumararatne
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - Lourdes Ceron-Gutierrez
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | | | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Chris Harris
- National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital, Cambridge University NHS Foundation Trust, Cambridge, UK
| | - Chris Kosmidis
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, UK.,National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
16
|
Lauruschkat CD, Etter S, Schnack E, Ebel F, Schäuble S, Page L, Rümens D, Dragan M, Schlegel N, Panagiotou G, Kniemeyer O, Brakhage AA, Einsele H, Wurster S, Loeffler J. Chronic Occupational Mold Exposure Drives Expansion of Aspergillus-Reactive Type 1 and Type 2 T-Helper Cell Responses. J Fungi (Basel) 2021; 7:698. [PMID: 34575736 PMCID: PMC8471116 DOI: 10.3390/jof7090698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Occupational mold exposure can lead to Aspergillus-associated allergic diseases including asthma and hypersensitivity pneumonitis. Elevated IL-17 levels or disbalanced T-helper (Th) cell expansion were previously linked to Aspergillus-associated allergic diseases, whereas alterations to the Th cell repertoire in healthy occupationally exposed subjects are scarcely studied. Therefore, we employed functional immunoassays to compare Th cell responses to A. fumigatus antigens in organic farmers, a cohort frequently exposed to environmental molds, and non-occupationally exposed controls. Organic farmers harbored significantly higher A. fumigatus-specific Th-cell frequencies than controls, with comparable expansion of Th1- and Th2-cell frequencies but only slightly elevated Th17-cell frequencies. Accordingly, Aspergillus antigen-induced Th1 and Th2 cytokine levels were strongly elevated, whereas induction of IL-17A was minimal. Additionally, increased levels of some innate immune cell-derived cytokines were found in samples from organic farmers. Antigen-induced cytokine release combined with Aspergillus-specific Th-cell frequencies resulted in high classification accuracy between organic farmers and controls. Aspf22, CatB, and CipC elicited the strongest differences in Th1 and Th2 responses between the two cohorts, suggesting these antigens as potential candidates for future bio-effect monitoring approaches. Overall, we found that occupationally exposed agricultural workers display a largely balanced co-expansion of Th1 and Th2 immunity with only minor changes in Th17 responses.
Collapse
Affiliation(s)
- Chris D. Lauruschkat
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Sonja Etter
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Elisabeth Schnack
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany; (E.S.); (F.E.)
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany; (E.S.); (F.E.)
| | - Sascha Schäuble
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (S.S.); (G.P.)
| | - Lukas Page
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Dana Rümens
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Mariola Dragan
- Department of Surgery I, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (M.D.); (N.S.)
| | - Nicolas Schlegel
- Department of Surgery I, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (M.D.); (N.S.)
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (S.S.); (G.P.)
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (O.K.); (A.A.B.)
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (O.K.); (A.A.B.)
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| |
Collapse
|
17
|
Toxicity studies of Aspergillus fumigatus administered by inhalation to B6C3F1/N mice (revised). TOXICITY REPORT SERIES 2021:NTP-TOX-100. [PMID: 34283822 PMCID: PMC8436148 DOI: 10.22427/ntp-tox-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aspergillus fumigatus is a thermotolerant, soil-borne fungal species that is ubiquitous in the environment. Mold was nominated to the National Toxicology Program (NTP) by a private individual due to suspected adverse health effects associated with personal exposure in indoor and occupational settings. A. fumigatus is of particular concern in the biowaste industry as the species can contaminate self-heating compost piles. Because of this potential for personal and occupational exposure and the lack of available toxicity data, toxicity studies were conducted in which male and female B6C3F1/N mice were exposed to A. fumigatus conidia (spores) two times a week for 3 months. All in-life procedures, including inhalation exposure, test article preparation, and hematology analysis, were completed by the National Institute for Occupational Safety and Health (NIOSH, Morgantown, WV). Battelle (Columbus, OH) conducted terminal necropsies, measured terminal body and organ weights, and evaluated gross lesions on-site at NIOSH. Tissue processing and histopathology were completed at Battelle. Grocott's methenamine silver (GMS) staining was performed at NIOSH. Genetic toxicology studies on mouse peripheral blood erythrocytes were conducted by Integrated Laboratory Systems, LLC (Research Triangle Park, NC). (Abstract Abridged).
Collapse
|
18
|
Development of a Simple and Robust Whole Blood Assay with Dual Co-Stimulation to Quantify the Release of T-Cellular Signature Cytokines in Response to Aspergillus fumigatus Antigens. J Fungi (Basel) 2021; 7:jof7060462. [PMID: 34201183 PMCID: PMC8230040 DOI: 10.3390/jof7060462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Deeper understanding of mold-induced cytokine signatures could promote advances in the diagnosis and treatment of invasive mycoses and mold-associated hypersensitivity syndromes. Currently, most T-cellular immunoassays in medical mycology require the isolation of mononuclear cells and have limited robustness and practicability, hampering their broader applicability in clinical practice. Therefore, we developed a simple, cost-efficient whole blood (WB) assay with dual α-CD28 and α-CD49d co-stimulation to quantify cytokine secretion in response to Aspergillus fumigatus antigens. Dual co-stimulation strongly enhanced A. fumigatus-induced release of T-cellular signature cytokines detectable by enzyme-linked immunosorbent assay (ELISA) or a multiplex cytokine assay. Furthermore, T-cell-dependent activation and cytokine response of innate immune cells was captured by the assay. The protocol consistently showed little technical variation and high robustness to pre-analytic delays of up to 8 h. Stimulation with an A. fumigatus lysate elicited at least 7-fold greater median concentrations of key T-helper cell signature cytokines, including IL-17 and the type 2 T-helper cell cytokines IL-4 and IL-5 in WB samples from patients with Aspergillus-associated lung pathologies versus patients with non-mold-related lung diseases, suggesting high discriminatory power of the assay. These results position WB-ELISA with dual co-stimulation as a simple, accurate, and robust immunoassay for translational applications, encouraging further evaluation as a platform to monitor host immunity to opportunistic pathogens.
Collapse
|
19
|
Murdock BJ, Famie JP, Piecuch CE, Pawlowski KD, Mendelson FE, Pieroni CH, Iniguez SD, Zhao L, Goutman SA, Feldman EL. NK cells associate with ALS in a sex- and age-dependent manner. JCI Insight 2021; 6:147129. [PMID: 33974561 PMCID: PMC8262328 DOI: 10.1172/jci.insight.147129] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
NK cells are innate immune cells implicated in ALS; whether NK cells impact ALS in a sex- and age-specific manner was investigated. Herein, NK cells were depleted in male and female SOD1G93A ALS mice, survival and neuroinflammation were assessed, and data were stratified by sex. NK cell depletion extended survival in female but not male ALS mice with sex-specific effects on spinal cord microglia. In humans, NK cell numbers, NK cell subpopulations, and NK cell surface markers were examined in prospectively blood collected from subjects with ALS and control subjects; longitudinal changes in these metrics were correlated to revised ALS functional rating scale (ALSFRS-R) slope and stratified by sex and age. Expression of NK cell trafficking and cytotoxicity markers was elevated in subjects with ALS, and changes in CXCR3+ NK cells and 7 trafficking and cytotoxicity markers (CD11a, CD11b, CD38, CX3CR1, NKG2D, NKp30, NKp46) correlated with disease progression. Age affected the associations between ALSFRS-R and markers NKG2D and NKp46, whereas sex impacted the NKp30 association. Collectively, these findings suggest that NK cells contribute to ALS progression in a sex- and age-specific manner and demonstrate that age and sex are critical variables when designing and assessing ALS immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lili Zhao
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
20
|
Bercusson A, Jarvis G, Shah A. CF Fungal Disease in the Age of CFTR Modulators. Mycopathologia 2021; 186:655-664. [PMID: 33813719 PMCID: PMC8536598 DOI: 10.1007/s11046-021-00541-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Fungi are increasingly recognised to have a significant role in the progression of lung disease in Cystic fibrosis with Aspergillus fumigatus the most common fungus isolated during respiratory sampling. The emergence of novel CFTR modulators has, however, significantly changed the outlook of disease progression in CF. In this review we discuss what impact novel CFTR modulators will have on fungal lung disease and its management in CF. We discuss how CFTR modulators affect antifungal innate immunity and consider the impact of Ivacaftor on fungal disease in individuals with gating mutations. We further review the increasing complication of drug-drug interactions with concurrent use of azole antifungal medication and highlight key unknowns that require addressing to fully understand the impact of CFTR modulators on fungal disease.
Collapse
Affiliation(s)
- Amelia Bercusson
- Cystic Fibrosis Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - George Jarvis
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Anand Shah
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK. .,Department of Infectious Disease Epidemiology, MRC Centre of Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
21
|
Jones JT, Liu KW, Wang X, Kowalski CH, Ross BS, Mills KAM, Kerkaert JD, Hohl TM, Lofgren LA, Stajich JE, Obar JJ, Cramer RA. Aspergillus fumigatus Strain-Specific Conidia Lung Persistence Causes an Allergic Broncho-Pulmonary Aspergillosis-Like Disease Phenotype. mSphere 2021; 6:e01250-20. [PMID: 33597172 PMCID: PMC8544898 DOI: 10.1128/msphere.01250-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/27/2021] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is a filamentous fungus which can cause multiple diseases in humans. Allergic broncho-pulmonary aspergillosis (ABPA) is a disease diagnosed primarily in cystic fibrosis patients caused by a severe allergic response often to long-term A. fumigatus colonization in the lungs. Mice develop an allergic response to repeated inhalation of A. fumigatus spores; however, no strains have been identified that can survive long-term in the mouse lung and cause ABPA-like disease. We characterized A. fumigatus strain W72310, which was isolated from the expectorated sputum of an ABPA patient, by whole-genome sequencing and in vitro and in vivo viability assays in comparison to a common reference strain, CEA10. W72310 was resistant to leukocyte-mediated killing and persisted in the mouse lung longer than CEA10, a phenotype that correlated with greater resistance to oxidative stressors, hydrogen peroxide, and menadione, in vitro In animals both sensitized and challenged with W72310, conidia, but not hyphae, were viable in the lungs for up to 21 days in association with eosinophilic airway inflammation, airway leakage, serum IgE, and mucus production. W72310-sensitized mice that were recall challenged with conidia had increased inflammation, Th1 and Th2 cytokines, and airway leakage compared to controls. Collectively, our studies demonstrate that a unique strain of A. fumigatus resistant to leukocyte killing can persist in the mouse lung in conidial form and elicit features of ABPA-like disease.IMPORTANCE Allergic broncho-pulmonary aspergillosis (ABPA) patients often present with long-term colonization of Aspergillus fumigatus Current understanding of ABPA pathogenesis has been complicated by a lack of long-term in vivo fungal persistence models. We have identified a clinical isolate of A. fumigatus, W72310, which persists in the murine lung and causes an ABPA-like disease phenotype. Surprisingly, while viable, W72310 showed little to no growth beyond the conidial stage in the lung. This indicates that it is possible that A. fumigatus can cause allergic disease in the lung without any significant hyphal growth. The identification of this strain of A. fumigatus can be used not only to better understand disease pathogenesis of ABPA and potential antifungal treatments but also to identify features of fungal strains that drive long-term fungal persistence in the lung. Consequently, these observations are a step toward helping resolve the long-standing question of when to utilize antifungal therapies in patients with ABPA and fungal allergic-type diseases.
Collapse
Affiliation(s)
- Jane T Jones
- Geisel School of Medicine, Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, USA
| | - Ko-Wei Liu
- Geisel School of Medicine, Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, USA
| | - Xi Wang
- Geisel School of Medicine, Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, USA
| | - Caitlin H Kowalski
- Geisel School of Medicine, Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, USA
| | - Brandon S Ross
- Geisel School of Medicine, Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, USA
| | - Kathleen A M Mills
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, New York, USA
| | - Joshua D Kerkaert
- Geisel School of Medicine, Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, New York, USA
| | - Lotus A Lofgren
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Joshua J Obar
- Geisel School of Medicine, Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, USA
| | - Robert A Cramer
- Geisel School of Medicine, Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
22
|
Mackel JJ, Garth JM, Jones M, Ellis DA, Blackburn JP, Yu Z, Matalon S, Curtiss M, Lund FE, Hastie AT, Meyers DA, Steele C. Chitinase 3-like-1 protects airway function despite promoting type 2 inflammation during fungal-associated allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2021; 320:L615-L626. [PMID: 33533316 DOI: 10.1152/ajplung.00528.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Joseph J Mackel
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Jaleesa M Garth
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - MaryJane Jones
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana
| | - Diandra A Ellis
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana
| | | | - Zhihong Yu
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Miranda Curtiss
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama.,Department of Microbiology, University of Alabama Birmingham, Birmingham, Alabama
| | - Frances E Lund
- Department of Microbiology, University of Alabama Birmingham, Birmingham, Alabama
| | - Annette T Hastie
- Department of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | | | - Chad Steele
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana
| |
Collapse
|
23
|
Schaefer AL, Ceesay M, Leier JA, Tesch J, Wisenden BD, Pandey S. Factors Contributing to Sex Differences in Mice Inhaling Aspergillus fumigatus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8851. [PMID: 33260764 PMCID: PMC7729525 DOI: 10.3390/ijerph17238851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022]
Abstract
Aspergillus fumigatus is a respiratory fungal pathogen and an allergen, commonly detected in flooded indoor environments and agricultural settings. Previous studies in Balb/c mice showed that repeated inhalation of live and dry A. fumigatus spores, without any adjuvant, elevated allergic immune response and airway remodeling. Sex-specific differences can influence host-pathogen interactions and allergic-asthma related outcomes. However, the effect of host sex on immune response, in the context of A. fumigatus exposure, remains unknown. In this study, we quantified the multivariate and univariate immune response of C57BL/6J mice to live, dry airborne A. fumigatus spores. Our results corroborate previous results in Balb/c mice that repeated inhalation of live A. fumigatus spores is sufficient to induce mucus production and inflammation by day 3 post last challenge, and antibody titers and collagen production by day 28 post-challenge. Principal Component Analysis (PCA) showed that females exhibited significantly higher levels of immune components than males did. Taken together, our data indicate that host-sex is an important factor in shaping the immune response against A. fumigatus, and must be considered when modeling disease in animals, in designing diagnostics and therapeutics for A. fumigatus-associated diseases or while drafting evidence-based guidelines for safe mold levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Sumali Pandey
- Biosciences Department, Minnesota State University Moorhead, Moorhead, 56563 MN, USA; (A.L.S.); (M.C.); (J.A.L.); (J.T.); (B.D.W.)
| |
Collapse
|
24
|
Ray A, Camiolo M, Fitzpatrick A, Gauthier M, Wenzel SE. Are We Meeting the Promise of Endotypes and Precision Medicine in Asthma? Physiol Rev 2020; 100:983-1017. [PMID: 31917651 PMCID: PMC7474260 DOI: 10.1152/physrev.00023.2019] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023] Open
Abstract
While the term asthma has long been known to describe heterogeneous groupings of patients, only recently have data evolved which enable a molecular understanding of the clinical differences. The evolution of transcriptomics (and other 'omics platforms) and improved statistical analyses in combination with large clinical cohorts opened the door for molecular characterization of pathobiologic processes associated with a range of asthma patients. When linked with data from animal models and clinical trials of targeted biologic therapies, emerging distinctions arose between patients with and without elevations in type 2 immune and inflammatory pathways, leading to the confirmation of a broad categorization of type 2-Hi asthma. Differences in the ratios, sources, and location of type 2 cytokines and their relation to additional immune pathway activation appear to distinguish several different (sub)molecular phenotypes, and perhaps endotypes of type 2-Hi asthma, which respond differently to broad and targeted anti-inflammatory therapies. Asthma in the absence of type 2 inflammation is much less well defined, without clear biomarkers, but is generally linked with poor responses to corticosteroids. Integration of "big data" from large cohorts, over time, using machine learning approaches, combined with validation and iterative learning in animal (and human) model systems is needed to identify the biomarkers and tightly defined molecular phenotypes/endotypes required to fulfill the promise of precision medicine.
Collapse
Affiliation(s)
- Anuradha Ray
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Matthew Camiolo
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Anne Fitzpatrick
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Marc Gauthier
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Sally E Wenzel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Pulmonary Allergy Critical Care Medicine, Departments of Medicine and of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
25
|
Kozlova Y, Frolova E, Uchevatkina A, Filippova L, Aak O, Burygina E, Taraskina A, Vasilyeva N, Klimko N. Diagnostic markers of allergic bronchopulmonary aspergillosis in patients with severe asthma. Mycoses 2020; 63:596-603. [PMID: 32246509 DOI: 10.1111/myc.13083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Allergic bronchopulmonary aspergillosis (ABPA) is a lung disease in patients with asthma or cystic fibrosis (CF) caused by chronic allergic inflammation to Aspergillus spp. antigens. The role of different immunological mediators in the formation of chronic allergic inflammation in patients with ABPA is not sufficiently explored. OBJECTIVES This study aimed to investigate serum levels of thymic stromal lymphopoietin (TSLP), thymus and activated chemokine (TARC) as well as IL-8 in patients with ABPA, and to evaluate their diagnostic and monitoring value in the disease. PATIENTS/METHODS Prospective study included 21 patients with ABPA, 25 patients with severe asthma with fungal sensitisation (SAFS), 37 patients with severe asthma without fungal sensitisation (SAwFS), and 16 healthy people. In patients with ABPA, the serum levels of biomarkers were determined at baseline and after 12 weeks of itraconazole therapy. Serum levels of total IgE, Aspergillus-fumigatus-specific IgE, TSLP, TARC, IL-8 were analysed by enzyme-linked immunosorbent assay. RESULTS In patients with ABPA we established significantly higher serum levels of TARC, IL-8, total IgE, Aspergillus-fumigatus-specific IgE and peripheral blood eosinophil counts, compared to patients with SAwFS. There were no differences in TSLP levels between the examined groups of patients. Serum TARC levels were positively correlated to serum total IgE levels, A fumigatus-specific IgE levels and peripheral blood eosinophil counts and also negatively correlated to lung function (FEV1 ). Longitudinally, serum levels TARC, total IgE and peripheral blood eosinophil counts significant decreased after treatment of ABPA. CONCLUSION Thymus and activated chemokine is a useful test in diagnosing and monitoring response to the antifungal treatment of patients with ABPA.
Collapse
Affiliation(s)
- Yana Kozlova
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Ekaterina Frolova
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Aleksandra Uchevatkina
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Larisa Filippova
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Oleg Aak
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Ekaterina Burygina
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Anastasiya Taraskina
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Natalia Vasilyeva
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| | - Nikolay Klimko
- North-Western State Medical University named after I.I. Mechnikov, Saint Petersburg, Russia
| |
Collapse
|
26
|
Figueroa-Romero C, Guo K, Murdock BJ, Paez-Colasante X, Bassis CM, Mikhail KA, Pawlowski KD, Evans MC, Taubman GF, McDermott AJ, O'Brien PD, Savelieff MG, Hur J, Feldman EL. Temporal evolution of the microbiome, immune system and epigenome with disease progression in ALS mice. Dis Model Mech 2019; 13:dmm041947. [PMID: 31597644 PMCID: PMC6906635 DOI: 10.1242/dmm.041947] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a terminal neurodegenerative disease. Genetic predisposition, epigenetic changes, aging and accumulated life-long environmental exposures are known ALS risk factors. The complex and dynamic interplay between these pathological influences plays a role in disease onset and progression. Recently, the gut microbiome has also been implicated in ALS development. In addition, immune cell populations are differentially expanded and activated in ALS compared to healthy individuals. However, the temporal evolution of both the intestinal flora and the immune system relative to symptom onset in ALS is presently not fully understood. To better elucidate the timeline of the various potential pathological factors, we performed a longitudinal study to simultaneously assess the gut microbiome, immunophenotype and changes in ileum and brain epigenetic marks relative to motor behavior and muscle atrophy in the mutant superoxide dismutase 1 (SOD1G93A) familial ALS mouse model. We identified alterations in the gut microbial environment early in the life of SOD1G93A animals followed by motor dysfunction and muscle atrophy, and immune cell expansion and activation, particularly in the spinal cord. Global brain cytosine hydroxymethylation was also altered in SOD1G93A animals at disease end-stage compared to control mice. Correlation analysis confirmed interrelationships with the microbiome and immune system. This study serves as a starting point to more deeply comprehend the influence of gut microorganisms and the immune system on ALS onset and progression. Greater insight may help pinpoint novel biomarkers and therapeutic interventions to improve diagnosis and treatment for ALS patients.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Benjamin J Murdock
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Christine M Bassis
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kristen A Mikhail
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Matthew C Evans
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | | | - Andrew J McDermott
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Phillipe D O'Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masha G Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Godwin MS, Reeder KM, Garth JM, Blackburn JP, Jones M, Yu Z, Matalon S, Hastie AT, Meyers DA, Steele C. IL-1RA regulates immunopathogenesis during fungal-associated allergic airway inflammation. JCI Insight 2019; 4:129055. [PMID: 31550242 DOI: 10.1172/jci.insight.129055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Severe asthma with fungal sensitization (SAFS) defines a subset of human asthmatics with allergy to 1 or more fungal species and difficult-to-control asthma. We have previously reported that human asthmatics sensitized to fungi have worse lung function and a higher degree of atopy, which was associated with higher IL-1 receptor antagonist (IL-1RA) levels in bronchoalveolar lavage fluid. IL-1RA further demonstrated a significant negative association with bronchial hyperresponsiveness to methacholine. Here, we show that IL-1α and IL-1β are elevated in both bronchoalveolar lavage fluid and sputum from human asthmatics sensitized to fungi, implicating an association with IL-1α, IL-1β, or IL-1RA in fungal asthma severity. In an experimental model of fungal-associated allergic airway inflammation, we demonstrate that IL-1R1 signaling promotes type 1 (IFN-γ, CXCL9, CXCL10) and type 17 (IL-17A, IL-22) responses that were associated with neutrophilic inflammation and increased airway hyperreactivity. Each of these were exacerbated in the absence of IL-1RA. Administration of human recombinant IL-1RA (Kineret/anakinra) during fungal-associated allergic airway inflammation improved airway hyperreactivity and lowered type 1 and type 17 responses. Taken together, these data suggest that IL-1R1 signaling contributes to fungal asthma severity via immunopathogenic type 1 and type 17 responses and can be targeted for improving allergic asthma severity.
Collapse
Affiliation(s)
- Matthew S Godwin
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Kristen M Reeder
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Jaleesa M Garth
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Jonathan P Blackburn
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - MaryJane Jones
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana, USA
| | - Zhihong Yu
- Department of Anesthesiology, UAB, Birmingham, Alabama, USA
| | - Sadis Matalon
- Department of Anesthesiology, UAB, Birmingham, Alabama, USA
| | - Annette T Hastie
- Department of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Deborah A Meyers
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
28
|
Wong AYW, Fric J, Zelante T. Learning to control tissue damage while fighting Aspergillus. Med Mycol 2019; 57:S189-S195. [PMID: 30816972 DOI: 10.1093/mmy/myy053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022] Open
Abstract
Aspergillus moulds are increasingly being recognised as significant human pathogens that can cause life-threatening infections in the context of host immune dysregulation, particularly in the lung. It is now clear that there is a close relationship between infection susceptibility and the fine regulation of pulmonary immunity and inflammation. While the contribution of IL-17/Th17 responses to both physiological and pathological lung inflammation is now well established, the cellular interactions, soluble factors, and signalling pathways that determine Th17 cell responses to fungal infection remain unclear. Here, we identify potential key mediators of fungus-DC-T cell interactions in the respiratory tract, with a focus on the DC-derived cytokines thought to exert a major influence on generation of pathological Th17 cells. We review recent data indicating a crucial role for Aspergillus-induced autophagy in lung DCs on subsequent T-cell polarization and modulation of 'stemness', which appears critical for avoiding pathological lung inflammation and promoting disease resolution.
Collapse
Affiliation(s)
- Alicia Yoke Wei Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jan Fric
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
29
|
Wu Y, Du S, Johnson JL, Tung HY, Landers CT, Liu Y, Seman BG, Wheeler RT, Costa-Mattioli M, Kheradmand F, Zheng H, Corry DB. Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nat Commun 2019; 10:58. [PMID: 30610193 PMCID: PMC6320369 DOI: 10.1038/s41467-018-07991-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Bloodborne infections with Candida albicans are an increasingly recognized complication of modern medicine. Here, we present a mouse model of low-grade candidemia to determine the effect of disseminated infection on cerebral function and relevant immune determinants. We show that intravenous injection of 25,000 C. albicans cells causes a highly localized cerebritis marked by the accumulation of activated microglial and astroglial cells around yeast aggregates, forming fungal-induced glial granulomas. Amyloid precursor protein accumulates within the periphery of these granulomas, while cleaved amyloid beta (Aβ) peptides accumulate around the yeast cells. CNS-localized C. albicans further activate the transcription factor NF-κB and induce production of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor (TNF), and Aβ peptides enhance both phagocytic and antifungal activity from BV-2 cells. Mice infected with C. albicans display mild memory impairment that resolves with fungal clearance. Our results warrant additional studies to understand the effect of chronic cerebritis on cognitive and immune function. The potential links between infections and neurodegenerative disorders are unclear. Here, Wu et al. present a mouse model of low-grade candidemia characterized by highly localized cerebritis, accumulation of amyloid precursor protein and beta peptides, and mild memory impairment that resolves with fungal clearance.
Collapse
Affiliation(s)
- Yifan Wu
- Departments of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shuqi Du
- Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Jennifer L Johnson
- Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Memory and Brain Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Hui-Ying Tung
- Departments of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cameron T Landers
- Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Translational Biology and Molecular Medicine Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yuwei Liu
- Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Memory and Brain Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Brittany G Seman
- Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA
| | - Robert T Wheeler
- Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Mauro Costa-Mattioli
- Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Memory and Brain Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Farrah Kheradmand
- Departments of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX, 77030, USA
| | - Hui Zheng
- Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Memory and Brain Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - David B Corry
- Departments of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Arias M, Santiago L, Vidal-García M, Redrado S, Lanuza P, Comas L, Domingo MP, Rezusta A, Gálvez EM. Preparations for Invasion: Modulation of Host Lung Immunity During Pulmonary Aspergillosis by Gliotoxin and Other Fungal Secondary Metabolites. Front Immunol 2018; 9:2549. [PMID: 30459771 PMCID: PMC6232612 DOI: 10.3389/fimmu.2018.02549] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Pulmonary aspergillosis is a severe infectious disease caused by some members of the Aspergillus genus, that affects immunocompetent as well as immunocompromised patients. Among the different disease forms, Invasive Aspergillosis is the one causing the highest mortality, mainly, although not exclusively, affecting neutropenic patients. This genus is very well known by humans, since different sectors like pharmaceutical or food industry have taken advantage of the biological activity of some molecules synthetized by the fungus, known as secondary metabolites, including statins, antibiotics, fermentative compounds or colorants among others. However, during infection, in response to a hostile host environment, the fungal secondary metabolism is activated, producing different virulence factors to increase its survival chances. Some of these factors also contribute to fungal dissemination and invasion of adjacent and distant organs. Among the different secondary metabolites produced by Aspergillus spp. Gliotoxin (GT) is the best known and better characterized virulence factor. It is able to generate reactive oxygen species (ROS) due to the disulfide bridge present in its structure. It also presents immunosuppressive activity related with its ability to kill mammalian cells and/or inactivate critical immune signaling pathways like NFkB. In this comprehensive review, we will briefly give an overview of the lung immune response against Aspergillus as a preface to analyse the effect of different secondary metabolites on the host immune response, with a special attention to GT. We will discuss the results reported in the literature on the context of the animal models employed to analyse the role of GT as virulence factor, which is expected to greatly depend on the immune status of the host: why should you hide when nobody is seeking for you? Finally, GT immunosuppressive activity will be related with different human diseases predisposing to invasive aspergillosis in order to have a global view on the potential of GT to be used as a target to treat IA.
Collapse
Affiliation(s)
- Maykel Arias
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Llipsy Santiago
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain
| | - Matxalen Vidal-García
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Servicio de Microbiología - Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | | - Pilar Lanuza
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain
| | - Laura Comas
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain
| | | | - Antonio Rezusta
- Servicio de Microbiología - Hospital Universitario Miguel Servet, Zaragoza, Spain
- Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain
| | | |
Collapse
|
31
|
Zhan M, Xu B, Zhao L, Li B, Xu L, Sun Q, Zhang J, Zhang Z, Chu H. The Serum Level of IL-1B Correlates with the Activity of Chronic Pulmonary Aspergillosis. Can Respir J 2018; 2018:8740491. [PMID: 30363691 PMCID: PMC6180967 DOI: 10.1155/2018/8740491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/26/2018] [Accepted: 09/02/2018] [Indexed: 12/21/2022] Open
Abstract
Background Until now, there have been no objective criteria to determine the activity of chronic pulmonary aspergillosis (CPA). This study aims to analyze the correlation between serum level of IL-1B and the activity of CPA and to determine whether serum IL-1B could be used to assess the activity of CPA. Methods A total of 469 newly diagnosed CPA patients were enrolled. Correlation analysis in the whole subjects showed that only IL-1B level was associated with the activity of CPA. Then, 381 cases with factors significantly affecting IL-1B expression was excluded through multiple linear regression; the remaining 88 patients were divided into high IL-1B group and low IL-1B group, according to the median value of serum IL-1B, for subgroup analysis. A retrospective comparative analysis was subsequently performed between the two groups, including the clinical manifestation, microbiology and laboratory tests results, and imaging findings. We further investigated the relationship between IL-1B levels and CT characteristic which acted as the indicator of CPA activity, as well as changes in IL-1B level before and after surgery. Results For all patients, correlation analysis revealed that IL-1B level correlated with both cavitary diameter (P=0.035) and aspergilloma size (P<0.047) but not with the thickness of the cavity (P=0.479). In subgroup comparative analysis, CT characteristics suggested that high activity of CPA, such as cavitary (27/44 vs 13/44, P=0.003) and aspergilloma lesions (25/44 vs. 11/44, P<0.002), were more frequently found in high IL-1B group. The cavity diameter (P<0.001), aspergilloma size (P=0.006), and cavity wall thickness (P=0.023) were significantly different between the two groups. When Spearman correlation analysis was performed once again in subgroup, an even stronger relationship of serum IL-1B with the cavity diameter (Rs=0.501, P=0.002) and aspergilloma size (Rs=0.615, P=0.001) was observed. Interestingly, a significant reduction of IL-1B level was observed after successful resection of CPA lesions. Conclusion Higher level of serum IL-1B is associated with more severe cavitary and aspergilloma lesions, which are indicative of more active CPA. In addition, IL-1B level reduced accordingly after lesion resection. Measuring IL-1B level therefore could be served as a convenient method to monitor the activity of CPA and be a potential predictive/prognostic marker for treatment response.
Collapse
Affiliation(s)
- Mengling Zhan
- Tongji University School of Medicine, Shanghai 200092, China
| | - Benyong Xu
- Tongji University School of Medicine, Shanghai 200092, China
| | - Lan Zhao
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Bing Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Liyun Xu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Qiuhong Sun
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jun Zhang
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zhemin Zhang
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Haiqing Chu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
32
|
Lai GC, Tan TG, Pavelka N. The mammalian mycobiome: A complex system in a dynamic relationship with the host. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1438. [PMID: 30255552 PMCID: PMC6586165 DOI: 10.1002/wsbm.1438] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
Mammalian barrier surfaces are densely populated by symbiont fungi in much the same way the former are colonized by symbiont bacteria. The fungal microbiota, otherwise known as the mycobiota, is increasingly recognized as a critical player in the maintenance of health and homeostasis of the host. Here we discuss the impact of the mycobiota on host physiology and disease, the factors influencing mycobiota composition, and the current technologies used for identifying symbiont fungal species. Understanding the tripartite interactions among the host, mycobiota, and other members of the microbiota, will help to guide the development of novel prevention and therapeutic strategies for a variety of human diseases. This article is categorized under:
Physiology > Mammalian Physiology in Health and Disease Laboratory Methods and Technologies > Genetic/Genomic Methods Models of Systems Properties and Processes > Organismal Models
Collapse
|
33
|
Palmer C, Mulligan JK, Smith SE, Atkinson C. The role of regulatory T cells in the regulation of upper airway inflammation. Am J Rhinol Allergy 2018; 31:345-351. [PMID: 29122078 DOI: 10.2500/ajra.2017.31.4472] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allergic rhinitis (AR) and chronic rhinosinusitis with nasal polyps (CRSwNP) are inflammatory diseases of the upper airway, with a similar immunologic profile, characterized by aberrant and persistent type 2 inflammation. One cell population that has been identified as altered in both disease types is regulatory T cell (Treg). Tregs have the capacity to modulate T-effector function and suppress inflammatory cytokine production in a broad range of cell types. Given the ability of Tregs to control inflammation, the role of Tregs in respiratory diseases has attracted much attention. As discussed in this article, alterations in the Treg numbers and function, or both, have been identified in AR and CRSwNP, although much of the data is conflicting. Here, we explored what is known and, in many cases, unknown about the mechanisms by which Tregs differentiate and function, and how these functions can be controlled in the mucosal microenvironment. By gaining a greater understanding of these processes, it may be possible to harness the natural immunosuppressive activity of Tregs to ameliorate the chronic inflammation associated with AR and CRSwNP.
Collapse
Affiliation(s)
- Charlie Palmer
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | |
Collapse
|
34
|
Rai G, Ansari MA, Dar SA, Datt S, Gupta N, Sharma S, Haque S, Ramachandran VG, Mazumdar A, Rudramurthy S, Chakrabarti A, Das S. Serum Cytokine Profile in Patients with Chronic Rhinosinusitis with Nasal Polyposis Infected by Aspergillus flavus. Ann Lab Med 2018; 38:125-131. [PMID: 29214756 PMCID: PMC5736671 DOI: 10.3343/alm.2018.38.2.125] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/28/2017] [Accepted: 10/24/2017] [Indexed: 12/05/2022] Open
Abstract
Background Fungi, especially Aspergillus flavus, can cause chronic rhinosinusitis with nasal polyposis and modulate host innate immune components. The objective of this study was to examine the serum levels of T helper (Th) cell subset Th1, Th2, and Th17 cytokines and total IgE in patients having chronic rhinosinusitis with nasal polyposis and Aspergillus flavus infection. Methods A case-control study including 40 patients with chronic rhinosinusitis with nasal polyposis and 20 healthy controls was conducted. Aspergillus flavus infection was confirmed by standard potassium hydroxide (KOH) testing, culture, and PCR. Serum samples of all patients and controls were analyzed for various cytokines (interleukins [IL]-1β, IL-2, IL-4, IL-6, IL-17, IL-21, IL-27, TGF-β) and total IgE by ELISA. Data from patients with Aspergillus flavus infection and healthy volunteers were compared using the independent t-test and non-parametric Mann-Whitney U test. Results Aspergillus flavus infection was found in 31 (77.5%) patients with chronic rhinosinusitis with nasal polyposis. IL-1β, IL-17, IL-21, and TGF-β serum levels were significantly higher in these patients than in controls; however, IL-2, IL-4, IL-6, and IL-27 levels were lower. Compared with nine (22.5%) patients without Aspergillus flavus infection, IL-17 level was higher while IL-2 level was lower in patients with Aspergillus flavus infection. Total IgE was significantly higher in patients with Aspergillus flavus infection than in controls. Conclusions High levels of IL-17 and its regulatory cytokines in patients with chronic rhinosinusitis with nasal polyposis infected by Aspergillus flavus raise a concern about effective disease management and therapeutic recovery. Surgical removal of the nasal polyp being the chief management option, the choice of post-operative drugs may differ in eosinophilic vs. non-eosinophilic nasal polyposis. The prognosis is likely poor, warranting extended care.
Collapse
Affiliation(s)
- Gargi Rai
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & Guru Teg Bahadur Hospital, Delhi, India
| | - Mohammad Ahmad Ansari
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & Guru Teg Bahadur Hospital, Delhi, India
| | - Sajad Ahmad Dar
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & Guru Teg Bahadur Hospital, Delhi, India.,Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, University of Jazan, Jazan, Saudi Arabia
| | - Shyama Datt
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & Guru Teg Bahadur Hospital, Delhi, India
| | - Neelima Gupta
- Department of Otorhinolaryngology, University College of Medical Sciences (University of Delhi) & Guru Teg Bahadur Hospital, Delhi, India
| | - Sonal Sharma
- Department of Pathology, University College of Medical Sciences (University of Delhi) & Guru Teg Bahadur Hospital, Delhi, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, University of Jazan, Jazan, Saudi Arabia.,Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | | | - Arpeeta Mazumdar
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & Guru Teg Bahadur Hospital, Delhi, India
| | - Shivprakash Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Shukla Das
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & Guru Teg Bahadur Hospital, Delhi, India.
| |
Collapse
|
35
|
McDermott AJ, Klein BS. Helper T-cell responses and pulmonary fungal infections. Immunology 2018; 155:155-163. [PMID: 29781185 DOI: 10.1111/imm.12953] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
The mucosal surface of the respiratory tract encounters microbes, such as fungal particles, with every inhaled breath. When pathogenic fungi breach the physical barrier and innate immune system within the lung to establish an infection, adaptive immunity is engaged, often in the form of helper CD4 T-cell responses. Type 1 responses, characterized by interferon-γ production from CD4 cells, promote clearance of Histoplasma capsulatum and Cryptococcus neoformans infection. Likewise, interleukin-17A (IL-17A) production from Th17 cells promotes immunity to Blastomyces dermatitidis and Coccidioides species infection by recruiting neutrophils. In contrast the development of T helper type 2 responses, characterized by IL-5 production from T cells and eosinophil influx into the lungs, drives allergic bronchopulmonary aspergillosis and poor outcomes during C. neoformans infection. Experimental vaccines against several endemic mycoses, including Histoplasma capsulatum, Coccidioides, Cryptococcus and Blastomyces dermatitidis, induce protective T-cell responses and foreshadow the development of vaccines against pulmonary fungal infections for use in humans. Additionally, recent work using antifungal T cells as immunotherapy to protect immune-compromised patients from opportunist fungal infections also shows great promise. This review covers the role of T-cell responses in driving protection and pathology in response to pulmonary fungal infections, and highlights promising therapeutic applications of antifungal T cells.
Collapse
Affiliation(s)
- Andrew J McDermott
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bruce S Klein
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
36
|
Thompson A, Orr SJ. Emerging IL-12 family cytokines in the fight against fungal infections. Cytokine 2018; 111:398-407. [PMID: 29793796 PMCID: PMC6299256 DOI: 10.1016/j.cyto.2018.05.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 01/28/2023]
Abstract
IL-12 and IL-23 have established roles during anti-fungal immunity. IL-27 promotes regulatory effector responses during fungal infections. IL-35 drives T cell differentiation to produce anti-inflammatory responses. Increasing evidence for IL-12 family cytokines in maintaining anti-fungal immune homeostasis.
Invasive fungal infections cause approximately 1.5 million deaths per year worldwide and are a growing threat to human health. Current anti-fungal therapies are often insufficient, therefore studies into host-pathogen interactions are critical for the development of novel therapies to improve mortality rates. Myeloid cells, such as macrophages and dendritic cells, express pattern recognition receptor (PRRs), which are important for fungal recognition. Engagement of these PRRs by fungal pathogens induces multiple cytokines, which in turn activate T effector responses. Interleukin (IL)-12 family members (IL-12p70, IL-23, IL-27 and IL-35) link innate immunity with the development of adaptive immunity and are also important for regulating T cell responses. IL-12 and IL-23 have established roles during anti-fungal immunity, whereas emerging roles for IL-27 and IL-35 have recently been reported. Here, we discuss the IL-12 family, focusing on IL-27 and IL-35 during anti-fungal immune responses to pathogens such as Candida and Aspergillus.
Collapse
Affiliation(s)
- Aiysha Thompson
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom
| | - Selinda J Orr
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, United Kingdom.
| |
Collapse
|
37
|
Hinder LM, Murdock BJ, Park M, Bender DE, O'Brien PD, Rumora AE, Hur J, Feldman EL. Transcriptional networks of progressive diabetic peripheral neuropathy in the db/db mouse model of type 2 diabetes: An inflammatory story. Exp Neurol 2018; 305:33-43. [PMID: 29550371 DOI: 10.1016/j.expneurol.2018.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/14/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022]
Abstract
Diabetic peripheral neuropathy is the most common complication of diabetes and a source of considerable morbidity. Numerous molecular pathways are linked to neuropathic progression, but it is unclear whether these pathways are altered throughout the course of disease. Moreover, the methods by which these molecular pathways are analyzed can produce significantly different results; as such it is often unclear whether previously published pathways are viable targets for novel therapeutic approaches. In the current study we examine changes in gene expression patterns in the sciatic nerve (SCN) and dorsal root ganglia (DRG) of db/db diabetic mice at 8, 16, and 24 weeks of age using microarray analysis. Following the collection and verification of gene expression data, we utilized both self-organizing map (SOM) analysis and differentially expressed gene (DEG) analysis to detect pathways that were altered at all time points. Though there was some variability between SOM and DEG analyses, we consistently detected altered immune pathways in both the SCN and DRG over the course of disease. To support these results, we further used multiplex analysis to assess protein changes in the SCN of diabetic mice; we found that multiple immune molecules were upregulated at both early and later stages of disease. In particular, we found that matrix metalloproteinase-12 was highly upregulated in microarray and multiplex data sets suggesting it may play a role in disease progression.
Collapse
Affiliation(s)
- Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Benjamin J Murdock
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Meeyoung Park
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Diane E Bender
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Phillipe D O'Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203-9037, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
38
|
Kale SD, Ayubi T, Chung D, Tubau-Juni N, Leber A, Dang HX, Karyala S, Hontecillas R, Lawrence CB, Cramer RA, Bassaganya-Riera J. Modulation of Immune Signaling and Metabolism Highlights Host and Fungal Transcriptional Responses in Mouse Models of Invasive Pulmonary Aspergillosis. Sci Rep 2017; 7:17096. [PMID: 29213115 PMCID: PMC5719083 DOI: 10.1038/s41598-017-17000-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/20/2017] [Indexed: 02/04/2023] Open
Abstract
Incidences of invasive pulmonary aspergillosis, an infection caused predominantly by Aspergillus fumigatus, have increased due to the growing number of immunocompromised individuals. While A. fumigatus is reliant upon deficiencies in the host to facilitate invasive disease, the distinct mechanisms that govern the host-pathogen interaction remain enigmatic, particularly in the context of distinct immune modulating therapies. To gain insights into these mechanisms, RNA-Seq technology was utilized to sequence RNA derived from lungs of 2 clinically relevant, but immunologically distinct murine models of IPA on days 2 and 3 post inoculation when infection is established and active disease present. Our findings identify notable differences in host gene expression between the chemotherapeutic and steroid models at the interface of immunity and metabolism. RT-qPCR verified model specific and nonspecific expression of 23 immune-associated genes. Deep sequencing facilitated identification of highly expressed fungal genes. We utilized sequence similarity and gene expression to categorize the A. fumigatus putative in vivo secretome. RT-qPCR suggests model specific gene expression for nine putative fungal secreted proteins. Our analysis identifies contrasting responses by the host and fungus from day 2 to 3 between the two models. These differences may help tailor the identification, development, and deployment of host- and/or fungal-targeted therapeutics.
Collapse
Affiliation(s)
- Shiv D Kale
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA.
| | - Tariq Ayubi
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| | - Dawoon Chung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
- National Marine Biodiversity Institute of Korea, Seochun-gun, 33662, Republic of Korea
| | - Nuria Tubau-Juni
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| | - Andrew Leber
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| | - Ha X Dang
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
- McDonnell Genome Institute at Washington University, St. Louis, MO, 63108, USA
| | - Saikumar Karyala
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| | - Raquel Hontecillas
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| | | | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | - Josep Bassaganya-Riera
- Nutrional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech., Blacksburg, VA, 24061, USA
| |
Collapse
|
39
|
McDermott AJ, Tumey TA, Huang M, Hull CM, Klein BS. Inhaled Cryptococcus neoformans elicits allergic airway inflammation independent of Nuclear Factor Kappa B signalling in lung epithelial cells. Immunology 2017; 153:513-522. [PMID: 29055116 DOI: 10.1111/imm.12853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/15/2017] [Accepted: 10/13/2017] [Indexed: 01/04/2023] Open
Abstract
Pulmonary challenge with the ubiquitous fungus Cryptococcus neoformans results in allergic airway inflammation (AAI) characterized by robust recruitment of eosinophils and T cells producing type 2 cytokines to the lungs. Previous studies have demonstrated a critical role for Nuclear Factor Kappa B (NF-κB) activation within lung epithelial cells (LECs) in driving AAI in response to protein allergens, yet the role of LEC-intrinsic NF-κB in promoting AAI following exposure to C. neoformans is poorly understood. To investigate the role of LEC-intrinsic NF-κB in promoting AAI following C. neoformans challenge, we used IKK∆LEC mice, which lack canonical NF-κB activation specifically within LECs. IKK∆LEC and littermate control mice were intranasally challenged with 106 CFU of C. neoformans strain 52D, and lung tissues were collected at 7, 14 and 21 days post infection to assess the development of AAI. Notably, the absence of epithelial NF-κB signalling did not affect the magnitude or kinetics of lung eosinophilia when compared with the response in wild-type control mice. The total numbers of lung T cells producing the type 2 cytokines interleukin-5 and interleukin-13 were also unchanged in IKK∆LEC mice. Furthermore, IKK∆LEC mice showed no defect in the recruitment of protective interferon-γ-producing CD4 T cells to the lungs, fungal clearance, or host survival compared with control mice. Immunofluorescence imaging surprisingly revealed no evidence of nuclear localization of NF-κB in LECs in response to C. neoformans challenge, indicating that NF-κB is not activated within these cells. Taken together, these data strongly suggest that NF-κB signalling within LECs does not promote AAI observed in response to C. neoformans.
Collapse
Affiliation(s)
- Andrew J McDermott
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tyler A Tumey
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mingwei Huang
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Christina M Hull
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bruce S Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
40
|
Carsin A, Romain T, Ranque S, Reynaud‐Gaubert M, Dubus J, Mège J, Vitte J. Aspergillus fumigatus in cystic fibrosis: An update on immune interactions and molecular diagnostics in allergic bronchopulmonary aspergillosis. Allergy 2017; 72:1632-1642. [PMID: 28513848 DOI: 10.1111/all.13204] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2017] [Indexed: 12/13/2022]
Abstract
A wide spectrum of pathological conditions may result from the interaction of Aspergillus fumigatus and the immune system of its human host. Allergic bronchopulmonary aspergillosis is one of the most severe A. fumigatus-related diseases due to possible evolution toward pleuropulmonary fibrosis and respiratory failure. Allergic bronchopulmonary aspergillosis occurs almost exclusively in cystic fibrosis or asthmatic patients. An estimated 8%-10% of patients with cystic fibrosis experience this condition. The diagnosis of allergic bronchopulmonary aspergillosis relies on criteria first established in 1977. Progress in the understanding of host-pathogen interactions in A. fumigatus and patients with cystic fibrosis and the ongoing validation of novel laboratory tools concur to update and improve the diagnosis of allergic bronchopulmonary aspergillosis.
Collapse
Affiliation(s)
- A. Carsin
- Aix‐Marseille Univ APHM Hôpital Timone Enfants Pneumo‐pédiatrie Centre de Ressources et de Compétences en Mucoviscidose Marseille France
- Aix‐Marseille Univ INSERM UMR 1067 CNRS UMR 7333 Marseille France
| | - T. Romain
- Aix‐Marseille Univ APHM Hôpital de La Conception Laboratoire d'Immunologie Marseille France
| | - S. Ranque
- Aix‐Marseille Univ APHM Hôpital Timone Laboratoire de Parasitologie Marseille France
- Aix‐Marseille Univ INSERM U1095 CNRS U7278 IRD 198 URMITE Marseille France
| | - M. Reynaud‐Gaubert
- Aix‐Marseille Univ INSERM U1095 CNRS U7278 IRD 198 URMITE Marseille France
- Aix‐Marseille Univ APHM Hôpital Nord Centre de Ressources et de Compétences en Mucoviscidose Marseille France
| | - J.‐C. Dubus
- Aix‐Marseille Univ APHM Hôpital Timone Enfants Pneumo‐pédiatrie Centre de Ressources et de Compétences en Mucoviscidose Marseille France
- Aix‐Marseille Univ INSERM U1095 CNRS U7278 IRD 198 URMITE Marseille France
| | - J.‐L. Mège
- Aix‐Marseille Univ APHM Hôpital de La Conception Laboratoire d'Immunologie Marseille France
- Aix‐Marseille Univ INSERM U1095 CNRS U7278 IRD 198 URMITE Marseille France
| | - J. Vitte
- Aix‐Marseille Univ INSERM UMR 1067 CNRS UMR 7333 Marseille France
- Aix‐Marseille Univ APHM Hôpital de La Conception Laboratoire d'Immunologie Marseille France
| |
Collapse
|
41
|
Dewi IMW, van de Veerdonk FL, Gresnigt MS. The Multifaceted Role of T-Helper Responses in Host Defense against Aspergillus fumigatus. J Fungi (Basel) 2017; 3:E55. [PMID: 29371571 PMCID: PMC5753157 DOI: 10.3390/jof3040055] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 01/01/2023] Open
Abstract
The ubiquitous opportunistic fungal pathogen Aspergillus fumigatus rarely causes infections in immunocompetent individuals. A healthy functional innate immune system plays a crucial role in preventing Aspergillus-infection. This pivotal role for the innate immune system makes it a main research focus in studying the pathogenesis of aspergillosis. Although sometimes overshadowed by the innate immune response, the adaptive immune response, and in particular T-helper responses, also represents a key player in host defense against Aspergillus. Virtually all T-helper subsets have been described to play a role during aspergillosis, with the Th1 response being crucial for fungal clearance. However; morbidity and mortality of aspergillosis can also be partly attributed to detrimental immune responses resulting from adaptive immune activation. Th2 responses benefit fungal persistence; and are the foundation of allergic forms of aspergillosis. The Th17 response has two sides; although crucial for granulocyte recruitment, it can be involved in detrimental immunopathology. Regulatory T-cells, the endogenous regulators of inflammatory responses, play a key role in controlling detrimental inflammatory responses during aspergillosis. The current knowledge of the adaptive immune response against A. fumigatus is summarized in this review. A better understanding on how T-helper responses facilitate clearance of Aspergillus-infection and control inflammation can be the fundamental basis for understanding the pathogenesis of aspergillosis and for the development of novel host-directed therapies.
Collapse
Affiliation(s)
- Intan M W Dewi
- Department of Experimental Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
- Faculty of Medicine Universitas Padjadjaran, Jl. Eijkman No. 38, Bandung 40161, Indonesia.
| | - Frank L van de Veerdonk
- Department of Experimental Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
| | - Mark S Gresnigt
- Department of Experimental Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
42
|
Wang F, Zhang C, Jiang Y, Kou C, Kong Q, Long N, Lu L, Sang H. Innate and adaptive immune response to chronic pulmonary infection of hyphae of Aspergillus fumigatus in a new murine model. J Med Microbiol 2017; 66:1400-1408. [PMID: 28923131 DOI: 10.1099/jmm.0.000590] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The pathogenesis of chronic pulmonary aspergillosis (CPA) has seldom been studied due partly to a lack of animal models. Since hypha is the main morphology colonizing the airway in CPA, it's critical to study the immune reaction to chronic pulmonary infection of hyphae of Aspergillus fumigatus, which also has seldom been studied in vivo before. METHODOLOGY We established a novel murine model of chronic pulmonary infection of hyphae by challenging immunocompetent mice with tightly-structured hyphae balls intratracheally, and described the ensuing immunoreaction to hyphae and conidia, and the pathogenesis of CPA. RESULTS Our experiment proved that the hyphae balls could induce a chronic pulmonary infection for 28 days with a considerable recrudescence at day 28 post-infection. Lungs infected with hyphae balls were remarkable for the many neutrophils and macrophages that flooded into airway lumens, with peribronchiolar infiltration of leukocytes. There was a transient increase of Th2 cells and Th17 cells at day 7 post-infection in the lung tissue. In contrast, lungs infected with conidia showed no peribronchiolar infiltration of leukocytes, but an influx of a great number of macrophages, and a much less number of neutrophils in the lumen. Besides, conidia activated the co-response of Th1, Th2 and Th17 cells with an increase of Treg cells in the lung tissue (quite different from most previous studies). CONCLUSION We established a new murine model of chronic infection of hyphae to mimic the formation of CPA, and provide a new marker for different immune responses to hyphae and conidia.
Collapse
Affiliation(s)
- Fengyuan Wang
- Department of Dermatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, PR China
| | - Caiyun Zhang
- Department of Dermatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, PR China
| | - Yuan Jiang
- Department of Dermatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, PR China
| | - Caixia Kou
- Department of Dermatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, PR China
| | - Qingtao Kong
- Department of Dermatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, PR China
| | - Nanbiao Long
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Hong Sang
- Department of Dermatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, PR China
| |
Collapse
|
43
|
Takazono T, Sheppard DC. Aspergillus in chronic lung disease: Modeling what goes on in the airways. Med Mycol 2016; 55:39-47. [PMID: 27838644 DOI: 10.1093/mmy/myw117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 09/08/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022] Open
Abstract
Aspergillus species cause a range of respiratory diseases in humans. While immunocompromised patients are at risk for the development of invasive infection with these opportunistic molds, patients with underlying pulmonary disease can develop chronic airway infection with Aspergillus species. These conditions span a range of inflammatory and allergic diseases including Aspergillus bronchitis, allergic bronchopulmonary aspergillosis, and severe asthma with fungal sensitization. Animal models are invaluable tools for the study of the molecular mechanism underlying the colonization of airways by Aspergillus and the host response to these non-invasive infections. In this review we summarize the state-of-the-art with respect to the available animal models of noninvasive and allergic Aspergillus airway disease; the key findings of host-pathogen interaction studies using these models; and the limitations and future directions that should guide the development and use of models for the study of these important pulmonary conditions.
Collapse
Affiliation(s)
- Takahiro Takazono
- Departments of Medicine, Microbiology and Immunology, McGill University, Montréal, Québec, Canada.,Department of Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Donald C Sheppard
- Departments of Medicine, Microbiology and Immunology, McGill University, Montréal, Québec, Canada .,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
44
|
Overton NLD, Denning DW, Bowyer P, Simpson A. Genetic susceptibility to allergic bronchopulmonary aspergillosis in asthma: a genetic association study. Allergy Asthma Clin Immunol 2016; 12:47. [PMID: 27708669 PMCID: PMC5037889 DOI: 10.1186/s13223-016-0152-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In patients with asthma, the fungus Aspergillus fumigatus can cause allergic bronchopulmonary aspergillosis (ABPA). Familial ABPA is reported, and some genetic factors have been associated with the disease, however, these are small studies (n ≤ 38) and do not explain all cases of ABPA. METHODS We analysed SNPs in 95 ABPA patients, comparing frequencies to 152 atopic asthmatic and 279 healthy controls. Twenty two genes were selected from literature, and 195 tagging SNPs were analysed for genetic association with ABPA using logistic regression corrected for multiple testing. We also analysed monocyte-derived macrophage gene expression before and during co-culture with A. fumigatus. RESULTS Seventeen ABPA-associated SNPs (ABPA v Atopic asthma) were identified. Three remained significant after correction for multiple testing; IL13 rs20541, IL4R rs3024656, TLR3 rs1879026. We also identified minor differences in macrophage gene expression responses in the ABPA group compared to the control groups. CONCLUSIONS Multiple SNPs are now associated with ABPA. Some are novel associations. These associations implicate cytokine pathways and receptors in the aberrant response to A. fumigatus and susceptibility to ABPA, providing insights into the pathogenesis of ABPA and/or its complications. We hope these results will lead to increased understanding and improved treatment and diagnostics for ABPA.
Collapse
Affiliation(s)
- Nicola L D Overton
- Manchester Fungal Infection Group (MFIG), The University of Manchester, Manchester, UK ; Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, UK
| | - David W Denning
- Manchester Fungal Infection Group (MFIG), The University of Manchester, Manchester, UK ; Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group (MFIG), The University of Manchester, Manchester, UK ; Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, UK
| | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester, UK
| |
Collapse
|
45
|
Nayak AP, Green BJ, Lemons AR, Marshall NB, Goldsmith WT, Kashon ML, Anderson SE, Germolec DR, Beezhold DH. Subchronic exposures to fungal bioaerosols promotes allergic pulmonary inflammation in naïve mice. Clin Exp Allergy 2016; 46:861-70. [PMID: 26892490 DOI: 10.1111/cea.12724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Epidemiological surveys indicate that occupants of mold contaminated environments are at increased risk of respiratory symptoms. The immunological mechanisms associated with these responses require further characterization. OBJECTIVE The aim of this study was to characterize the immunotoxicological outcomes following repeated inhalation of dry Aspergillus fumigatus spores aerosolized at concentrations potentially encountered in contaminated indoor environments. METHODS Aspergillus fumigatus spores were delivered to the lungs of naïve BALB/cJ mice housed in a multi-animal nose-only chamber twice a week for a period of 13 weeks. Mice were evaluated at 24 and 48 h post-exposure for histopathological changes in lung architecture, recruitment of specific immune cells to the airways, and serum antibody responses. RESULT Germinating A. fumigatus spores were observed in lungs along with persistent fungal debris in the perivascular regions of the lungs. Repeated exposures promoted pleocellular infiltration with concomitant epithelial mucus hypersecretion, goblet cell metaplasia, subepithelial fibrosis and enhanced airway hyperreactivity. Cellular infiltration in airways was predominated by CD4(+) T cells expressing the pro-allergic cytokine IL-13. Furthermore, our studies show that antifungal T cell responses (IFN-γ(+) or IL-17A(+) ) co-expressed IL-13, revealing a novel mechanism for the dysregulated immune response to inhaled fungi. Total IgE production was augmented in animals repeatedly exposed to A. fumigatus. CONCLUSIONS & CLINICAL RELEVANCE Repeated inhalation of fungal aerosols resulted in significant pulmonary pathology mediated by dynamic shifts in specific immune populations and their cytokines. These studies provide novel insights into the immunological mechanisms and targets that govern the health outcomes that result from repeated inhalation of fungal bioaerosols in contaminated environments.
Collapse
Affiliation(s)
- A P Nayak
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - B J Green
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - A R Lemons
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - N B Marshall
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - W T Goldsmith
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - M L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - S E Anderson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - D R Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - D H Beezhold
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|
46
|
Opportunities for the development of novel therapies based on host-microbial interactions. Pharmacol Res 2016; 112:68-83. [PMID: 27107789 DOI: 10.1016/j.phrs.2016.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022]
Abstract
Immune responses are fundamental for protecting against most infectious agents. However, there is now much evidence to suggest that the pathogenesis and tissue damage after infection are not usually related to the direct action of the replication of microorganisms, but instead to altered immune responses triggered after the contact with the pathogen. This review article discusses several mechanisms necessary for the host to protect against microbial infection and focuses in aspects that cause altered inflammation and drive immunopathology. These basic findings can ultimately reveal pathways amenable to host-directed therapy in adjunct to antimicrobial therapy for future improved control measures for many infectious diseases. Therefore, modulating the effects of inflammatory pathways may represent a new therapy during infection outcome and disease.
Collapse
|
47
|
Nogueira DS, Gazzinelli-Guimarães PH, Barbosa FS, Resende NM, Silva CC, de Oliveira LM, Amorim CCO, Oliveira FMS, Mattos MS, Kraemer LR, Caliari MV, Gaze S, Bueno LL, Russo RC, Fujiwara RT. Multiple Exposures to Ascaris suum Induce Tissue Injury and Mixed Th2/Th17 Immune Response in Mice. PLoS Negl Trop Dis 2016; 10:e0004382. [PMID: 26814713 PMCID: PMC4729520 DOI: 10.1371/journal.pntd.0004382] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/19/2015] [Indexed: 02/07/2023] Open
Abstract
Ascaris spp. infection affects 800 million people worldwide, and half of the world population is currently at risk of infection. Recurrent reinfection in humans is mostly due to the simplicity of the parasite life cycle, but the impact of multiple exposures to the biology of the infection and the consequences to the host's homeostasis are poorly understood. In this context, single and multiple exposures in mice were performed in order to characterize the parasitological, histopathological, tissue functional and immunological aspects of experimental larval ascariasis. The most important findings revealed that reinfected mice presented a significant reduction of parasite burden in the lung and an increase in the cellularity in the bronchoalveolar lavage (BAL) associated with a robust granulocytic pulmonary inflammation, leading to a severe impairment of respiratory function. Moreover, the multiple exposures to Ascaris elicited an increased number of circulating inflammatory cells as well as production of higher levels of systemic cytokines, mainly IL-4, IL-5, IL-6, IL-10, IL-17A and TNF-α when compared to single-infected animals. Taken together, our results suggest the intense pulmonary inflammation associated with a polarized systemic Th2/Th17 immune response are crucial to control larval migration after multiple exposures to Ascaris.
Collapse
Affiliation(s)
- Denise Silva Nogueira
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro Henrique Gazzinelli-Guimarães
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Sérgio Barbosa
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nathália Maria Resende
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Institute of Biological and Health Sciences, Universidade Federal do Mato Grosso, Cuiabá, Brazil
| | - Caroline Cavalcanti Silva
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Maria de Oliveira
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Chiara Cássia Oliveira Amorim
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício Marcus Silva Oliveira
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Matheus Silvério Mattos
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Rocha Kraemer
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Vidigal Caliari
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Soraya Gaze
- Laboratory of Cellular and Molecular Immunology, René Rachou Institute, Oswaldo Cruz Foundation–FIOCRUZ, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Institute of Biological and Health Sciences, Universidade Federal do Mato Grosso, Cuiabá, Brazil
| |
Collapse
|
48
|
Allergic Inflammation in Aspergillus fumigatus-Induced Fungal Asthma. Curr Allergy Asthma Rep 2015; 15:59. [PMID: 26288940 DOI: 10.1007/s11882-015-0561-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although fungi are pervasive in many environments, few cause disease in humans. Of these, Aspergillus fumigatus is particularly well suited to be a pathogen of the human lung. Its physical and biological characteristics combine to provide an organism that can cause tremendous morbidity and high mortality if left unchecked. Luckily, that is rarely the case. However, repeated exposure to inhaled A. fumigatus spores often results in an immune response that carries significant immunopathology, exacerbating asthma and changing the structure of the lung with chronic impacts to pulmonary function. This review focuses on the current understanding of the mechanisms that are associated with fungal exposure, sensitization, and infection in asthmatics, as well as the function of various inflammatory cells associated with severe asthma with fungal sensitization.
Collapse
|
49
|
Tanaka RJ, Boon NJ, Vrcelj K, Nguyen A, Vinci C, Armstrong-James D, Bignell E. In silico modeling of spore inhalation reveals fungal persistence following low dose exposure. Sci Rep 2015; 5:13958. [PMID: 26364644 PMCID: PMC4568477 DOI: 10.1038/srep13958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022] Open
Abstract
The human lung is constantly exposed to spores of the environmental mould Aspergillus fumigatus, a major opportunistic pathogen. The spectrum of resultant disease is the outcome of complex host-pathogen interactions, an integrated, quantitative understanding of which lies beyond the ethical and technical reach permitted by animal studies. Here we construct a mathematical model of spore inhalation and clearance by concerted actions of macrophages and neutrophils, and use it to derive a mechanistic understanding of pathogen clearance by the healthy, immunocompetent host. In particular, we investigated the impact of inoculum size upon outcomes of single-dose fungal exposure by simulated titrations of inoculation dose, from 10(6) to 10(2) spores. Simulated low-dose (10(2)) spore exposure, an everyday occurrence for humans, revealed a counter-intuitive prediction of fungal persistence (>3 days). The model predictions were reflected in the short-term dynamics of experimental murine exposure to fungal spores, thereby highlighting the potential of mathematical modelling for studying relevant behaviours in experimental models of fungal disease. Our model suggests that infectious outcomes can be highly dependent upon short-term dynamics of fungal exposure, which may govern occurrence of cyclic or persistent subclinical fungal colonisation of the lung following low dose spore inhalation in non-neutropenic hosts.
Collapse
Affiliation(s)
- Reiko J Tanaka
- Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Neville J Boon
- Department of Bioengineering, Imperial College London, London, UK, SW7 2AZ
| | - Katarina Vrcelj
- Department of Human Anatomy and Genetics, University of Oxford
| | - Anita Nguyen
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Carmelina Vinci
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK, SW7 2AZ
| | - Darius Armstrong-James
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK, SW7 2AZ
| | - Elaine Bignell
- Institute of Inflammation and Repair, Core Technology Facility, University of Manchester, UK, M13 9NT
| |
Collapse
|
50
|
Evolution of the Immune Response to Chronic Airway Colonization with Aspergillus fumigatus Hyphae. Infect Immun 2015; 83:3590-600. [PMID: 26123803 DOI: 10.1128/iai.00359-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022] Open
Abstract
Airway colonization by the mold Aspergillus fumigatus is common in patients with underlying lung disease and is associated with chronic airway inflammation. Studies probing the inflammatory response to colonization with A. fumigatus hyphae have been hampered by the lack of a model of chronic colonization in immunocompetent mice. By infecting mice intratracheally with conidia embedded in agar beads (Af beads), we have established an in vivo model to study the natural history of airway colonization with live A. fumigatus hyphae. Histopathological examination and galactomannan assay of lung homogenates demonstrated that hyphae exited beads and persisted in the lungs of mice up to 28 days postinfection without invasive disease. Fungal lesions within the airways were surrounded by a robust neutrophilic inflammatory reaction and peribronchial infiltration of lymphocytes. Whole-lung cytokine analysis from Af bead-infected mice revealed an increase in proinflammatory cytokines and chemokines early in infection. Evidence of a Th2 type response was observed only early in the course of colonization, including increased levels of interleukin-4 (IL-4), elevated IgE levels in serum, and a mild increase in airway responsiveness. Pulmonary T cell subset analysis during infection mirrored these results with an initial transient increase in IL-4-producing CD4(+) T cells, followed by a rise in IL-17 and Foxp3(+) cells by day 14. These results provide the first report of the evolution of the immune response to A. fumigatus hyphal colonization.
Collapse
|