1
|
Zhou H, Zhou M, Liao X, Zhang L, Wei H, Lu Y, Zhang Y, Huang H, Hu Y, Chen T, Lv Z. The Innate Immune Sensor Zbp1 Mediates Central Nervous System Inflammation Induced by Angiostrongylus Cantonensis by Promoting Macrophage Inflammatory Phenotypes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413675. [PMID: 39853924 PMCID: PMC11923990 DOI: 10.1002/advs.202413675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Angiostrongylus cantonensis (AC) is the leading cause of eosinophilic meningoencephalitis worldwide. The neuroimmune interactions between peripheral and central immune systems in angiostrongyliasis remain unclear. In this study, significant infiltration of eosinophils, myeloid cells, macrophages, neutrophils, and Ly6C monocytes is observed in the brains of AC-infected mice, with macrophages being the most abundant. RNA-seq and SMART-seq analysis of pattern recognition receptor (PRR) and DNA sensor gene sets revealed a marked increase in Z-DNA binding protein 1 (Zbp1) expression in infected mice. Confocal microscopy, RT-qPCR, western blotting, and immunohistochemistry further confirmed that Zbp1 is specifically upregulated in macrophages and microglia. Using Zbp1-knockout mice and flow cytometry, it is found that knockout of Zbp1 enhanced lymphocyte infiltration and natural killer cell cytotoxicity, modulating the immune microenvironment in the central nervous system (CNS) during AC infection. Mechanistically, it is revealed that in macrophage Zbp1 directly binds to receptor-interacting protein 3 (RIP3) to promote its phosphorylation, subsequently facilitating the phosphorylation of mixed lineage kinase domain-like protein (Mlkl). The activated Zbp1-pRIP3-pMlkl axis leads to necroptosis and upregulates pro-inflammatory cytokines including TNF-α, IL-1α, CXCL9, CXCL10 in macrophages, which recruits and activates immune cells. These findings offer new insights into the pathogenic mechanisms of angiostrongyliasis and suggest potential therapeutic strategies.
Collapse
Affiliation(s)
- Hongli Zhou
- Key Laboratory of Tropical Disease Control (Sun Yat‐Sen University)Ministry of EducationGuangzhouGuangdong510080China
- Clinical Medical Research CenterThe Second Affiliated HospitalArmy Medical UniversityChongqing400037China
| | - Minyu Zhou
- Key Laboratory of Tropical Disease Control (Sun Yat‐Sen University)Ministry of EducationGuangzhouGuangdong510080China
- Provincial Engineering Technology Research Center for Biological Vector ControlSun Yat‐sen UniversityGuangzhou510080China
| | - XiPing Liao
- Clinical Medical Research CenterThe Second Affiliated HospitalArmy Medical UniversityChongqing400037China
| | - Liangyu Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat‐Sen University)Ministry of EducationGuangzhouGuangdong510080China
- Provincial Engineering Technology Research Center for Biological Vector ControlSun Yat‐sen UniversityGuangzhou510080China
| | - Hang Wei
- Key Laboratory of Tropical Disease Control (Sun Yat‐Sen University)Ministry of EducationGuangzhouGuangdong510080China
- Provincial Engineering Technology Research Center for Biological Vector ControlSun Yat‐sen UniversityGuangzhou510080China
| | - Yuting Lu
- Key Laboratory of Tropical Disease Control (Sun Yat‐Sen University)Ministry of EducationGuangzhouGuangdong510080China
- Provincial Engineering Technology Research Center for Biological Vector ControlSun Yat‐sen UniversityGuangzhou510080China
| | - Yiqing Zhang
- Key Laboratory of Tropical Disease Control (Sun Yat‐Sen University)Ministry of EducationGuangzhouGuangdong510080China
- Provincial Engineering Technology Research Center for Biological Vector ControlSun Yat‐sen UniversityGuangzhou510080China
| | - Hui Huang
- Key Laboratory of Tropical Disease Control (Sun Yat‐Sen University)Ministry of EducationGuangzhouGuangdong510080China
- Provincial Engineering Technology Research Center for Biological Vector ControlSun Yat‐sen UniversityGuangzhou510080China
| | - Yue Hu
- Key Laboratory of Tropical Disease Control (Sun Yat‐Sen University)Ministry of EducationGuangzhouGuangdong510080China
- Provincial Engineering Technology Research Center for Biological Vector ControlSun Yat‐sen UniversityGuangzhou510080China
| | - Tao Chen
- Department of NeurologyHainan General Hospital,Hainan Affiliated Hospital of Hainan Medical UniversityHaikouHainan570311China
| | - Zhiyue Lv
- Key Laboratory of Tropical Disease Control (Sun Yat‐Sen University)Ministry of EducationGuangzhouGuangdong510080China
- Provincial Engineering Technology Research Center for Biological Vector ControlSun Yat‐sen UniversityGuangzhou510080China
- Department of NeurologyHainan General Hospital,Hainan Affiliated Hospital of Hainan Medical UniversityHaikouHainan570311China
- Key Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouHainan570216China
| |
Collapse
|
2
|
Grilo Ruivo MT, Shin JH, Lenz T, Matsuno SY, Yanes KO, Graindorge A, Hamie M, Berry-Sterkers L, Gissot M, El Hajj H, Le Roch KG, Lodoen MB, Lebrun M, Penarete-Vargas DM. The Toxoplasma rhoptry protein ROP55 is a major virulence factor that prevents lytic host cell death. Nat Commun 2025; 16:709. [PMID: 39814722 PMCID: PMC11736080 DOI: 10.1038/s41467-025-56128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Programmed-cell death is an antimicrobial defense mechanism that promotes clearance of intracellular pathogens. Toxoplasma counteracts host immune defenses by secreting effector proteins into host cells; however, how the parasite evades lytic cell death and the effectors involved remain poorly characterized. We identified ROP55, a rhoptry protein that promotes parasite survival by preventing lytic cell death in absence of IFN-γ stimulation. RNA-Seq analysis revealed that ROP55 acts as a repressor of host pro-inflammatory responses. In THP-1 monocytes ΔROP55 infection increased NF-κB p65 nuclear translocation, IL-1β production, and GSDMD cleavage compared to wild type or complemented parasites. ΔROP55 infection also induced RIPK3-dependent necroptosis in human and mouse primary macrophages. Moreover, ΔROP55 parasites were significantly impaired in virulence in female mice and prevented NF-κB activation and parasite clearance in mBMDM. These findings place ROP55 as a major virulence factor, dampening lytic cell death and enabling Toxoplasma to evade clearance from infected cells.
Collapse
Affiliation(s)
- Margarida T Grilo Ruivo
- Laboratory of Pathogens and Host Immunity, UMR 5294 CNRS, UA15 INSERM, Université de Montpellier, Montpellier, 34095, France
| | - Ji-Hun Shin
- Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, CA, 92697, USA
| | - Todd Lenz
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Stephanie Y Matsuno
- Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, CA, 92697, USA
| | - Katherine Olivia Yanes
- Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, CA, 92697, USA
| | - Arnault Graindorge
- Laboratory of Pathogens and Host Immunity, UMR 5294 CNRS, UA15 INSERM, Université de Montpellier, Montpellier, 34095, France
| | - Maguy Hamie
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Laurence Berry-Sterkers
- Laboratory of Pathogens and Host Immunity, UMR 5294 CNRS, UA15 INSERM, Université de Montpellier, Montpellier, 34095, France
| | - Mathieu Gissot
- U1019 - UMR 9017, Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille, Lille, F-59000, France
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Melissa B Lodoen
- Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, CA, 92697, USA
| | - Maryse Lebrun
- Laboratory of Pathogens and Host Immunity, UMR 5294 CNRS, UA15 INSERM, Université de Montpellier, Montpellier, 34095, France.
| | - Diana Marcela Penarete-Vargas
- Laboratory of Pathogens and Host Immunity, UMR 5294 CNRS, UA15 INSERM, Université de Montpellier, Montpellier, 34095, France.
| |
Collapse
|
3
|
Mishra S, Dey AA, Kesavardhana S. Z-Nucleic Acid Sensing and Activation of ZBP1 in Cellular Physiology and Disease Pathogenesis. Immunol Rev 2025; 329:e13437. [PMID: 39748135 DOI: 10.1111/imr.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025]
Abstract
Z-nucleic acid binding protein 1 (ZBP1) is an innate immune sensor recognizing nucleic acids in Z-conformation. Upon Z-nucleic acid sensing, ZBP1 triggers innate immune activation, inflammation, and programmed cell death during viral infections, mice development, and inflammation-associated diseases. The Zα domains of ZBP1 sense Z-nucleic acids and promote RIP-homotypic interaction motif (RHIM)-dependent signaling complex assembly to mount cell death and inflammation. The studies on ZBP1 spurred an understanding of the role of Z-form RNA and DNA in cellular and physiological functions. In particular, short viral genomic segments, endogenous retroviral elements, and 3'UTR regions are likely sources of Z-RNAs that orchestrate ZBP1 functions. Recent seminal studies identify an intriguing association of ZBP1 with adenosine deaminase acting on RNA-1 (ADAR1), and cyclic GMP-AMP synthase (cGAS) in regulating aberrant nucleic acid sensing, chronic inflammation, and cancer. Thus, ZBP1 is an attractive target to aid the development of specific therapeutic regimes for disease biology. Here, we discuss the role of ZBP1 in Z-RNA sensing, activation of programmed cell death, and inflammation. Also, we discuss how ZBP1 coordinates intracellular perturbations in homeostasis, and Z-nucleic acid formation to regulate chronic diseases and cancer.
Collapse
Affiliation(s)
- Sanchita Mishra
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Ayushi Amin Dey
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sannula Kesavardhana
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Song Q, Fan Y, Zhang H, Wang N. Z-DNA binding protein 1 orchestrates innate immunity and inflammatory cell death. Cytokine Growth Factor Rev 2024; 77:15-29. [PMID: 38548490 DOI: 10.1016/j.cytogfr.2024.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 06/22/2024]
Abstract
Innate immunity is not only the first line of host defense against microbial infections but is also crucial for the host responses against a variety of noxious stimuli. Z-DNA binding protein 1 (ZBP1) is a cytosolic nucleic acid sensor that can induce inflammatory cell death in both immune and nonimmune cells upon sensing of incursive virus-derived Z-form nucleic acids and self-nucleic acids via its Zα domain. Mechanistically, aberrantly expressed or activated ZBP1 induced by pathogens or noxious stimuli enables recruitment of TANK binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 to drive type I interferon (IFN-I) responses and activation of nuclear factor kappa B (NF-κB) signaling. Meanwhile, ZBP1 promotes the assembly of ZBP1- and absent in melanoma 2 (AIM2)-PANoptosome, which ultimately triggers PANoptosis through caspase 3-mediated apoptosis, mixed lineage kinase domain like pseudokinase (MLKL)-mediated necroptosis, and gasdermin D (GSDMD)-mediated pyroptosis. In response to damaged mitochondrial DNA, ZBP1 can interact with cyclic GMP-AMP synthase to augment IFN-I responses but inhibits toll like receptor 9-mediated inflammatory responses. This review summarizes the structure and expression pattern of ZBP1, discusses its roles in human diseases through immune-dependent (e.g., the production of IFN-I and pro-inflammatory cytokines) and -independent (e.g., the activation of cell death) functions, and highlights the attractive prospect of manipulating ZBP1 as a promising therapeutic target in diseases.
Collapse
Affiliation(s)
- Qixiang Song
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Yuhang Fan
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| |
Collapse
|
5
|
Mendoza Cavazos C, Heredia MY, Owens LA, Knoll LJ. Using Entamoeba muris To Model Fecal-Oral Transmission of Entamoeba in Mice. mBio 2023; 14:e0300822. [PMID: 36744962 PMCID: PMC9973306 DOI: 10.1128/mbio.03008-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023] Open
Abstract
There are several Entamoeba species that colonize humans, but only Entamoeba histolytica causes severe disease. E. histolytica is transmitted through the fecal-oral route to colonize the intestinal tract of 50 million people worldwide. The current mouse model to study E. histolytica intestinal infection directly delivers the parasite into the surgically exposed cecum, which circumvents the natural route of infection. To develop a fecal-oral mouse model, we screened our vivarium for a natural murine Entamoeba colonizer via a pan-Entamoeba PCR targeting the 18S ribosomal gene. We determined that C57BL/6 mice were chronically colonized by Entamoeba muris. This amoeba is closely related to E. histolytica, as determined by 18S sequencing and cross-reactivity with an E. histolytica-specific antibody. In contrast, outbred Swiss Webster (SW) mice were not chronically colonized by E. muris. We orally challenged SW mice with 1 × 105 E. muris cysts and discovered they were susceptible to infection, with peak cyst shedding occurring between 5 and 7 days postinfection. Most infected SW mice did not lose weight significantly but trended toward decreased weight gain throughout the experiment compared to mock-infected controls. Infected mice treated with paromomycin, an antibiotic used against noninvasive intestinal disease, do not become colonized by E. muris. Within the intestinal tract, E. muris localizes exclusively to the cecum and colon. Purified E. muris cysts treated with bovine bile in vitro excyst into mobile, pretrophozoite stages. Overall, this work describes a novel fecal-oral mouse model for the important global pathogen E. histolytica. IMPORTANCE Infection with parasites from the Entamoeba genus are significantly underreported causes of diarrheal disease that disproportionally impact tropical regions. There are several species of Entamoeba that infect humans to cause a range of symptoms from asymptomatic colonization of the intestinal tract to invasive disease with dissemination. All Entamoeba species are spread via the fecal-oral route in contaminated food and water. Studying the life cycle of Entamoeba, from host colonization to infectious fecal cyst production, can provide targets for vaccine and drug development. Because there is not an oral challenge rodent model, we screened for a mouse Entamoeba species and identified Entamoeba muris as a natural colonizer. We determine the peak of infection after an oral challenge, the efficacy of paromomycin treatment, the intestinal tract localization, and the cues that trigger excystation. This oral infection mouse model will be valuable for the development of novel therapeutic options for Entamoeba infections.
Collapse
Affiliation(s)
- Carolina Mendoza Cavazos
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marienela Y. Heredia
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Leah A. Owens
- Department of Pathobiological Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, Wisconsin, USA
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Abstract
Heatstroke, which is associated with circulatory failure and multiple organ dysfunction, is a heat stress-induced life-threatening condition characterized by a raised core body temperature and central nervous system dysfunction. As global warming continues to worsen, heatstroke is expected to become the leading cause of death globally. Despite the severity of this condition, the detailed mechanisms that underlie the pathogenesis of heatstroke still remain largely unknown. Z-DNA-binding protein 1 (ZBP1), also referred to as DNA-dependent activator of IFN-regulatory factors (DAI) and DLM-1, was initially identified as a tumor-associated and interferon (IFN)-inducible protein, but has recently been reported to be a Z-nucleic acid sensor that regulates cell death and inflammation; however, its biological function is not yet fully understood. In the present study, a brief review of the main regulators is presented, in which the Z-nucleic acid sensor ZBP1 was identified to be a significant factor in regulating the pathological characteristics of heatstroke through ZBP1-dependent signaling. Thus, the lethal mechanism of heatstroke is revealed, in addition to a second function of ZBP1 other than as a nucleic acid sensor.
Collapse
Affiliation(s)
- Fanglin Li
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Deng
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiuli He
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanjun Zhong
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Chen XY, Dai YH, Wan XX, Hu XM, Zhao WJ, Ban XX, Wan H, Huang K, Zhang Q, Xiong K. ZBP1-Mediated Necroptosis: Mechanisms and Therapeutic Implications. Molecules 2022; 28:52. [PMID: 36615244 PMCID: PMC9822119 DOI: 10.3390/molecules28010052] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Cell death is a fundamental pathophysiological process in human disease. The discovery of necroptosis, a form of regulated necrosis that is induced by the activation of death receptors and formation of necrosome, represents a major breakthrough in the field of cell death in the past decade. Z-DNA-binding protein (ZBP1) is an interferon (IFN)-inducing protein, initially reported as a double-stranded DNA (dsDNA) sensor, which induces an innate inflammatory response. Recently, ZBP1 was identified as an important sensor of necroptosis during virus infection. It connects viral nucleic acid and receptor-interacting protein kinase 3 (RIPK3) via two domains and induces the formation of a necrosome. Recent studies have also reported that ZBP1 induces necroptosis in non-viral infections and mediates necrotic signal transduction by a unique mechanism. This review highlights the discovery of ZBP1 and its novel findings in necroptosis and provides an insight into its critical role in the crosstalk between different types of cell death, which may represent a new therapeutic option.
Collapse
Affiliation(s)
- Xin-yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 430013, China
| | - Ying-hong Dai
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 430013, China
- Xiangya School of Medicine, Central South University, Changsha 430013, China
| | - Xin-xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 430013, China
| | - Xi-min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 430013, China
| | - Wen-juan Zhao
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 430013, China
| | - Xiao-xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 430013, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 430013, China
| | - Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 430013, China
- Xiangya School of Medicine, Central South University, Changsha 430013, China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 430013, China
- Ministry of Education, Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 430013, China
- Ministry of Education, Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
- Hunan Key Laboratory of Ophthalmology, Changsha 430013, China
| |
Collapse
|
8
|
Hao Y, Yang B, Yang J, Shi X, Yang X, Zhang D, Zhao D, Yan W, Chen L, Zheng H, Zhang K, Liu X. ZBP1: A Powerful Innate Immune Sensor and Double-Edged Sword in Host Immunity. Int J Mol Sci 2022; 23:ijms231810224. [PMID: 36142136 PMCID: PMC9499459 DOI: 10.3390/ijms231810224] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Z-conformation nucleic acid binding protein 1 (ZBP1), a powerful innate immune sensor, has been identified as the important signaling initiation factor in innate immune response and the multiple inflammatory cell death known as PANoptosis. The initiation of ZBP1 signaling requires recognition of left-handed double-helix Z-nucleic acid (includes Z-DNA and Z-RNA) and subsequent signaling transduction depends on the interaction between ZBP1 and its adapter proteins, such as TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1), and RIPK3. ZBP1 activated innate immunity, including type-I interferon (IFN-I) response and NF-κB signaling, constitutes an important line of defense against pathogenic infection. In addition, ZBP1-mediated PANoptosis is a double-edged sword in anti-infection, auto-inflammatory diseases, and tumor immunity. ZBP1-mediated PANoptosis is beneficial for eliminating infected cells and tumor cells, but abnormal or excessive PANoptosis can lead to a strong inflammatory response that is harmful to the host. Thus, pathogens and host have each developed multiplex tactics targeting ZBP1 signaling to maintain strong virulence or immune homeostasis. In this paper, we reviewed the mechanisms of ZBP1 signaling, the effects of ZBP1 signaling on host immunity and pathogen infection, and various antagonistic strategies of host and pathogen against ZBP1. We also discuss existent gaps regarding ZBP1 signaling and forecast potential directions for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Haixue Zheng
- Correspondence: (H.Z.); (K.Z.); Tel.: +86-15214078335 (K.Z.)
| | - Keshan Zhang
- Correspondence: (H.Z.); (K.Z.); Tel.: +86-15214078335 (K.Z.)
| | | |
Collapse
|
9
|
RIPK3 Facilitates Host Resistance to Oral Toxoplasma gondii Infection. Infect Immun 2021; 89:IAI.00021-21. [PMID: 33526566 PMCID: PMC8091083 DOI: 10.1128/iai.00021-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii infection activates pattern recognition receptor (PRR) pathways that drive innate inflammatory responses to control infection. Necroptosis is a proinflammatory cell death pathway apart from the innate immune response that has evolved to control pathogenic infection. In this study, we further defined the role of Z-DNA binding protein 1 (ZBP1) as a PRR and assessed its contribution to necroptosis as a host protection mechanism to T. gondii infection. We found that ZBP1 does not induce proinflammatory necroptosis cell death, and ZBP1 null mice have reduced survival after oral T. gondii infection. In contrast, mice deleted in receptor-interacting serine/threonine-protein kinase 3 (RIPK3-/-), a central mediator of necroptosis, have significantly improved survival after oral T. gondii infection without a reduction in parasite burden. The physiological consequences of RIPK3 activity did not show any differences in intestine villus immunopathology, but RIPK3-/- mice showed higher immune cell infiltration and edema in the lamina propria. The contribution of necroptosis to host survival was clarified with mixed-lineage kinase domain-like pseudokinase null (MLKL-/-) mice. We found MLKL-/- mice succumbed to oral T. gondii infection the same as wild-type mice, indicating necroptosis-independent RIPK3 activity impacts host survival. These results provide new insights on the impacts of proinflammatory cell death pathways as a mechanism of host defense to oral T. gondii infection.
Collapse
|
10
|
Bergersen KV, Barnes A, Worth D, David C, Wilson EH. Targeted Transcriptomic Analysis of C57BL/6 and BALB/c Mice During Progressive Chronic Toxoplasma gondii Infection Reveals Changes in Host and Parasite Gene Expression Relating to Neuropathology and Resolution. Front Cell Infect Microbiol 2021; 11:645778. [PMID: 33816350 PMCID: PMC8012756 DOI: 10.3389/fcimb.2021.645778] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is a resilient parasite that infects a multitude of warm-blooded hosts and results in a lifelong chronic infection requiring continuous responses by the host. Chronic infection is characterized by a balanced immune response and neuropathology that are driven by changes in gene expression. Previous research pertaining to these processes has been conducted in various mouse models, and much knowledge of infection-induced gene expression changes has been acquired through the use of high throughput sequencing techniques in different mouse strains and post-mortem human studies. However, lack of infection time course data poses a prominent missing link in the understanding of chronic infection, and there is still much that is unknown regarding changes in genes specifically relating to neuropathology and resulting repair mechanisms as infection progresses throughout the different stages of chronicity. In this paper, we present a targeted approach to gene expression analysis during T. gondii infection through the use of NanoString nCounter gene expression assays. Wild type C57BL/6 and BALB/c background mice were infected, and transcriptional changes in the brain were evaluated at 14, 28, and 56 days post infection. Results demonstrate a dramatic shift in both previously demonstrated and novel gene expression relating to neuropathology and resolution in C57BL/6 mice. In addition, comparison between BALB/c and C57BL/6 mice demonstrate initial differences in gene expression that evolve over the course of infection and indicate decreased neuropathology and enhanced repair in BALB/c mice. In conclusion, these studies provide a targeted approach to gene expression analysis in the brain during infection and provide elaboration on previously identified transcriptional changes and also offer insights into further understanding the complexities of chronic T. gondii infection.
Collapse
Affiliation(s)
- Kristina V Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Ashli Barnes
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Clement David
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,NanoString Technologies, Seattle, WA, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
11
|
Mendoza Cavazos C, Knoll LJ. Entamoeba histolytica: Five facts about modeling a complex human disease in rodents. PLoS Pathog 2020; 16:e1008950. [PMID: 33180884 PMCID: PMC7660559 DOI: 10.1371/journal.ppat.1008950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Laura J. Knoll
- University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
12
|
Tuladhar S, Kochanowsky JA, Bhaskara A, Ghotmi Y, Chandrasekaran S, Koshy AA. The ROP16III-dependent early immune response determines the subacute CNS immune response and type III Toxoplasma gondii survival. PLoS Pathog 2019; 15:e1007856. [PMID: 31648279 PMCID: PMC6812932 DOI: 10.1371/journal.ppat.1007856] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/25/2019] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii is an intracellular parasite that persistently infects the CNS and that has genetically distinct strains which provoke different acute immune responses. How differences in the acute immune response affect the CNS immune response is unknown. To address this question, we used two persistent Toxoplasma strains (type II and type III) and examined the CNS immune response at 21 days post infection (dpi). Contrary to acute infection studies, type III-infected mice had higher numbers of total CNS T cells and macrophages/microglia but fewer alternatively activated macrophages (M2s) and regulatory T cells (Tregs) than type II-infected mice. By profiling splenocytes at 5, 10, and 21 dpi, we determined that at 5 dpi type III-infected mice had more M2s while type II-infected mice had more pro-inflammatory macrophages and that these responses flipped over time. To test how these early differences influence the CNS immune response, we engineered the type III strain to lack ROP16 (IIIΔrop16), the polymorphic effector protein that drives the early type III-associated M2 response. IIIΔrop16-infected mice showed a type II-like neuroinflammatory response with fewer infiltrating T cells and macrophages/microglia and more M2s and an unexpectedly low CNS parasite burden. At 5 dpi, IIIΔrop16-infected mice showed a mixed inflammatory response with more pro-inflammatory macrophages, M2s, T effector cells, and Tregs, and decreased rates of infection of peritoneal exudative cells (PECs). These data suggested that type III parasites need the early ROP16-associated M2 response to avoid clearance, possibly by the Immunity-Related GTPases (IRGs), which are IFN-γ- dependent proteins essential for murine defenses against Toxoplasma. To test this possibility, we infected IRG-deficient mice and found that IIIΔrop16 parasites now maintained parental levels of PECs infection. Collectively, these studies suggest that, for the type III strain, rop16III plays a key role in parasite persistence and influences the subacute CNS immune response. Toxoplasma is a ubiquitous intracellular parasite that establishes an asymptomatic brain infection in immunocompetent individuals. However, in the immunocompromised and the developing fetus, Toxoplasma can cause problems ranging from fever to chorioretinitis to severe toxoplasmic encephalitis. Emerging evidence suggests that the genotype of the infecting Toxoplasma strain may influence these outcomes, possibly through the secretion of Toxoplasma strain-specific polymorphic effector proteins that trigger different host cell signaling pathways. While such strain-specific modulation of host cell signaling has been shown to affect acute immune responses, it is unclear how these differences influence the subacute or chronic responses in the CNS, the major organ affected in symptomatic disease. This study shows that genetically distinct strains of Toxoplasma provoke strain-specific CNS immune responses and that, for one strain (type III), acute and subacute immune responses and parasite survival are heavily influenced by a polymorphic parasite gene (rop16III).
Collapse
Affiliation(s)
- Shraddha Tuladhar
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Joshua A. Kochanowsky
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Apoorva Bhaskara
- Bio5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Yarah Ghotmi
- Bio5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Undergraduate Biology Research Program (UBRP), University of Arizona, Tucson, Arizona, United States of America
| | | | - Anita A. Koshy
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- Bio5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
13
|
Rothan HA, Arora K, Natekar JP, Strate PG, Brinton MA, Kumar M. Z-DNA-Binding Protein 1 Is Critical for Controlling Virus Replication and Survival in West Nile Virus Encephalitis. Front Microbiol 2019; 10:2089. [PMID: 31572318 PMCID: PMC6749019 DOI: 10.3389/fmicb.2019.02089] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/26/2019] [Indexed: 01/31/2023] Open
Abstract
West Nile virus (WNV), a neurotropic flavivirus, is the leading cause of viral encephalitis in the United States. Recently, Zika virus (ZIKV) infections have caused serious neurological diseases and birth defects, specifically Guillain-Barrè syndrome and microcephaly. Z-DNA binding protein 1 (ZBP1) is a cytoplasmic sensor that that has been shown to play a significant role in initiating a robust immune response. We previously reported that WNV and ZIKV infections induce dramatic up-regulation of ZBP1 in mouse brains as well as in infected primary mouse cells. Herein, we show the critical role of ZBP1 in restricting the pathogenesis of WNV and ZIKV infections. Deletion of ZBP1 resulted in significantly higher morbidity and mortality after infection with a pathogenic WNV NY99 strain in mice. No mortality was observed in wild-type (WT) mice infected with the non-pathogenic WNV strain, Eg101. Interestingly, infection of ZBP1-/- mice with WNV Eg101 was lethal resulting in 100% mortality, suggesting that ZBP1 is required for survival after WNV infection. Viremia and brain viral load were significantly higher in ZBP1-/- mice compared to WT mice. In addition, protein levels of interferon (IFN)-α, and inflammatory cytokines and chemokines were significantly higher in the serum and brains of infected ZBP1-/- mice compared to the WT mice. Primary mouse cortical neurons and mouse embryonic fibroblasts (MEFs) derived from ZBP1-/- mice produced higher virus titers compared to WT cells after infection with WNV NY99 and WNV Eg101. Similarly, neurons and MEFs lacking ZBP1 exhibited significantly enhanced replication of PRVABC59 (Asian) and MR766 (African) ZIKV compared to WT cells. The knockout of ZBP1 function in MEFs inhibited ZBP1-dependent virus-induced cell death. In conclusion, these data reveal that ZBP1 restricts WNV and ZIKV production in mouse cells and is required for survival of a peripheral WNV infection in mice.
Collapse
Affiliation(s)
- Hussin A Rothan
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Komal Arora
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Janhavi P Natekar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Philip G Strate
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Margo A Brinton
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| | - Mukesh Kumar
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
14
|
Martorelli Di Genova B, Wilson SK, Dubey JP, Knoll LJ. Intestinal delta-6-desaturase activity determines host range for Toxoplasma sexual reproduction. PLoS Biol 2019; 17:e3000364. [PMID: 31430281 PMCID: PMC6701743 DOI: 10.1371/journal.pbio.3000364] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 01/17/2023] Open
Abstract
Many eukaryotic microbes have complex life cycles that include both sexual and asexual phases with strict species specificity. Whereas the asexual cycle of the protistan parasite Toxoplasma gondii can occur in any warm-blooded mammal, the sexual cycle is restricted to the feline intestine. The molecular determinants that identify cats as the definitive host for T. gondii are unknown. Here, we defined the mechanism of species specificity for T. gondii sexual development and break the species barrier to allow the sexual cycle to occur in mice. We determined that T. gondii sexual development occurs when cultured feline intestinal epithelial cells are supplemented with linoleic acid. Felines are the only mammals that lack delta-6-desaturase activity in their intestines, which is required for linoleic acid metabolism, resulting in systemic excess of linoleic acid. We found that inhibition of murine delta-6-desaturase and supplementation of their diet with linoleic acid allowed T. gondii sexual development in mice. This mechanism of species specificity is the first defined for a parasite sexual cycle. This work highlights how host diet and metabolism shape coevolution with microbes. The key to unlocking the species boundaries for other eukaryotic microbes may also rely on the lipid composition of their environments as we see increasing evidence for the importance of host lipid metabolism during parasitic lifecycles. Pregnant women are advised against handling cat litter, as maternal infection with T. gondii can be transmitted to the fetus with potentially lethal outcomes. Knowing the molecular components that create a conducive environment for T. gondii sexual reproduction will allow for development of therapeutics that prevent shedding of T. gondii parasites. Finally, given the current reliance on companion animals to study T. gondii sexual development, this work will allow the T. gondii field to use of alternative models in future studies.
Collapse
Affiliation(s)
- Bruno Martorelli Di Genova
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Sarah K. Wilson
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - J. P. Dubey
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|