1
|
Lei Z, Jin M, Lei Y, Cheng DB, Sun T. Neuraminidase and pH responsive nano-drug against resistant Glaesserella parasuis. Int J Biol Macromol 2025; 303:140633. [PMID: 39909255 DOI: 10.1016/j.ijbiomac.2025.140633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/19/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Glaesserella parasuis (GPS) infection leads to significant economic losses in livestock, with antibiotic resistance exacerbating the issue. The lengthy development cycle of new drugs further complicates timely intervention. Neuraminidase, a virulence factor of GPS, plays a critical role in infection progression. This study presents PSA-Gly-TD, a dual-responsive nanomicelle drug delivery system designed to target neuraminidase and pH variations, offering a solution to the problem of drug-resistant GPS infections. By covalently linking polysialic acid with Tildipirosin, nanoparticles with excellent dispersibility, stability, and a drug encapsulation efficiency of 99.27 % were synthesized. The system demonstrated a particle size of 64.75 nm, accelerated drug release in pathological conditions, and significantly enhanced cellular uptake-nearly three times higher than Tildipirosin alone while maintaining cell viability above 90 %. PSA-Gly-TD preserved the antibacterial efficacy of Tildipirosin and exhibited superior bactericidal activity against drug-resistant GPS strains. In animal models, PSA-Gly-TD showed a stable metabolic profile, reduced tissue damage, and avoided hemolysis, making it a safe and effective option for treating drug-resistant bacterial infections. These results underscore PSA-Gly-TD as a promising therapeutic agent, offering an innovative approach to combating antimicrobial resistance in veterinary medicine and addressing critical challenges in livestock health.
Collapse
Affiliation(s)
- Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China.
| | - Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Ying Lei
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Disease, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
2
|
Sun Y, Ferreira F, Reid B, Zhu K, Ma L, Young BM, Hagan CE, Tsolis RM, Mogilner A, Zhao M. Gut epithelial electrical cues drive differential localization of enterobacteria. Nat Microbiol 2024; 9:2653-2665. [PMID: 39164392 PMCID: PMC11445056 DOI: 10.1038/s41564-024-01778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/09/2024] [Indexed: 08/22/2024]
Abstract
Salmonella translocate to the gut epithelium via microfold cells lining the follicle-associated epithelium (FAE). How Salmonella localize to the FAE is not well characterized. Here we use live imaging and competitive assays between wild-type and chemotaxis-deficient mutants to show that Salmonella enterica serotype Typhimurium (S. Typhimurium) localize to the FAE independently of chemotaxis in an ex vivo mouse caecum infection model. Electrical recordings revealed polarized FAE with sustained outward current and small transepithelial potential, while the surrounding villus is depolarized with inward current and large transepithelial potential. The distinct electrical potentials attracted S. Typhimurium to the FAE while Escherichia coli (E. coli) localized to the villi, through a process called galvanotaxis. Chloride flux involving the cystic fibrosis transmembrane conductance regulator (CFTR) generated the ionic currents around the FAE. Pharmacological inhibition of CFTR decreased S. Typhimurium FAE localization but increased E. coli recruitment. Altogether, our findings demonstrate that bioelectric cues contribute to S. Typhimurium targeting of specific gut epithelial locations, with potential implications for other enteric bacterial infections.
Collapse
Affiliation(s)
- Yaohui Sun
- Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA.
- Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA.
| | - Fernando Ferreira
- Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Braga, Portugal
| | - Brian Reid
- Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Kan Zhu
- Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Li Ma
- Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Coty R&D Technology and Innovation, Shanghai, P. R. China
| | - Briana M Young
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Catherine E Hagan
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY, USA.
| | - Min Zhao
- Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
3
|
Murugan NJ, Cariba S, Abeygunawardena S, Rouleau N, Payne SL. Biophysical control of plasticity and patterning in regeneration and cancer. Cell Mol Life Sci 2023; 81:9. [PMID: 38099951 PMCID: PMC10724343 DOI: 10.1007/s00018-023-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cells and tissues display a remarkable range of plasticity and tissue-patterning activities that are emergent of complex signaling dynamics within their microenvironments. These properties, which when operating normally guide embryogenesis and regeneration, become highly disordered in diseases such as cancer. While morphogens and other molecular factors help determine the shapes of tissues and their patterned cellular organization, the parallel contributions of biophysical control mechanisms must be considered to accurately predict and model important processes such as growth, maturation, injury, repair, and senescence. We now know that mechanical, optical, electric, and electromagnetic signals are integral to cellular plasticity and tissue patterning. Because biophysical modalities underly interactions between cells and their extracellular matrices, including cell cycle, metabolism, migration, and differentiation, their applications as tuning dials for regenerative and anti-cancer therapies are being rapidly exploited. Despite this, the importance of cellular communication through biophysical signaling remains disproportionately underrepresented in the literature. Here, we provide a review of biophysical signaling modalities and known mechanisms that initiate, modulate, or inhibit plasticity and tissue patterning in models of regeneration and cancer. We also discuss current approaches in biomedical engineering that harness biophysical control mechanisms to model, characterize, diagnose, and treat disease states.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
- Allen Discovery Center, Tufts University, Medford, MA, USA.
| | - Solsa Cariba
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Samantha L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Le B, Zhu K, Brown C, Reid B, Cressman A, Zhao M, Fierro FA. Reducing Sialylation Enhances Electrotaxis of Corneal Epithelial Cells. Int J Mol Sci 2023; 24:14327. [PMID: 37762630 PMCID: PMC10531958 DOI: 10.3390/ijms241814327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Corneal wound healing is a complex biological process that integrates a host of different signals to coordinate cell behavior. Upon wounding, there is the generation of an endogenous wound electric field that serves as a powerful cue to guide cell migration. Concurrently, the corneal epithelium reduces sialylated glycoforms, suggesting that sialylation plays an important role during electrotaxis. Here, we show that pretreating human telomerase-immortalized corneal epithelial (hTCEpi) cells with a sialyltransferase inhibitor, P-3FAX-Neu5Ac (3F-Neu5Ac), improves electrotaxis by enhancing directionality, but not speed. This was recapitulated using Kifunensine, which inhibits cleavage of mannoses and therefore precludes sialylation on N-glycans. We also identified that 3F-Neu5Ac enhanced the responsiveness of the hTCEpi cell population to the electric field and that pretreated hTCEpi cells showed increased directionality even at low voltages. Furthermore, when we increased sialylation using N-azidoacetylmannosamine-tetraacylated (Ac4ManNAz), hTCEpi cells showed a decrease in both speed and directionality. Importantly, pretreating enucleated eyes with 3F-Neu5Ac significantly improved re-epithelialization in an ex vivo model of a corneal injury. Finally, we show that in hTCEpi cells, sialylation is increased by growth factor deprivation and reduced by PDGF-BB. Taken together, our results suggest that during corneal wound healing, reduced sialylated glycoforms enhance electrotaxis and re-epithelialization, potentially opening new avenues to promote corneal wound healing.
Collapse
Affiliation(s)
- Bryan Le
- Department of Ophthalmology, University of California, Davis, CA 95616, USA; (B.L.); (M.Z.)
| | - Kan Zhu
- Department of Ophthalmology, University of California, Davis, CA 95616, USA; (B.L.); (M.Z.)
| | - Chelsea Brown
- Department of Ophthalmology, University of California, Davis, CA 95616, USA; (B.L.); (M.Z.)
| | - Brian Reid
- Department of Ophthalmology, University of California, Davis, CA 95616, USA; (B.L.); (M.Z.)
| | - Amin Cressman
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95817, USA
| | - Min Zhao
- Department of Ophthalmology, University of California, Davis, CA 95616, USA; (B.L.); (M.Z.)
| | - Fernando A. Fierro
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA 95817, USA
| |
Collapse
|
5
|
Ye L, Ji X, Song Z, Guan L, Zhao L, Wang W, Du W. Clinical Value of Glycan Changes in Cerebrospinal Fluid for Evaluation of Post-Neurosurgical Bacterial Meningitis with Hemorrhagic Stroke Patients. Diagnostics (Basel) 2023; 13:diagnostics13020187. [PMID: 36672998 PMCID: PMC9858593 DOI: 10.3390/diagnostics13020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Post-neurosurgical bacterial meningitis (PNBM) is one of the severe complications in patients receiving neurosurgical procedures. Recent studies have found microbe-related glycans play important roles in adhesion, invasion, and toxicity toward innate immunological reactions. In this study, we aimed to investigate the glycomic profile and its potential diagnostic efficacy in post-neurosurgical bacterial meningitis (PNBM) patients with hemorrhagic stroke. A total of 136 cerebrospinal fluid (CSF) samples were recruited and divided into a PNBM group and a non-PNBM group based on the clinical diagnostic criteria. A lectin biochip-based method was established for the detection of glycans in CSF. The clinicopathological data and biochemical parameters in CSF from all patients were analyzed. Two models for multivariate analysis investigating glycan changes in the CSF were conducted, aiming at determining the specific expression and diagnostic efficacy of lectin-probing glycans (LPGs) for PNBM. In univariate analysis, we found that 8 out of 11 LPGs were significantly correlated with PNBM. Model 1 multivariate analysis revealed that PNA (p = 0.034), Jacalin (p = 0.034) and LTL (p = 0.001) were differentially expressed in the CSF of PNBM patients compared with those of non-PNBM patients. Model 2 multivariate analysis further disclosed that LTL (p = 0.021) and CSF glucose (p < 0.001) had independent diagnostic efficacies in PNBM, with areas under the curve (AUC) of 0.703 and 0.922, respectively. In summary, this study provided a new insight into the subject of CSF glycomics concerning bacterial infection in patients with hemorrhagic stroke.
Collapse
Affiliation(s)
- Lei Ye
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
- Correspondence: (L.Y.); (W.D.); Tel.: +86-551-6292-2114 (L.Y.); +86-551-6516-1011 (W.D.); Fax: +86-551-6363-3742 (L.Y.); +86-551-6516-5628 (W.D.)
| | - Xuefei Ji
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Zijian Song
- Department of Orthopaedics, Xuzhou Municipal First People’s Hospital, Daxue Road 269, Xuzhou 221116, China
| | - Liao Guan
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Liang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei 230022, China
| | - Wenwen Wang
- Department of Pathology, Anhui Medical University, Meishan Road 81, Hefei 230032, China
- School of Clinical Medicine, Anhui Medical University, Meishan Road 81, Hefei 230032, China
| | - Weidong Du
- Department of Pathology, Anhui Medical University, Meishan Road 81, Hefei 230032, China
- Correspondence: (L.Y.); (W.D.); Tel.: +86-551-6292-2114 (L.Y.); +86-551-6516-1011 (W.D.); Fax: +86-551-6363-3742 (L.Y.); +86-551-6516-5628 (W.D.)
| |
Collapse
|