1
|
Euceda-Padilla EA, Mateo-Cruz MG, Ortega-López J, Arroyo R. TvLEGU-1 and TvLEGU-2 biomarkers for trichomoniasis are legumain-like cysteine peptidases secreted in vitro in a time-dependent manner. FRONTIERS IN PARASITOLOGY 2025; 4:1546468. [PMID: 40109889 PMCID: PMC11920906 DOI: 10.3389/fpara.2025.1546468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025]
Abstract
Trichomonas vaginalis is the causative agent of trichomoniasis, the most prevalent neglected parasitic sexually transmitted infection worldwide. Cysteine peptidases (CPs) are the most abundant proteins in the parasite degradome. Some CPs are virulence factors involved in trichomonal pathogenesis, cytoadherence, hemolysis, and cytotoxicity. Few are immunogenic and are found in the vaginal secretions of patients with trichomoniasis. Legumains are CPs of the C13 family of clan CD. T. vaginalis has 10 genes encoding legumain-like peptidases, and TvLEGU-1 and TvLEGU-2 have been characterized. Both are immunogenic and found in the vaginal secretions of patients with trichomoniasis that could be considered as potential biomarkers. Thus, our goal was to evaluate the effects of glucose on the proteolytic activity and secretion processes of TvLEGU-1 and TvLEGU-2. We performed in vitro secretion assays using different glucose concentrations, examined the presence and proteolytic activity of secreted legumains by Western blot and spectrofluorometry assays, and analyzed the localization of TvLEGU-1 and TvLEGU-2 in the parasites by indirect immunofluorescence. Our results show that TvLEGU-1 and TvLEGU-2 were secreted in vitro in a time-dependent manner and had legumain-like proteolytic activity that could contribute to parasite pathogenesis, supporting their relevance during infection and potential as trichomoniasis biomarkers.
Collapse
Affiliation(s)
- Esly Alejandra Euceda-Padilla
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Mexico City, Mexico
| | - Miriam Guadalupe Mateo-Cruz
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Mexico City, Mexico
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Mexico City, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Mexico City, Mexico
| |
Collapse
|
2
|
Suprewicz Ł, Fiedoruk K, Skłodowski K, Hutt E, Zakrzewska M, Walewska A, Deptuła P, Lesiak A, Okła S, Galie PA, Patteson AE, Janmey PA, Bucki R. Extracellular vimentin is a damage-associated molecular pattern protein serving as an agonist of TLR4 in human neutrophils. Cell Commun Signal 2025; 23:64. [PMID: 39910535 PMCID: PMC11800445 DOI: 10.1186/s12964-025-02062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Vimentin is a type III intermediate filament protein that plays an important role in cytoskeletal mechanics. It is now known that vimentin also has distinct functions outside the cell. Recent studies show the controlled release of vimentin into the extracellular environment, where it functions as a signaling molecule. Such observations are expanding our current knowledge of vimentin as a structural cellular component towards additional roles as an active participant in cell signaling. METHODS Our study investigates the immunological roles of extracellular vimentin (eVim) and its citrullinated form (CitVim) as a damage-associated molecular pattern (DAMP) engaging the Toll-like receptor 4 (TLR4) of human neutrophils. We used in vitro assays to study neutrophil migration through endothelial cell monolayers and activation markers such as NADPH oxidase subunit 2 (NOX2/gp91phox). The comparison of eVim with CitVim and its effect on human neutrophils was extended to the induction of extracellular traps (NETs) and phagocytosis of pathogens. RESULTS Both eVim and CitVim interact with and trigger TLR4, leading to increased neutrophil migration and adhesion. CitVim stimulated the enhanced migratory ability of neutrophils, activation of NF-κB, and induction of NET formation mainly mediated through reactive oxygen species (ROS)-dependent and TLR4-dependent pathways. In contrast, neutrophils exposed to non-citrullinated vimentin exhibited higher efficiency in favoring pathogen phagocytosis, such as Escherichia coli and Candida albicans, compared to CitVim. CONCLUSIONS Our study identifies new functions of eVim in its native and modified forms as an extracellular matrix DAMP and highlights its importance in the modulation of immune system functions. The differential effects of eVim and CitVim on neutrophil functions highlight their potential as new molecular targets for therapeutic strategies aimed at regulation of neutrophil activity in different pathological conditions. This, in turn, opens new windows of therapeutic intervention in inflammatory and immunological diseases characterized by immune system dysfunction, in which eVim and CitVim play a key role.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-089, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-089, Poland
| | - Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-089, Poland
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-089, Poland
| | - Alicja Walewska
- Centre of Regenerative Medicine, Medical University of Bialystok, Bialystok, 15-269, Poland
| | - Piotr Deptuła
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, Bialystok, 15-089, Poland
| | - Agata Lesiak
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-369, Poland
| | - Sławomir Okła
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, 25-369, Poland
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Paul A Janmey
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, 15-089, Poland.
| |
Collapse
|
3
|
Euceda-Padilla EA, Mateo-Cruz MG, Ávila-González L, Flores-Pucheta CI, Ortega-López J, Talamás-Lara D, Velazquez-Valassi B, Jasso-Villazul L, Arroyo R. Trichomonas vaginalis Legumain-2, TvLEGU-2, Is an Immunogenic Cysteine Peptidase Expressed during Trichomonal Infection. Pathogens 2024; 13:119. [PMID: 38392857 PMCID: PMC10892250 DOI: 10.3390/pathogens13020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Trichomonas vaginalis is the causative agent of trichomoniasis, the most prevalent nonviral, neglected sexually transmitted disease worldwide. T. vaginalis has one of the largest degradomes among unicellular parasites. Cysteine peptidases (CPs) are the most abundant peptidases, constituting 50% of the degradome. Some CPs are virulence factors recognized by antibodies in trichomoniasis patient sera, and a few are found in vaginal secretions that show fluctuations in glucose concentrations during infection. The CPs of clan CD in T. vaginalis include 10 genes encoding legumain-like peptidases of the C13 family. TvLEGU-2 is one of them and has been identified in multiple proteomes, including the immunoproteome obtained with Tv (+) patient sera. Thus, our goals were to assess the effect of glucose on TvLEGU-2 expression, localization, and in vitro secretion and determine whether TvLEGU-2 is expressed during trichomonal infection. We performed qRT-PCR assays using parasites grown under different glucose conditions. We also generated a specific anti-TvLEGU-2 antibody against a synthetic peptide of the most divergent region of this CP and used it in Western blot (WB) and immunolocalization assays. Additionally, we cloned and expressed the tvlegu-2 gene (TVAG_385340), purified the recombinant TvLEGU-2 protein, and used it as an antigen for immunogenicity assays to test human sera from patients with vaginitis. Our results show that glucose does not affect tvlegu-2 expression but does affect localization in different parasite organelles, such as the plasma membrane, Golgi complex, hydrogenosomes, lysosomes, and secretion vesicles. TvLEGU-2 is secreted in vitro, is present in vaginal secretions, and is immunogenic in sera from Tv (+) patients, suggesting its relevance during trichomonal infection.
Collapse
Affiliation(s)
- Esly Alejandra Euceda-Padilla
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico City 07360, Mexico; (E.A.E.-P.); (M.G.M.-C.); (L.Á.-G.)
| | - Miriam Guadalupe Mateo-Cruz
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico City 07360, Mexico; (E.A.E.-P.); (M.G.M.-C.); (L.Á.-G.)
| | - Leticia Ávila-González
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico City 07360, Mexico; (E.A.E.-P.); (M.G.M.-C.); (L.Á.-G.)
| | - Claudia Ivonne Flores-Pucheta
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico City 07360, Mexico; (C.I.F.-P.); (J.O.-L.)
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico City 07360, Mexico; (C.I.F.-P.); (J.O.-L.)
| | - Daniel Talamás-Lara
- Unidad de Microscopía Electrónica, Laboratorios Nacionales De Servicios Experimentales (LaNSE), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico City 07360, Mexico;
| | - Beatriz Velazquez-Valassi
- Departamento de Vigilancia Epidemiológica, Hospital General de México “Eduardo Liceaga”, Mexico City 06720, Mexico;
| | - Lidia Jasso-Villazul
- Unidad de Medicina Preventiva, Hospital General de México “Eduardo Liceaga”, Mexico City 06720, Mexico;
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Alcaldía Gustavo A. Madero (GAM), Mexico City 07360, Mexico; (E.A.E.-P.); (M.G.M.-C.); (L.Á.-G.)
| |
Collapse
|
4
|
Zhang Z, Song X, Deng Y, Li Y, Li F, Sheng W, Tian X, Yang Z, Mei X, Wang S. Trichomonas vaginalis adhesion protein 65 (TvAP65) modulates parasite pathogenicity by interacting with host cell proteins. Acta Trop 2023; 246:106996. [PMID: 37536435 DOI: 10.1016/j.actatropica.2023.106996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Trichomonas vaginalis (T. vaginalis) is a widespread and important sexually transmitted pathogen. Adherence to the surface of the host cell is the precondition forthis parasite's parasitism and pathogenicity. Adhesion protein 65 (TvAP65) plays a key role in the process of adhesion. However, how TvAP65 mediates the adhesion and pathogenicity of T. vaginalis to host cellsis unclear. In this study, we knocked down the expression of TvAP65 in trophozoites by small RNA interference. The number of T. vaginalis trophozoites adhering to VK2/E6E7 cells was decreased significantly, and the inhibition of VK2/E6E7 cells proliferation and VK2/E6E7 cells apoptosis and death induced by T. vaginalis were reduced, after the expression of TvAP65 was knocked down. Animal challenge experiments showed that the pathogenicity of trophozoites was decreased by passive immunization with anti-rTvAP65 PcAbs or blocking the TvAP65 protein. Immunofluorescence analysis showed that TvAP65 could bind to VK2/E6E7 cells. In order to screen the molecules interacting with TvAP65 on the host cells, we successfully constructed the cDNA library of VK2/E6E7 cells, and thirteen protein molecules interacting with TvAP65 were screened by yeast two-hybrid system. The interaction between TvAP65 and BNIP3 was further confirmed by coimmunoprecipitation and colocalization. When both TvAP65 and BNIP3 were knocked down by small RNA interference, the number of T. vaginalis adhering to VK2/E6E7 cells and the inhibition of VK2/E6E7 cells proliferation were significantly lower than those of the group with knockdown of TvAP65 or BNIP3 alone. Therefore, the interaction of TvAP65 and BNIP3 in the pathogenesis of T. vaginalis infecting host cells is not unique and involves other molecules. Our study elucidated that the interaction between TvAP65 and BNIP3 mediated the adhesion and pathogenicity of T. vaginalis to host cells, provided a basis for searching for the drug targets of anti-T. vaginalis, and afforded new ideas for the prevention and treatment of trichomoniasis.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xiaoxiao Song
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yangyang Deng
- The Third Affiliated Hospital Of Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yuhua Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Fakun Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Wanxin Sheng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xiaowei Tian
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Zhenke Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Xuefang Mei
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| | - Shuai Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China; Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| |
Collapse
|
5
|
Zhang Z, Deng Y, Sheng W, Song X, Li Y, Li F, Pan Y, Tian X, Yang Z, Wang S, Wang M, Mei X. The interaction between adhesion protein 33 (TvAP33) and BNIP3 mediates the adhesion and pathogenicity of Trichomonas vaginalis to host cells. Parasit Vectors 2023; 16:210. [PMID: 37344876 PMCID: PMC10286359 DOI: 10.1186/s13071-023-05798-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Trichomonas vaginalis is a widespread and important sexually transmitted pathogen. Adherence to the surface of the host cell is the precondition for the parasitism and pathogenicity of this parasite. Trichomonas vaginalis adhesion protein 33 (TvAP33) plays a key role in the process of adhesion, but how this protein mediates the adhesion and pathogenicity of T. vaginalis to host cells is unclear. METHODS The expression of TvAP33 in trophozoites was knocked down by small interfering RNA. VK2/E6E7 cells and mice infected with T. vaginalis were used to evaluate the pathogenicity of T. vaginalis. We constructed a complementary DNA library of VK2/E6E7 cells and screened the protein molecules interacting with TvAP33 by the yeast two-hybrid system. The interaction between TvAP33 and BNIP3 (Bcl-2 interacting protein 3) was analyzed by co-immunoprecipitation and colocalization. RESULTS Following knockdown of TvAP33 expression, the number of T. vaginalis trophozoites adhering to VK2/E6E7 cells decreased significantly, and the inhibition of VK2/E6E7 cell proliferation and VK2/E6E7 cell apoptosis and death induced by T. vaginalis were reduced. Animal challenge experiments showed that the pathogenicity of trophozoites decreased following passive immunization with TvAP33 antiserum or blocking of the TvAP33 protein. Immunofluorescence analysis revealed that TvAP33 could bind to VK2/E6E7 cells. Eighteen protein molecules interacting with TvAP33 were identified by the yeast two-hybrid system. The interaction between TvAP33 and BNIP3 was further confirmed by co-immunoprecipitation and colocalization. When the expression of both TvAP33 and BNIP3 in trophozoites was knocked down by small RNA interference, the number of T. vaginalis adhering to VK2/E6E7 cells and the inhibition of VK2/E6E7 cell proliferation were significantly lower compared to trophozoites with only knockdown of TvAP33 or only BNIP3. Therefore, the interaction of TvAP33 and BNIP3 in the pathogenesis of T. vaginalis infecting host cells is not unique and involves other molecules. CONCLUSIONS Our study showed that the interaction between TvAP33 and BNIP3 mediated the adhesion and pathogenicity of T. vaginalis to host cells, providing a basis for searching for drug targets for T. vaginalis as well as new ideas for the prevention and treatment of trichomoniasis.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Yangyang Deng
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Wanxin Sheng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Xiaoxiao Song
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Yuhua Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Fakun Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Xiaowei Tian
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Zhenke Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Shuai Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 China
- School of Medical Technology, Shangqiu Medical College, Shangqiu, 476100 China
| | - Xuefang Mei
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003 Henan People’s Republic of China
| |
Collapse
|
6
|
Hirayama S, Hiyoshi T, Yasui Y, Domon H, Terao Y. C-Terminal Lysine Residue of Pneumococcal Triosephosphate Isomerase Contributes to Its Binding to Host Plasminogen. Microorganisms 2023; 11:1198. [PMID: 37317172 DOI: 10.3390/microorganisms11051198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
The main causative agent of pneumonia, Streptococcus pneumoniae, is also responsible for invasive diseases. S. pneumoniae recruits human plasminogen for the invasion and colonization of host tissues. We previously discovered that S. pneumoniae triosephosphate isomerase (TpiA), an enzyme involved in intracellular metabolism that is essential for survival, is released extracellularly to bind human plasminogen and facilitate its activation. Epsilon-aminocaproic acid, a lysine analogue, inhibits this binding, suggesting that the lysine residues in TpiA are involved in plasminogen binding. In this study, we generated site-directed mutant recombinants in which the lysine residue in TpiA was replaced with alanine and analyzed their binding activities to human plasminogen. Results from blot analysis, enzyme-linked immunosorbent assay, and surface plasmon resonance assay revealed that the lysine residue at the C-terminus of TpiA is primarily involved in binding to human plasminogen. Furthermore, we found that TpiA binding to plasminogen through its C-terminal lysine residue was required for the promotion of plasmin activation by activating factors.
Collapse
Affiliation(s)
- Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yoshihito Yasui
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| |
Collapse
|
7
|
León-Sicairos CR, Figueroa-Angulo EE, Calla-Choque JS, Arroyo R. The Non-Canonical Iron-Responsive Element of IRE-tvcp12 Hairpin Structure at the 3'-UTR of Trichomonas vaginalis TvCP12 mRNA That Binds TvHSP70 and TvACTN-3 Can Regulate mRNA Stability and Amount of Protein. Pathogens 2023; 12:pathogens12040586. [PMID: 37111472 PMCID: PMC10143249 DOI: 10.3390/pathogens12040586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Trichomonas vaginalis is one of the most common sexually transmitted parasites in humans. This protozoan has high iron requirements for growth, metabolism, and virulence. However, iron concentrations also differentially modulate T. vaginalis gene expression as in the genes encoding cysteine proteinases TvCP4 and TvCP12. Our goal was to identify the regulatory mechanism mediating the upregulation of tvcp12 under iron-restricted (IR) conditions. Here, we showed by RT-PCR, Western blot, and immunocytochemistry assays that IR conditions increase mRNA stability and amount of TvCP12. RNA electrophoretic mobility shift assay (REMSA), UV cross-linking, and competition assays demonstrated that a non-canonical iron-responsive element (IRE)-like structure at the 3'-untranslated region of the tvcp12 transcript (IRE-tvcp12) specifically binds to human iron regulatory proteins (IRPs) and to atypical RNA-binding cytoplasmic proteins from IR trichomonads, such as HSP70 and α-Actinin 3. These data were confirmed by REMSA supershift and Northwestern blot assays. Thus, our findings show that a positive gene expression regulation under IR conditions occurs at the posttranscriptional level possibly through RNA-protein interactions between atypical RNA-binding proteins and non-canonical IRE-like structures at the 3'-UTR of the transcript by a parallel mechanism to the mammalian IRE/IRP system that can be applied to other iron-regulated genes of T. vaginalis.
Collapse
Affiliation(s)
- Claudia R León-Sicairos
- Department of Infectomics and Molecular Pathogenesis, Center of Research and Advanced Studies of IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Elisa E Figueroa-Angulo
- Department of Infectomics and Molecular Pathogenesis, Center of Research and Advanced Studies of IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Jaeson S Calla-Choque
- Department of Infectomics and Molecular Pathogenesis, Center of Research and Advanced Studies of IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Rossana Arroyo
- Department of Infectomics and Molecular Pathogenesis, Center of Research and Advanced Studies of IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Mexico City 07360, Mexico
| |
Collapse
|
8
|
Bhatt P, Sharma M, Prakash Sharma P, Rathi B, Sharma S. Mycobacterium tuberculosis dormancy regulon proteins Rv2627c and Rv2628 as Toll like receptor agonist and as potential adjuvant. Int Immunopharmacol 2022; 112:109238. [PMID: 36116151 DOI: 10.1016/j.intimp.2022.109238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
During latency, DosR proteins of Mycobacterium tuberculosis (M.tb) get activated and help the bacterium to remain dormant. We have shown earlier that 2 such proteins Rv2627c and Rv2628 are immunogenic and induce a TH1 kind of immune response. In this study, through in-vitro experiments we have confirmed that Rv2627c and Rv2628 proteins act as protein Toll-Like Receptor (TLR) agonist-adjuvant. Rv2627c and Rv2628 stimulated THP-1 macrophages showed an increased expression of TLR2, TLR4 and co-stimulatory molecules CD40, CD80, CD86 and antigen presenting molecule HLA-DR. Further studies also found enhanced expression of downstream signaling molecules of TLR activation like MyD88, NF-κB-p65 and pro-inflammatory cytokines. Inhibition studies using TLR blocking antibodies decreased the expression of co-stimulatory molecules, MyD88, NF-κB-p65, and pro-inflammatory cytokines. Rv2627c and Rv2628 stimulation of HEK-TLR2 reporter cell line confirmed the interaction of these proteins with TLR2. Moreover, molecular docking and simulations of Rv2627c and Rv2628 proteins with TLR2 and TLR4 showed stable interactions. The adjuvant activity of Rv2628 was further validated by a protein adjuvanted with pre-clinically validated peptides as multi-epitope vaccine construct which showed good binding with TLR2 and TLR4 and activate dendritic cells and induce sustained pro-inflammatory cytokine response by C-ImmSim analysis. We propose that our vaccine construct will produce a better immune response than BCG and can be taken up as a post-exposure therapeutic subunit vaccine along with standard TB therapy. We also anticipate that our construct can be taken up as a protein adjuvant with other vaccine candidates as these can activate macrophages through TLR signaling.
Collapse
Affiliation(s)
- Parul Bhatt
- DSKC BioDiscovery Lab, Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| | - Monika Sharma
- DSKC BioDiscovery Lab, Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India
| | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Sadhna Sharma
- DSKC BioDiscovery Lab, Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| |
Collapse
|
9
|
Alves MSD, Sena-Lopes Â, das Neves RN, Casaril AM, Domingues M, Birmann PT, da Silva ET, de Souza MVN, Savegnago L, Borsuk S. In vitro and in silico trichomonacidal activity of 2,8-bis(trifluoromethyl) quinoline analogs against Trichomonas vaginalis. Parasitol Res 2022; 121:2697-2711. [PMID: 35857093 DOI: 10.1007/s00436-022-07598-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/09/2022] [Indexed: 11/29/2022]
Abstract
Trichomoniasis is a great public health burden worldwide and the increase in treatment failures has led to a need for finding alternative molecules to treat this disease. In this study, we present in vitro and in silico analyses of two 2,8-bis(trifluoromethyl) quinolines (QDA-1 and QDA-2) against Trichomonas vaginalis. For in vitro trichomonacidal activity, up to seven different concentrations of these drugs were tested. Molecular docking, biochemical, and cytotoxicity analyses were performed to evaluate the selectivity profile. QDA-1 displayed a significant effect, completely reducing trophozoites viability at 160 µM, with an IC50 of 113.8 µM, while QDA-2 at the highest concentration reduced viability by 76.9%. QDA-1 completely inhibited T. vaginalis growth and increased reactive oxygen species production and lipid peroxidation after 24 h of treatment, but nitric oxide accumulation was not observed. In addition, molecular docking studies showed that QDA-1 has a favorable binding mode in the active site of the T. vaginalis enzymes purine nucleoside phosphorylase, lactate dehydrogenase, triosephosphate isomerase, and thioredoxin reductase. Moreover, QDA-1 presented a level of cytotoxicity by reducing 36.7% of Vero cells' viability at 200 µM with a CC50 of 247.4 µM and a modest selectivity index. In summary, the results revealed that QDA-1 had a significant anti-T. vaginalis activity. Although QDA-1 had detectable cytotoxicity, the concentration needed to eliminate T. vaginalis trophozoites is lower than the CC50 encouraging further studies of this compound as a trichomonacidal agent.
Collapse
Affiliation(s)
- Mirna Samara Dié Alves
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Ângela Sena-Lopes
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Raquel Nascimento das Neves
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Angela Maria Casaril
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Micaela Domingues
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Paloma Taborda Birmann
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Emerson Teixeira da Silva
- Instituto de Tecnologia em Fármacos - Far-Manguinhos, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, 21041-250, Brazil
| | - Marcus Vinicius Nora de Souza
- Instituto de Tecnologia em Fármacos - Far-Manguinhos, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, 21041-250, Brazil.,Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21945-970, Brazil
| | - Lucielli Savegnago
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Sibele Borsuk
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
10
|
Mining the Proteome of Toxoplasma Parasites Seeking Vaccine and Diagnostic Candidates. Animals (Basel) 2022; 12:ani12091098. [PMID: 35565525 PMCID: PMC9099775 DOI: 10.3390/ani12091098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The One Health concept to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. Toxoplasmosis outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. Consequently, the development of effective vaccine and diagnostic strategies is urgent for the elimination of this disease. Proteomics analysis has allowed the identification of key proteins that can be utilized in the development of novel disease diagnostics and vaccines. This work presents relevant proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites. In fact, it brings together the main functionality key proteins from Toxoplasma parasites coming from proteomic approaches that are most likely to be useful in improving the disease management, and critically proposes innovative directions to finally develop promising vaccines and diagnostics tools. Abstract Toxoplasma gondii is a pathogenic protozoan parasite that infects the nucleated cells of warm-blooded hosts leading to an infectious zoonotic disease known as toxoplasmosis. The infection outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. The One Health approach to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. The presence of drug resistance and side effects, the further improvement of sensitivity and specificity of serodiagnostic tools and the potentiality of vaccine candidates to induce the host immune response are considered as justifiable reasons for the identification of novel targets for the better management of toxoplasmosis. Thus, the identification of new critical proteins in the proteome of Toxoplasma parasites can also be helpful in designing and test more effective drugs, vaccines, and diagnostic tools. Accordingly, in this study we present important proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites that are potential diagnostic or vaccine candidates. The current study might help to understand the complexity of these parasites and provide a possible source of strategies and biomolecules that can be further evaluated in the pathobiology of Toxoplasma parasites and for diagnostics and vaccine trials against this disease.
Collapse
|
11
|
Benítez-Cardoza CG, Brieba LG, Arroyo R, Rojo-Domínguez A, Vique-Sánchez JL. Synergistic effect of compounds directed to triosephosphate isomerase, a combination to develop drug against trichomoniasis. Arch Pharm (Weinheim) 2022; 355:e2200046. [PMID: 35332589 DOI: 10.1002/ardp.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Abstract
The development of new drugs is continuous in the world; currently, saving resources (both economic ones and time) and preventing secondary effects have become a necessity for drug developers. Trichomoniasis is the most common nonviral sexually transmitted infection affecting more than 270 million people around the world. In our research group, we focussed on developing a selective and more effective drug against Trichomonas vaginalis, and we previously reported on a compound, called A4, which had a trichomonacidal effect. Later, we determined another compound, called D4, which also had a trichomonacidal effect together with favorable toxicity results. Both A4 and D4 are directed at the enzyme triosephosphate isomerase. Thus, we made combinations between the two compounds, in which we determined a synergistic effect against T. vaginalis, determining the IC50 and the toxicity of the best relationship to obtain the trichomonacidal effect. With these results, we can propose a combination of compounds that represents a promising alternative for the development of a new therapeutic strategy against trichomoniasis.
Collapse
Affiliation(s)
- Claudia G Benítez-Cardoza
- Laboratorio de Investigación Bioquímica, ENMyH-Instituto Politécnico Nacional, Ciudad de México, México
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, México
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Arturo Rojo-Domínguez
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Ciudad de México, México
| | - José L Vique-Sánchez
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| |
Collapse
|
12
|
Hirayama S, Domon H, Hiyoshi T, Isono T, Tamura H, Sasagawa K, Takizawa F, Terao Y. Triosephosphate isomerase of Streptococcus pneumoniae is released extracellularly by autolysis and binds to host plasminogen to promote its activation. FEBS Open Bio 2022; 12:1206-1219. [PMID: 35298875 PMCID: PMC9157410 DOI: 10.1002/2211-5463.13396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Recruitment of plasminogen is an important infection strategy of the human pathogen Streptococcus pneumoniae to invade host tissues. In Streptococcus aureus, triosephosphate isomerase (TPI) has been reported to bind plasminogen. In this study, the TPI of S. pneumoniae (TpiA) was identified through proteomic analysis of bronchoalveolar lavage fluid from a murine pneumococcal pneumonia model. The binding kinetics of recombinant pneumococcal TpiA with plasminogen were characterized using surface plasmon resonance (SPR, Biacore), ligand blot analyses, and enzyme‐linked immunosorbent assay. Enhanced plasminogen activation and subsequent degradation by plasmin were also shown. Release of TpiA into the culture medium was observed to be dependent on autolysin. These findings suggest that S. pneumoniae releases TpiA via autolysis, which then binds to plasminogen and promotes its activation, thereby contributing to tissue invasion via degradation of the extracellular matrix.
Collapse
Affiliation(s)
- Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumio Takizawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
13
|
Triosephosphate isomerase as a therapeutic target against trichomoniasis. Mol Biochem Parasitol 2021; 246:111413. [PMID: 34537286 DOI: 10.1016/j.molbiopara.2021.111413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022]
Abstract
Trichomoniasis is the most common non-viral sexually transmitted infection, caused by the protozoan parasite Trichomonas vaginalis, affecting millions of people worldwide. The main treatment against trichomoniasis is metronidazole and other nitroimidazole derivatives, but up to twenty percent of clinical cases of trichomoniasis are resistant to these drugs. In this study, we used high-performance virtual screening to search for molecules that specifically bind to the protein, triosephosphate isomerase from T. vaginalis (TvTIM). By in silico molecular docking analysis, we selected six compounds from a chemical library of almost 500,000 compounds. While none of the six inhibited the enzymatic activity of recombinant triosephosphate isomerase isoforms, one compound (A4; 3,3'-{[4-(4-morpholinyl)phenyl]methylene}bis(4- hydroxy-2H-chromen-2-one) altered their fluorescence emission spectra, suggesting that this chemical might interfere in an important non-glycolytic function of TvTIM. In vitro assays demonstrate that A4 is not cytotoxic but does have trichomonacidal impact on T. vaginalis cultures. With these results, we propose this compound as a potential drug with a new therapeutic target against Trichomonas vaginalis.
Collapse
|
14
|
Satala D, Satala G, Zawrotniak M, Kozik A. Candida albicans and Candida glabrata triosephosphate isomerase - a moonlighting protein that can be exposed on the candidal cell surface and bind to human extracellular matrix proteins. BMC Microbiol 2021; 21:199. [PMID: 34210257 PMCID: PMC8252264 DOI: 10.1186/s12866-021-02235-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
Background Triosephosphate isomerase (Tpi1) is a glycolytic enzyme that has recently been reported also to be an atypical proteinaceous component of the Candida yeast cell wall. Similar to other known candidal “moonlighting proteins”, surface-exposed Tpi1 is likely to contribute to fungal adhesion during the colonization and infection of a human host. The aim of our present study was to directly prove the presence of Tpi1 on C. albicans and C. glabrata cells under various growth conditions and characterize the interactions of native Tpi1, isolated and purified from the candidal cell wall, with human extracellular matrix proteins. Results Surface plasmon resonance measurements were used to determine the dissociation constants for the complexes of Tpi1 with host proteins and these values were found to fall within a relatively narrow range of 10− 8-10− 7 M. Using a chemical cross-linking method, two motifs of the Tpi1 molecule (aa 4–17 and aa 224–247) were identified to be directly involved in the interaction with vitronectin. A proposed structural model for Tpi1 confirmed that these interaction sites were at a considerable distance from the catalytic active site. Synthetic peptides with these sequences significantly inhibited Tpi1 binding to several extracellular matrix proteins suggesting that a common region on the surface of Tpi1 molecule is involved in the interactions with the host proteins. Conclusions The current study provided structural insights into the interactions of human extracellular matrix proteins with Tpi1 that can occur at the cell surface of Candida yeasts and contribute to the host infection by these fungal pathogens. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02235-w.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Grzegorz Satala
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland. .,Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-384, Krakow, Poland.
| |
Collapse
|
15
|
Balmer EA, Faso C. The Road Less Traveled? Unconventional Protein Secretion at Parasite-Host Interfaces. Front Cell Dev Biol 2021; 9:662711. [PMID: 34109175 PMCID: PMC8182054 DOI: 10.3389/fcell.2021.662711] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023] Open
Abstract
Protein secretion in eukaryotic cells is a well-studied process, which has been known for decades and is dealt with by any standard cell biology textbook. However, over the past 20 years, several studies led to the realization that protein secretion as a process might not be as uniform among different cargos as once thought. While in classic canonical secretion proteins carry a signal sequence, the secretory or surface proteome of several organisms demonstrated a lack of such signals in several secreted proteins. Other proteins were found to indeed carry a leader sequence, but simply circumvent the Golgi apparatus, which in canonical secretion is generally responsible for the modification and sorting of secretory proteins after their passage through the endoplasmic reticulum (ER). These alternative mechanisms of protein translocation to, or across, the plasma membrane were collectively termed “unconventional protein secretion” (UPS). To date, many research groups have studied UPS in their respective model organism of choice, with surprising reports on the proportion of unconventionally secreted proteins and their crucial roles for the cell and survival of the organism. Involved in processes such as immune responses and cell proliferation, and including far more different cargo proteins in different organisms than anyone had expected, unconventional secretion does not seem so unconventional after all. Alongside mammalian cells, much work on this topic has been done on protist parasites, including genera Leishmania, Trypanosoma, Plasmodium, Trichomonas, Giardia, and Entamoeba. Studies on protein secretion have mainly focused on parasite-derived virulence factors as a main source of pathogenicity for hosts. Given their need to secrete a variety of substrates, which may not be compatible with canonical secretion pathways, the study of mechanisms for alternative secretion pathways is particularly interesting in protist parasites. In this review, we provide an overview on the current status of knowledge on UPS in parasitic protists preceded by a brief overview of UPS in the mammalian cell model with a focus on IL-1β and FGF-2 as paradigmatic UPS substrates.
Collapse
Affiliation(s)
- Erina A Balmer
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Abstract
Trichomonas vaginalis is an anaerobic/microaerophilic protist parasite which causes trichomoniasis, one of the most prevalent sexually transmitted diseases worldwide. T. vaginalis not only is important as a human pathogen but also is of great biological interest because of its peculiar cell biology and metabolism, in earlier times fostering the erroneous notion that this microorganism is at the root of eukaryotic evolution. This review summarizes the major advances in the last five years in the T. vaginalis field with regard to genetics, molecular biology, ecology, and pathogenicity of the parasite.
Collapse
Affiliation(s)
- David Leitsch
- Department of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Molgora BM, Rai AK, Sweredoski MJ, Moradian A, Hess S, Johnson PJ. A Novel Trichomonas vaginalis Surface Protein Modulates Parasite Attachment via Protein:Host Cell Proteoglycan Interaction. mBio 2021; 12:e03374-20. [PMID: 33563826 PMCID: PMC7885099 DOI: 10.1128/mbio.03374-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Trichomonas vaginalis is a highly prevalent, sexually transmitted parasite which adheres to mucosal epithelial cells to colonize the human urogenital tract. Despite adherence being crucial for this extracellular parasite to thrive within the host, relatively little is known about the mechanisms or key molecules involved in this process. Here, we have identified and characterized a T. vaginalis hypothetical protein, TVAG_157210 (TvAD1), as a surface protein that plays an integral role in parasite adherence to the host. Quantitative proteomics revealed TvAD1 to be ∼4-fold more abundant in parasites selected for increased adherence (MA parasites) than the isogenic parental (P) parasite line. De novo modeling suggested that TvAD1 binds N-acetylglucosamine (GlcNAc), a sugar comprising host glycosaminoglycans (GAGs). Adherence assays utilizing GAG-deficient cell lines determined that host GAGs, primarily heparan sulfate (HS), mediate adherence of MA parasites to host cells. TvAD1 knockout (KO) parasites, generated using CRISPR-Cas9, were found to be significantly reduced in host cell adherence, a phenotype that is rescued by overexpression of TvAD1 in KO parasites. In contrast, there was no significant difference in parasite adherence to GAG-deficient lines by KO parasites compared with wild-type, which is contrary to that observed for KO parasites overexpressing TvAD1. Isothermal titration calorimetric (ITC) analysis showed that TvAD1 binds to HS, indicating that TvAD1 mediates host cell adherence via HS interaction. In addition to characterizing the role of TvAD1 in parasite adherence, these studies reveal a role for host GAG molecules in T. vaginalis adherence.IMPORTANCE The ability of the sexually transmitted parasite Trichomonas vaginalis to adhere to its human host is critical for establishing and maintaining an infection. Yet how parasites adhere to host cells is poorly understood. In this study, we employed a novel adherence selection method to identify proteins involved in parasite adherence to the host. This method led to the identification of a protein, with no previously known function, that is more abundant in parasites with increased capacity to bind host cells. Bioinformatic modeling and biochemical analyses revealed that this protein binds a common component on the host cell surface proteoglycans. Subsequent creation of parasites that lack this protein directly demonstrated that the protein mediates parasite adherence via an interaction with host cell proteoglycans. These findings both demonstrate a role for this protein in T. vaginalis adherence to the host and shed light on host cell molecules that participate in parasite colonization.
Collapse
Affiliation(s)
- Brenda M Molgora
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Anand Kumar Rai
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Annie Moradian
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Sonja Hess
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Patricia J Johnson
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
18
|
Developing a new drug against trichomoniasis, new inhibitory compounds of the protein triosephosphate isomerase. Parasitol Int 2020; 76:102086. [DOI: 10.1016/j.parint.2020.102086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 11/10/2019] [Accepted: 02/16/2020] [Indexed: 12/11/2022]
|
19
|
Benítez‐Cardoza CG, Jiménez‐Pineda A, Angles‐Falconi SI, Fernández‐Velasco DA, Vique‐Sánchez JL. Potential Site to Direct Selective Compounds in the Triosephosphate Isomerase for the Development of New Drugs. ChemistrySelect 2020. [DOI: 10.1002/slct.202000820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Albertana Jiménez‐Pineda
- Laboratorio de Investigación BioquímicaENMyH-Instituto Politécnico Nacional Ciudad de México México
| | - Sergio I. Angles‐Falconi
- División Académica Multidisciplinaria de Jalpa de MéndezUniversidad Juárez Autónoma de Tabasco Jalpa de Méndez Tabasco, México
| | - Daniel A. Fernández‐Velasco
- Laboratorio de Fisicoquímica e Ingeniería de ProteínasDepartamento de BioquímicaFacultad de MedicinaUniversidad Nacional Autónoma de México México
| | - José L. Vique‐Sánchez
- Laboratorio de Investigación BioquímicaENMyH-Instituto Politécnico Nacional Ciudad de México México
- Facultad de MedicinaUniversidad Autónoma de Baja California Mexicali, BC, México
| |
Collapse
|
20
|
The effect of iron on Trichomonas vaginalis TvCP2: a cysteine proteinase found in vaginal secretions of trichomoniasis patients. Parasitology 2020; 147:760-774. [PMID: 32174285 DOI: 10.1017/s0031182020000438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Trichomonas vaginalis (Tv) induces host cell damage through cysteine proteinases (CPs) modulated by iron. An immunoproteomic analysis showed that trichomoniasis patient sera recognize various CPs, also some of them are present in vaginal washes (VWs). Thus, the goal of this work was to determine whether TvCP2 is expressed during infection and to assess the effect of iron on TvCP2 expression, localization and contribution to in vitro cellular damage. Western-blotting (WB) assays using TvCP2r and vaginitis patient serum samples showed that 6/9 Tv (+) but none of the Tv (-) patient sera recognized TvCP2r. WB using an anti-TvCP2r antibody and VWs from the same patients showed that in all of the Tv (+) but none of the Tv (-) VWs, the anti-TvCP2r antibody detected a 27 kDa protein band that corresponded to the mature TvCP2, which was confirmed by mass spectrometry analysis. Iron decreased the amount of TvCP2 mRNA and the protein localized on the parasite surface and cytoplasmic vesicles concomitant with the cytotoxic effect of TvCP2 on HeLa cells. Parasites pretreated with the anti-TvCP2r antibody also showed reduced levels of cytotoxicity and apoptosis induction in HeLa cell monolayers. In conclusion, these results show that TvCP2 is expressed during trichomonal infection and plays an important role in the in vitro HeLa cell cytotoxic damage under iron-restricted conditions.
Collapse
|
21
|
Jimenez-Sandoval P, Castro-Torres E, González-González R, Díaz-Quezada C, Gurrola M, Camacho-Manriquez LD, Leyva-Navarro L, Brieba LG. Crystal structures of Triosephosphate Isomerases from Taenia solium and Schistosoma mansoni provide insights for vaccine rationale and drug design against helminth parasites. PLoS Negl Trop Dis 2020; 14:e0007815. [PMID: 31923219 PMCID: PMC6980832 DOI: 10.1371/journal.pntd.0007815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 01/23/2020] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Triosephosphate isomerases (TPIs) from Taenia solium (TsTPI) and
Schistosoma mansoni (SmTPI) are potential vaccine and drug
targets against cysticercosis and schistosomiasis, respectively. This is due to
the dependence of parasitic helminths on glycolysis and because those proteins
elicit an immune response, presumably due to their surface localization. Here we
report the crystal structures of TsTPI and SmTPI in complex with
2-phosphoglyceric acid (2-PGA). Both TPIs fold into a dimeric (β-α)8
barrel in which the dimer interface consists of α-helices 2, 3, and 4, and
swapping of loop 3. TPIs from parasitic helminths harbor a region of three amino
acids knows as the SXD/E insert (S155 to E157 and S157 to D159 in TsTPI and
SmTPI, respectively). This insert is located between α5 and β6 and is proposed
to be the main TPI epitope. This region is part of a solvent-exposed
310–helix that folds into a hook-like structure. The crystal
structures of TsTPI and SmTPI predicted conformational epitopes that could be
used for vaccine design. Surprisingly, the epitopes corresponding to the SXD/E
inserts are not the ones with the greatest immunological potential. SmTPI, but
not TsTPI, habors a sole solvent exposed cysteine (SmTPI-S230) and alterations
in this residue decrease catalysis. The latter suggests that thiol-conjugating
agents could be used to target SmTPI. In sum, the crystal structures of SmTPI
and TsTPI are a blueprint for targeted schistosomiasis and cysticercosis drug
and vaccine development. Because of the worldwide prevalence of schistosomiasis and cysticercosis, it is
critical to develop drugs and vaccines against their causative agents. The
glycolytic enzyme triosephosphate isomerase (TPI) is a dual-edged sword against
diseases caused by parasitic helminths. This is because helminths heavily depend
on glycolysis for energy and because the surface localization exhibited by TPIs
that elicits an immune response against those organisms. Here we provide the
crystal structures TPIs from Taenia solium and
Schistosoma mansoni as a first step for vaccine and drug
design. As a proof of concept we found that modifications in the single solvent
exposed cysteine of TPI from S. mansoni
decreases catalysis, making this enzyme a novel target against
schistosomiasis.
Collapse
Affiliation(s)
- Pedro Jimenez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
| | - Eduardo Castro-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
| | - Rogelio González-González
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
| | - Corina Díaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
| | - Misraim Gurrola
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
| | - Laura D. Camacho-Manriquez
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
| | - Lucia Leyva-Navarro
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
| | - Luis G. Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad,
Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato,
México
- * E-mail:
| |
Collapse
|
22
|
Glucose-restriction increasesTrichomonas vaginaliscellular damage towards HeLa cells and proteolytic activity of cysteine proteinases (CPs), such as TvCP2. Parasitology 2019; 146:1156-1166. [DOI: 10.1017/s0031182019000209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractTrichomonas vaginalisinduces cellular damage to the host cells (cytotoxicity) through the proteolytic activity of multiple proteinases of the cysteine type (CPs). Some CPs are modulated by environmental factors such as iron, zinc, polyamines, etc. Thus, the goal of this study was to assess the effect of glucose onT. vaginaliscytotoxicity, proteolytic activity and the particular role of TvCP2 (TVAG_057000) during cellular damage. Cytotoxicity assays showed that glucose-restriction (GR) promotes the highest HeLa cell monolayers destruction (~95%) by trichomonads compared to those grown under high glucose (~44%) condition. Zymography and Western blot using different primary antibodies showed that GR increased the proteolytic activity, amount and secretion of certain CPs, including TvCP2. We further characterized the effect of glucose on TvCP2. TvCP2 increases in GR, localized in vesicles close to the plasma membrane and on the surface ofT. vaginalis. Furthermore, pretreatment of GR-trichomonads with an anti-TvCP2r polyclonal antibody specifically reduced the levels of cytotoxicity and apoptosis induction to HeLa cells in a concentration-dependent manner. In conclusion, our data show that GR, as a nutritional stress condition, promotes trichomonal cytotoxicity to the host cells, increases trichomonad proteolytic activity and amount of CPs, such as TvCP2 involved in cellular damage.
Collapse
|
23
|
Rodríguez-Bolaños M, Perez-Montfort R. Medical and Veterinary Importance of the Moonlighting Functions of Triosephosphate Isomerase. Curr Protein Pept Sci 2019; 20:304-315. [DOI: 10.2174/1389203719666181026170751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Triosephosphate isomerase is the fifth enzyme in glycolysis and its canonical function is the
reversible isomerization of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Within the
last decade multiple other functions, that may not necessarily always involve catalysis, have been described.
These include variations in the degree of its expression in many types of cancer and participation
in the regulation of the cell cycle. Triosephosphate isomerase may function as an auto-antigen and
in the evasion of the immune response, as a factor of virulence of some organisms, and also as an important
allergen, mainly in a variety of seafoods. It is an important factor to consider in the cryopreservation
of semen and seems to play a major role in some aspects of the development of Alzheimer's disease. It
also seems to be responsible for neurodegenerative alterations in a few cases of human triosephosphate
isomerase deficiency. Thus, triosephosphate isomerase is an excellent example of a moonlighting protein.
Collapse
Affiliation(s)
- Mónica Rodríguez-Bolaños
- Departamento de Bioquimica y Biologia Estructural, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Coyoacan, 04510 Mexico DF, Mexico
| | - Ruy Perez-Montfort
- Departamento de Bioquimica y Biologia Estructural, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Coyoacan, 04510 Mexico DF, Mexico
| |
Collapse
|
24
|
Hernández-García MS, Miranda-Ozuna JFT, Salazar-Villatoro L, Vázquez-Calzada C, Ávila-González L, González-Robles A, Ortega-López J, Arroyo R. Biogenesis of Autophagosome in Trichomonas vaginalis during Macroautophagy Induced by Rapamycin-treatment and Iron or Glucose Starvation Conditions. J Eukaryot Microbiol 2019; 66:654-669. [PMID: 30620421 DOI: 10.1111/jeu.12712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022]
Abstract
Autophagy is an adaptive response for cell survival in which cytoplasmic components and organelles are degraded in bulk under normal and stress conditions. Trichomonas vaginalis is a parasite highly adaptable to stress conditions such as iron (IR) and glucose restriction (GR). Autophagy can be traced by detecting a key autophagy protein (Atg8) anchored to the autophagosome membrane by a lipid moiety. Our goal was to perform a morphological and cellular study of autophagy in T. vaginalis under GR, IR, and Rapamycin (Rapa) treatment using TvAtg8 as a putative autophagy marker. We cloned tvatg8a and tvatg8b and expressed and purified rTvAtg8a and rTvAtg8b to produce specific polyclonal antibodies. Autophagy vesicles were detected by indirect immunofluorescence assays and confirmed by ultrastructural analysis. The biogenesis of autophagosomes was detected, showing intact cytosolic cargo. TvAtg8 was detected as puncta signal with the anti-rTvAtg8b antibody that recognized soluble and lipid-associated TvAtg8b by Western blot assays in lysates from stress-inducing conditions. The TvAtg8b signal co-localized with the CytoID and lysotracker labeling (autolysosomes) that accumulated after E-64d treatment in GR parasites. Our data suggest that autophagy induced by starvation in T. vaginalis results in the formation of autophagosomes for which TvAtg8b could be a putative autophagy marker.
Collapse
Affiliation(s)
- Mar S Hernández-García
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Jesús F T Miranda-Ozuna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Carlos Vázquez-Calzada
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Leticia Ávila-González
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| |
Collapse
|
25
|
Liu D, Yang Z, Chen Y, Zhuang W, Niu H, Wu J, Ying H. Clostridium acetobutylicum grows vegetatively in a biofilm rich in heteropolysaccharides and cytoplasmic proteins. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:315. [PMID: 30479660 PMCID: PMC6245871 DOI: 10.1186/s13068-018-1316-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Biofilms are cell communities wherein cells are embedded in a self-produced extracellular polymeric substances (EPS). The biofilm of Clostridium acetobutylicum confers the cells superior phenotypes and has been extensively exploited to produce a variety of liquid biofuels and bulk chemicals. However, little has been known about the physiology of C. acetobutylicum in biofilm as well as the composition and biosynthesis of the EPS. Thus, this study is focused on revealing the cell physiology and EPS composition of C. acetobutylicum biofilm. RESULTS Here, we revealed a novel lifestyle of C. acetobutylicum in biofilm: elimination of sporulation and vegetative growth. Extracellular polymeric substances and wire-like structures were also observed in the biofilm. Furthermore, for the first time, the biofilm polysaccharides and proteins were isolated and characterized. The biofilm contained three heteropolysaccharides. The major fraction consisted of predominantly glucose, mannose and aminoglucose. Also, a great variety of proteins including many non-classically secreted proteins moonlighting as adhesins were found considerably present in the biofilm, with GroEL, a S-layer protein and rubrerythrin being the most abundant ones. CONCLUSIONS This study evidenced that vegetative C. acetobutylicum cells rather than commonly assumed spore-forming cells were essentially the solvent-forming cells. The abundant non-classically secreted moonlighting proteins might be important for the biofilm formation. This study provides the first physiological and molecular insights into C. acetobutylicum biofilm which should be valuable for understanding and development of the biofilm-based processes.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Zhengjiao Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Huanqing Niu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Jinglan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211800 China
- Jiangsu National Synergetic Innovation Center for Advance Material (SICAM), No. 30, Puzhu South Road, Nanjing, 211800 China
| |
Collapse
|
26
|
Leroux LP, Nasr M, Valanparambil R, Tam M, Rosa BA, Siciliani E, Hill DE, Zarlenga DS, Jaramillo M, Weinstock JV, Geary TG, Stevenson MM, Urban JF, Mitreva M, Jardim A. Analysis of the Trichuris suis excretory/secretory proteins as a function of life cycle stage and their immunomodulatory properties. Sci Rep 2018; 8:15921. [PMID: 30374177 PMCID: PMC6206011 DOI: 10.1038/s41598-018-34174-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Parasitic worms have a remarkable ability to modulate host immune responses through several mechanisms including excreted/secreted proteins (ESP), yet the exact nature of these proteins and their targets often remains elusive. Here, we performed mass spectrometry analyses of ESP (TsESP) from larval and adult stages of the pig whipworm Trichuris suis (Ts) and identified ~350 proteins. Transcriptomic analyses revealed large subsets of differentially expressed genes in the various life cycle stages of the parasite. Exposure of bone marrow-derived macrophages and dendritic cells to TsESP markedly diminished secretion of the pro-inflammatory cytokines TNFα and IL-12p70. Conversely, TsESP exposure strongly induced release of the anti-inflammatory cytokine IL-10, and also induced high levels of nitric oxide (NO) and upregulated arginase activity in macrophages. Interestingly, TsESP failed to directly induce CD4+ CD25+ FoxP3+ regulatory T cells (Treg cells), while OVA-pulsed TsESP-treated dendritic cells suppressed antigen-specific OT-II CD4+ T cell proliferation. Fractionation of TsESP identified a subset of proteins that promoted anti-inflammatory functions, an activity that was recapitulated using recombinant T. suis triosephosphate isomerase (TPI) and nucleoside diphosphate kinase (NDK). Our study helps illuminate the intricate balance that is characteristic of parasite-host interactions at the immunological interface, and further establishes the principle that specific parasite-derived proteins can modulate immune cell functions.
Collapse
Affiliation(s)
- Louis-Philippe Leroux
- Institute of Parasitology McGill University, Sainte-Anne-de-Bellevue, QC, Canada
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier (IAF), Laval, QC, Canada
| | - Mohamad Nasr
- Institute of Parasitology McGill University, Sainte-Anne-de-Bellevue, QC, Canada
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada
| | - Rajesh Valanparambil
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Mifong Tam
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Bruce A Rosa
- McDonnell Genome Institute, Washington University in, St. Louis, MO, USA
| | - Elizabeth Siciliani
- Institute of Parasitology McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Dolores E Hill
- United States Department of Agriculture, Beltsville, MD, USA
| | | | - Maritza Jaramillo
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier (IAF), Laval, QC, Canada
| | - Joel V Weinstock
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA, USA
| | - Timothy G Geary
- Institute of Parasitology McGill University, Sainte-Anne-de-Bellevue, QC, Canada
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada
| | - Mary M Stevenson
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Joseph F Urban
- United States Department of Agriculture, Beltsville, MD, USA
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University in, St. Louis, MO, USA
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Armando Jardim
- Institute of Parasitology McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
- Centre for Host-Parasite Interaction (CHPI), Montreal, Canada.
| |
Collapse
|
27
|
Mercer F, Johnson PJ. Trichomonas vaginalis: Pathogenesis, Symbiont Interactions, and Host Cell Immune Responses. Trends Parasitol 2018; 34:683-693. [PMID: 30056833 PMCID: PMC11132421 DOI: 10.1016/j.pt.2018.05.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/21/2018] [Accepted: 05/30/2018] [Indexed: 01/03/2023]
Abstract
The parasite Trichomonas vaginalis (Tv) causes a highly prevalent sexually transmitted infection. As an extracellular pathogen, the parasite mediates adherence to epithelial cells to colonize the human host. In addition, the parasite interfaces with the host immune system and the vaginal microbiota. Modes of Tv pathogenesis include damage to host tissue mediated by parasite killing of host cells, disruption of steady-state vaginal microbial ecology, and eliciting inflammation by activating the host immune response. Recent Tv research has uncovered new players that contribute to multifactorial mechanisms of host-parasite adherence and killing, and has examined the relationship between Tv and vaginal bacteria. Mechanisms that may lead to parasite recognition and killing, or the evasion of host immune cells, have also been revealed.
Collapse
Affiliation(s)
- Frances Mercer
- Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA.
| | - Patricia J Johnson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, 1602 Molecular Sciences Building, 609 Charles E. Young Drive East, Los Angeles, CA 90095-1489, USA.
| |
Collapse
|
28
|
Sánchez-Rodríguez DB, Ortega-López J, Cárdenas-Guerra RE, Reséndiz-Cardiel G, Chávez-Munguía B, Lagunes-Guillen A, Arroyo R. Characterization of a novel endogenous cysteine proteinase inhibitor, trichocystatin-3 (TC-3), localized on the surface of Trichomonas vaginalis. Int J Biochem Cell Biol 2018; 102:87-100. [PMID: 30016696 DOI: 10.1016/j.biocel.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/18/2022]
Abstract
Trichomonas vaginalis is a flagellated protist responsible for human trichomoniasis. T. vaginalis has three genes encoding for endogenous cysteine proteinase (CP) inhibitors, known as trichocystatin-1 through trichocystatin-3 (TC-1, TC-2, and TC-3). These inhibitors belong to the cystatin family. In this study, we characterized trichocystatin-3 (TC-3), an endogenous cysteine proteinase (CP) inhibitor of T. vaginalis. TC-3 possesses a signal peptide in the N-terminus and two putative glycosylation sites (typical of family 2, cystatins) but lacks the PW motif and cysteine residues (typical of family 1, stefins). Native TC-3 was recognized as an ∼18 kDa protein band in a T. vaginalis protein extract. By confocal microscopy, endogenous TC-3 was found in the Golgi complex, cytoplasm, large vesicles, and the plasma membrane. These localizations are consistent with an in silico prediction. In addition, the purified recombinant protein (TC-3r) functions as an inhibitor of cathepsin L CPs, such as human liver cathepsin L and trichomonad CPs, present in a proteinase-resistant extract (PRE). Via a pull-down assay using TC-3r as bait and PRE, we identified several trichomonad CPs targeted by TC-3, primarily TvCP3. These CP-TC-3 interactions occur in vesicles, in the cytoplasm, and on the parasite surface. In addition, TC-3r showed a protective effect on HeLa cell monolayers by inhibiting trichomonad surface CPs involved in cellular damage. Our results show that the endogenous inhibitor TC-3 plays a key role in the regulation of endogenous CP proteolytic activity.
Collapse
Affiliation(s)
- Diana Belén Sánchez-Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Delg. Gustavo A Madero, CP 07360, Mexico City, Mexico
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Delg. Gustavo A Madero, CP 07360, Mexico City, Mexico
| | - Rosa Elena Cárdenas-Guerra
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Delg. Gustavo A Madero, CP 07360, Mexico City, Mexico
| | - Gerardo Reséndiz-Cardiel
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Delg. Gustavo A Madero, CP 07360, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Delg. Gustavo A Madero, CP 07360, Mexico City, Mexico
| | - Anel Lagunes-Guillen
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Delg. Gustavo A Madero, CP 07360, Mexico City, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Delg. Gustavo A Madero, CP 07360, Mexico City, Mexico.
| |
Collapse
|
29
|
Mancilla-Olea MI, Ortega-López J, Figueroa-Angulo EE, Avila-González L, Cárdenas-Guerra RE, Miranda-Ozuna JF, González-Robles A, Hernández-García MS, Sánchez-Ayala L, Arroyo R. Trichomonas vaginalis cathepsin D-like aspartic proteinase (Tv-CatD) is positively regulated by glucose and degrades human hemoglobin. Int J Biochem Cell Biol 2018; 97:1-15. [DOI: 10.1016/j.biocel.2018.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 01/07/2023]
|
30
|
Alvarez-Sánchez ME, Quintas-Granados LI, Vázquez-Carrillo LI, Puente-Rivera J, Villalobos-Osnaya A, Ponce-Regalado MD, Camacho-Nuez M. Proteomic profile approach of effect of putrescine depletion over Trichomonas vaginalis. Parasitol Res 2018. [PMID: 29516214 DOI: 10.1007/s00436-018-5821-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infection with Trichomonas vaginalis produces a malodorous seropurulent vaginal discharge due to several chemicals, including polyamines. The presence of 1,4-diamino-2-butanone (DAB) reduces the amount of intracellular putrescine by 90%, preventing the cotransport of exogenous spermine. DAB-treated parasites present morphological changes, which are restored by adding exogenous putrescine into the culture medium. However, the effect of polyamines over the trichomonad proteomic profile is unknown. In this study, we used a proteomic approach to analyze the polyamine-depletion and restoration effect by exogenous putrescine on T. vaginalis proteome. In the presence of inhibitor DAB, we obtained 369 spots in polyamine-depleted condition and observed 499 spots in the normal culture media. With DAB treatment, the intensity of 43 spots was increased but was found to be reduced in 39 spots, as compared to normal conditions. Interestingly, in DAB-treated parasites restored with a medium with added exogenous putrescine, 472 spots were found, of which 33 were upregulated and 63 were downregulated in protein intensity. Some of these downregulated proteins in DAB-treated parasites are involved in several cellular pathways such as glycolysis, glycolytic fermentation, arginine dihydrolase pathway, redox homeostasis, host cell binding mediated by carbohydrate, chaperone function, and cytoskeletal remodeling. Interestingly, the intensity of some of the proteins was restored by adding exogenous putrescine. In conclusion, the presence of DAB altered the proteomic profile of T. vaginalis, resulting in a decrease in the intensity of 130 proteins and an increase in the intensity of 43 proteins that was restored by the addition of putrescine.
Collapse
Affiliation(s)
- María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, Mexico City, Mexico.
| | - Laura Itzel Quintas-Granados
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, Mexico City, Mexico
| | - Laura Isabel Vázquez-Carrillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, Mexico City, Mexico
| | - Jonathan Puente-Rivera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, Mexico City, Mexico
| | - Alma Villalobos-Osnaya
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, Mexico City, Mexico
| | - María Dolores Ponce-Regalado
- Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
| | - Minerva Camacho-Nuez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, 03100, Mexico City, Mexico
| |
Collapse
|
31
|
Jimenez-Sandoval P, Vique-Sanchez JL, Hidalgo ML, Velazquez-Juarez G, Diaz-Quezada C, Arroyo-Navarro LF, Moran GM, Fattori J, Jessica Diaz-Salazar A, Rudiño-Pinera E, Sotelo-Mundo R, Figueira ACM, Lara-Gonzalez S, Benítez-Cardoza CG, Brieba LG. A competent catalytic active site is necessary for substrate induced dimer assembly in triosephosphate isomerase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1423-1432. [DOI: 10.1016/j.bbapap.2017.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 11/30/2022]
|
32
|
Lopez-Zavala AA, Carrasco-Miranda JS, Ramirez-Aguirre CD, López-Hidalgo M, Benitez-Cardoza CG, Ochoa-Leyva A, Cardona-Felix CS, Diaz-Quezada C, Rudiño-Piñera E, Sotelo-Mundo RR, Brieba LG. Structural insights from a novel invertebrate triosephosphate isomerase from Litopenaeus vannamei. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1696-1706. [PMID: 27614148 DOI: 10.1016/j.bbapap.2016.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/17/2016] [Accepted: 09/03/2016] [Indexed: 01/12/2023]
Abstract
Triosephosphate isomerase (TIM; EC 5.3.1.1) is a key enzyme involved in glycolysis and gluconeogenesis. Glycolysis is one of the most regulated metabolic pathways, however little is known about the structural mechanisms for its regulation in non-model organisms, like crustaceans. To understand the structure and function of this enzyme in invertebrates, we obtained the crystal structure of triosephosphate isomerase from the marine Pacific whiteleg shrimp (Litopenaeus vannamei, LvTIM) in complex with its inhibitor 2-phosphogyceric acid (2-PG) at 1.7Å resolution. LvTIM assembles as a homodimer with residues 166-176 covering the active site and residue Glu166 interacting with the inhibitor. We found that LvTIM is the least stable TIM characterized to date, with the lowest range of melting temperatures, and with the lowest activation enthalpy associated with the thermal unfolding process reported. In TIMs dimer stabilization is maintained by an interaction of loop 3 by a set of hydrophobic contacts between subunits. Within these contacts, the side chain of a hydrophobic residue of one subunit fits into a cavity created by a set of hydrophobic residues in the neighboring subunit, via a "ball and socket" interaction. LvTIM presents a Cys47 at the "ball" inter-subunit contact indicating that the character of this residue is responsible for the decrease in dimer stability. Mutational studies show that this residue plays a role in dimer stability but is not a solely determinant for dimer formation.
Collapse
Affiliation(s)
- Alonso A Lopez-Zavala
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora 83304, Mexico; Departamento de Ciencias Quimico Biologicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo, Sonora 83000, Mexico
| | - Jesus S Carrasco-Miranda
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora 83304, Mexico
| | - Claudia D Ramirez-Aguirre
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados (CINVESTAV Unidad Irapuato), Km 9.6 Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, Irapuato, Guanajuato 36500, Mexico
| | - Marisol López-Hidalgo
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-Instituto Politecnico Nacional, Ave. Guillermo Massieu Helguera, No. 239, Fracc. "La Escalera", Ticoman, Ciudad de México, 07320, Mexico
| | - Claudia G Benitez-Cardoza
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-Instituto Politecnico Nacional, Ave. Guillermo Massieu Helguera, No. 239, Fracc. "La Escalera", Ticoman, Ciudad de México, 07320, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiologia Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Cesar S Cardona-Felix
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados (CINVESTAV Unidad Irapuato), Km 9.6 Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, Irapuato, Guanajuato 36500, Mexico; Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), Av. Instituto Politécnico Nacional. s/n., 23096, La Paz, Baja California Sur 23096, Mexico; Cátedras CONACyT, Dirección Adjunta de Desarrollo Científico, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Ciudad de Mexico, 03940, Mexico
| | - Corina Diaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados (CINVESTAV Unidad Irapuato), Km 9.6 Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, Irapuato, Guanajuato 36500, Mexico
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora 83304, Mexico.
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados (CINVESTAV Unidad Irapuato), Km 9.6 Libramiento Norte Carretera Irapuato-León, Apartado Postal 629, Irapuato, Guanajuato 36500, Mexico.
| |
Collapse
|