1
|
Kelly AM, McCarthy KN, Claxton TJ, Carlile SR, O'Brien EC, Vozza EG, Mills KH, McLoughlin RM. IL-10 inhibition during immunization improves vaccine-induced protection against Staphylococcus aureus infection. JCI Insight 2024; 9:e178216. [PMID: 38973612 PMCID: PMC11383370 DOI: 10.1172/jci.insight.178216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
Staphylococcus aureus is a major human pathogen. An effective anti-S. aureus vaccine remains elusive as the correlates of protection are ill-defined. Targeting specific T cell populations is an important strategy for improving anti-S. aureus vaccine efficacy. Potential bottlenecks that remain are S. aureus-induced immunosuppression and the impact this might have on vaccine-induced immunity. S. aureus induces IL-10, which impedes effector T cell responses, facilitating persistence during both colonization and infection. Thus, it was hypothesized that transient targeting of IL-10 might represent an innovative way to improve vaccine efficacy. In this study, IL-10 expression was elevated in the nares of persistent carriers of S. aureus, and this was associated with reduced systemic S. aureus-specific Th1 responses. This suggests that systemic responses are remodeled because of commensal exposure to S. aureus, which negatively implicates vaccine function. To provide proof of concept that targeting immunosuppressive responses during immunization may be a useful approach to improve vaccine efficacy, we immunized mice with T cell-activating vaccines in combination with IL-10-neutralizing antibodies. Blocking IL-10 during vaccination enhanced effector T cell responses and improved bacterial clearance during subsequent systemic and subcutaneous infection. Taken together, these results reveal a potentially novel strategy for improving anti-S. aureus vaccine efficacy.
Collapse
Affiliation(s)
| | - Karen N McCarthy
- Host-Pathogen Interactions Group and
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | - Kingston Hg Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
2
|
Pan N, Liu Y, Zhang H, Xu Y, Bao X, Sheng S, Liang Y, Liu B, Lyu Y, Li H, Ma F, Pan H, Wang X. Oral Vaccination with Engineered Probiotic Limosilactobacillus reuteri Has Protective Effects against Localized and Systemic Staphylococcus aureus Infection. Microbiol Spectr 2023; 11:e0367322. [PMID: 36723073 PMCID: PMC10100842 DOI: 10.1128/spectrum.03673-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/14/2023] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium responsible for most hospital-acquired (nosocomial) and community-acquired infections worldwide. The only therapeutic strategy against S. aureus-induced infections, to date, is antibiotic treatment. A protective vaccine is urgently needed in view of the emergence of antibiotic-resistant strains associated with high-mortality cases; however, no such vaccine is currently available. In our previous work, the feasibility of implementing a Lactobacillus delivery system for development of S. aureus oral vaccine was first discussed. Here, we describe systematic screening and evaluation of protective effects of engineered Lactobacillus against S. aureus infection in terms of different delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Limosilactobacillus reuteri WXD171 was selected as the delivery vehicle strain based on its tolerance of the gastrointestinal environment, adhesion ability, and antimicrobial activities in vitro and in vivo. We designed, constructed, and evaluated engineered L. reuteri strains expressing various S. aureus antigens. Among these, engineered L. reuteri WXD171-IsdB displayed effective protection against S. aureus-induced localized infection (pneumonia and skin infection) and, furthermore, a substantial survival benefit in systemic infection (sepsis). WXD171-IsdB induced mucosal responses in gut-associated lymphoid tissues, as evidenced by increased production of secretory IgA and interleukin 17A (IL-17A) and proliferation of lymphocytes derived from Peyer's patches. The probiotic L. reuteri-based oral vaccine appears to have strong potential as a prophylactic agent against S. aureus infections. Our findings regarding utilization of Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development. IMPORTANCE We systematically screened and evaluated protective effects of engineered Lactobacillus against S. aureus infection in terms of differing delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Engineered L. reuteri was developed and showed strong protective effects against both types of S. aureus-induced infection. Our findings regarding the utilization of a Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development.
Collapse
Affiliation(s)
- Na Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ying Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xuemei Bao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shouxin Sheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Bohui Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yueqing Lyu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haotian Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fangfei Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haiting Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
3
|
Grousd JA, Dresden BP, Riesmeyer AM, Cooper VS, Bomberger JM, Richardson AR, Alcorn JF. Novel Requirement for Staphylococcal Cell Wall-Anchored Protein SasD in Pulmonary Infection. Microbiol Spectr 2022; 10:e0164522. [PMID: 36040164 PMCID: PMC9603976 DOI: 10.1128/spectrum.01645-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/16/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus can complicate preceding viral infections, including influenza virus. A bacterial infection combined with a preceding viral infection, known as superinfection, leads to worse outcomes than a single infection. Most of the pulmonary infection literature focuses on the changes in immune responses to bacteria between homeostatic and virally infected lungs. However, it is unclear how much of an influence bacterial virulence factors have in single or superinfection. Staphylococcal species express a broad range of cell wall-anchored proteins (CWAs) that have roles in host adhesion, nutrient acquisition, and immune evasion. We screened the importance of these CWAs using mutants lacking individual CWAs in vivo in both bacterial pneumonia and influenza superinfection. In bacterial pneumonia, the lack of individual CWAs leads to various decreases in bacterial burden, lung damage, and immune infiltration into the lung. However, the presence of a preceding influenza infection partially abrogates the requirement for CWAs. In the screen, we found that the uncharacterized CWA S. aureus surface protein D (SasD) induced changes in both inflammatory and homeostatic lung markers. We further characterized a SasD mutant (sasD A50.1) in the context of pneumonia. Mice infected with sasD A50.1 have decreased bacterial burden, inflammatory responses, and mortality compared to wild-type S. aureus. Mice also have reduced levels of interleukin-1β (IL-1β), likely derived from macrophages. Reductions in IL-1β transcript levels as well as increased macrophage viability point at differences in cell death pathways. These data identify a novel virulence factor for S. aureus that influences inflammatory signaling within the lung. IMPORTANCE Staphylococcus aureus is a common commensal bacterium that can cause severe infections, such as pneumonia. In the lung, viral infections increase the risk of staphylococcal pneumonia, leading to combined infections known as superinfections. The most common virus associated with S. aureus pneumonia is influenza, and superinfections lead to worse patient outcomes than either infection alone. While there is much known about how the immune system differs between healthy and virally infected lungs, the role of bacterial virulence factors in single and superinfection is less understood. The significance of our research is identifying bacterial components that play a role in the initiation of lung injury, which could lead to future therapies to prevent pulmonary single or superinfection with S. aureus.
Collapse
Affiliation(s)
- Jennifer A. Grousd
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brooke P. Dresden
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Abigail M. Riesmeyer
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vaughn S. Cooper
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer M. Bomberger
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony R. Richardson
- Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John F. Alcorn
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Gibson JF, Pidwill GR, Carnell OT, Surewaard BGJ, Shamarina D, Sutton JAF, Jeffery C, Derré-Bobillot A, Archambaud C, Siggins MK, Pollitt EJG, Johnston SA, Serror P, Sriskandan S, Renshaw SA, Foster SJ. Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species. PLoS Pathog 2021; 17:e1009880. [PMID: 34529737 PMCID: PMC8478205 DOI: 10.1371/journal.ppat.1009880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/28/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a human commensal organism and opportunist pathogen, causing potentially fatal disease. The presence of non-pathogenic microflora or their components, at the point of infection, dramatically increases S. aureus pathogenicity, a process termed augmentation. Augmentation is associated with macrophage interaction but by a hitherto unknown mechanism. Here, we demonstrate a breadth of cross-kingdom microorganisms can augment S. aureus disease and that pathogenesis of Enterococcus faecalis can also be augmented. Co-administration of augmenting material also forms an efficacious vaccine model for S. aureus. In vitro, augmenting material protects S. aureus directly from reactive oxygen species (ROS), which correlates with in vivo studies where augmentation restores full virulence to the ROS-susceptible, attenuated mutant katA ahpC. At the cellular level, augmentation increases bacterial survival within macrophages via amelioration of ROS, leading to proliferation and escape. We have defined the molecular basis for augmentation that represents an important aspect of the initiation of infection. S. aureus is a commensal inhabitant of the human skin and nares. However, it can cause serious diseases if it is able to breach our protective barriers such as the skin, often via wounds or surgery. If infection occurs via a wound, this initial inoculum contains both the pathogen, other members of the microflora and also wider environmental microbes. We have previously described “augmentation”, whereby this other non-pathogenic material can enhance the ability of S. aureus to lead to a serious disease outcome. Here we have determined the breadth of augmenting material and elucidated the cellular and molecular basis for its activity. Augmentation occurs via shielding of S. aureus from the direct bactericidal effects of reactive oxygen species produced by macrophages. This initial protection enables the effective establishment of S. aureus infection. Understanding augmentation not only explains an important facet of the interaction of S. aureus with our innate immune system, but also provides a platform for the development of novel prophylaxis approaches.
Collapse
Affiliation(s)
- Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Oliver T. Carnell
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Bas G. J. Surewaard
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daria Shamarina
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Joshua A. F. Sutton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Charlotte Jeffery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | | | - Cristel Archambaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Matthew K. Siggins
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Eric J. G. Pollitt
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
| | - Simon A. Johnston
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- * E-mail: (SAR); (SJF)
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom, Sheffield, United Kingdom
- * E-mail: (SAR); (SJF)
| |
Collapse
|
5
|
Dey J, Mahapatra SR, Singh P, Patro S, Kushwaha GS, Misra N, Suar M. B and T cell epitope-based peptides predicted from clumping factor protein of Staphylococcus aureus as vaccine targets. Microb Pathog 2021; 160:105171. [PMID: 34481860 DOI: 10.1016/j.micpath.2021.105171] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus infection is emerging as a global threat because of the highly debilitating nature of the associated disease's unprecedented magnitude of its spread and growing global resistance to antimicrobial medicines. Recently WHO has categorized these bacteria under the high global priority pathogen list and is one of the six nosocomial pathogens termed as ESKAPE pathogens which have emerged as a serious threat to public health worldwide. The development of a specific vaccine can stimulate an optimal antibody response, thus providing immunity against it. Therefore, in the present study efforts have been made to identify potential vaccine candidates from the Clumping factor surface proteins (ClfA and ClfB) of S. aureus. Employing the immunoinformatics approach, fourteen antigenic peptides including T-cell, B-cell epitopes were identified which were non-toxic, non-allergenic, high antigenicity, strong binding efficiency with commonly occurring MHC alleles. Consequently, a multi-epitope vaccine chimera was designed by connecting these epitopes with suitable linkers an adjuvant to enhance immunogenicity. Further, homology modeling and molecular docking were performed to construct the three-dimensional structure of the vaccine and study the interaction between the modeled structure and immune receptor (TLR-2) present on lymphocyte cells. Consequently, molecular dynamics simulation for 100 ns period confirmed the stability of the interaction and reliability of the structure for further analysis. Finally, codon optimization and in silico cloning were employed to ensure the successful expression of the vaccine candidate. As the targeted protein is highly antigenic and conserved, hence the designed novel vaccine construct holds potential against emerging multi-drug-resistant organisms.
Collapse
Affiliation(s)
- Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India
| | - Pratima Singh
- Kalinga Institute of Medical Sciences, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Swadheena Patro
- Kalinga Institute of Dental Sciences, KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - Gajraj Singh Kushwaha
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India; Transcription Regulation group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India; KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India; KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
6
|
Zhang S, Huang X, Xiu H, Zhang Z, Zhang K, Cai J, Cai Z, Chen Z, Zhang Z, Cui W, Zhang G, Xiang M. The attenuation of Th1 and Th17 responses via autophagy protects against methicillin-resistant Staphylococcus aureus-induced sepsis. Microbes Infect 2021; 23:104833. [PMID: 33930602 DOI: 10.1016/j.micinf.2021.104833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Whether autophagy affects methicillin-resistant Staphylococcus aureus (MRSA)-induced sepsis and the associated mechanisms are largely unknown. This study investigated the role of autophagy in MRSA-induced sepsis. The levels of microtubule-associated protein light chain 3 (LC3)-II/I, Beclin-1 and p62 after USA300 infection were examined by Western blotting and immunohistochemical staining. Bacterial burden analysis, hematoxylin-eosin staining, and Kaplan-Meier analysis were performed to evaluate the effect of autophagy on MRSA-induced sepsis. IFN-γ and IL-17 were analyzed by ELISA, and CD4+ T cell differentiation was assessed by flow cytometry. Our results showed that LC3-II/I and Beclin-1 were increased, while p62 was decreased after infection. Survival rates were decreased in the LC3B-/- and Beclin-1+/- groups, accompanied by worsened organ injuries and increased IFN-γ and IL-17 levels, whereas rapamycin alleviated organ damage, decreased IFN-γ and IL-17 levels, and improved the survival rate. However, there was no significant difference in bacterial burden. Flow cytometric analysis showed that rapamycin treatment decreased the frequencies of Th1 and Th17 cells, whereas these cells were upregulated in the LC3B-/- and Beclin-1+/- groups. Therefore, autophagy plays a protective role in MRSA-induced sepsis, which may be partly associated with the alleviation of organ injuries via the downregulation of Th1 and Th17 responses. These results provide a nonantibiotic treatment strategy for sepsis.
Collapse
Affiliation(s)
- Shufang Zhang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Xiaofang Huang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Huiqing Xiu
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Kai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiachang Cai
- Clinical Microbiology Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhijian Cai
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhanghui Chen
- Clinical Research Center, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 510004, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Cui
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Meixiang Xiang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
7
|
Idrees M, Sawant S, Karodia N, Rahman A. Staphylococcus aureus Biofilm: Morphology, Genetics, Pathogenesis and Treatment Strategies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7602. [PMID: 34300053 PMCID: PMC8304105 DOI: 10.3390/ijerph18147602] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a nosocomial bacterium causing different infectious diseases, ranging from skin and soft tissue infections to more serious and life-threatening infections such as septicaemia. S. aureus forms a complex structure of extracellular polymeric biofilm that provides a fully secured and functional environment for the formation of microcolonies, their sustenance and recolonization of sessile cells after its dispersal. Staphylococcus aureus biofilm protects the cells against hostile conditions, i.e., changes in temperature, limitations or deprivation of nutrients and dehydration, and, more importantly, protects the cells against antibacterial drugs. Drugs are increasingly becoming partially or fully inactive against S. aureus as they are either less penetrable or totally impenetrable due to the presence of biofilms surrounding the bacterial cells. Other factors, such as evasion of innate host immune system, genome plasticity and adaptability through gene evolution and exchange of genetic material, also contribute to the ineffectiveness of antibacterial drugs. This increasing tolerance to antibiotics has contributed to the emergence and rise of antimicrobial resistance (AMR), a serious problem that has resulted in increased morbidity and mortality of human and animal populations globally, in addition to causing huge financial losses to the global economy. The purpose of this review is to highlight different aspects of S. aureus biofilm formation and its overall architecture, individual biofilm constituents, clinical implications and role in pathogenesis and drug resistance. The review also discusses different techniques used in the qualitative and quantitative investigation of S. aureus biofilm and various strategies that can be employed to inhibit and eradicate S. aureus biofilm.
Collapse
Affiliation(s)
| | | | | | - Ayesha Rahman
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (M.I.); (S.S.); (N.K.)
| |
Collapse
|
8
|
Solanki V, Tiwari M, Tiwari V. Subtractive proteomic analysis of antigenic extracellular proteins and design a multi-epitope vaccine against Staphylococcus aureus. Microbiol Immunol 2021; 65:302-316. [PMID: 33368661 DOI: 10.1111/1348-0421.12870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023]
Abstract
Staphylococcus aureus is a versatile Gram's positive bacterium that can reside as an asymptomatic colonizer, which can cause a wide range of skin, soft-tissue, and nosocomial infections. A vaccine against multi-drug resistant S. aureus, therefore, is urgently needed. Subtractive proteomics and reverse vaccinology are newly emerging techniques to design multiepitope-based vaccines. The analysis of 7290 proteomes (sensitive and resistant strains), five potent nonhuman homologous vaccine targets [(UNIPORT ID Q2FZL3 (Staphopain B), Q2G2R8 (Staphopain A), Q2FWP0 (uncharacterized leukocidin-like protein 1), Q2G1S6 (uncharacterized protein), and Q2FWV3 (Staphylokinase, putative)] were selected. These proteins were absent in the gut microbiome, which further enhances the significance of these proteins in vaccine design. These five virulence-associated proteins mainly have a role in the invasion mechanism in the host phagocyte cells. MHC I, MHC II, and B cell epitopes were identified in these five proteins. Finalized epitopes were examined by different online servers to screen suitable epitopes for multi-epitope based vaccine design. Shortlisted antigenic and nonallergenic associated epitopes were joined with linkers to design 30 variants (VSA1-VSA30) of multi-epitope vaccine conjugates. The antigenicity and allergenicity of all the 30 vaccine constructs were identified, and VSA30 was found to have the highest antigenicity and lowest allergenicity, and hence was selected for further study. Accordingly, VSA30 was docked with different HLA allelic variants, and the best-docked complex (VSA30-1SYS) was further analyzed by molecular dynamics simulation (MDS). The MDS result confirms the interaction of VSA30 with MHC (HLA-allelic variant). Thus, the final vaccine construct was in silico cloned in the pET28a vector for suitable expression in a heterologous system. Therefore, the designed vaccine construct VSA-30 can be developed as an appropriate vaccine to target S. aureus infection. VSA-30 still needs experimental validation to assure the antigenic and immunogenic properties.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
9
|
Clegg J, Soldaini E, McLoughlin RM, Rittenhouse S, Bagnoli F, Phogat S. Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Front Immunol 2021; 12:705360. [PMID: 34305945 PMCID: PMC8294057 DOI: 10.3389/fimmu.2021.705360] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most important human pathogens worldwide. Its high antibiotic resistance profile reinforces the need for new interventions like vaccines in addition to new antibiotics. Vaccine development efforts against S. aureus have failed so far however, the findings from these human clinical and non-clinical studies provide potential insight for such failures. Currently, research is focusing on identifying novel vaccine formulations able to elicit potent humoral and cellular immune responses. Translational science studies are attempting to discover correlates of protection using animal models as well as in vitro and ex vivo models assessing efficacy of vaccine candidates. Several new vaccine candidates are being tested in human clinical trials in a variety of target populations. In addition to vaccines, bacteriophages, monoclonal antibodies, centyrins and new classes of antibiotics are being developed. Some of these have been tested in humans with encouraging results. The complexity of the diseases and the range of the target populations affected by this pathogen will require a multipronged approach using different interventions, which will be discussed in this review.
Collapse
Affiliation(s)
- Jonah Clegg
- GSK, Siena, Italy
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
10
|
Tam K, Lacey KA, Devlin JC, Coffre M, Sommerfield A, Chan R, O'Malley A, Koralov SB, Loke P, Torres VJ. Targeting leukocidin-mediated immune evasion protects mice from Staphylococcus aureus bacteremia. J Exp Med 2021; 217:151907. [PMID: 32602902 PMCID: PMC7478724 DOI: 10.1084/jem.20190541] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/05/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus is responsible for various diseases in humans, and recurrent infections are commonly observed. S. aureus produces an array of bicomponent pore-forming toxins that target and kill leukocytes, known collectively as the leukocidins. The contribution of these leukocidins to impair the development of anti–S. aureus adaptive immunity and facilitate reinfection is unclear. Using a murine model of recurrent bacteremia, we demonstrate that infection with a leukocidin mutant results in increased levels of anti–S. aureus antibodies compared with mice infected with the WT parental strain, indicating that leukocidins negatively impact the generation of anti–S. aureus antibodies in vivo. We hypothesized that neutralizing leukocidin-mediated immune subversion by vaccination may shift this host-pathogen interaction in favor of the host. Leukocidin-immunized mice produce potent leukocidin-neutralizing antibodies and robust Th1 and Th17 responses, which collectively protect against bloodstream infections. Altogether, these results demonstrate that blocking leukocidin-mediated immune evasion can promote host protection against S. aureus bloodstream infection.
Collapse
Affiliation(s)
- Kayan Tam
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Keenan A Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Joseph C Devlin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Maryaline Coffre
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Alexis Sommerfield
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Rita Chan
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Aidan O'Malley
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| | - Sergei B Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - P'ng Loke
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
11
|
Fan X, Li N, Xu M, Yang D, Wang B. Intrapulmonary Vaccination Induces Long-lasting and Effective Pulmonary Immunity against Staphylococcus aureus Pneumonia. J Infect Dis 2021; 224:903-913. [PMID: 33417695 PMCID: PMC8408773 DOI: 10.1093/infdis/jiab012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background Staphylococcus aureus causes community- and hospital-acquired pneumonia linked to a high mortality rate. The emergence and rapid transmission of multidrug-resistant S. aureus strains has become a serious health concern, highlighting the challenges associated with the development of a vaccine to combat S. aureus pneumonia. Methods This study evaluated the effects of intrapulmonary immunization on the immune response and protection against S. aureus lung infection in a respiratory mouse model using a subunit vaccine. Results Compared with the intranasal immunized mice, the intrapulmonarily immunized mice had lower levels of pulmonary bacterial colonization and lethality, accompanied by alleviated lung inflammation with reduced proinflammatory cytokines and increased levels of interleukin-10 and antimicrobial peptide following intrapulmonary challenge. Optimal protection was associated with increased pulmonary antibodies and resident memory T cells. Moreover, intrapulmonary immunization provided long-lasting pulmonary protection for at least 6 months, with persistent cellular and humoral immunity in the lungs. Conclusions Vaccine reaching the deep lung by intrapulmonary immunization plays a significant role in the induction of efficacious and long-lasting immunity against S. aureus in the lung parenchyma. Hence, intrapulmonary immunization can be a strategy for the development of a vaccine against S. aureus pneumonia. Immunization through the intrapulmonary route with a subunit of S. aureus vaccine elicited tissue resident memory T cells and antigen-specific antibodies in the lungs, and provided optimal and long-term protection against S. aureus pneumonia.
Collapse
Affiliation(s)
- Xin Fan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Meiyi Xu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Decheng Yang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Beinan Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Abstract
Staphylococci have been isolated from various sites of the body of healthy sheep, as well as from many infections of those animals, the main one being mastitis. The objective of this review is to appraise the importance and significance of staphylococci in causing mastitis in ewes. The review includes a brief classification and taxonomy of staphylococci and describes the procedures for their isolation and identification, as well as their virulence determinants and the mechanisms of resistance to antibacterial agents. Various staphylococcal species have been implicated in staphylococcal mastitis and the characteristics of isolates are discussed with regards to potential virulence factors. Staphylococcal mastitis is explicitly described, with reference to sources of infection, the course of the disease and the relevant control measures. Finally, the potential significance of staphylococci present in ewes' milk for public health is discussed briefly.
Collapse
|
13
|
Marchitto MC, Dillen CA, Liu H, Miller RJ, Archer NK, Ortines RV, Alphonse MP, Marusina AI, Merleev AA, Wang Y, Pinsker BL, Byrd AS, Brown ID, Ravipati A, Zhang E, Cai SS, Limjunyawong N, Dong X, Yeaman MR, Simon SI, Shen W, Durum SK, O'Brien RL, Maverakis E, Miller LS. Clonal Vγ6 +Vδ4 + T cells promote IL-17-mediated immunity against Staphylococcus aureus skin infection. Proc Natl Acad Sci U S A 2019; 116:10917-10926. [PMID: 31088972 PMCID: PMC6561199 DOI: 10.1073/pnas.1818256116] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
T cell cytokines contribute to immunity against Staphylococcus aureus, but the predominant T cell subsets involved are unclear. In an S. aureus skin infection mouse model, we found that the IL-17 response was mediated by γδ T cells, which trafficked from lymph nodes to the infected skin to induce neutrophil recruitment, proinflammatory cytokines IL-1α, IL-1β, and TNF, and host defense peptides. RNA-seq for TRG and TRD sequences in lymph nodes and skin revealed a single clonotypic expansion of the encoded complementarity-determining region 3 amino acid sequence, which could be generated by canonical nucleotide sequences of TRGV5 or TRGV6 and TRDV4 However, only TRGV6 and TRDV4 but not TRGV5 sequences expanded. Finally, Vγ6+ T cells were a predominant γδ T cell subset that produced IL-17A as well as IL-22, TNF, and IFNγ, indicating a broad and substantial role for clonal Vγ6+Vδ4+ T cells in immunity against S. aureus skin infections.
Collapse
Affiliation(s)
- Mark C Marchitto
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Carly A Dillen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Alina I Marusina
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Alexander A Merleev
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Bret L Pinsker
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Angel S Byrd
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Isabelle D Brown
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Advaitaa Ravipati
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Emily Zhang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Shuting S Cai
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- The Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- The Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Michael R Yeaman
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA 90502
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90502
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Wei Shen
- Cytokines and Immunity Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Scott K Durum
- Cytokines and Immunity Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rebecca L O'Brien
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
- Department of Immunology and Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80206
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231;
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
14
|
Clumping factor B is an important virulence factor during Staphylococcus aureus skin infection and a promising vaccine target. PLoS Pathog 2019; 15:e1007713. [PMID: 31009507 PMCID: PMC6497315 DOI: 10.1371/journal.ppat.1007713] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/02/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus expresses a number of cell wall-anchored proteins that mediate adhesion and invasion of host cells and tissues and promote immune evasion, consequently contributing to the virulence of this organism. The cell wall-anchored protein clumping factor B (ClfB) has previously been shown to facilitate S. aureus nasal colonization through high affinity interactions with the cornified envelope in the anterior nares. However, the role of ClfB during skin and soft tissue infection (SSTI) has never been investigated. This study reveals a novel role for ClfB during SSTIs. ClfB is crucial in determining the abscess structure and bacterial burden early in infection and this is dependent upon a specific interaction with the ligand loricrin which is expressed within the abscess tissue. Targeting ClfB using a model vaccine that induced both protective humoral and cellular responses, leads to protection during S. aureus skin infection. This study therefore identifies ClfB as an important antigen for future SSTI vaccines. Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs), the treatment of which is becoming increasingly difficult due to antibiotic resistance. An anti-S. aureus vaccine offers a potential solution, but a better understanding of how S. aureus causes pathology during SSTI is required to identify effective vaccine targets. Here, we identify an important virulence determinant during S. aureus SSTI. Clumping factor B (ClfB), a surface protein expressed by S. aureus is shown to promote skin abscess formation by binding to the host protein loricrin. Targeting ClfB using a model vaccine conferred significant protection during S. aureus SSTI. In this study, we uncover an entirely novel mechanism by which S. aureus forms abscesses during skin infection, identifying an important therapeutic target for treating S. aureus SSTI.
Collapse
|
15
|
Nasser A, Moradi M, Jazireian P, Safari H, Alizadeh-Sani M, Pourmand MR, Azimi T. Staphylococcus aureus versus neutrophil: Scrutiny of ancient combat. Microb Pathog 2019; 131:259-269. [PMID: 31002964 DOI: 10.1016/j.micpath.2019.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus (S.aureus) is a Gram-positive bacterium that causes many infections and diseases. This pathogen can cause many types of infections such as impetigo, toxic shock syndrome toxin (TSST1), pneumonia, endocarditis, and autoimmune diseases like lupus erythematosus and can infect other healthy individuals. In the pathogenic process, colonization is a main risk factor for invasive diseases. Various factors including the cell wall-associated factors and receptors of the epithelial cells facilitate adhesion and colonization of this pathogen. S. aureus has many enzymes, toxins, and strategies to evade from the immune system either by an enzyme that lyses cellular component or by hiding from the immune system via surface antigens like protein A and second immunoglobulin-binding protein (Sbi). The strategies of this bacterium can be divided into five groups: A: Inhibit neutrophil recruitment B: Inhibit phagocytosis C: Inhibit killing by ROS, D: Neutrophil killing, and E: Resistance to antimicrobial peptide. On the other hand, innate immune system via neutrophils, the most important polymorphonuclear leukocytes, fights against bacterial cells by neutrophil extracellular trap (NET). In this review, we try to explain the role of each factor in immune evasion.
Collapse
Affiliation(s)
- Ahmad Nasser
- Microbiology Research center, Ilam University of Medical Sciences, Ilam, Iran; Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Moradi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parham Jazireian
- Department of Biology, University Campus 2,University of Guilan, Rasht, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh-Sani
- Food Safety and Hygiene Division, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Students Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Abstract
Antigen-presenting cells such as dendritic cells (DCs) fulfill an indispensable role in the development of adaptive immunity by producing proinflammatory cytokines and presenting microbial antigens to lymphocytes to trigger a faster, specific, and long-lasting immune response. Here, we studied the effect of Staphylococcus aureus toxins on human DCs. We discovered that the leukocidin LukAB hinders the development of adaptive immunity by targeting human DCs. The ability of S. aureus to blunt the function of DCs could help explain the high frequency of recurrent S. aureus infections. Taken together, the results from this study suggest that therapeutically targeting the S. aureus leukocidins may boost effective innate and adaptive immune responses by protecting innate leukocytes, enabling proper antigen presentation and T cell activation. Staphylococcus aureus is a human pathogen responsible for high morbidity and mortality worldwide. Recurrent infections with this bacterium are common, suggesting that S. aureus thwarts the development of sterilizing immunity. S. aureus strains that cause disease in humans produce up to five different bicomponent toxins (leukocidins) that target and lyse neutrophils, innate immune cells that represent the first line of defense against S. aureus infections. However, little is known about the role of leukocidins in blunting adaptive immunity. Here, we explored the effects of leukocidins on human dendritic cells (DCs), antigen-presenting cells required for the development of adaptive immunity. Using an ex vivo infection model of primary human monocyte-derived dendritic cells, we found that S. aureus, including strains from different clonal complexes and drug resistance profiles, effectively kills DCs despite efficient phagocytosis. Although all purified leukocidins could kill DCs, infections with live bacteria revealed that S. aureus targets and kills DCs primarily via the activity of leukocidin LukAB. Moreover, using coculture experiments performed with DCs and autologous CD4+ T lymphocytes, we found that LukAB inhibits DC-mediated activation and proliferation of primary human T cells. Taken together, the data determined in the study reveal a novel immunosuppressive strategy of S. aureus whereby the bacterium blunts the development of adaptive immunity via LukAB-mediated injury of DCs.
Collapse
|
17
|
Côté-Gravel J, Malouin F. Symposium review: Features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies. J Dairy Sci 2018; 102:4727-4740. [PMID: 30580940 DOI: 10.3168/jds.2018-15272] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/07/2018] [Indexed: 12/25/2022]
Abstract
Bovine mastitis affects animal health and welfare and milk production and quality, and it challenges the economic success of dairy farms. Staphylococcus aureus is one of the most commonly found pathogens in clinical mastitis but it also causes subclinical, persistent, and difficult-to-treat intramammary infections. Because of the failure of conventional antibiotic treatments and increasing pressure and concern from experts and consumers over the use of antibiotics in the dairy industry, many attempts have been made over the years to develop a vaccine for the prevention and control of Staph. aureus intramammary infections. Still, no commercially available vaccine formulation demonstrates sufficient protection and cost-effective potential. Multiple factors account for the lack of protection, including inadequate vaccine targets, high diversity among mastitis-provoking strains, cow-to-cow variation in immune response, and a failure to elicit an immune response that is appropriate for protection against a highly complex pathogen. The purpose of this review is to summarize key concepts related to the pathogenesis of Staph. aureus, and its interaction with the host, as well as to describe recent vaccine development strategies for prevention and control of Staph. aureus mastitis.
Collapse
Affiliation(s)
- Julie Côté-Gravel
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada, J1K 2R1
| | - François Malouin
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada, J1K 2R1.
| |
Collapse
|
18
|
Murphy J, Ramezanpour M, Drilling A, Roscioli E, Psaltis AJ, Wormald PJ, Vreugde S. In vitro characteristics of an airway barrier-disrupting factor secreted by Staphylococcus aureus. Int Forum Allergy Rhinol 2018; 9:187-196. [PMID: 30431711 DOI: 10.1002/alr.22232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/25/2018] [Accepted: 10/05/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Staphylococcus aureus is a major contributor to the pathophysiology of chronic rhinosinusitis (CRS). Previous research has shown that S. aureus-secreted products disrupt the airway barrier. METHODS S. aureus ATCC 13565 and 25923 strains were grown at exponential, postexponential, and stationary phases. Microbial conditioned media (CM) was collected from the cultures and ultrafiltered (UF). Liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) was performed on the UF-CM. UF-CM was subjected to heat and protease treatment, size fractionation, and ultracentrifugation (UC) separation. Human nasal epithelial cells grown at air-liquid interface (HNEC-ALI) cultures were exposed to purified alpha hemolysin (Hla), staphylococcal enterotoxin A (SEA), lipoteichoic acid (LTA), and UF-CM. Barrier function outcomes were measured by transepithelial electrical resistance (TEER) and apparent permeability (Papp). UC fraction exposed cultures were subjected to immunofluorescence microscopy for tight junction (TJ) protein zonula occludens-1 (ZO-1). RESULTS LC-ESI-MS/MS identified 107 proteins, with Hla being most abundant. Hla, SEA, and LTA did not alter the HNEC-ALI barrier as measured by TEER or Papp. Barrier disruption caused by UF-CM peaked in the postexponential phase, was sensitive to heat and protease treatment, >30-kDa in size, and enriched in the UC fraction. HNEC-ALI exposed to UF-CM and UC demonstrated loss of ZO-1 localization. CONCLUSION These results suggest that the S. aureus factor responsible for TJ disruption in HNEC-ALI cultures is either a protein-macromolecule or a combination of secreted factors. The product is enriched in the UC fraction, suggesting it is associated with large structures such as membrane components or vesicles.
Collapse
Affiliation(s)
- Jae Murphy
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Mahnaz Ramezanpour
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Amanda Drilling
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Eugene Roscioli
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Alkis James Psaltis
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Peter-John Wormald
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Sarah Vreugde
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| |
Collapse
|