1
|
Lindemann-Perez E, Rodríguez DL, Pérez JC. An approach to analyze spatiotemporal patterns of gene expression at single-cell resolution in Candida albicans-infected mouse tongues. mSphere 2024; 9:e0028224. [PMID: 39171917 PMCID: PMC11423565 DOI: 10.1128/msphere.00282-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024] Open
Abstract
Microbial gene expression measurements derived from infected organs are invaluable to understand pathogenesis. However, current methods are limited to "bulk" analyses that neglect microbial cell heterogeneity and the lesion's spatial architecture. Here, we report the use of hybridization chain reaction RNA fluorescence in situ hybridization (HCR RNA-FISH) to visualize and quantify Candida albicans transcripts at single-cell resolution in tongues of infected mice. The method is compatible with fixed-frozen and formalin-fixed paraffin-embedded tissues. We document cell-to-cell variation and intriguing spatiotemporal expression patterns for C. albicans mRNAs that encode products implicated in oral candidiasis. The approach provides a spatial dimension to gene expression analyses of host-Candida interactions. IMPORTANCE Candida albicans is a fungal pathobiont inhabiting multiple mucosal surfaces of the human body. Immunosuppression, antibiotic-induced microbial dysbiosis, or implanted medical devices can impair mucosal integrity enabling C. albicans to overgrow and disseminate, causing either mucosal diseases such as oropharyngeal candidiasis or life-threatening systemic infections. Profiling fungal genes that are expressed in the infected mucosa or in any other infected organ is paramount to understand pathogenesis. Ideally, these transcript profiling measurements should reveal the expression of any gene at the single-cell level. The resolution typically achieved with current approaches, however, limits most gene expression measurements to cell population averages. The approach described in this report provides a means to dissect fungal gene expression in infected tissues at single-cell resolution.
Collapse
Affiliation(s)
- Elena Lindemann-Perez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Diana L. Rodríguez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - J. Christian Pérez
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Jia LJ, González K, Orasch T, Schmidt F, Brakhage AA. Manipulation of host phagocytosis by fungal pathogens and therapeutic opportunities. Nat Microbiol 2024; 9:2216-2231. [PMID: 39187614 DOI: 10.1038/s41564-024-01780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
An important host defence mechanism against pathogens is intracellular killing, which is achieved through phagocytosis, a cellular process for engulfing and neutralizing extracellular particles. Phagocytosis results in the formation of matured phagolysosomes, which are specialized compartments that provide a hostile environment and are considered the end point of the degradative pathway. However, all fungal pathogens studied to date have developed strategies to manipulate phagosomal function directly and also indirectly by redirecting phagosomes from the degradative pathway to a non-degradative pathway with the expulsion and even transfer of pathogens between cells. Here, using the major human fungal pathogens Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Histoplasma capsulatum as examples, we discuss the processes involved in host phagosome-fungal pathogen interactions, with a focus on fungal evasion strategies. We also discuss recent approaches to targeting intraphagosomal pathogens, including the redirection of phagosomes towards degradative pathways for fungal pathogen eradication.
Collapse
Affiliation(s)
- Lei-Jie Jia
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Junior Research Group Phagosome Biology and Engineering, Leibniz-HKI, Jena, Germany.
| | - Katherine González
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Thomas Orasch
- Transfer Group Anti-infectives, Leibniz-HKI, Jena, Germany
| | - Franziska Schmidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
3
|
Zhou T, Solis NV, Marshall M, Yao Q, Garleb R, Yang M, Pearlman E, Filler SG, Liu H. Hyphal Als proteins act as CR3 ligands to promote immune responses against Candida albicans. Nat Commun 2024; 15:3926. [PMID: 38724513 PMCID: PMC11082240 DOI: 10.1038/s41467-024-48093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Patients with decreased levels of CD18 (β2 integrins) suffer from life-threatening bacterial and fungal infections. CD11b, the α subunit of integrin CR3 (CD11b/CD18, αMβ2), is essential for mice to fight against systemic Candida albicans infections. Live elongating C. albicans activates CR3 in immune cells. However, the hyphal ligands that activate CR3 are not well defined. Here, we discovered that the C. albicans Als family proteins are recognized by the I domain of CD11b in macrophages. This recognition synergizes with the β-glucan-bound lectin-like domain to activate CR3, thereby promoting Syk signaling and inflammasome activation. Dectin-2 activation serves as the "outside-in signaling" for CR3 activation at the entry site of incompletely sealed phagosomes, where a thick cuff of F-actin forms to strengthen the local interaction. In vitro, CD18 partially contributes to IL-1β release from dendritic cells induced by purified hyphal Als3. In vivo, Als3 is vital for C. albicans clearance in mouse kidneys. These findings uncover a novel family of ligands for the CR3 I domain that promotes fungal clearance.
Collapse
Affiliation(s)
- Tingting Zhou
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Norma V Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michaela Marshall
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Qing Yao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Gilead Sciences Inc., Foster City, CA, USA
| | - Rachel Garleb
- Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Mengli Yang
- Department of Biological Chemistry, University of California, Irvine, CA, USA
- Zymo Research Corporation, Irvine, CA, USA
| | - Eric Pearlman
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Scott G Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
4
|
Valand N, Gazioglu O, Yesilkaya H, Shivkumar M, Horley N, Arroo R, Wallis R, Kishore U, Venkatraman Girija U. Interactions of Candida tropicalis pH-related antigen 1 with complement proteins C3, C3b, factor-H, C4BP and complement evasion. Immunobiology 2023; 228:152303. [PMID: 36495597 DOI: 10.1016/j.imbio.2022.152303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Candida, as a part of the human microbiota, can cause opportunistic infections that are either localised or systemic candidiasis. Emerging resistance to the standard antifungal drugs is associated with increased mortality rate due to invasive Candida infections, particularly in immunocompromised patients. While there are several species of Candida, an increasing number of Candida tropicalis isolates have been recently reported from patients with invasive candidiasis or inflammatory bowel diseases. In order to establish infections, C. tropicalis has to adopt several strategies to escape the host immune attack. Understanding the immune evasion strategies is of great importance as these can be exploited as novel therapeutic targets. C. albicans pH-related antigen 1 (CaPra1), a surface bound and secretory protein, has been found to interact strongly with the immune system and help in complement evasion. However, the role of C. tropicalis Pra1 (CtPra1) and its interaction with the complement is not studied yet. Thus, we characterised how pH-related antigen 1 of C. tropicalis (CtPra1) interacts with some of the key complement proteins of the innate immune system. CtPra1 was recombinantly produced using a Kluyveromyces lactis yeast expression system. Recombinant CtPra1, was found to bind human C3 and C3b, central molecules of the complement pathways that are important components of the innate immune system. It was also found to bind human complement regulatory proteins factor-H and C4b-binding protein (C4BP). CtPra1-factor-H and CtPra1-C4BP interactions were found to be ionic in nature as the binding intensity affected by high sodium chloride concentrations. CtPra1 inhibited functional complement activation with different effects on classical (∼20 %), lectin (∼25 %) and alternative (∼30 %) pathways. qPCR experiments using C. tropicalis clinical isolates (oral, blood and peritoneal fluid) revealed relatively higher levels of expression of CtPra1 gene when compared to the reference strain. Native CtPra1 was found to be expressed both as membrane-bound and secretory forms in the clinical isolates. Thus, C. tropicalis appears to be a master of immune evasion by using Pra1 protein. Further investigation using in-vivo models will help ascertain if these proteins can be novel therapeutic targets.
Collapse
Affiliation(s)
- Nisha Valand
- Faculty of Health & Life Sciences, De Montfort University, UK
| | - Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, UK
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, UK
| | | | - Neill Horley
- Faculty of Health & Life Sciences, De Montfort University, UK
| | - Randolph Arroo
- Faculty of Health & Life Sciences, De Montfort University, UK
| | - Russell Wallis
- Department of Respiratory Sciences, University of Leicester, UK
| | - Uday Kishore
- Department of Veterinary Medicine, U.A.E. University, Al Ain, United Arab Emirates
| | | |
Collapse
|
5
|
Rai MN, Parsania C, Rai R. Mapping the mutual transcriptional responses during Candida albicans and human macrophage interactions by dual RNA-sequencing. Microb Pathog 2022; 173:105864. [DOI: 10.1016/j.micpath.2022.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
6
|
Mendoza-Reyes DF, Gómez-Gaviria M, Mora-Montes HM. Candida lusitaniae: Biology, Pathogenicity, Virulence Factors, Diagnosis, and Treatment. Infect Drug Resist 2022; 15:5121-5135. [PMID: 36068831 PMCID: PMC9441179 DOI: 10.2147/idr.s383785] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022] Open
Abstract
The incidence of fungal infections is increasing at an alarming rate and has posed a great challenge for science in recent years. The rise in these infections has been related to the increase in immunocompromised patients and the resistance of different species to antifungal drugs. Infections caused by the different Candida species, especially Candida albicans, are one of the most common mycoses in humans, and the etiological agents are considered opportunistic pathogens associated with high mortality rates when disseminated infections occur. Candida lusitaniae is considered an emerging opportunistic pathogen that most frequently affects immunocompromised patients with some comorbidity. Although it is a low-frequency pathogen, and the mortality rate of C. lusitaniae-caused candidemia does not exceed 5%, some isolates are known to be resistant to antifungals such as amphotericin B, 5-fluorocytosine, and fluconazole. In this paper, a detailed review of the current literature on this organism and its different aspects, such as its biology, possible virulence factors, pathogen-host interaction, diagnosis, and treatment of infection, is provided. Of particular interest, through Blastp analysis we predicted possible virulence factors in this species.
Collapse
Affiliation(s)
- Diana F Mendoza-Reyes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, C.P. 36050, México
| | - Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, C.P. 36050, México
- Correspondence: Manuela Gómez-Gaviria; Héctor M Mora-Montes, Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato, Gto, C.P. 36050, México, Tel +52 473-7320006 Ext. 8193, Fax +52 473-7320006 Ext. 8153, Email ;
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, C.P. 36050, México
| |
Collapse
|
7
|
Amorim-Vaz S, Coste AT, Tran VDT, Pagni M, Sanglard D. Function Analysis of MBF1, a Factor Involved in the Response to Amino Acid Starvation and Virulence in Candida albicans. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:658899. [PMID: 37744106 PMCID: PMC10512259 DOI: 10.3389/ffunb.2021.658899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/15/2021] [Indexed: 09/26/2023]
Abstract
Candida albicans is a commensal of human mucosae, but also one of the most common fungal pathogens of humans. Systemic infections caused by this fungus, mostly affecting immunocompromised patients, are associated to fatality rates as high as 50% despite the available treatments. In order to improve this situation, it is necessary to fully understand how C. albicans is able to cause disease and how it copes with the host defenses. Our previous studies have revealed the importance of the C. albicans gene MBF1 in virulence and ability to colonize internal organs of mammalian and insect hosts. MBF1 encodes a putative transcriptional regulator, and as such it likely has an impact in the regulation of C. albicans gene expression during host infection. Here, recent advances in RNA-seq technologies were used to obtain a detailed analysis of the impact of MBF1 on C. albicans gene expression both in vitro and during infection. MBF1 was involved in the regulation of several genes with a role in glycolysis and response to stress, particularly to nutritional stress. We also investigated whether an interaction existed between MBF1 and GCN4, a master regulator of response to starvation, and found that both genes were needed for resistance to amino acid starvation, suggesting some level of interaction between the two. Reinforcing this idea, we showed that the proteins encoded by both genes could interact. Consistent with the role of MBF1 in virulence, we also established that GCN4 was necessary for virulence in the mouse model of systemic infection as well as in the Galleria mellonella infection model.
Collapse
Affiliation(s)
- Sara Amorim-Vaz
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Van Du T. Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
8
|
Valand N, Girija UV. Candida Pathogenicity and Interplay with the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:241-272. [PMID: 34661898 DOI: 10.1007/978-3-030-67452-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Candida species are opportunistic fungal pathogens that are part of the normal skin and mucosal microflora. Overgrowth of Candida can cause infections such as thrush or life-threatening invasive candidiasis in immunocompromised patients. Though Candida albicans is highly prevalent, several non-albicans species are also isolated from nosocomial infections. Candida sp. are over presented in the gut of people with Crohn's disease and certain types of neurological disorders, with hyphal form and biofilms being the most virulent states. In addition, Candida uses several secreted and cell surface molecules such as pH related antigen 1, High affinity glucose transporter, Phosphoglycerate mutase 1 and lipases to establish pathogenicity. A strong innate immune response is elicited against Candida via dendritic cells, neutrophils and macrophages. All three complement pathways are also activated. Production of proinflammatory cytokines IL-10 and IL-12 signal differentiation of CD4+ cells into Th1 and Th2 cells, whereas IL-6, IL-17 and IL-23 induce Th17 cells. Importance of T-lymphocytes is reflected in depleted T-cell count patients being more prone to Candidiasis. Anti- Candida antibodies also play a role against candidiasis using various mechanisms such as targeting virulent enzymes and exhibiting direct candidacidal activity. However, the significance of antibody response during infection remains controversial. Furthermore, some of the Candida strains have evolved molecular strategies to evade the sophisticated host attack by proteolysis of components of immune system and interfering with immune signalling pathways. Emergence of several non-albicans species that are resistant to current antifungal agents makes treatment more difficult. Therefore, deeper insight into interactions between Candida and the host immune system is required for discovery of novel therapeutic options.
Collapse
Affiliation(s)
- Nisha Valand
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Umakhanth Venkatraman Girija
- Leicester School of Allied Health and Life sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK.
| |
Collapse
|
9
|
Wijnants S, Riedelberger M, Penninger P, Kuchler K, Van Dijck P. Sugar Phosphorylation Controls Carbon Source Utilization and Virulence of Candida albicans. Front Microbiol 2020; 11:1274. [PMID: 32612591 PMCID: PMC7308821 DOI: 10.3389/fmicb.2020.01274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen that relies upon different virulence traits, including morphogenesis, invasion, biofilm formation, and nutrient acquisition from host sources as well as metabolic adaptations during host invasion. In this study, we show how sugar kinases at the start of glycolysis modulate virulence of C. albicans. Sequence comparison with Saccharomyces cerevisiae identified four enzymes (Hxk1, Hxk2, Glk1, and Glk4) in C. albicans with putative roles in sugar phosphorylation. Hxk2, Glk1, and Glk4 demonstrate a critical role in glucose metabolism, while Hxk2 is the only kinase important for fructose metabolism. Additionally, we show that Hxk1 controls HXK2, GLK1, and GLK4 expression in the presence of fermentable as well as non-fermentable carbon sources, thereby indirectly controlling glycolysis. Moreover, these sugar kinases are important during virulence. Disabling the glycolytic pathway reduces adhesion capacity, while deletion of HXK1 decreases biofilm formation. Finally, we demonstrate that hxk2Δ/Δ glk1Δ/Δ glk4Δ/Δ and hxk1Δ/Δ hxk2Δ/Δ glk1Δ/Δ glk4Δ/Δ have attenuated virulence upon systemic infections in mice. These results indicate a regulatory role for Hxk1 during sugar phosphorylation. Furthermore, these kinases are essential during growth on glucose or fructose, and C. albicans relies on a functional glycolytic pathway for maximal virulence.
Collapse
Affiliation(s)
- Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Michael Riedelberger
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Philipp Penninger
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Karl Kuchler
- Max Perutz Labs Vienna, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| |
Collapse
|
10
|
Khemiri I, Tebbji F, Sellam A. Transcriptome Analysis Uncovers a Link Between Copper Metabolism, and Both Fungal Fitness and Antifungal Sensitivity in the Opportunistic Yeast Candida albicans. Front Microbiol 2020; 11:935. [PMID: 32508775 PMCID: PMC7248230 DOI: 10.3389/fmicb.2020.00935] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Copper homeostasis is an important determinant for virulence of many human pathogenic fungi such as the highly prevalent yeast Candida albicans. However, beyond the copper transporter Ctr1, little is known regarding other genes and biological processes that are affected by copper. To gain insight into the cellular processes that are modulated by copper abundance in C. albicans, we monitored the global gene expression dynamic under both copper depletion and excess using RNA-seq. Beyond copper metabolism, other different transcriptional programs related to fungal fitness such as stress responses, antifungal sensitivity, host invasion and commensalism were modulated in response to copper variations. We have also investigated the transcriptome of the mutant of the copper utilization regulator, mac1, and identified potential direct targets of this transcription factor under copper starvation. We also showed that Mac1 was required for the invasion and adhesion to host cells and antifungal tolerance. This study provides a framework for future studies to examine the link between copper metabolism and essential functions that modulate fungal virulence and fitness inside the host.
Collapse
Affiliation(s)
- Inès Khemiri
- CHU de Québec Research Center, Université Laval, Quebec City, QC, Canada
| | - Faiza Tebbji
- CHU de Québec Research Center, Université Laval, Quebec City, QC, Canada
| | - Adnane Sellam
- CHU de Québec Research Center, Université Laval, Quebec City, QC, Canada.,Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
11
|
Singh DK, Tóth R, Gácser A. Mechanisms of Pathogenic Candida Species to Evade the Host Complement Attack. Front Cell Infect Microbiol 2020; 10:94. [PMID: 32232011 PMCID: PMC7082757 DOI: 10.3389/fcimb.2020.00094] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
Candida species are common colonizers of the human skin, vagina, and the gut. As human commensals, Candida species do not cause any notable damage in healthy individuals; however, in certain conditions they can initiate a wide range of diseases such as chronic disseminated candidiasis, endocarditis, vaginitis, meningitis, and endophthalmitis. The incidence of Candida caused infections has increased worldwide, with mortality rates exceeding 70% in certain patient populations. C. albicans, C. glabrata, C. tropicalis, C. parapsilosis, and C. krusei are responsible for more than 90% of Candida-related infections. Interestingly, the host immune response against these closely related fungi varies. As part of the innate immune system, complement proteins play a crucial role in host defense, protecting the host by lysing pathogens or by increasing their phagocytosis by phagocytes through opsonization. This review summarizes interactions of host complement proteins with pathogenic Candida species, including C. albicans and non-albicans Candida species such as C. parapsilosis. We will also highlight the various ways of complement activation, describe the antifungal effects of complement cascades and explore the mechanisms adopted by members of pathogenic Candida species for evading complement attack.
Collapse
Affiliation(s)
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary.,MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Burgain A, Pic É, Markey L, Tebbji F, Kumamoto CA, Sellam A. A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans. PLoS Pathog 2019; 15:e1007823. [PMID: 31809527 PMCID: PMC6919631 DOI: 10.1371/journal.ppat.1007823] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/18/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Inside the human host, the pathogenic yeast Candida albicans colonizes predominantly oxygen-poor niches such as the gastrointestinal and vaginal tracts, but also oxygen-rich environments such as cutaneous epithelial cells and oral mucosa. This suppleness requires an effective mechanism to reversibly reprogram the primary metabolism in response to oxygen variation. Here, we have uncovered that Snf5, a subunit of SWI/SNF chromatin remodeling complex, is a major transcriptional regulator that links oxygen status to the metabolic capacity of C. albicans. Snf5 and other subunits of SWI/SNF complex were required to activate genes of carbon utilization and other carbohydrates related process specifically under hypoxia. snf5 mutant exhibited an altered metabolome reflecting that SWI/SNF plays an essential role in maintaining metabolic homeostasis and carbon flux in C. albicans under hypoxia. Snf5 was necessary to activate the transcriptional program linked to both commensal and invasive growth. Accordingly, snf5 was unable to maintain its growth in the stomach, the cecum and the colon of mice. snf5 was also avirulent as it was unable to invade Galleria larvae or to cause damage to human enterocytes and murine macrophages. Among candidates of signaling pathways in which Snf5 might operate, phenotypic analysis revealed that mutants of Ras1-cAMP-PKA pathway, as well as mutants of Yak1 and Yck2 kinases exhibited a similar carbon flexibility phenotype as did snf5 under hypoxia. Genetic interaction analysis indicated that the adenylate cyclase Cyr1, a key component of the Ras1-cAMP pathway interacted genetically with Snf5. Our study yielded new insight into the oxygen-sensitive regulatory circuit that control metabolic flexibility, stress, commensalism and virulence in C. albicans. A critical aspect of eukaryotic cell fitness is the ability to sense and adapt to variations in oxygen level in their local environment. Hypoxia leads to a substantial remodeling of cell metabolism and energy homeostasis, and thus, organisms must develop an effective regulatory mechanism to cope with oxygen depletion. Candida albicans is an opportunistic yeast that is the most prevalent human fungal pathogens. This yeast colonizes diverse niches inside the human host with contrasting carbon sources and oxygen concentrations. While hypoxia is the predominant condition that C. albicans encounters inside most of the niches, the impact of this condition on metabolic flexibility, a major determinant of fungal virulence, was completely unexplored. Here, we uncovered that the chromatin remodelling complex SWI/SNF is a master regulator of the circuit that links oxygen status to a broad spectrum of carbon utilization routes. Snf5 was essential for the maintenance of C. albicans as a commensal and also for the expression of its virulence. The oxygen-sensitive regulators identified in this work provide a framework to comprehensively understand the virulence of human fungal pathogens and represent a therapeutic value to fight fungal infections.
Collapse
Affiliation(s)
- Anaïs Burgain
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Émilie Pic
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
| | - Laura Markey
- Program in Molecular Microbiology, Tufts University, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Faiza Tebbji
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Adnane Sellam
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Big Data Research Centre (BDRC-UL), Université Laval, Faculty of Sciences and Engineering, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
13
|
Candidalysin Drives Epithelial Signaling, Neutrophil Recruitment, and Immunopathology at the Vaginal Mucosa. Infect Immun 2018; 86:IAI.00645-17. [PMID: 29109176 DOI: 10.1128/iai.00645-17] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022] Open
Abstract
Unlike other forms of candidiasis, vulvovaginal candidiasis, caused primarily by the fungal pathogen Candida albicans, is a disease of immunocompetent and otherwise healthy women. Despite its prevalence, the fungal factors responsible for initiating symptomatic infection remain poorly understood. One of the hallmarks of vaginal candidiasis is the robust recruitment of neutrophils to the site of infection, which seemingly do not clear the fungus, but rather exacerbate disease symptomatology. Candidalysin, a newly discovered peptide toxin secreted by C. albicans hyphae during invasion, drives epithelial damage, immune activation, and phagocyte attraction. Therefore, we hypothesized that Candidalysin is crucial for vulvovaginal candidiasis immunopathology. Anti-Candida immune responses are anatomical-site specific, as effective gastrointestinal, oral, and vaginal immunities are uniquely compartmentalized. Thus, we aimed to identify the immunopathologic role of Candidalysin and downstream signaling events at the vaginal mucosa. Microarray analysis of C. albicans-infected human vaginal epithelium in vitro revealed signaling pathways involved in epithelial damage responses, barrier repair, and leukocyte activation. Moreover, treatment of A431 vaginal epithelial cells with Candidalysin induced dose-dependent proinflammatory cytokine responses (including interleukin 1α [IL-1α], IL-1β, and IL-8), damage, and activation of c-Fos and mitogen-activated protein kinase (MAPK) signaling, consistent with fungal challenge. Mice intravaginally challenged with C. albicans strains deficient in Candidalysin exhibited no differences in colonization compared to isogenic controls. However, significant decreases in neutrophil recruitment, damage, and proinflammatory cytokine expression were observed with these strains. Our findings demonstrate that Candidalysin is a key hypha-associated virulence determinant responsible for the immunopathogenesis of C. albicans vaginitis.
Collapse
|
14
|
Sprenger M, Kasper L, Hensel M, Hube B. Metabolic adaptation of intracellular bacteria and fungi to macrophages. Int J Med Microbiol 2017; 308:215-227. [PMID: 29150190 DOI: 10.1016/j.ijmm.2017.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/21/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
The mature phagosome of macrophages is a hostile environment for the vast majority of phagocytosed microbes. In addition to active destruction of the engulfed microbes by antimicrobial compounds, restriction of essential nutrients in the phagosomal compartment contributes to microbial growth inhibition and killing. However, some pathogenic microorganisms have not only developed various strategies to efficiently withstand or counteract antimicrobial activities, but also to acquire nutrients within macrophages for intracellular replication. Successful intracellular pathogens are able to utilize host-derived amino acids, carbohydrates and lipids as well as trace metals and vitamins during intracellular growth. This requires sophisticated strategies such as phagosome modification or escape, efficient nutrient transporters and metabolic adaptation. In this review, we discuss the metabolic adaptation of facultative intracellular bacteria and fungi to the intracellular lifestyle inside macrophages.
Collapse
Affiliation(s)
- Marcel Sprenger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Michael Hensel
- Division of Microbiology, University Osnabrück, Osnabrück, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany; Friedrich Schiller University, Jena, Germany; Center for Sepsis Control and Care, University Hospital, Jena, Germany.
| |
Collapse
|
15
|
Hernández-Chávez MJ, Pérez-García LA, Niño-Vega GA, Mora-Montes HM. Fungal Strategies to Evade the Host Immune Recognition. J Fungi (Basel) 2017; 3:jof3040051. [PMID: 29371567 PMCID: PMC5753153 DOI: 10.3390/jof3040051] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022] Open
Abstract
The recognition of fungal cells by the host immune system is key during the establishment of a protective anti-fungal response. Even though the immune system has evolved a vast number of processes to control these organisms, they have developed strategies to fight back, avoiding the proper recognition by immune components and thus interfering with the host protective mechanisms. Therefore, the strategies to evade the immune system are as important as the virulence factors and attributes that damage the host tissues and cells. Here, we performed a thorough revision of the main fungal tactics to escape from the host immunosurveillance processes. These include the composition and organization of the cell wall, the fungal capsule, the formation of titan cells, biofilms, and asteroid bodies; the ability to undergo dimorphism; and the escape from nutritional immunity, extracellular traps, phagocytosis, and the action of humoral immune effectors.
Collapse
Affiliation(s)
- Marco J Hernández-Chávez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, México.
| | - Luis A Pérez-García
- Unidad Académica Multidisciplinaria Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fracc. Rafael Curiel, C.P., Cd. Valle SLP. 79060, México.
| | - Gustavo A Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, México.
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P., Guanajuato Gto. 36050, México.
| |
Collapse
|
16
|
The Trophic Life Cycle Stage of the Opportunistic Fungal Pathogen Pneumocystis murina Hinders the Ability of Dendritic Cells To Stimulate CD4 + T Cell Responses. Infect Immun 2017; 85:IAI.00396-17. [PMID: 28694293 DOI: 10.1128/iai.00396-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
The life cycle of the opportunistic fungal pathogen Pneumocystis murina consists of a trophic stage and an ascus-like cystic stage. Infection with the cyst stage induces proinflammatory immune responses, while trophic forms suppress the cytokine response to multiple pathogen-associated molecular patterns (PAMPs), including β-glucan. A targeted gene expression assay was used to evaluate the dendritic cell response following stimulation with trophic forms alone, with a normal mixture of trophic forms and cysts, or with β-glucan. We demonstrate that stimulation with trophic forms downregulated the expression of multiple genes normally associated with the response to infection, including genes encoding transcription factors. Trophic forms also suppressed the expression of genes related to antigen processing and presentation, including the gene encoding the major histocompatibility complex (MHC) class II transactivator, CIITA. Stimulation of dendritic cells with trophic forms, but not a mixture of trophic forms and cysts, reduced the expression of MHC class II and the costimulatory molecule CD40 on the surface of the cells. These defects in the expression of MHC class II and costimulatory molecules corresponded with a reduced capacity for trophic form-loaded dendritic cells to stimulate CD4+ T cell proliferation and polarization. These data are consistent with the delayed innate and adaptive responses previously observed in immunocompetent mice inoculated with trophic forms compared to responses in mice inoculated with a mixture of trophic forms and cysts. We propose that trophic forms broadly inhibit the ability of dendritic cells to fulfill their role as antigen-presenting cells.
Collapse
|
17
|
Hebecker B, Vlaic S, Conrad T, Bauer M, Brunke S, Kapitan M, Linde J, Hube B, Jacobsen ID. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions. Sci Rep 2016; 6:36055. [PMID: 27808111 PMCID: PMC5093689 DOI: 10.1038/srep36055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/11/2016] [Indexed: 11/15/2022] Open
Abstract
Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses.
Collapse
Affiliation(s)
- Betty Hebecker
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Sebastian Vlaic
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Jena, Germany.,Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Department of Bioinformatics, Friedrich-Schiller-University Jena, Germany
| | - Theresia Conrad
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Anaesthesiology and Intensive Care Therapy, Jena University Hospital, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Mario Kapitan
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Jörg Linde
- Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany
| | - Bernhard Hube
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Friedrich-Schiller-University, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knöll Institute), Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
18
|
Patin EC, Jones AV, Thompson A, Clement M, Liao CT, Griffiths JS, Wallace LE, Bryant CE, Lang R, Rosenstiel P, Humphreys IR, Taylor PR, Jones GW, Orr SJ. IL-27 Induced by Select Candida spp. via TLR7/NOD2 Signaling and IFN-β Production Inhibits Fungal Clearance. THE JOURNAL OF IMMUNOLOGY 2016; 197:208-21. [PMID: 27259855 PMCID: PMC4911616 DOI: 10.4049/jimmunol.1501204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/27/2016] [Indexed: 01/05/2023]
Abstract
Candida spp. elicit cytokine production downstream of various pathogen recognition receptors, including C-type lectin-like receptors, TLRs, and nucleotide oligomerization domain (NOD)–like receptors. IL-12 family members IL-12p70 and IL-23 are important for host immunity against Candida spp. In this article, we show that IL-27, another IL-12 family member, is produced by myeloid cells in response to selected Candida spp. We demonstrate a novel mechanism for Candida parapsilosis–mediated induction of IL-27 in a TLR7-, MyD88-, and NOD2-dependent manner. Our data revealed that IFN-β is induced by C. parapsilosis, which in turn signals through the IFN-α/β receptor and STAT1/2 to induce IL-27. Moreover, IL-27R (WSX-1)–deficient mice systemically infected with C. parapsilosis displayed enhanced pathogen clearance compared with wild-type mice. This was associated with increased levels of proinflammatory cytokines in the serum and increased IFN-γ and IL-17 responses in the spleens of IL-27R–deficient mice. Thus, our data define a novel link between C. parapsilosis, TLR7, NOD2, IFN-β, and IL-27, and we have identified an important role for IL-27 in the immune response against C. parapsilosis. Overall, these findings demonstrate an important mechanism for the suppression of protective immune responses during infection with C. parapsilosis, which has potential relevance for infections with other fungal pathogens.
Collapse
Affiliation(s)
- Emmanuel C Patin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Adam V Jones
- University Dental Hospital, Cardiff and Vale University Health Board, Cardiff CF14 4XY, United Kingdom
| | - Aiysha Thompson
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Mathew Clement
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Chia-Te Liao
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - James S Griffiths
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Leah E Wallace
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; and
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Ian R Humphreys
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Philip R Taylor
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom
| | - Gareth W Jones
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom;
| | - Selinda J Orr
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom;
| |
Collapse
|
19
|
Haran J, Boyle H, Hokamp K, Yeomans T, Liu Z, Church M, Fleming AB, Anderson MZ, Berman J, Myers LC, Sullivan DJ, Moran GP. Telomeric ORFs (TLOs) in Candida spp. Encode mediator subunits that regulate distinct virulence traits. PLoS Genet 2014; 10:e1004658. [PMID: 25356803 PMCID: PMC4214616 DOI: 10.1371/journal.pgen.1004658] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022] Open
Abstract
The TLO genes are a family of telomere-associated ORFs in the fungal pathogens Candida albicans and C. dubliniensis that encode a subunit of the Mediator complex with homology to Med2. The more virulent pathogen C. albicans has 15 copies of the gene whereas the less pathogenic species C. dubliniensis has only two (CdTLO1 and CdTLO2). In this study we used C. dubliniensis as a model to investigate the role of TLO genes in regulating virulence and also to determine whether TLO paralogs have evolved to regulate distinct functions. A C. dubliniensis tlo1Δ/tlo2Δ mutant is unable to form true hyphae, has longer doubling times in galactose broth, is more susceptible to oxidative stress and forms increased levels of biofilm. Transcript profiling of the tlo1Δ/tlo2Δ mutant revealed increased expression of starvation responses in rich medium and retarded expression of hypha-induced transcripts in serum. ChIP studies indicated that Tlo1 binds to many ORFs including genes that exhibit high and low expression levels under the conditions analyzed. The altered expression of these genes in the tlo1Δ/tlo2Δ null mutant indicates roles for Tlo proteins in transcriptional activation and repression. Complementation of the tlo1Δ/tlo2Δ mutant with TLO1, but not TLO2, restored wild-type filamentous growth, whereas only TLO2 fully suppressed biofilm growth. Complementation with TLO1 also had a greater effect on doubling times in galactose broth. The different abilities of TLO1 and TLO2 to restore wild-type functions was supported by transcript profiling studies that showed that only TLO1 restored expression of hypha-specific genes (UME6, SOD5) and galactose utilisation genes (GAL1 and GAL10), whereas TLO2 restored repression of starvation-induced gene transcription. Thus, Tlo/Med2 paralogs encoding Mediator subunits regulate different virulence properties in Candida spp. and their expansion may account for the increased adaptability of C. albicans relative to other Candida species.
Collapse
Affiliation(s)
- John Haran
- Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Hannah Boyle
- Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Karsten Hokamp
- School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Tim Yeomans
- Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Zhongle Liu
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Michael Church
- School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Alastair B. Fleming
- School of Genetics and Microbiology, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Matthew Z. Anderson
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Judith Berman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Lawrence C. Myers
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Derek J. Sullivan
- Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
- * E-mail: (DJS); (GPM)
| | - Gary P. Moran
- Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
- * E-mail: (DJS); (GPM)
| |
Collapse
|
20
|
Intracellular trafficking of AIP56, an NF-κB-cleaving toxin from Photobacterium damselae subsp. piscicida. Infect Immun 2014; 82:5270-85. [PMID: 25287919 DOI: 10.1128/iai.02623-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIP56 (apoptosis-inducing protein of 56 kDa) is a metalloprotease AB toxin secreted by Photobacterium damselae subsp. piscicida that acts by cleaving NF-κB. During infection, AIP56 spreads systemically and depletes phagocytes by postapoptotic secondary necrosis, impairing the host phagocytic defense and contributing to the genesis of infection-associated necrotic lesions. Here we show that mouse bone marrow-derived macrophages (mBMDM) intoxicated by AIP56 undergo NF-κB p65 depletion and apoptosis. Similarly to what was reported for sea bass phagocytes, intoxication of mBMDM involves interaction of AIP56 C-terminal region with cell surface components, suggesting the existence of a conserved receptor. Biochemical approaches and confocal microscopy revealed that AIP56 undergoes clathrin-dependent endocytosis, reaches early endosomes, and follows the recycling pathway. Translocation of AIP56 into the cytosol requires endosome acidification, and an acidic pulse triggers translocation of cell surface-bound AIP56 into the cytosol. Accordingly, at acidic pH, AIP56 becomes more hydrophobic, interacting with artificial lipid bilayer membranes. Altogether, these data indicate that AIP56 is a short-trip toxin that reaches the cytosol using an acidic-pH-dependent mechanism, probably from early endosomes. Usually, for short-trip AB toxins, a minor pool reaches the cytosol by translocating from endosomes, whereas the rest is routed to lysosomes for degradation. Here we demonstrate that part of endocytosed AIP56 is recycled back and released extracellularly through a mechanism requiring phosphoinositide 3-kinase (PI3K) activity but independent of endosome acidification. So far, we have been unable to detect biological activity of recycled AIP56, thereby bringing into question its biological relevance as well as the importance of the recycling pathway.
Collapse
|
21
|
Cheah HL, Lim V, Sandai D. Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS One 2014; 9:e95951. [PMID: 24781056 PMCID: PMC4004578 DOI: 10.1371/journal.pone.0095951] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/02/2014] [Indexed: 01/09/2023] Open
Abstract
Candida albicans is an opportunistic pathogen that causes candidiasis in humans. In recent years, metabolic pathways in C. albicans have been explored as potential antifungal targets to treat candidiasis. The glyoxylate cycle, which enables C. albicans to survive in nutrient-limited host niches and its. Key enzymes (e.g., isocitrate lyase (ICL1), are particularly attractive antifungal targets for C. albicans. In this study, we used a new screening approach that better reflects the physiological environment that C. albicans cells experience during infection to identify potential inhibitors of ICL. Three compounds (caffeic acid (CAFF), rosmarinic acid (ROS), and apigenin (API)) were found to have antifungal activity against C. albicans when tested under glucose-depleted conditions. We further confirmed the inhibitory potential of these compounds against ICL using the ICL enzyme assay. Lastly, we assessed the bioavailability and toxicity of these compounds using Lipinski's rule-of-five and ADMET analysis.
Collapse
Affiliation(s)
- Hong-Leong Cheah
- Infectomic Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Doblin Sandai
- Infectomic Cluster, Advanced Medical & Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
22
|
Vylkova S, Lorenz MC. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. PLoS Pathog 2014; 10:e1003995. [PMID: 24626429 PMCID: PMC3953444 DOI: 10.1371/journal.ppat.1003995] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/30/2014] [Indexed: 12/23/2022] Open
Abstract
Candida albicans, the most important fungal pathogen of humans, has a unique interaction with macrophages in which phagocytosis induces a switch from the yeast to hyphal form, allowing it to escape by rupturing the immune cell. While a variety of factors induce this switch in vitro, including neutral pH, it is not clear what triggers morphogenesis within the macrophage where the acidic environment should inhibit this transition. In vitro, C. albicans grown in similar conditions in which amino acids are the primary carbon source generate large quantities of ammonia to raise the extracellular pH and induce the hyphal switch. We show here that C. albicans cells neutralize the macrophage phagosome and that neutral pH is a key inducer of germination in phagocytosed cells by using a mutant lacking STP2, a transcription factor that regulates the expression of multiple amino acid permeases, that is completely deficient in alkalinization in vitro. Phagocytosed stp2Δ mutant cells showed significant reduction in hypha formation and escaped from macrophages less readily compared to wild type cells; as a result stp2Δ mutant cells were killed at a higher rate and caused less damage to RAW264.7 macrophages. Stp2p-regulated import leads to alkalinization of the phagosome, since the majority of the wild type cells fail to co-localize with acidophilic dyes, whereas the stp2Δ mutant cells were located in acidic phagosomes. Furthermore, stp2Δ mutant cells were able to form hyphae and escape from neutral phagosomes, indicating that the survival defect in these cells was pH dependent. Finally, these defects are reflected in an attenuation of virulence in a mouse model of disseminated candidiasis. Altogether our results suggest that C. albicans utilizes amino acids to promote neutralization of the phagosomal pH, hyphal morphogenesis, and escape from macrophages. The innate immune system represents a key barrier that fungal pathogens such as Candida albicans must overcome in order to disseminate through the host. C. albicans cells phagocytosed by macrophages initiate a complex program that involves a large-scale reprogramming of metabolism and transcription and results in the switch to a hyphal form that can penetrate and kill the macrophage. Though a number of signals are known to induce this morphological transition in vitro, what does so following phagocytosis has been unclear. We previously showed that C. albicans rapidly neutralizes acidic, nutrient-poor media that resembles the phagolysosome and that this is deficient in mutants impaired in amino acid import due to a mutation in STP2. In this paper, we investigate whether this happens within the macrophage as well. We show here that, in contrast to wild-type cells, stp2Δ mutants occupy an acidic phagosome and are unable to initiate hyphal differentiation. Because of this, they are more sensitive to killing and do less damage to the macrophages than cells that can neutralize the phagolysosome. We conclude that alteration of phagosomal pH is an important virulence adaptation in this species.
Collapse
Affiliation(s)
- Slavena Vylkova
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Fan Y, He H, Dong Y, Pan H. Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1 and relevant signaling pathways in Candida albicans. Mycopathologia 2013; 176:329-35. [PMID: 24002103 DOI: 10.1007/s11046-013-9684-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Fungal virulence mechanisms include adhesion to epithelia, morphogenesis, production of secretory hydrolytic enzymes, and phenotype switching, all of which contribute to the process of pathogenesis. A striking feature of the biology of Candida albicans is its ability to grow in yeast, pseudohyphal, and hyphal forms. The hyphal form plays an important role in causing disease, by invading epithelial cells and causing tissue damage. In this review, we illustrate some of the main hyphae-specific genes, namely HGC1, UME6, ALS3, HWP1, and ECE1, and their relevant and reversed signal transduction pathways in reactions stimulated by environmental factors, including pH, CO2, and serum.
Collapse
Affiliation(s)
- Yan Fan
- Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | | | | | | |
Collapse
|
24
|
Abstract
Hundred-thousands of fungal species are present in our environment, including normal colonizers that constitute part of the human microbiota. The homeostasis of host-fungus interactions encompasses efficient fungal sensing, tolerance at mucosal surfaces, as well as antifungal defenses. Decrease in host immune fitness or increase in fungal burden may favor pathologies, ranging from superficial mucocutaneous diseases to invasive life-threatening fungal infections. Toll-like receptors (TLRs) are essential players in this balance, due to their ability to control both inflammatory and anti-inflammatory processes upon recognition of fungal-specific pathogen-associated molecular patterns (PAMPs). Certain members of the TLR family participate to the initial recognition of fungal PAMPs on the cell surface, as well as inside phagosomes of innate immune cells. Active signaling cascades in phagocytes ultimately enable fungus clearance and the release of cytokines that shape and instruct other innate immune cells and the adaptive immune system. Some TLRs cooperate with other pattern recognition receptors (PRRs) (e.g., C-type lectins and Galectins), thus allowing for a tailored immune response. The spatio-temporal and physiological contributions of individual TLRs in fungal infections remains ill-defined, although in humans, TLR gene polymorphisms have been linked to increased susceptibility to fungal infections. This review focuses entirely on the role of TLRs that control the host susceptibility to environmental fungi (e.g., Aspergillus, Cryptoccocus, and Coccidoides), as well as to the most frequent human fungal pathogens represented by the commensal Candida species. The emerging roles of TLRs in modulating host tolerance to fungi, and the strategies that evolved in some of these fungi to evade or use TLR recognition to their advantage will also be discussed, as well as their potential suitability as targets in vaccine therapies.
Collapse
Affiliation(s)
- Christelle Bourgeois
- Medical University of Vienna, Max F. Perutz Laboratories Vienna, Austria. christelle.bourgeois@ meduniwien.ac.at
| | | |
Collapse
|
25
|
Jacobsen ID, Wilson D, Wächtler B, Brunke S, Naglik JR, Hube B. Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther 2012; 10:85-93. [PMID: 22149617 DOI: 10.1586/eri.11.152] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability to switch between yeast and hyphal growth forms (dimorphism) is one of the most discussed and best investigated virulence attributes of the human pathogenic fungus Candida albicans. Both morphological forms seem to be important for virulence and have distinct functions during the different stages of disease development, including adhesion, invasion, damage, dissemination, immune evasion and host response. In this review, we will provide an overview of the known and potential roles of C. albicans dimorphism and will discuss the potential benefit of drugs that can inhibit the morphological transition.
Collapse
Affiliation(s)
- Ilse D Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute Jena, Beutenbergstraße 11a, D-07745, Jena, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Zipfel PF, Skerka C. Complement, Candida, and cytokines: the role of C5a in host response to fungi. Eur J Immunol 2012; 42:822-5. [PMID: 22531909 DOI: 10.1002/eji.201242466] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complement is the central host defense system that clears invading microbes and balances homeostasis. Pathogenic microbes such as Candida albicans have to breach this efficient and important immune defense layer in order to propagate within the host and to establish an infection. Knowing exactly how the activated complement cascade responds to and attacks microbial invaders is central to understanding the immune battle and the infection process. This also allows a better understanding of how Candida counteracts the individual steps of host innate immunity. Ultimately this knowledge will allow the design of appropriate therapeutic molecules. In this issue Cheng et al. [Eur. J. Immunol. 2012. 42: 993-1004] identify a new cellular effect of the activated human complement system in the defense against the fungal pathogen C. albicans. The authors show that the complement activation fragment C5a, which is formed in response to Candida infection, induces the cellular release of the inflammatory cytokines IL-6 and IL-1β.
Collapse
Affiliation(s)
- Peter F Zipfel
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Infection Biology, Beutenbergstrasse, Jena, Germany.
| | | |
Collapse
|
27
|
Cheng SC, Sprong T, Joosten LA, van der Meer JWM, Kullberg BJ, Hube B, Schejbel L, Garred P, van Deuren M, Netea MG. Complement plays a central role in Candida albicans-induced cytokine production by human PBMCs. Eur J Immunol 2012; 42:993-1004. [DOI: 10.1002/eji.201142057] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | | | | | | | - Lone Schejbel
- Department of Clinical Immunology; Laboratory of Molecular Medicine; Rigshospitalet; Copenhagen; Denmark
| | - Peter Garred
- Department of Clinical Immunology; Laboratory of Molecular Medicine; Rigshospitalet; Copenhagen; Denmark
| | | | | |
Collapse
|
28
|
Uwamahoro N, Qu Y, Jelicic B, Lo TL, Beaurepaire C, Bantun F, Quenault T, Boag PR, Ramm G, Callaghan J, Beilharz TH, Nantel A, Peleg AY, Traven A. The functions of Mediator in Candida albicans support a role in shaping species-specific gene expression. PLoS Genet 2012; 8:e1002613. [PMID: 22496666 PMCID: PMC3320594 DOI: 10.1371/journal.pgen.1002613] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 02/07/2012] [Indexed: 01/01/2023] Open
Abstract
The Mediator complex is an essential co-regulator of RNA polymerase II that is conserved throughout eukaryotes. Here we present the first study of Mediator in the pathogenic fungus Candida albicans. We focused on the Middle domain subunit Med31, the Head domain subunit Med20, and Srb9/Med13 from the Kinase domain. The C. albicans Mediator shares some roles with model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, such as functions in the response to certain stresses and the role of Med31 in the expression of genes regulated by the activator Ace2. The C. albicans Mediator also has additional roles in the transcription of genes associated with virulence, for example genes related to morphogenesis and gene families enriched in pathogens, such as the ALS adhesins. Consistently, Med31, Med20, and Srb9/Med13 contribute to key virulence attributes of C. albicans, filamentation, and biofilm formation; and ALS1 is a biologically relevant target of Med31 for development of biofilms. Furthermore, Med31 affects virulence of C. albicans in the worm infection model. We present evidence that the roles of Med31 and Srb9/Med13 in the expression of the genes encoding cell wall adhesins are different between S. cerevisiae and C. albicans: they are repressors of the FLO genes in S. cerevisiae and are activators of the ALS genes in C. albicans. This suggests that Mediator subunits regulate adhesion in a distinct manner between these two distantly related fungal species.
Collapse
Affiliation(s)
- Nathalie Uwamahoro
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Yue Qu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Branka Jelicic
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Tricia L. Lo
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Cecile Beaurepaire
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada
| | - Farkad Bantun
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Tara Quenault
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Peter R. Boag
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Micro Imaging, Monash University, Clayton, Australia
| | - Judy Callaghan
- Monash Micro Imaging, Monash University, Clayton, Australia
| | - Traude H. Beilharz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - André Nantel
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada
- * E-mail: (AT); (AN)
| | - Anton Y. Peleg
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail: (AT); (AN)
| |
Collapse
|
29
|
Lewis LE, Bain JM, Lowes C, Gillespie C, Rudkin FM, Gow NAR, Erwig LP. Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. PLoS Pathog 2012; 8:e1002578. [PMID: 22438806 PMCID: PMC3305454 DOI: 10.1371/journal.ppat.1002578] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/26/2012] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is a major life-threatening human fungal pathogen. Host defence against systemic Candida infection relies mainly on phagocytosis of fungal cells by cells of the innate immune system. In this study, we have employed video microscopy, coupled with sophisticated image analysis tools, to assess the contribution of distinct C. albicans cell wall components and yeast-hypha morphogenesis to specific stages of phagocytosis by macrophages. We show that macrophage migration towards C. albicans was dependent on the glycosylation status of the fungal cell wall, but not cell viability or morphogenic switching from yeast to hyphal forms. This was not a consequence of differences in maximal macrophage track velocity, but stems from a greater percentage of macrophages pursuing glycosylation deficient C. albicans during the first hour of the phagocytosis assay. The rate of engulfment of C. albicans attached to the macrophage surface was significantly delayed for glycosylation and yeast-locked morphogenetic mutant strains, but enhanced for non-viable cells. Hyphal cells were engulfed at a slower rate than yeast cells, especially those with hyphae in excess of 20 µm, but there was no correlation between hyphal length and the rate of engulfment below this threshold. We show that spatial orientation of the hypha and whether hyphal C. albicans attached to the macrophage via the yeast or hyphal end were also important determinants of the rate of engulfment. Breaking down the overall phagocytic process into its individual components revealed novel insights into what determines the speed and effectiveness of C. albicans phagocytosis by macrophages. Host defence against systemic candidiasis relies mainly on the ingestion and elimination of fungal cells by cells of the innate immune system, especially neutrophils and macrophages. Here we have used live cell video microscopy coupled with sophisticated image analysis to generate a temporal and spatial analysis in unprecedented detail of the specific effects of C. albicans viability, cell wall composition, morphogenesis and spatial orientation on two distinct stages (macrophage migration and engulfment of bound C. albicans) of the phagocytosis process. The novel methods employed here to study phagocytosis of C. albicans could be applied to study other pathogens and uptake of dying host cells. Thus, our studies have direct implications for a much broader community and provide a blueprint for future studies with other phagocytes/microorganisms that would significantly enhance our understanding of the mechanisms that govern effective phagocytosis and ultimately the innate immune response to infection.
Collapse
Affiliation(s)
- Leanne E. Lewis
- Division of Applied Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Judith M. Bain
- Division of Applied Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Christina Lowes
- Division of Applied Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Collette Gillespie
- Division of Applied Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Fiona M. Rudkin
- Division of Applied Medicine, University of Aberdeen, Aberdeen, United Kingdom
- Aberdeen Fungal Group, University of Aberdeen, Aberdeen, United Kingdom
| | - Neil A. R. Gow
- Aberdeen Fungal Group, University of Aberdeen, Aberdeen, United Kingdom
| | - Lars-Peter Erwig
- Division of Applied Medicine, University of Aberdeen, Aberdeen, United Kingdom
- Aberdeen Fungal Group, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Karkowska-Kuleta J, Kedracka-Krok S, Rapala-Kozik M, Kamysz W, Bielinska S, Karafova A, Kozik A. Molecular determinants of the interaction between human high molecular weight kininogen and Candida albicans cell wall: Identification of kininogen-binding proteins on fungal cell wall and mapping the cell wall-binding regions on kininogen molecule. Peptides 2011; 32:2488-96. [PMID: 22074954 DOI: 10.1016/j.peptides.2011.10.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/23/2011] [Accepted: 10/24/2011] [Indexed: 11/28/2022]
Abstract
An excessive production of vasoactive and proinflammatory bradykinin-related peptides, the kinins, is often involved in the human host defense against microbial infections. Recent studies have shown that a major fungal pathogen to humans, Candida albicans, can bind the proteinaceous kinin precursor, the high molecular weight kininogen (HK) and trigger the kinin-forming cascade on the cell surface. In this work, we preliminarily characterized a molecular mechanism underlying the HK adhesion to the fungal surface by (i) identification of major kininogen-binding constituents on the candidial cell wall and (ii) mapping the cell wall-binding regions on HK molecule. A major fraction of total fungal kininogen-binding capacity was assigned to β-1,3-glucanase-extractable cell wall proteins (CWP). By adsorption of CWP on HK-coupled agarose gel and mass spectrometric analysis of the eluted material, major putative HK receptors were identified, including Als3 adhesin and three glycolytic enzymes, i.e., enolase 1, phosphoglycerate mutase 1 and triosephosphate isomerase 1. Using monoclonal antibodies directed against selected parts of HK molecule and synthetic peptides with sequences matching selected HK fragments, we assigned the major fungal cell wall-binding ability to a short stretch of amino acids in the C-terminal part of domain 3 and a large continuous region involving the C-terminal part of domain 5 and N-terminal part of domain 6 (residues 479-564). The latter characteristics of HK binding to C. albicans surface differ from those reported for bacteria and host cells.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
31
|
Friend or foe: using systems biology to elucidate interactions between fungi and their hosts. Trends Microbiol 2011; 19:509-15. [DOI: 10.1016/j.tim.2011.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 11/20/2022]
|
32
|
Losse J, Svobodová E, Heyken A, Hube B, Zipfel PF, Józsi M. Role of pH-regulated antigen 1 of Candida albicans in the fungal recognition and antifungal response of human neutrophils. Mol Immunol 2011; 48:2135-43. [DOI: 10.1016/j.molimm.2011.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 07/07/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
|
33
|
Adaptation, adhesion and invasion during interaction of Candida albicans with the host – Focus on the function of cell wall proteins. Int J Med Microbiol 2011; 301:384-9. [DOI: 10.1016/j.ijmm.2011.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
34
|
Nagy I, Filkor K, Németh T, Hamari Z, Vágvölgyi C, Gácser A. In vitro interactions of Candida parapsilosis wild type and lipase deficient mutants with human monocyte derived dendritic cells. BMC Microbiol 2011; 11:122. [PMID: 21619700 PMCID: PMC3148963 DOI: 10.1186/1471-2180-11-122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/29/2011] [Indexed: 11/10/2022] Open
Abstract
Background Candida parapsilosis typically is a commensal of human skin. However, when host immune defense is compromised or the normal microflora balance is disrupted, C. parapsilosis transforms itself into an opportunistic pathogen. Candida-derived lipase has been identified as potential virulence factor. Even though cellular components of the innate immune response, such as dendritic cells, represent the first line of defense against invading pathogens, little is known about the interaction of these cells with invading C. parapsilosis. Thus, the aim of our study was to assess the function of dendritic cells in fighting C. parapsilosis and to determine the role that C. parapsilosis-derived lipase plays in the interaction with dendritic cells. Results Monocyte-derived immature and mature dendritic cells (iDCs and mDCs, respectively) co-cultured with live wild type or lipase deficient C. parapsilosis strains were studied to determine the phagocytic capacity and killing efficiency of host cells. We determined that both iDCs and mDCs efficiently phagocytosed and killed C. parapsilosis, furthermore our results show that the phagocytic and fungicidal activities of both iDCs and mDCs are more potent for lipase deficient compared to wild type yeast cells. In addition, the lipase deficient C. parapsilosis cells induce higher gene expression and protein secretion of proinflammatory cytokines and chemokines in both DC types relative to the effect of co-culture with wild type yeast cells. Conclusions Our results show that DCs are activated by exposure to C. parapsilosis, as shown by increased phagocytosis, killing and proinflammatory protein secretion. Moreover, these data strongly suggest that C. parapsilosis derived lipase has a protective role during yeast:DC interactions, since lipase production in wt yeast cells decreased the phagocytic capacity and killing efficiency of host cells and downregulated the expression of host effector molecules.
Collapse
Affiliation(s)
- István Nagy
- Department of Microbiology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
35
|
Immune escape of the human facultative pathogenic yeast Candida albicans: the many faces of the Candida Pra1 protein. Int J Med Microbiol 2011; 301:423-30. [PMID: 21565550 DOI: 10.1016/j.ijmm.2011.04.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Infectious diseases caused by human pathogenic fungi represent a major and global health problem. Based on the limited efficacy of existing drugs and the increasing resistance to antifungal compounds, new strategies are urgently needed to fight such fungal infections. The medically important pathogen Candida albicans can exist as an opportunistic yeast, but can also cause severe diseases, septicaemia, and death. In order to establish new strategies to fight Candida infections and to interfere with survival of the pathogen, it is highly relevant to understand the molecular and immunology interactions between the pathogen C. albicans and the human host. This immune cross talk has moved into the focus of infectious disease research. In this review, we summarize the diverse and multiple levels of the immune cross talk between the fungal pathogen C. albicans and the human host. In particular, we define how one single fungal protein Pra1 (pH-regulated antigen 1) interferes and controls host immune attack at multiple levels and thus contributes to fungal immune escape. Candida Pra1 represents a promising candidate for immune interference.
Collapse
|
36
|
The interaction between Candida krusei and murine macrophages results in multiple outcomes, including intracellular survival and escape from killing. Infect Immun 2011; 79:2136-44. [PMID: 21422181 DOI: 10.1128/iai.00044-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida krusei is a fungal pathogen of interest for the scientific community for its intrinsic resistance to fluconazole. Little is known about the interaction of this yeast with host immune cells. In this work, we have characterized the outcome of the interaction between C. krusei and murine macrophages. Once C. krusei was internalized, we observed different phenomena. In a macrophage-like cell line, C. krusei survived in a significant number of macrophages and induced filamentation and macrophage explosion. Phagocytosis of C. krusei led to actin polymerization around the yeast cells at the site of entry. Fluorescent specific staining with anti-Lamp1 and LysoTracker indicated that after fungal internalization, there was a phagolysosome maturation defect, a phenomenon that was more efficient when the macrophages phagocytosed killed yeast cells. Using cell line macrophages, we also observed macrophage fusion after cell division. When we used primary resident peritoneal macrophages in addition to macrophage explosion, we also observed a strong chemotaxis of uninfected macrophages to regions where C. krusei-infected macrophages were present. We also noticed yeast transfer phenomena between infected macrophages. Primary macrophages inhibited pseudohypha elongation more efficiently than the macrophage-like cell line, suggesting that C. krusei infection was better controlled by the former macrophages. Primary macrophages induced more tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) than the macrophage-like cell line. Our results demonstrate that C. krusei can exploit the macrophages for replication, although other different outcomes are also possible, indicating that the interaction of this pathogen with phagocytic cells is very complex and regulated by multiple factors.
Collapse
|
37
|
Abstract
Oral epithelial cells are the first cells that interact with C. albicans during the establishment of oropharyngeal candidiasis. Following initial adhesion, C. albicans invades oral epithelial cells by inducing its own endocytosis and gains access to epithelial vacuolar compartments. Epithelial endocytic pathways are key innate immune mechanisms in host defense. We examined the trafficking of C. albicans through oral epithelial endocytic compartments. We present evidence that C. albicans is internalized by oral epithelial cells through actin-dependent clathrin-mediated endocytosis and is taken into vacuolar compartments immediately following its internalization. C. albicans-containing endosomes transiently acquired early endosomal marker EEA1, but showed marked defects in acquisition of late endosomal marker LAMP1 and lysosomal marker cathepsin D. Defective endolysosomal maturation may partially explain the inability of oral epithelial cells to kill C. albicans.
Collapse
Affiliation(s)
- Xiang Ru Zhao
- Department of Periodontics, The University of Texas, Health Science Center at San Antonio, San Antonio, Texas, USA
| | | |
Collapse
|
38
|
Bourgeois C, Majer O, Frohner IE, Lesiak-Markowicz I, Hildering KS, Glaser W, Stockinger S, Decker T, Akira S, Müller M, Kuchler K. Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-β signaling. THE JOURNAL OF IMMUNOLOGY 2011; 186:3104-12. [PMID: 21282509 DOI: 10.4049/jimmunol.1002599] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human fungal pathogens such as the dimorphic Candida albicans or the yeast-like Candida glabrata can cause systemic candidiasis of high mortality in immunocompromised individuals. Innate immune cells such as dendritic cells and macrophages establish the first line of defense against microbial pathogens and largely determine the outcome of infections. Among other cytokines, they produce type I IFNs (IFNs-I), which are important modulators of the host immune response. Whereas an IFN-I response is a hallmark immune response to bacteria and viruses, a function in fungal pathogenesis has remained unknown. In this study, we demonstrate a novel mechanism mediating a strong IFN-β response in mouse conventional dendritic cells challenged by Candida spp., subsequently orchestrating IFN-α/β receptor 1-dependent intracellular STAT1 activation and IFN regulatory factor (IRF) 7 expression. Interestingly, the initial IFN-β release bypasses the TLR 4 and TLR2, the TLR adaptor Toll/IL-1R domain-containing adapter-inducing IFN-β and the β-glucan/phagocytic receptors dectin-1 and CD11b. Notably, Candida-induced IFN-β release is strongly impaired by Src and Syk family kinase inhibitors and strictly requires completion of phagocytosis as well as phagosomal maturation. Strikingly, TLR7, MyD88, and IRF1 are essential for IFN-β signaling. Furthermore, in a mouse model of disseminated candidiasis we show that IFN-I signaling promotes persistence of C. glabrata in the host. Our data uncover for the first time a pivotal role for endosomal TLR7 signaling in fungal pathogen recognition and highlight the importance of IFNs-I in modulating the host immune response to C. glabrata.
Collapse
Affiliation(s)
- Christelle Bourgeois
- Christian Doppler Laboratory for Infection Biology, Max F Perutz Laboratories, Medical University Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
G1/S transcription factor orthologues Swi4p and Swi6p are important but not essential for cell proliferation and influence hyphal development in the fungal pathogen Candida albicans. EUKARYOTIC CELL 2011; 10:384-97. [PMID: 21257795 DOI: 10.1128/ec.00278-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The G(1)/S transition is a critical control point for cell proliferation and involves essential transcription complexes termed SBF and MBF in Saccharomyces cerevisiae or MBF in Schizosaccharomyces pombe. In the fungal pathogen Candida albicans, G(1)/S regulation is not clear. To gain more insight into the G(1)/S circuitry, we characterized Swi6p, Swi4p and Mbp1p, the closest orthologues of SBF (Swi6p and Swi4p) and MBF (Swi6p and Mbp1p) components in S. cerevisiae. The mbp1Δ/Δ cells showed minor growth defects, whereas swi4Δ/Δ and swi6Δ/Δ yeast cells dramatically increased in size, suggesting a G(1) phase delay. Gene set enrichment analysis (GSEA) of transcription profiles revealed that genes associated with G(1)/S phase were significantly enriched in cells lacking Swi4p and Swi6p. These expression patterns suggested that Swi4p and Swi6p have repressing as well as activating activity. Intriguingly, swi4Δ/Δ swi6Δ/Δ and swi4Δ/Δ mbp1Δ/Δ strains were viable, in contrast to the situation in S. cerevisiae, and showed pleiotropic phenotypes that included multibudded yeast, pseudohyphae, and intriguingly, true hyphae. Consistently, GSEA identified strong enrichment of genes that are normally modulated during C. albicans-host cell interactions. Since Swi4p and Swi6p influence G(1) phase progression and SBF binding sites are lacking in the C. albicans genome, these factors may contribute to MBF activity. Overall, the data suggest that the putative G(1)/S regulatory machinery of C. albicans contains novel features and underscore the existence of a relationship between G(1) phase and morphogenetic switching, including hyphal development, in the pathogen.
Collapse
|
40
|
Regulation of innate immune response to Candida albicans infections by αMβ2-Pra1p interaction. Infect Immun 2011; 79:1546-58. [PMID: 21245270 DOI: 10.1128/iai.00650-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Candida albicans is a common opportunistic fungal pathogen and is the leading cause of invasive fungal diseases in immunocompromised individuals. The induction of cell-mediated immunity to C. albicans is one of the main tasks of cells of the innate immune system, and in vitro evidence suggests that integrin α(M)β₂ (CR3, Mac-1, and CD11b/CD18) is the principal leukocyte receptor involved in recognition of the fungus. Using α(M)β₂-KO mice and mutated strains of C. albicans in two models of murine candidiasis, we demonstrate that neutrophils derived from mice deficient in α(M)β₂ have a reduced ability to kill C. albicans and that the deficient mice themselves exhibit increased susceptibility to fungal infection. Disruption of the PRA1 gene of C. albicans, the primary ligand for α(M)β₂, protects the fungus against leukocyte killing in vitro and in vivo, impedes the innate immune response to the infection, and increases fungal virulence and organ invasion in vivo. Thus, recognition of pH-regulated antigen 1 protein (Pra1p) by α(M)β₂ plays a pivotal role in determining fungal virulence and host response and protection against C. albicans infection.
Collapse
|
41
|
Luo S, Blom AM, Rupp S, Hipler UC, Hube B, Skerka C, Zipfel PF. The pH-regulated antigen 1 of Candida albicans binds the human complement inhibitor C4b-binding protein and mediates fungal complement evasion. J Biol Chem 2011; 286:8021-8029. [PMID: 21212281 DOI: 10.1074/jbc.m110.130138] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Candida albicans binds and utilizes human complement inhibitors, such as C4b-binding protein (C4BP), Factor H, and FHL-1 for immune evasion. Here, we identify Candida pH-regulated antigen 1 (Pra1) as the first fungal C4BP-binding protein. Recombinant Pra1 binds C4BP, as shown by ELISA and isothermal titration calorimetry, and the Pra1-C4BP interaction is ionic in nature. The Pra1 binding domains within C4BP were localized to the complement control protein domain 4 (CCP4), CCP7, and CCP8. C4BP bound to Pra1 maintains complement-inhibitory activity. C4BP and Factor H bind simultaneously to Candida Pra1 and do not compete for binding at physiological levels. A Pra1-overexpressing C. albicans strain, which had about 2-fold Pra1 levels at the surface acquired also about 2-fold C4BP to the surface, compared with the wild type strain CAI4. A Pra1 knock-out strain showed ∼22% reduced C4BP binding. C4BP captured by C. albicans from human serum inhibits C4b and C3b surface deposition and also maintains cofactor activity. In summary, Candida Pra1 represents the first fungal C4BP-binding surface protein. Pra1, via binding to C4BP, mediates human complement control, thereby favoring the immune and complement evasion of C. albicans.
Collapse
Affiliation(s)
| | - Anna M Blom
- the Department of Laboratory Medicine, Section of Medical Protein Chemistry, University of Lund, 20502 Malmö, Sweden
| | - Steffen Rupp
- the Fraunhofer Institute for Interfacial Engineering, Nobelstrasse 12, 70569 Stuttgart, Germany, and
| | - Uta-Christina Hipler
- the Clinic of Dermatology and Allergology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Bernhard Hube
- the Department of Microbial Pathogenicity Mechanisms, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, 07745 Jena, Germany
| | | | - Peter F Zipfel
- From the Department of Infection Biology and; the Department of Infection Biology and.
| |
Collapse
|
42
|
Keppler-Ross S, Douglas L, Konopka JB, Dean N. Recognition of yeast by murine macrophages requires mannan but not glucan. EUKARYOTIC CELL 2010; 9:1776-87. [PMID: 20833894 PMCID: PMC2976302 DOI: 10.1128/ec.00156-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/02/2010] [Indexed: 11/20/2022]
Abstract
The first barrier against infection by Candida albicans involves fungal recognition and destruction by phagocytic cells of the innate immune system. It is well established that interactions between different phagocyte receptors and components of the fungal cell wall trigger phagocytosis and subsequent immune responses, but the fungal ligands mediating the initial stage of recognition have not been identified. Here, we describe a novel assay for fungal recognition and uptake by macrophages which monitors this early recognition step independently of other downstream events of phagocytosis. To analyze infection in live macrophages, we validated the neutrality of a codon-optimized red fluorescent protein (yEmRFP) biomarker in C. albicans; growth, hyphal formation, and virulence in infected mice and macrophages were unaffected by yEmRFP production. This permitted a new approach for studying phagocytosis by carrying out competition assays between red and green fluorescent yeast cells to measure the efficiency of yeast uptake by murine macrophages as a function of dimorphism or cell wall defects. These competition experiments demonstrate that, given a choice, macrophages display strong preferences for phagocytosis based on genus, species, and morphology. Candida glabrata and Saccharomyces cerevisiae are taken up by J774 macrophage cells more rapidly than C. albicans, and C. albicans yeast cells are favored over hyphal cells. Significantly, these preferences are mannan dependent. Mutations that affect mannan, but not those that affect glucan or chitin, reduce the uptake of yeast challenged with wild-type competitors by both J774 and primary murine macrophages. These results suggest that mannose side chains or mannosylated proteins are the ligands recognized by murine macrophages prior to fungal uptake.
Collapse
Affiliation(s)
| | - Lois Douglas
- Department of Microbiology, Stony Brook University, Stony Brook, New York 11794-5215
| | - James B. Konopka
- Department of Microbiology, Stony Brook University, Stony Brook, New York 11794-5215
| | - Neta Dean
- Department of Biochemistry and Cell Biology
| |
Collapse
|
43
|
Bourgeois C, Majer O, Frohner IE, Tierney L, Kuchler K. Fungal attacks on mammalian hosts: pathogen elimination requires sensing and tasting. Curr Opin Microbiol 2010; 13:401-8. [PMID: 20538507 DOI: 10.1016/j.mib.2010.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
Abstract
Recognition of Candida spp. by immune cells is mediated by dedicated pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and lectins expressed on innate immune cells (e.g., macrophages, neutrophils and dendritic cells (DCs)). PRRs recognize Candida-specific pathogen-associated molecular patterns (PAMPs). Binding of fungal PAMPs (e.g., cell wall sugar polymers and proteins, fungal nucleic acids) to PRRs triggers the activation of innate effector cells. Recent findings underscore the role of DCs in relaying PAMP information through their PRRs to stimulate the adaptive response. In agreement, deficiencies in certain PRRs strongly impair survival to Candida infections in mice and is associated with enhanced susceptibility to mucocutaneous fungal infections in humans. Understanding the complex signaling networks protecting the host against fungal pathogens remains a challenge in the field.
Collapse
Affiliation(s)
- Christelle Bourgeois
- Medical University Vienna, Max F. Perutz Laboratories, Christian Doppler Laboratory for Infection Biology, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
44
|
Arnaud MB, Costanzo MC, Shah P, Skrzypek MS, Sherlock G. Gene Ontology and the annotation of pathogen genomes: the case of Candida albicans. Trends Microbiol 2009; 17:295-303. [PMID: 19577928 DOI: 10.1016/j.tim.2009.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/06/2009] [Accepted: 04/15/2009] [Indexed: 01/09/2023]
Abstract
The Gene Ontology (GO) is a structured controlled vocabulary developed to describe the roles and locations of gene products in a consistent manner and in a way that can be shared across organisms. The unicellular fungus Candida albicans is similar in many ways to the model organism Saccharomyces cerevisiae but, as both a commensal and a pathogen of humans, differs greatly in its lifestyle. With an expanding at-risk population of immunosuppressed patients, increased use of invasive medical procedures, the increasing prevalence of drug resistance and the emergence of additional Candida species as serious pathogens, it has never been more crucial to improve our understanding of Candida biology to guide the development of better treatments. In this brief review, we examine the importance of GO in the annotation of C. albicans gene products, with a focus on those involved in pathogenesis. We also discuss how sequence information combined with GO facilitates the transfer of knowledge across related species and the challenges and opportunities that such an approach presents.
Collapse
Affiliation(s)
- Martha B Arnaud
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| | | | | | | | | |
Collapse
|
45
|
Brock M. Fungal metabolism in host niches. Curr Opin Microbiol 2009; 12:371-6. [PMID: 19535285 DOI: 10.1016/j.mib.2009.05.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/25/2009] [Accepted: 05/12/2009] [Indexed: 11/30/2022]
Abstract
Invasive fungal infections of immunocompromised patients cause major problems in modern medicine and only a limited number of effective antifungals are available, making the identification of new drug targets a priority. The inhibition of primary metabolism represents a promising therapeutic strategy, but a better understanding of the metabolic processes during pathogenesis is required. Infection, invasion and maintenance within a host are very dynamic events and fungal metabolism has to adapt to these changes. Glycolysis, gluconeogenesis and starvation all contribute to successful host colonisation, but the temporal and spatial resolution of their specific importance is poorly understood. Knowledge about the metabolic requirements of pathogenic fungi during infection could lead to the identification of new classes of antifungals, which allow the treatment of otherwise life-threatening infections.
Collapse
Affiliation(s)
- Matthias Brock
- Microbial Biochemistry and Physiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany.
| |
Collapse
|
46
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
47
|
Frohner IE, Bourgeois C, Yatsyk K, Majer O, Kuchler K. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol Microbiol 2008; 71:240-52. [PMID: 19019164 PMCID: PMC2713856 DOI: 10.1111/j.1365-2958.2008.06528.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Mammalian innate immune cells produce reactive oxygen species (ROS) in the oxidative burst reaction to destroy invading microbial pathogens. Using quantitative real-time ROS assays, we show here that both yeast and filamentous forms of the opportunistic human fungal pathogen Candida albicans trigger ROS production in primary innate immune cells such as macrophages and dendritic cells. Through a reverse genetic approach, we demonstrate that coculture of macrophages or myeloid dendritic cells with C. albicans cells lacking the superoxide dismutase (SOD) Sod5 leads to massive extracellular ROS accumulation in vitro. ROS accumulation was further increased in coculture with fungal cells devoid of both Sod4 and Sod5. Survival experiments show that C. albicans mutants lacking Sod5 and Sod4 exhibit a severe loss of viability in the presence of macrophages in vitro. The reduced viability of sod5Δ/Δ and sod4Δ/Δsod5Δ/Δ mutants relative to wild type is not evident with macrophages from gp91phox−/− mice defective in the oxidative burst activity, demonstrating a ROS-dependent killing activity of macrophages targeting fungal pathogens. These data show a physiological role for cell surface SODs in detoxifying ROS, and suggest a mechanism whereby C. albicans, and perhaps many other microbial pathogens, can evade host immune surveillance in vivo.
Collapse
Affiliation(s)
- Ingrid E Frohner
- Medical University Vienna, Christian Doppler Laboratory for Infection Biology, Max F. Perutz Laboratories, Campus Vienna Biocenter; A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|