1
|
Lin S, Li X, Zhang W, Shu G, Tolker-Nielsen T, Li H, Xu F, Lin J, Peng G, Zhang L, Fu H. Enhanced penetration and biofilm eradication by sophorolipid micelles encapsulating Honokiol: a comprehensive solution for biofilm-associated lung infections. J Nanobiotechnology 2025; 23:76. [PMID: 39901249 PMCID: PMC11792403 DOI: 10.1186/s12951-025-03144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Biofilm-associated lung infections, particularly those caused by Staphylococcus aureus (S. aureus), pose significant clinical challenges to conventional therapies. S. aureus Biofilm infections are refractory to treatment due to the presence of persister bacterial cells and the barrier effect of unique extracellular polymeric substances (EPS). RESULTS This study describes the development of multifunctional micelles, HK-SL Ms, utilizing sophorolipid (SL) to encapsulate Honokiol (HK). HK-SL Ms potently disrupted the EPS barrier, killed some internal colonizing bacteria, and inhibited further bacterial adhesion. Consequently, the dynamic cycling of biofilms was hindered, achieving a promising removal of S. aureus biofilms. In vitro studies demonstrated that HK-SL Ms exhibited significant antimicrobial reduction of a 6.42 log10CFU/mL. HK-SL Ms eradicated 71.73% of biofilms by targeting extracellular polysaccharides, extracellular proteins, and viable cells within the biofilm. Additionally, 1.66 log10CFU/mL units of S. aureus within biofilms were killed. Moreover, HK-SL Ms inhibited 91.10% of early S. aureus biofilm formation by obstructing initial bacterial adhesion and the formation of extracellular polysaccharides and polysaccharide intercellular adhesins (PIA). Thus, the reestablishment and reinfection of S. aureus biofilms could be resolved promisingly. Biofilm infections are as predominant in acute pneumonia as in chronic cases, inducing similar lung inflammation. In a murine model of pneumonia infected by S. aureus, HK-SL Ms significantly reduced the bacterial load in the lungs, decreased inflammatory factor levels, and repaired lung tissue damage. CONCLUSIONS HK-SL Ms offers a novel strategy for the clinical treatment of biofilm-associated infections by dispersing and removing S. aureus biofilms and preventing new infections.
Collapse
Affiliation(s)
- Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics,, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaojuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics,, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics,, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics,, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tim Tolker-Nielsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics,, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics,, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics,, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics,, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Li Zhang
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, Sichuan, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics,, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
2
|
Bru JL, Kasallis SJ, Chang R, Zhuo Q, Nguyen J, Pham P, Warren E, Whiteson K, Høyland-Kroghsbo NM, Limoli DH, Siryaporn A. The great divide: rhamnolipids mediate separation between P. aeruginosa and S. aureus. Front Cell Infect Microbiol 2023; 13:1245874. [PMID: 37780859 PMCID: PMC10540625 DOI: 10.3389/fcimb.2023.1245874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
The interactions between bacterial species during infection can have significant impacts on pathogenesis. Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic bacterial pathogens that can co-infect hosts and cause serious illness. The factors that dictate whether one species outcompetes the other or whether the two species coexist are not fully understood. We investigated the role of surfactants in the interactions between these two species on a surface that enables P. aeruginosa to swarm. We found that P. aeruginosa swarms are repelled by colonies of clinical S. aureus isolates, creating physical separation between the two strains. This effect was abolished in mutants of S. aureus that were defective in the production of phenol-soluble modulins (PSMs), which form amyloid fibrils around wild-type S. aureus colonies. We investigated the mechanism that establishes physical separation between the two species using Imaging of Reflected Illuminated Structures (IRIS), which is a non-invasive imaging method that tracks the flow of surfactants produced by P. aeruginosa. We found that PSMs produced by S. aureus deflected the surfactant flow, which in turn, altered the direction of P. aeruginosa swarms. These findings show that rhamnolipids mediate physical separation between P. aeruginosa and S. aureus, which could facilitate coexistence between these species. Additionally, we found that a number of molecules repelled P. aeruginosa swarms, consistent with a surfactant deflection mechanism. These include Bacillus subtilis surfactant, the fatty acids oleic acid and linoleic acid, and the synthetic lubricant polydimethylsiloxane. Lung surfactant repelled P. aeruginosa swarms and inhibited swarm expansion altogether at higher concentration. Our results suggest that surfactant interactions could have major impacts on bacteria-bacteria and bacteria-host relationships. In addition, our findings uncover a mechanism responsible for P. aeruginosa swarm development that does not rely solely on sensing but instead is based on the flow of surfactant.
Collapse
Affiliation(s)
- Jean-Louis Bru
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Summer J. Kasallis
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Physics & Astronomy, University of California, Irvine, Irvine, CA, United States
| | - Rendell Chang
- School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Quantum Zhuo
- Department of Physics & Astronomy, University of California, Irvine, Irvine, CA, United States
| | - Jacqueline Nguyen
- School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Phillip Pham
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Elizabeth Warren
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Katrine Whiteson
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | | | - Dominique H. Limoli
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Albert Siryaporn
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Physics & Astronomy, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
Goncheva MI, Gibson RM, Shouldice AC, Dikeakos JD, Heinrichs DE. The Staphylococcus aureus protein IsdA increases SARS CoV-2 replication by modulating JAK-STAT signaling. iScience 2023; 26:105975. [PMID: 36687318 PMCID: PMC9838083 DOI: 10.1016/j.isci.2023.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (CoV-2) pandemic has affected millions globally. A significant complication of CoV-2 infection is secondary bacterial co-infection, as seen in approximately 25% of severe cases. The most common organism isolated during co-infection is Staphylococcus aureus. Here, we describe the development of an in vitro co-infection model where both viral and bacterial replication kinetics may be examined. We demonstrate CoV-2 infection does not alter bacterial interactions with host epithelial cells. In contrast, S. aureus enhances CoV-2 replication by 10- to 15-fold. We identify this pro-viral activity is due to the S. aureus iron-regulated surface determinant A (IsdA) protein and demonstrate IsdA modifies host transcription. We find that IsdA alters Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) signaling, by affecting JAK2-STAT3 levels, ultimately leading to increased viral replication. These findings provide key insight into the molecular interactions between host cells, CoV-2 and S. aureus during co-infection.
Collapse
Affiliation(s)
- Mariya I. Goncheva
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada,Corresponding author
| | - Richard M. Gibson
- ImPaKT Laboratory, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ainslie C. Shouldice
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - David E. Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada,Corresponding author
| |
Collapse
|
4
|
Essential Fitness Repertoire of Staphylococcus aureus during Co-infection with Acinetobacter baumannii In Vivo. mSystems 2022; 7:e0033822. [PMID: 36040021 PMCID: PMC9600432 DOI: 10.1128/msystems.00338-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus represents a major human pathogen that is frequently involved in polymicrobial infections. However, the prevalence and role of co-infectious microbes on the pathogenesis and fitness essentiality of S. aureus in vivo remain largely unknown. In this study, we firstly performed a retrospective surveillance of 760 clinical samples and revealed a notable predominance of co-infection with S. aureus and Acinetobacter baumannii. The high-density S. aureus transposon mutant library coupled to transposon insertion sequencing (Tn-Seq) further identified a core set of genes enriched in metabolism of inorganic ions, amino acids, and carbohydrates, which are essential for infection and tissue colonization of S. aureus in the murine systemic infection model. Notably, we revealed a differential requirement of fitness factors for S. aureus in tissue-specific (liver and kidney) and infection-type-specific manner (mono- and co-infection). Co-infection with A. baumannii dramatically altered the fitness requirements of S. aureus in vivo; 49% of the mono-infection fitness genes in S. aureus strain Newman were converted to non-essential, and the functionality of ATP-binding cassette (ABC) transporters was significantly elicited during co-infection. Furthermore, the number of genes essential during co-infection (503) outnumbers the genes essential during mono-infection (362). In addition, the roles of 3 infection-type-specific genes in S. aureus during mono-infection or co-infection with A. baumannii were validated with competitive experiments in vivo. Our data indicated a high incidence and clinical relevance of S. aureus and A. baumannii co-infection, and provided novel insights into establishing antimicrobial regimens to control co-infections. IMPORTANCE Polymicrobial infections are widespread in clinical settings, which potentially correlate with increased infection severity and poor clinical outcomes. Staphylococcus aureus is a formidable human pathogen that causes a variety of diseases in polymicrobial nature. Co-infection and interaction of S. aureus have been described with limited pathogens, mainly including Pseudomonas aeruginosa, Candida albicans, and influenza A virus. Thus far, the prevalence and role of co-infectious microbes on the pathogenesis and fitness essentiality of S. aureus in vivo remain largely unknown. Understanding the polymicrobial composition and interaction, from a community and genome-wide perspective, is thus crucial to shed light on S. aureus pathogenesis strategy. Here, our findings demonstrated, for the first time, that a high incidence rate and clinical relevance of co-infection was caused by S. aureus and Acinetobacter baumannii, illustrating the importance of polymicrobial nature in investigating S. aureus pathogenesis. The infection-type-specific genes likely serve as potential therapeutic targets to control S. aureus infections, either in mono- or co-infection situation, providing novel insights into the development of antimicrobial regimens to control co-infections.
Collapse
|
5
|
Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12:547-569. [PMID: 33522395 PMCID: PMC7872022 DOI: 10.1080/21505594.2021.1878688] [Citation(s) in RCA: 633] [Impact Index Per Article: 158.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. This pathogen can cause a wide variety of diseases, ranging from moderately severe skin infections to fatal pneumonia and sepsis. Treatment of S. aureus infections is complicated by antibiotic resistance and a working vaccine is not available. There has been ongoing and increasing interest in the extraordinarily high number of toxins and other virulence determinants that S. aureus produces and how they impact disease. In this review, we will give an overview of how S. aureus initiates and maintains infection and discuss the main determinants involved. A more in-depth understanding of the function and contribution of S. aureus virulence determinants to S. aureus infection will enable us to develop anti-virulence strategies to counteract the lack of an anti-S. aureus vaccine and the ever-increasing shortage of working antibiotics against this important pathogen.
Collapse
Affiliation(s)
- Gordon Y. C. Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Justin S. Bae
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Lin X, He J, Li W, Qi Y, Hu H, Zhang D, Xu F, Chen X, Zhou M. Lung-Targeting Lysostaphin Microspheres for Methicillin-Resistant Staphylococcus aureus Pneumonia Treatment and Prevention. ACS NANO 2021; 15:16625-16641. [PMID: 34582183 DOI: 10.1021/acsnano.1c06460] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multifunctional antimicrobial strategies are urgently needed to treat methicillin-resistant Staphylococcus aureus (MRSA) caused pneumonia due to its increasing resistance, enhanced virulence, and high pathogenicity. Here, we report that lysostaphin, a bacteriolytic enzyme, encapsulated within poly(lactic-co-glycolic acid) microspheres (LyIR@MS) specially treats planktonic MRSA bacteria, mature biofilms, and related pneumonia. Optimized LyIR@MS with suitable diameters could deliver a sufficient amount of lysostaphin to the lung without a decrease in survival rate after intravenous injection. Furthermore, the degradable properties of the carrier make it safe for targeted release of lysostaphin to eliminate MRSA, repressing the expression of virulence genes and improving the sensitivity of biofilms to host neutrophils. In the MRSA pneumonia mouse model, treatment or prophylaxis with LyIR@MS significantly improved survival rate and relieved inflammatory injury without introducing adverse events. These findings suggest the clinical translational potential of LyIR@MS for the treatment of MRSA-infected lung diseases.
Collapse
Affiliation(s)
- Xiuhui Lin
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jian He
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wanlin Li
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yuchen Qi
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310009, China
| | - Huiqun Hu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Dongxiao Zhang
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310009, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Min Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
7
|
Pichon M, Micaelo M, Rasoanandrasana S, Menn AM. Molecular characterization of Staphylococcus aureus isolates derived from severe pneumonia: a retrospective monocentre study. Infect Dis (Lond) 2021; 53:811-819. [PMID: 34382901 DOI: 10.1080/23744235.2021.1963472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is endowed with a repertoire of virulence factors potentially implicated in its pathogenicity and ability to cause invasive disease. The main objective of this study was to describe the bacterial genotype, including virulence genes and affiliation to clonal complexes (CCs), encountered in severe pneumonia. METHODS DNA microarray was used to analyse 18 S. aureus isolates from patients hospitalized with severe pneumonia between 2017 and 2019. RESULTS Among 18 S. aureus isolates, 14 were methicillin-susceptible S. aureus (MSSA), and 4 methicillin-resistant S. aureus (MRSA). There were 14 community-acquired, 3 healthcare-associated, and 1 hospital-acquired infections. Different radiological presentations were observed: necrotizing pneumonia (n = 8, 44%), alveolar consolidation (n = 7, 39%), alveolar-interstitial infiltrates (n = 3, 17%). Sixteen patients (89%) required ICU hospitalization, 13 (72%) an invasive mechanical ventilation, and 12 (67%) a vasopressor support. Mortality affected 6 patients (33%). Panton-Valentine leukocidin (PVL), staphylococcal enterotoxins, toxic shock syndrome toxine-1 (TSST-1) encoding genes were documented in nine (50%), 12 (67%), one (6%) of the isolates, respectively. Accessory regulator gene group I was the most reported (n = 9, 50%) and was found in five deaths. The majority of isolates were affiliated to CC152 (n = 6), followed by CC15 (n = 3), CC45 (n = 2), CC30 (n = 2), CC1 (n = 2), CC8 (n = 1), CC9 (n = 1), and CC25 (n = 1). All the CC152 isolates were PVL-positive. CONCLUSION CC152-PVL positive S. aureus strains were the most prevalent in severe pneumonia. Other virulence gene profiles were found coupled to additional clonal lineages. A genotyping strategy contributes to describe the current circulating strains and bacterial genetic backgrounds.
Collapse
Affiliation(s)
- Maud Pichon
- Service de Médecine Polyvalente, Centre Hospitalier Victor Dupouy, Argenteuil, France
| | - Maïte Micaelo
- Service de Microbiologie, Centre Hospitalier Victor Dupouy, Argenteuil, France
| | | | - Anne-Marie Menn
- Service de Médecine Polyvalente, Centre Hospitalier Victor Dupouy, Argenteuil, France
| |
Collapse
|
8
|
Abstract
Staphylococcus aureus is both a commensal and a pathogenic bacterium for humans. Its ability to induce severe infections is based on a wide range of virulence factors. S. aureus community-acquired pneumonia (SA-CAP) is rare and severe, and the contribution of certain virulence factors in this disease has been recognized over the past 2 decades. First, the factors involved in metabolism adaptation are crucial for S. aureus survival in the lower respiratory tract, and toxins and enzymes are required for it to cross the pulmonary epithelial barrier. S. aureus subsequently faces host defense mechanisms, including the epithelial barrier, but most importantly the immune system. Here, again, S. aureus uses myriad virulence factors to successfully escape from the host's defenses and takes advantage of them. The impact of S. aureus virulence, combined with the collateral damage caused by an overwhelming immune response, leads to severe tissue damage and adverse clinical outcomes. In this review, we summarize step by step all of the S. aureus factors implicated in CAP and described to date, and we provide an outlook for future research.
Collapse
Affiliation(s)
- Mariane Pivard
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Institut des agents infectieux, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
9
|
Vlaeminck J, Raafat D, Surmann K, Timbermont L, Normann N, Sellman B, van Wamel WJB, Malhotra-Kumar S. Exploring Virulence Factors and Alternative Therapies against Staphylococcus aureus Pneumonia. Toxins (Basel) 2020; 12:toxins12110721. [PMID: 33218049 PMCID: PMC7698915 DOI: 10.3390/toxins12110721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
Abstract
Pneumonia is an acute pulmonary infection associated with high mortality and an immense financial burden on healthcare systems. Staphylococcus aureus is an opportunistic pathogen capable of inducing S. aureus pneumonia (SAP), with some lineages also showing multidrug resistance. Given the high level of antibiotic resistance, much research has been focused on targeting S. aureus virulence factors, including toxins and biofilm-associated proteins, in an attempt to develop effective SAP therapeutics. Despite several promising leads, many hurdles still remain for S. aureus vaccine research. Here, we review the state-of-the-art SAP therapeutics, highlight their pitfalls, and discuss alternative approaches of potential significance and future perspectives.
Collapse
Affiliation(s)
- Jelle Vlaeminck
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (D.R.); (N.N.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Leen Timbermont
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
| | - Nicole Normann
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (D.R.); (N.N.)
| | - Bret Sellman
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Willem J. B. van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 Rotterdam, The Netherlands;
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
- Correspondence: ; Tel.: +32-3-265-27-52
| |
Collapse
|
10
|
Nickol ME, Lyle SM, Dennehy B, Kindrachuk J. Dysregulated Host Responses Underlie 2009 Pandemic Influenza-Methicillin Resistant Staphylococcus aureus Coinfection Pathogenesis at the Alveolar-Capillary Barrier. Cells 2020; 9:E2472. [PMID: 33202895 PMCID: PMC7696554 DOI: 10.3390/cells9112472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 02/04/2023] Open
Abstract
Influenza viruses are a continual public health concern resulting in 3-5 million severe infections annually despite intense vaccination campaigns and messaging. Secondary bacterial infections, including Staphylococcus aureus, result in increased morbidity and mortality during seasonal epidemics and pandemics. While coinfections can result in deleterious pathologic consequences, including alveolar-capillary barrier disruption, the underlying mechanisms are poorly understood. We have characterized host- and pathogen-centric mechanisms contributing to influenza-bacterial coinfections in a primary cell coculture model of the alveolar-capillary barrier. Using 2009 pandemic influenza (pH1N1) and methicillin-resistant S. aureus (MRSA), we demonstrate that coinfection resulted in dysregulated barrier function. Preinfection with pH1N1 resulted in modulation of adhesion- and invasion-associated MRSA virulence factors during lag phase bacterial replication. Host response modulation in coinfected alveolar epithelial cells were primarily related to TLR- and inflammatory response-mediated cell signaling events. While less extensive in cocultured endothelial cells, coinfection resulted in changes to cellular stress response- and TLR-related signaling events. Analysis of cytokine expression suggested that cytokine secretion might play an important role in coinfection pathogenesis. Taken together, we demonstrate that coinfection pathogenesis is related to complex host- and pathogen-mediated events impacting both epithelial and endothelial cell regulation at the alveolar-capillary barrier.
Collapse
Affiliation(s)
- Michaela E. Nickol
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.E.N.); (S.M.L.); (B.D.)
| | - Sarah M. Lyle
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.E.N.); (S.M.L.); (B.D.)
| | - Brendan Dennehy
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.E.N.); (S.M.L.); (B.D.)
| | - Jason Kindrachuk
- Laboratory of Emerging and Re-Emerging Viruses, Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (M.E.N.); (S.M.L.); (B.D.)
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
11
|
Abstract
Influenza A virus (IAV) causes annual epidemics and sporadic pandemics of respiratory disease. Secondary bacterial coinfection by organisms such as Staphylococcus aureus is the most common complication of primary IAV infection and is associated with high levels of morbidity and mortality. Here, we report the first identified S. aureus factor (lipase 1) that enhances IAV replication during infection via positive modulation of virus budding. The effect is observed in vivo in embryonated hen’s eggs and greatly enhances the yield of a vaccine strain, a finding that could be applied to address global shortages of influenza vaccines. Influenza A virus (IAV) causes annual epidemics of respiratory disease in humans, often complicated by secondary coinfection with bacterial pathogens such as Staphylococcus aureus. Here, we report that the S. aureus secreted protein lipase 1 enhances IAV replication in vitro in primary cells, including human lung fibroblasts. The proviral activity of lipase 1 is dependent on its enzymatic function, acts late in the viral life cycle, and results in increased infectivity through positive modulation of virus budding. Furthermore, the proviral effect of lipase 1 on IAV is exhibited during in vivo infection of embryonated hen’s eggs and, importantly, increases the yield of a vaccine strain of IAV by approximately 5-fold. Thus, we have identified the first S. aureus protein to enhance IAV replication, suggesting a potential role in coinfection. Importantly, this activity may be harnessed to address global shortages of influenza vaccines.
Collapse
|
12
|
Staphylococcus aureus Lung Infection Results in Down-Regulation of Surfactant Protein-A Mainly Caused by Pro-Inflammatory Macrophages. Microorganisms 2020; 8:microorganisms8040577. [PMID: 32316261 PMCID: PMC7232181 DOI: 10.3390/microorganisms8040577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 01/21/2023] Open
Abstract
Pneumonia is the leading cause of hospitalization worldwide. Besides viruses, bacterial co-infections dramatically exacerbate infection. In general, surfactant protein-A (SP-A) represents a first line of immune defense. In this study, we analyzed whether influenza A virus (IAV) and/or Staphylococcus aureus (S. aureus) infections affect SP-A expression. To closely reflect the situation in the lung, we used a human alveolus-on-a-chip model and a murine pneumonia model. Our results show that S. aureus can reduce extracellular levels of SP-A, most likely attributed to bacterial proteases. Mono-epithelial cell culture experiments reveal that the expression of SP-A is not directly affected by IAV or S. aureus. Yet, the mRNA expression of SP-A is strongly down-regulated by TNF-α, which is highly produced by professional phagocytes in response to bacterial infection. By using the human alveolus-on-a-chip model, we show that the down-regulation of SP-A is strongly dependent on macrophages. In a murine model of pneumonia, we can confirm that S. aureus decreases SP-A levels in vivo. These findings indicate that (I) complex interactions of epithelial and immune cells induce down-regulation of SP-A expression and (II) bacterial mono- and super-infections reduce SP-A expression in the lung, which might contribute to a severe outcome of bacterial pneumonia.
Collapse
|
13
|
Staphylococcus aureus Pneumonia: Preceding Influenza Infection Paves the Way for Low-Virulent Strains. Toxins (Basel) 2019; 11:toxins11120734. [PMID: 31861176 PMCID: PMC6950557 DOI: 10.3390/toxins11120734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/05/2019] [Accepted: 12/14/2019] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a facultative pathogenic bacterium that colonizes the nasopharyngeal area of healthy individuals, but can also induce severe infection, such as pneumonia. Pneumonia caused by mono- or superinfected S.aureus leads to high mortality rates. To establish an infection, S. aureus disposes of a wide variety of virulence factors, which can vary between clinical isolates. Our study aimed to characterize pneumonia isolates for their virulent capacity. For this, we analyzed isolates from colonization, pneumonia due to S. aureus, and pneumonia due to S. aureus/influenza virus co-infection. A total of 70 strains were analyzed for their virulence genes and the host–pathogen interaction was analyzed through functional assays in cell culture systems. Strains from pneumonia due to S. aureus mono-infection showed enhanced invasion and cytotoxicity against professional phagocytes than colonizing and co-infecting strains. This corresponded to the high presence of cytotoxic components in pneumonia strains. By contrast, strains obtained from co-infection did not exhibit these virulence characteristics and resembled strains from colonization, although they caused the highest mortality rate in patients. Taken together, our results underline the requirement of invasion and toxins to cause pneumonia due to S. aureus mono-infection, whereas in co-infection even low-virulent strains can severely aggravate pneumonia.
Collapse
|
14
|
Borgogna TR, Hisey B, Heitmann E, Obar JJ, Meissner N, Voyich JM. Secondary Bacterial Pneumonia by Staphylococcus aureus Following Influenza A Infection Is SaeR/S Dependent. J Infect Dis 2018; 218:809-813. [PMID: 29668950 PMCID: PMC6057542 DOI: 10.1093/infdis/jiy210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/11/2018] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus is a predominant cause of fatal pneumonia following influenza A virus (IAV) infection. Herein we investigate the influence of antecedent IAV infection on S. aureus virulence gene expression. Using a murine model, comparing the USA300 and USA300ΔsaeR/S strains, we demonstrate that S. aureus pathogenesis following IAV infection is SaeR/S dependent. Furthermore, we show that IAV modulates the lung environment to rapidly up-regulate S. aureus virulence factors containing the SaeR-binding domain. Data demonstrate that the pathogen response to IAV infection impacts host outcome and provides evidence that the ability of S. aureus to sense and respond to the lung environment determines severity of pneumonia.
Collapse
Affiliation(s)
- Timothy R Borgogna
- Department of Microbiology and Immunology, Montana State University, Bozeman
| | - Bennett Hisey
- Department of Microbiology and Immunology, Montana State University, Bozeman
| | - Emily Heitmann
- Department of Microbiology and Immunology, Montana State University, Bozeman
| | - Joshua J Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Nicole Meissner
- Department of Microbiology and Immunology, Montana State University, Bozeman
| | - Jovanka M Voyich
- Department of Microbiology and Immunology, Montana State University, Bozeman
| |
Collapse
|
15
|
Jeannoel M, Casalegno JS, Ottmann M, Badiou C, Dumitrescu O, Lina B, Lina G. Synergistic Effects of Influenza and Staphylococcus aureus Toxins on Inflammation Activation and Cytotoxicity in Human Monocytic Cell Lines. Toxins (Basel) 2018; 10:toxins10070286. [PMID: 29997328 PMCID: PMC6070873 DOI: 10.3390/toxins10070286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
In patients with influenza, morbidity and mortality are strongly influenced by infections with Staphylococcus aureus producing high amounts of certain toxins. Here we tested the impact of influenza virus on the pro-inflammatory and cytotoxic actions of a panel of S. aureus virulence factors, including Panton-Valentine Leucocidin (PVL), phenol-soluble modulin α1 (PSMα1) and 3 (PSMα3), α-hemolysin (Hla), and cell wall components, i.e., heat-killed S. aureus (HKSA) and protein A. We initially screened for potential synergic interactions using a standardized in vitro model in influenza-infected continuous human monocytic cell lines. Then we tested the identified associations using an ex vivo model in influenza-infected human monocytes freshly isolated from blood. Co-exposure to influenza virus and HKSA, PVL, PSMα1, and PSMα3 increased NF-κB/AP-1 pathway activation in THP1-XBlue cells, and co-exposure to influenza virus and PVL increased cytotoxicity in U937 cells. In monocytes isolated from blood, the synergy between influenza virus and HKSA was confirmed based on cytokine production (TNF-α, IL-1β, IL-6), and co-exposure to influenza virus and Hla-increased cytotoxicity. Our findings suggest that influenza virus potentiates the pro-inflammatory action of HKSA and contributes to the cytotoxicity of Hla on monocytes. Synergic interactions identified in the cell-line model must be cautiously interpreted since few were relevant in the ex vivo model.
Collapse
Affiliation(s)
- Marion Jeannoel
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France.
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
| | - Jean-Sebastien Casalegno
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France.
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
| | - Michèle Ottmann
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
| | - Cédric Badiou
- Pathogénie des Staphylocoques, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
| | - Oana Dumitrescu
- Pathogénie des Staphylocoques, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
- Laboratoire de Bactériologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France.
| | - Bruno Lina
- Laboratoire de Virologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France.
- Laboratoire de Virologie et Pathologies Humaines Virpath, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
| | - Gérard Lina
- Pathogénie des Staphylocoques, CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CEDEX 08, 69372 Lyon, France.
- Laboratoire de Bactériologie, Institut des Agents Infectieux, Groupement Hospitalier Nord des Hospices Civils de Lyon, CEDEX 04, 69317 Lyon, France.
| |
Collapse
|
16
|
Chu M, Zhou M, Jiang C, Chen X, Guo L, Zhang M, Chu Z, Wang Y. Staphylococcus aureus Phenol-Soluble Modulins α1-α3 Act as Novel Toll-Like Receptor (TLR) 4 Antagonists to Inhibit HMGB1/TLR4/NF-κB Signaling Pathway. Front Immunol 2018; 9:862. [PMID: 29922279 PMCID: PMC5996891 DOI: 10.3389/fimmu.2018.00862] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/06/2018] [Indexed: 01/23/2023] Open
Abstract
Phenol-soluble modulins (PSMs) have recently emerged as key virulence determinants, particularly in highly aggressive Staphylococcus aureus isolates. These peptides contribute to the pathogenesis of S. aureus infections, participating in multiple inflammatory responses. Here, we report a new role for S. aureus PSMs in high mobility group box-1 protein (HMGB1) induced inflammation by modulating toll-like receptor (TLR) 4 pathway. Direct ligation of TLR4 with S. aureus PSMα1–α3 and PSMβ1–β2 was identified by surface plasmon resonance. Remarkably, the binding affinity of TLR4 with HMGB1 was attenuated by PSMα1–α3. Further study revealed that PSMα1–α3 directly inhibited HMGB1-induced NF-κB activation and proinflammatory cytokines production in vitro using HEK-Blue hTLR4 cells and THP-1 cells. To analyze the molecular interactions between PSMs and TLR4, blast similarity search was performed and identified that PSMα1 and PSMβ2 were ideal templates for homology modeling. The three-dimensional structures of PSMα2, PSMα4, PSMβ1, and δ-toxin were successfully generated with MODELLER, and further refined using CHARMm. PSMs docking into TLR4 were done using ZDOCK, indicating that PSMα1–α3 compete with HMGB1 for interacting with the surrounding residues (336–477) of TLR4 domain. Our study reveals that S. aureus PSMα1–α3 can act as novel TLR4 antagonists, which account at least in part for the staphylococcal immune evasion. Modulation of this process will lead to new therapeutic strategies against S. aureus infections.
Collapse
Affiliation(s)
- Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Mingya Zhou
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | | | - Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Likai Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Mingbo Zhang
- Pharmacy Departments, Liao Ning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhengyun Chu
- Pharmacy Departments, Liao Ning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| |
Collapse
|