1
|
Szachniewicz MM, Meijgaarden KEV, Kavrik E, Jiskoot W, Bouwstra JA, Haks MC, Geluk A, Ottenhoff THM. Cationic pH-sensitive liposomes as tuberculosis subunit vaccine delivery systems: Effect of liposome composition on cellular innate immune responses. Int Immunopharmacol 2025; 145:113782. [PMID: 39647287 DOI: 10.1016/j.intimp.2024.113782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Tuberculosis (TB) is a major global health problem, and the development of effective and safe vaccines is urgently needed. CD8+ T-cells play an important role alongside CD4+ T-cells in the protective immune response against TB. pH-sensitive liposomes are hypothesized to boost CD8+ T-cell responses by promoting class I presentation through a mechanism involving pH-dependent endosomal escape and the cytosolic transfer of antigens. The aim of the study was to explore the potential of pH-sensitive liposomes as a novel delivery system for a multi-stage protein subunit vaccine against TB in primary human cells. The liposomes were formulated with the fusion antigen Ag85b-ESAT6-Rv2034 (AER), which was previously shown to be effective in reducing bacterial load in the lungs HLA-DR3 transgenic mice and guinea pigs. The liposomes were assessed in vitro for cellular uptake, cell viability, upregulation of cell surface activation markers, induction of cytokine production using human monocyte-derived dendritic cells (MDDCs), and activation of human antigen-specific T-cells. Liposome DOPC:DOPE:DOBAQ:EPC (3:5:2:4 M ratio) was effectively taken up, induced several cell surface activation markers, and production of CCl3, CCL4, and TNFα in MDDCs. It also induced upregulation of CD154 and IFNγ in T-cell clones in an antigen-specific manner. Thus, cationic pH-sensitive liposome-based TB vaccines have been demonstrated to be capable of inducing robust protective Mtb-specific immune responses, positioning them as promising candidates for effectiveTBvaccination.
Collapse
Affiliation(s)
- M M Szachniewicz
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), The Netherlands.
| | - K E van Meijgaarden
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), The Netherlands
| | - E Kavrik
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands
| | - W Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands
| | - J A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands
| | - M C Haks
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), The Netherlands
| | - A Geluk
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), The Netherlands
| | - T H M Ottenhoff
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), The Netherlands
| |
Collapse
|
2
|
López-González JA, Martínez-Soto JM, Avila-Cervantes C, Mata-Pineda AL, Álvarez-Hernández G, Álvarez-Meza JB, Bolado-Martínez E, Candia-Plata MDC. Evaluation of Systemic Inflammation Before and After Standard Anti-tuberculosis Treatment in Patients With Active Pulmonary Tuberculosis and Diabetes Mellitus. Cureus 2024; 16:e55391. [PMID: 38562330 PMCID: PMC10984244 DOI: 10.7759/cureus.55391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Background Diabetes mellitus (DM) is a common comorbidity of active pulmonary tuberculosis (APTB) that increases the risk of treatment failure during anti-tuberculosis chemotherapy. Evaluating systemic inflammatory response could help determine differences in response to treatment between APTB patients and those with APTB and DM. Methodology To explore changes in systemic inflammation, measured by a set of inflammatory mediators in subjects with APTB and TBDM before and after six months of anti-tuberculosis chemotherapy, 30 APTB and nine TBDM subjects underwent cytokine testing, including interleukin (IL)-6, IL-8, IL-10, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-beta 1 (TGF-β1) by enzyme-linked immunosorbent assay, C-reactive protein by nephelometry, and sialic acid by colorimetric assay at baseline and following six months of standard anti-tuberculosis treatment. Sputum smear microscopy or molecular biology (Xpert MTB/RIF) was used for diagnosis, and sputum smear microscopy was performed monthly during the treatment of the patient with pulmonary tuberculosis to evaluate his evolution. Principal component analysis examined changes in the inflammatory status. Results Both groups showed negative sputum smear microscopy in the sixth month after starting anti-tuberculosis chemotherapy. TGF-β1 was found to be significantly higher in subjects with TBDM before treatment compared to APTB patients (p<0.001), and systemic inflammation continued only in TBDM subjects after treatment (accumulation and persistence of inflammatory mediators like IL-6, IL-8, IL-10, IFN-γ, TNF-α, TGF-β1, C-reactive protein, and sialic acid in blood). On the other hand, the mediators IFN-γ, C-reactive protein, and total sialic acid were found to be most influential in distinguishing pre- and post-treatment inflammatory response in subjects with APTB without DM. Conclusions Inflammatory mediators analyzed in combination, including IFN-γ, CRP, and total sialic acid, may be useful in evaluating the systemic inflammatory response in subjects with APTB and TBDM before and after anti-tuberculosis treatment. Determining these mediators revealed persistent systemic inflammation in TBDM subjects after six months of standard tuberculosis treatment, despite negative sputum smear microscopy results and good glycemic control. This suggests a need for inflammation-modulating therapies during tuberculosis control. Finally, monitoring sputum smear microscopy results alongside the determination of proposed inflammatory mediators (IFN-γ, CRP, and total sialic acid) are effective in evaluating the response to anti-tuberculosis treatment in APTB subjects without DM, warranting further investigation.
Collapse
|
3
|
Kudryavtsev I, Zinchenko Y, Serebriakova M, Akisheva T, Rubinstein A, Savchenko A, Borisov A, Belenjuk V, Malkova A, Yablonskiy P, Kudlay D, Starshinova A. A Key Role of CD8+ T Cells in Controlling of Tuberculosis Infection. Diagnostics (Basel) 2023; 13:2961. [PMID: 37761328 PMCID: PMC10528134 DOI: 10.3390/diagnostics13182961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The main role in the control of tuberculosis infection is played by macrophages and Th1 and CD8+ T cells. The study aimed to identify the most diagnostically significant CD8+ T cell subsets in tuberculosis patients. METHODS Peripheral blood samples from patients with clinical, radiological, and bacteriologically confirmed pulmonary tuberculosis (TB, n = 32) and healthy subjects (HC, n = 31) were collected and analyzed using 10-color flow cytometry. RESULTS The frequency of the EM4 CD3+CD8+ cells was reduced in the peripheral blood of patients with pulmonary tuberculosis, while the relative and absolute number of EM1 CD3+CD8+ cells increased compared to the control group. CD57 expression was reduced in patients with pulmonary tuberculosis on EM1, EM2, and pE1 CD3+CD8+ cells, whereas the EM3 cells had a high level of CD57 expression. The relative and absolute number of Tc2 (CCR6-CXCR3-) cells in peripheral blood in patients with pulmonary tuberculosis was increased, while the frequency of Tc1 (CCR6-CXCR3+) was decreased, compared to healthy donors. CONCLUSIONS Patients with pulmonary tuberculosis have an abnormal CD3+CD8+ cell profile and demonstrate their impaired maturation and functional activity.
Collapse
Affiliation(s)
- Igor Kudryavtsev
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
- Almazov National Medical Research Centre, 197341 St-Petersburg, Russia
| | - Yulia Zinchenko
- Research Institute of Phthisiopulmonology, 191036 St-Petersburg, Russia; (Y.Z.); (P.Y.)
| | - Maria Serebriakova
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
| | - Tatiana Akisheva
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
| | - Artem Rubinstein
- Institution of Experimental Medicine, Department of Immunology, 197376 St-Petersburg, Russia; (I.K.); (M.S.); (T.A.); (A.R.)
| | - Andrei Savchenko
- Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.S.); (A.B.); (V.B.)
| | - Alexandr Borisov
- Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.S.); (A.B.); (V.B.)
| | - Vasilij Belenjuk
- Federal Research Center «Krasnoyarsk Science Center» of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia; (A.S.); (A.B.); (V.B.)
| | - Anna Malkova
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel;
| | - Piotr Yablonskiy
- Research Institute of Phthisiopulmonology, 191036 St-Petersburg, Russia; (Y.Z.); (P.Y.)
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St-Petersburg, Russia
| | - Dmitry Kudlay
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- NRC Institute of Immunology FMBA of Russia, 115552 Moscow, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, 197341 St-Petersburg, Russia
| |
Collapse
|
4
|
Diatlova A, Linkova N, Lavrova A, Zinchenko Y, Medvedev D, Krasichkov A, Polyakova V, Yablonskiy P. Molecular Markers of Early Immune Response in Tuberculosis: Prospects of Application in Predictive Medicine. Int J Mol Sci 2023; 24:13261. [PMID: 37686061 PMCID: PMC10487556 DOI: 10.3390/ijms241713261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Tuberculosis (TB) remains an important public health problem and one of the leading causes of death. Individuals with latent tuberculosis infection (LTBI) have an increased risk of developing active TB. The problem of the diagnosis of the various stages of TB and the identification of infected patients in the early stages has not yet been solved. The existing tests (the tuberculin skin test and the interferon-gamma release assay) are useful to distinguish between active and latent infections. But these tests cannot be used to predict the development of active TB in individuals with LTBI. The purpose of this review was to analyze the extant data of the interaction of M. tuberculosis with immune cells and identify molecular predictive markers and markers of the early stages of TB. An analysis of more than 90 sources from the literature allowed us to determine various subpopulations of immune cells involved in the pathogenesis of TB, namely, macrophages, dendritic cells, B lymphocytes, T helper cells, cytotoxic T lymphocytes, and NK cells. The key molecular markers of the immune response to M. tuberculosis are cytokines (IL-1β, IL-6, IL-8, IL-10, IL-12, IL-17, IL-22b, IFNɣ, TNFa, and TGFß), matrix metalloproteinases (MMP-1, MMP-3, and MMP-9), and their inhibitors (TIMP-1, TIMP-2, TIMP-3, and TIMP-4). It is supposed that these molecules could be used as biomarkers to characterize different stages of TB infection, to evaluate the effectiveness of its treatment, and as targets of pharmacotherapy.
Collapse
Affiliation(s)
- Anastasiia Diatlova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Natalia Linkova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Anastasia Lavrova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| | - Yulia Zinchenko
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Dmitrii Medvedev
- Biogerontology Department, St. Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, 197110 St. Petersburg, Russia
| | - Alexandr Krasichkov
- Department of Radio Engineering Systems, Electrotechnical University “LETI”, Prof. Popova Street 5F, 197022 St. Petersburg, Russia
| | - Victoria Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
| | - Piotr Yablonskiy
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovskii Prospect, 2–4, 191036 St. Petersburg, Russia
- Department of Hospital Surgery, Faculty of Medicine, St. Petersburg State University, University Embankment, 7–9, 199034 St. Petersburg, Russia
| |
Collapse
|
5
|
Gu M, Zhang L, Hao L, Wang K, Yang W, Liu Z, Lei Z, Zhang Y, Li W, Jiang L, Li X. Upconversion Nanoplatform Enables Multimodal Imaging and Combinatorial Immunotherapy for Synergistic Tumor Treatment and Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21766-21780. [PMID: 37104533 DOI: 10.1021/acsami.2c22420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Designing a novel nanoplatform that integrates multimodal imaging and synergistic therapy for precision tumor nanomedicines is challenging. Herein, we prepared rare-earth ion-doped upconversion hydroxyapatite (FYH) nanoparticles as nanocarriers coated and loaded respectively with polydopamine (PDA) and doxorubicin (DOX), i.e., FYH-PDA-DOX, for tumor theranostics. The developed FYH-PDA-DOX complexes exhibited desirable photothermal conversion, pH/near-infrared-irradiation-responsive DOX release, and multimodal upconversion luminescence/computed tomography/magnetic resonance imaging performance and helped monitor the metabolic distribution process of the complexes and provided feedback to the therapeutic effect. Upon 808 nm laser irradiation, the fast release of DOX facilitated the photothermal-chemotherapy effect, immunogenic cell death, and antitumor immune response. On combining with the anti-programmed cell death 1 ligand 1 antibody, an enhanced tri-mode photothermal-chemo-immunotherapy synergistic treatment against tumors can be realized. Thus, this treatment elicited potent antitumor immunity, producing appreciable T-cell cytotoxicity against tumors, amplifying tumor suppression, and extending the survival of mice. Therefore, the FYH-PDA-DOX complexes are promising as a smart nanoplatform for imaging-guided synergistic cancer treatment.
Collapse
Affiliation(s)
- Mengqin Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhenqi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zixue Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yinmo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiyu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Use of the Human Granulysin Transgenic Mice To Evaluate the Role of Granulysin Expression by CD8 T Cells in Immunity To Mycobacterium tuberculosis. mBio 2022; 13:e0302022. [PMID: 36409085 PMCID: PMC9765553 DOI: 10.1128/mbio.03020-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The cytotoxic granules of human NK and CD8 T cells contain the effector molecule granulysin. Although in vitro studies indicate that granulysin is bactericidal to Mycobacterium tuberculosis and human CD8 T cells restrict intracellular M. tuberculosis by granule exocytosis, the role of granulysin in cell-mediated immunity against infection is incompletely understood, in part because a granulysin gene ortholog is absent in mice. Transgenic mice that express human granulysin (GNLY-Tg) under the control of human regulatory DNA sequences permit the study of granulysin in vivo. We assessed whether granulysin expression by murine CD8 T cells enhances their control of M. tuberculosis infection. GNLY-Tg mice did not control pulmonary M. tuberculosis infection better than non-Tg control mice, and purified GNLY-Tg and non-Tg CD8 T cells had a similar ability to transfer protection to T cell deficient mice. Lung CD8 T cells from infected control and GNLY-transgenic mice similarly controlled intracellular M. tuberculosis growth in macrophages in vitro. Importantly, after M. tuberculosis infection of GNLY-Tg mice, granulysin was detected in NK cells but not in CD8 T cells. Only after prolonged in vitro stimulation could granulysin expression be detected in antigen-specific CD8 T cells. GNLY-Tg mice are an imperfect model to determine whether granulysin expression by CD8 T cells enhances immunity against M. tuberculosis. Better models expressing granulysin are needed to explore the role of this antimicrobial effector molecule in vivo. IMPORTANCE Human CD8 T cells express the antimicrobial peptide granulysin in their cytotoxic granules, and in vitro analysis suggest that it restricts growth of Mycobacterium tuberculosis and other intracellular pathogens. The murine model of tuberculosis cannot assess granulysin's role in vivo, as rodents lack the granulysin gene. A long-held hypothesis is that murine CD8 T cells inefficiently control M. tuberculosis infection because they lack granulysin. We used human granulysin transgenic (GNLY-Tg) mice to test this hypothesis. GNLY-Tg mice did not differ in their susceptibility to tuberculosis. However, granulysin expression by pulmonary CD8 T cells could not be detected after M. tuberculosis infection. As the pattern of granulysin expression in human CD8 T cells and GNLY-Tg mice seem to differ, GNLY-Tg mice are an imperfect model to study the role of granulysin. An improved model is needed to answer the importance of granulysin expression by CD8 T cells in different diseases.
Collapse
|
7
|
Ashenafi S, Brighenti S. Reinventing the human tuberculosis (TB) granuloma: Learning from the cancer field. Front Immunol 2022; 13:1059725. [PMID: 36591229 PMCID: PMC9797505 DOI: 10.3389/fimmu.2022.1059725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases in the world and every 20 seconds a person dies from TB. An important attribute of human TB is induction of a granulomatous inflammation that creates a dynamic range of local microenvironments in infected organs, where the immune responses may be considerably different compared to the systemic circulation. New and improved technologies for in situ quantification and multimodal imaging of mRNA transcripts and protein expression at the single-cell level have enabled significantly improved insights into the local TB granuloma microenvironment. Here, we review the most recent data on regulation of immunity in the TB granuloma with an enhanced focus on selected in situ studies that enable spatial mapping of immune cell phenotypes and functions. We take advantage of the conceptual framework of the cancer-immunity cycle to speculate how local T cell responses may be enhanced in the granuloma microenvironment at the site of Mycobacterium tuberculosis infection. This includes an exploratory definition of "hot", immune-inflamed, and "cold", immune-excluded TB granulomas that does not refer to the level of bacterial replication or metabolic activity, but to the relative infiltration of T cells into the infected lesions. Finally, we reflect on the current knowledge and controversy related to reactivation of active TB in cancer patients treated with immune checkpoint inhibitors such as PD-1/PD-L1 and CTLA-4. An understanding of the underlying mechanisms involved in the induction and maintenance or disruption of immunoregulation in the TB granuloma microenvironment may provide new avenues for host-directed therapies that can support standard antibiotic treatment of persistent TB disease.
Collapse
Affiliation(s)
- Senait Ashenafi
- Department of Medicine Huddinge, Center for Infectious Medicine (CIM), Karolinska Institutet, ANA Futura, Huddinge, Sweden,Department of Pathology, School of Medicine, College of Health Sciences, Tikur Anbessa Specialized Hospital and Addis Ababa University, Addis Ababa, Ethiopia
| | - Susanna Brighenti
- Department of Medicine Huddinge, Center for Infectious Medicine (CIM), Karolinska Institutet, ANA Futura, Huddinge, Sweden,*Correspondence: Susanna Brighenti,
| |
Collapse
|
8
|
Imoto S, Suzukawa M, Takeda K, Motohashi T, Nagase M, Enomoto Y, Kawasaki Y, Nakano E, Watanabe M, Shimada M, Takada K, Watanabe S, Nagase T, Ohta K, Teruya K, Nagai H. Evaluation of tuberculosis diagnostic biomarkers in immunocompromised hosts based on cytokine levels in QuantiFERON-TB Gold Plus. Tuberculosis (Edinb) 2022; 136:102242. [PMID: 35944309 DOI: 10.1016/j.tube.2022.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022]
Abstract
Tuberculosis (TB) remains a serious health concern globally. QuantiFERON-TB (QFT) is a diagnostic tool for TB detection, and its sensitivity is reduced in immunocompromised hosts with low T lymphocyte counts or abnormal T cell function. This study aimed to evaluate the correlation between T cell and cytokine levels in patients with active TB using QFT-Plus. Forty-five patients with active TB were enrolled, and the cytokines in QFT-Plus tube supernatants were quantified using the MAGPIX System. CD4+ T cell count negatively correlated with patient age (p < 0.001, r = -0.51). The levels of TB1-responsive interleukin-1 receptor antagonist (IL-1Ra) and IL-2 correlated with CD4+ T cell count, whereas the levels of TB2-responsive IL-1Ra and IFN-γ-induced protein 10 correlated with both CD4+ and CD8+ T cell counts. Cytokines that correlated with CD4+ and CD8+ T cell counts might not be suitable TB diagnostic biomarkers in immunocompromised hosts. Notably, cytokines that did not correlate with the T cell counts, such as monocyte chemoattractant protein-1, might be candidate biomarkers for TB in immunocompromised hosts. Our findings might help improve TB diagnosis, which could enable prompt treatment and minimize poor disease outcomes.
Collapse
Affiliation(s)
- Sahoko Imoto
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Maho Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan.
| | - Keita Takeda
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Takumi Motohashi
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Maki Nagase
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Yu Enomoto
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Yuichiro Kawasaki
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Eri Nakano
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Masato Watanabe
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Masahiro Shimada
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| | - Kazufumi Takada
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shizuka Watanabe
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan; Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Ken Ohta
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan; Japan Anti-Tuberculosis Association, Fukujuji Hospital, Tokyo, 193-0834, Japan
| | - Katsuji Teruya
- National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Hideaki Nagai
- National Hospital Organization Tokyo National Hospital, Tokyo, 204-8585, Japan
| |
Collapse
|
9
|
Ashenafi S, Muvva JR, Mily A, Snäll J, Zewdie M, Chanyalew M, Rehn A, Rahman S, Aseffa G, Bekele A, Aderaye G, Lema B, Svensson M, Brighenti S. Immunosuppressive Features of the Microenvironment in Lymph Nodes Granulomas from Tuberculosis and HIV-Co-Infected Patients. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:653-670. [PMID: 35092727 PMCID: PMC9302207 DOI: 10.1016/j.ajpath.2021.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
Tuberculosis (TB) and HIV co-infection claims many lives every year. This study assessed immune responses in Mycobacterium tuberculosis-infected lymph node tissues from HIV-negative and HIV-positive patients compared with the peripheral circulation with a focus on myeloid cells and the cell-signaling enzymes, inducible nitric oxide synthase, and arginase (Arg)-1. Methods included immunohistochemistry or confocal microscopy and computerized image analyses, quantitative real-time PCR, multiplex Luminex, and flow cytometry. These findings indicate enhanced chronic inflammation and immune activation in TB/HIV co-infection but also enhanced immunosuppressive responses. Poorly formed necrotic TB granulomas with a high expression of M. tuberculosis antigens were elevated in TB/HIV-co-infected lymph nodes, and inducible nitric oxide synthase and Arg-1 expression was significantly higher in TB/HIV-co-infected compared with HIV-negative TB or control tissues. High Arg-1 expression was found in myeloid cells with a phenotype characteristic of myeloid-derived suppressor cells (MDCS) that were particularly abundant in TB/HIV-co-infected tissues. Accordingly, Lin-/HLA-DRlow/int/CD33+/CD11b+/CD15+ granulocytic myeloid-derived suppressor cells were significantly elevated in blood samples from TB/HIV-co-infected patients. CD15+ myeloid-derived suppressor cells correlated with plasma HIV viral load and M. tuberculosis antigen load in tissue but were inversely associated with peripheral CD4 T-cells counts. Enhanced chronic inflammation driven by M. tuberculosis and HIV co-infection may promote Arg-1-expressing MDSCs at the site of infection thereby advancing TB disease progression.
Collapse
Affiliation(s)
- Senait Ashenafi
- Center for Infectious Medicine, Department of Medicine, ANA Futura, Karolinska Institutet, Huddinge, Sweden; Department of Pathology, Tikur Anbessa Specialized Hospital and Addis Ababa University, College of Health Sciences, Addis Ababa, Ethiopia
| | - Jagadeeswara Rao Muvva
- Center for Infectious Medicine, Department of Medicine, ANA Futura, Karolinska Institutet, Huddinge, Sweden
| | - Akhirunnesa Mily
- Center for Infectious Medicine, Department of Medicine, ANA Futura, Karolinska Institutet, Huddinge, Sweden
| | - Johanna Snäll
- Center for Infectious Medicine, Department of Medicine, ANA Futura, Karolinska Institutet, Huddinge, Sweden
| | - Martha Zewdie
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Anders Rehn
- Center for Infectious Medicine, Department of Medicine, ANA Futura, Karolinska Institutet, Huddinge, Sweden
| | - Sayma Rahman
- Center for Infectious Medicine, Department of Medicine, ANA Futura, Karolinska Institutet, Huddinge, Sweden
| | - Getachew Aseffa
- Department of Radiology, Tikur Anbessa Specialized Hospital and Addis Ababa University, College of Health Sciences, Addis Ababa, Ethiopia
| | - Amsalu Bekele
- Department of Internal Medicine, Tikur Anbessa Specialized Hospital and Addis Ababa University, College of Health Sciences, Addis Ababa, Ethiopia
| | - Getachew Aderaye
- Department of Internal Medicine, Tikur Anbessa Specialized Hospital and Addis Ababa University, College of Health Sciences, Addis Ababa, Ethiopia
| | - Beede Lema
- Department of Surgery, Tikur Anbessa Specialized Hospital and Addis Ababa University, College of Health Sciences, Addis Ababa, Ethiopia
| | - Mattias Svensson
- Center for Infectious Medicine, Department of Medicine, ANA Futura, Karolinska Institutet, Huddinge, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine, Department of Medicine, ANA Futura, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
10
|
Abstract
Bovine tuberculosis, caused by Mycobacterium tuberculosis var. bovis (M. bovis), is an important enzootic disease affecting mainly cattle, worldwide. Despite the implementation of national campaigns to eliminate the disease, bovine tuberculosis remains recalcitrant to eradication in several countries. Characterizing the host response to M. bovis infection is crucial for understanding the immunopathogenesis of the disease and for developing better control strategies. To profile the host responses to M. bovis infection, we analyzed the transcriptome of whole blood cells collected from experimentally infected calves with a virulent strain of M. bovis using RNA transcriptome sequencing (RNAseq). Comparative analysis of calf transcriptomes at early (8 weeks) vs. late (20 weeks) aerosol infection with M. bovis revealed divergent and unique profile for each stage of infection. Notably, at the early time point, transcriptional upregulation was observed among several of the top-ranking canonical pathways involved in T-cell chemotaxis. At the late time point, enrichment in the cell mediated cytotoxicity (e.g. Granzyme B) was the predominant host response. These results showed significant change in bovine transcriptional profiles and identified networks of chemokine receptors and monocyte chemoattractant protein (CCL) co-regulated genes that underline the host-mycobacterial interactions during progression of bovine tuberculosis in cattle. Further analysis of the transcriptomic profiles identified potential biomarker targets for early and late phases of tuberculosis in cattle. Overall, the identified profiles better characterized identified novel immunomodulatory mechanisms and provided a list of targets for further development of potential diagnostics for tuberculosis in cattle.
Collapse
|
11
|
Comberiati P, Di Cicco M, Paravati F, Pelosi U, Di Gangi A, Arasi S, Barni S, Caimmi D, Mastrorilli C, Licari A, Chiera F. The Role of Gut and Lung Microbiota in Susceptibility to Tuberculosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212220. [PMID: 34831976 PMCID: PMC8623605 DOI: 10.3390/ijerph182212220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Tuberculosis is one of the most common infectious diseases and infectious causes of death worldwide. Over the last decades, significant research effort has been directed towards defining the understanding of the pathogenesis of tuberculosis to improve diagnosis and therapeutic options. Emerging scientific evidence indicates a possible role of the human microbiota in the pathophysiology of tuberculosis, response to therapy, clinical outcomes, and post-treatment outcomes. Although human studies on the role of the microbiota in tuberculosis are limited, published data in recent years, both from experimental and clinical studies, suggest that a better understanding of the gut-lung microbiome axis and microbiome-immune crosstalk could shed light on the specific pathogenetic mechanisms of Mycobacterium tuberculosis infection and identify new therapeutic targets. In this review, we address the current knowledge of the host immune responses against Mycobacterium tuberculosis infection, the emerging evidence on how gut and lung microbiota can modulate susceptibility to tuberculosis, the available studies on the possible use of probiotic-antibiotic combination therapy for the treatment of tuberculosis, and the knowledge gaps and future research priorities in this field.
Collapse
Affiliation(s)
- Pasquale Comberiati
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.D.C.); (A.D.G.)
- Allergology and Pulmonology Section, Pediatrics Unit, Pisa University Hospital, 56126 Pisa, Italy
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Correspondence:
| | - Maria Di Cicco
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.D.C.); (A.D.G.)
- Allergology and Pulmonology Section, Pediatrics Unit, Pisa University Hospital, 56126 Pisa, Italy
| | - Francesco Paravati
- Department of Pediatrics, San Giovanni di Dio Hospital, 88900 Crotone, Italy; (F.P.); (F.C.)
| | - Umberto Pelosi
- Pediatric Unit, Santa Barbara Hospital, 09016 Iglesias, Italy;
| | - Alessandro Di Gangi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.D.C.); (A.D.G.)
- Allergology and Pulmonology Section, Pediatrics Unit, Pisa University Hospital, 56126 Pisa, Italy
| | - Stefania Arasi
- Area of Translational Research in Pediatric Specialities, Allergy Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Simona Barni
- Allergic Unit, Department of Pediatric, Meyer Children’s Hospital, 50139 Florence, Italy;
| | - Davide Caimmi
- Allergy Unit, CHU de Montpellier, Université de Montpellier, 34295 Montpellier, France;
- IDESP, UMR A11, Université de Montpellier, 34093 Montpellier, France
| | - Carla Mastrorilli
- Department of Pediatrics, University Hospital Consortium Corporation Polyclinic of Bari, Pediatric Hospital Giovanni XXIII, 70124 Bari, Italy;
| | - Amelia Licari
- Pediatric Clinic, Pediatrics Department, Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Fernanda Chiera
- Department of Pediatrics, San Giovanni di Dio Hospital, 88900 Crotone, Italy; (F.P.); (F.C.)
| |
Collapse
|
12
|
Mily A, Sarker P, Taznin I, Hossain D, Haq MA, Kamal SMM, Agerberth B, Brighenti S, Raqib R. Slow radiological improvement and persistent low-grade inflammation after chemotherapy in tuberculosis patients with type 2 diabetes. BMC Infect Dis 2020; 20:933. [PMID: 33287713 PMCID: PMC7722325 DOI: 10.1186/s12879-020-05473-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/05/2020] [Indexed: 11/10/2022] Open
Abstract
Background Diabetes mellitus type 2 (DM) may impede immune responses in tuberculosis (TB) and thus contribute to enhanced disease severity. In this study, we aimed to evaluate DM-mediated alterations in clinical, radiological and immunological outcomes in TB disease. Methods Newly diagnosed pulmonary TB patients with or without DM (TB n = 40; TB-DM n = 40) were recruited in Dhaka, Bangladesh. Clinical symptoms, sputum smear and culture conversion as well as chest radiography were assessed. Peripheral blood and sputum samples were collected at the time of diagnosis (baseline) and after 1, 2 and 6 months of standard anti-TB treatment. Blood samples were also obtained from healthy controls (n = 20). mRNA expression of inflammatory markers in blood and sputum samples were quantified using real-time PCR. Results The majority of TB-DM patients had poor glycemic control (HbA1c > 8%) and displayed elevated pulmonary pathology (P = 0.039) particularly in the middle (P < 0.004) and lower lung zones (P < 0.02) throughout the treatment period. However, reduction of clinical symptoms and time to sputum smear and culture conversion did not differ between the groups. Transcripts levels of the pro-inflammatory cytokines IL-1β (P = 0.003 at month-1 and P = 0.045 at month-2) and TNF-α (P = 0.005 at month-1) and the anti-inflammatory cytokine IL-10 (P = 0.005 at month-2) were higher in peripheral blood after anti-TB treatment in TB-DM compared to TB patients. Conversely in sputum, TB-DM patients had reduced CD4 (P < 0.009 at month-1) and IL-10 (P = 0.005 at month-1 and P = 0.006 at month-2) transcripts, whereas CD8 was elevated (P = 0.016 at month-2). At 1- and 2-month post-treatment, sputum IL-10 transcripts were inversely correlated with fasting blood glucose and HbA1c levels in all patients. Conclusion Insufficient up-regulation of IL-10 in the lung may fuel persistent local inflammation thereby promoting lung pathology in TB-DM patients with poorly controlled DM.
Collapse
Affiliation(s)
- Akhirunnesa Mily
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, ANA Futura, Karolinska Institutet, Stockholm, Sweden.,Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Protim Sarker
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Inin Taznin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Delwar Hossain
- Respiratory Medicine, Bangladesh Institute of Research and Rehabilitation in Diabetes, Endocrine and Metabolic Disorders, Dhaka, Bangladesh
| | - Md Ahsanul Haq
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - S M Mostofa Kamal
- National Institute of the Diseases of the Chest and Hospital, Dhaka, Bangladesh
| | - Birgitta Agerberth
- Clinical Microbiology, Department of Laboratory Medicine (Labmed), ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Rubhana Raqib
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh.
| |
Collapse
|
13
|
Diverse immune environments in human lung tuberculosis granulomas assessed by quantitative multiplexed immunofluorescence. Mod Pathol 2020; 33:2507-2519. [PMID: 32591586 DOI: 10.1038/s41379-020-0600-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 01/07/2023]
Abstract
The precise nature of the local immune responses in lung tuberculosis (TB) granulomas requires a comprehensive understanding of their environmental complexities. At its most basic level, a granuloma is a compact, organized immune aggregate of macrophages surrounded by myeloid, B and T cells. We established two complementary multiplex immunolabeling panels to simultaneously evaluate the myeloid and lymphocytic contexture of 14 human lung TB granulomas in formalin-fixed paraffin-embedded tissue samples. We observed diverse CD3+ and CD8+ T-cell and CD20+ B lymphocyte compositions of the granuloma immune environment and a relatively homogeneous distribution of all myeloid cells. We also found significant associations between CD8+ T-cell densities and the myeloid marker CD11b and phagocytic cell marker CD68. In addition, significantly more CD68+ macrophages and CD8+ T cells were found in Mycobacterium tuberculosis-infected granulomas, as detected by Ziehl-Neelsen staining. FOXP3 expression was predominately found in a small subset of CD4+ T cells in different granulomas. As the success or failure of each granuloma is determined by the immune response within that granuloma at a local and not a systemic level, we attempted to identify the presence of reactive T cells based on expression of the T-cell activation marker CD137 (4-1BB) and programmed cell death-1 (PD-1). Only a small fraction of the CD4+ and CD8+ T cells expressed PD-1. CD137 expression was found only in a very small fraction of the CD4+ T cells in two granulomas. Our results also showed that multinucleated giant cells showed strong PD-L1 but not CTLA-4 membrane staining. This study offers new insights into the heterogeneity of immune cell infiltration in lung TB granulomas, suggesting that each TB granuloma represents a unique immune environment that might be independently influenced by the local adaptive immune response, bacterial state, and overall host disease status.
Collapse
|
14
|
Berry SB, Haack AJ, Theberge AB, Brighenti S, Svensson M. Host and Pathogen Communication in the Respiratory Tract: Mechanisms and Models of a Complex Signaling Microenvironment. Front Med (Lausanne) 2020; 7:537. [PMID: 33015094 PMCID: PMC7511576 DOI: 10.3389/fmed.2020.00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Chronic lung diseases are a leading cause of morbidity and mortality across the globe, encompassing a diverse range of conditions from infections with pathogenic microorganisms to underlying genetic disorders. The respiratory tract represents an active interface with the external environment having the primary immune function of resisting pathogen intrusion and maintaining homeostasis in response to the myriad of stimuli encountered within its microenvironment. To perform these vital functions and prevent lung disorders, a chemical and biological cross-talk occurs in the complex milieu of the lung that mediates and regulates the numerous cellular processes contributing to lung health. In this review, we will focus on the role of cross-talk in chronic lung infections, and discuss how different cell types and signaling pathways contribute to the chronicity of infection(s) and prevent effective immune clearance of pathogens. In the lung microenvironment, pathogens have developed the capacity to evade mucosal immunity using different mechanisms or virulence factors, leading to colonization and infection of the host; such mechanisms include the release of soluble and volatile factors, as well as contact dependent (juxtracrine) interactions. We explore the diverse modes of communication between the host and pathogen in the lung tissue milieu in the context of chronic lung infections. Lastly, we review current methods and approaches used to model and study these host-pathogen interactions in vitro, and the role of these technological platforms in advancing our knowledge about chronic lung diseases.
Collapse
Affiliation(s)
- Samuel B. Berry
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | | | - Susanna Brighenti
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Coordinated In Vitro Release of Granulysin, Perforin and IFN-γ in TB and HIV/TB Co-Infection Associated with Clinical Outcomes before and after Anti-TB Treatment. Pathogens 2020; 9:pathogens9080655. [PMID: 32823923 PMCID: PMC7459825 DOI: 10.3390/pathogens9080655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 01/14/2023] Open
Abstract
Granule-associated killing molecules released from cytotoxic T lymphocytes participate as a crucial step in immunity against tuberculosis (TB), but the role of coordinated production remains controversial. Coordinated release of effector molecules in vitro after stimulating peripheral blood mononuclear cells (PBMCs) of active TB or HIV/TB coinfection patients with PPD, purified protein derivative of tuberculin and avirulent Mtb, H37Ra, an attenuated strain were investigated in association with clinical outcomes. Perforin, granzyme-B, granulysin and IFN-γ were measured using ELISA. Before anti-TB treatment, PBMCs of TB stimulated with PPD or H37Ra released higher perforin, granzyme-B, and granulysin levels than in HIV/TB and released significantly higher IFN-γ (p = 0.045, p = 0.022). Granulysin positively correlated with perforin in TB (p = 0.042, r = 0.385), HIV/TB coinfection (p = 0.003, r = 0.941) after PPD stimulation, and after H37Ra stimulation in TB (p = 0.005, r = 0.549), but negatively correlated with granzyme B in TB (p = 0.042, r = −0.386), HIV/TB coinfection (p = 0.042, r = 0.754) were noted. After anti-TB treatment, increased levels of perforin, granulysin and IFN-γ in TB or HIV/TB upon PPD or H37Ra stimulation, and decreased granzyme-B levels after PPD (p = 0.003) or H37Ra (p = 0.028) stimulation in TB were observed. These results suggest that granulysin may act synergistic with perforin and IFN-γ in TB, indicating its crucial function in host immunity to tuberculosis. Future studies with larger numbers of patients ought to be conducted in the future.
Collapse
|
16
|
Cai Q, Shen X, Li H, Yao C, Sun N, Wang J, Wu H, Yuan C, Xiang J, Xiang Y. Diagnostic performance of culture filtered protein 10-specific perforin in pediatric patients with active tuberculosis. J Clin Lab Anal 2020; 34:e23477. [PMID: 32671908 PMCID: PMC7676199 DOI: 10.1002/jcla.23477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background Mycobacterium tuberculosis (Mtb)‐specific perforin were significantly increased in patients with tuberculosis. This study aims to evaluate the diagnosis value of Mtb‐specific perforin in pediatric patients with tuberculosis. Methods Diagnostic performance of perforin levels induced by 6‐kDa early secreted antigen target (ESAT6) or culture filtered protein 10 (CFP10) were evaluated in eighty‐six samples from children participants by receiver operating characteristic curve analysis. Flow cytometry was used to detect the expression of perforin and INF‐γ of CD4+, CD8+ T cells in response to CFP10 stimulation. Results After ex vivo stimulation, levels of ESAT6/CFP10‐specific perforin in LTBI patients were significantly higher than active TB (ATB) patients, non‐tuberculosis infection (non‐TB), and health control (HC) individuals. The diagnostic efficacy of CFP10‐specific perforin for TB diagnosis was significantly higher than ESAT6‐specific perforin and T‐SPOT assay, and when 0.74 ng/mL was taken as the cutoff value, the sensitivity, specificity, and accuracy were 97.83%, 87.5%, and 93.02%. CFP10‐specific perforin in both CD4+ and CD8+ T cells were significantly higher in ATB patients compared to HCs and further increased in LTBI patients. However, INF‐γ was mainly secreted by CD4+ T cells and showed no significant difference between LTBI and ATB patients. In addition, CFP10‐specific perforin can effectively distinguish between ATB and LTBI with the cutoff value of 1.80 ng/mL. Sensitivity and specificity were 88.46% and 85.62%, respectively. Conclusions CFP10‐specific perforin may be used as a novel cellular immunity‐based diagnostic marker of pediatric patients with tuberculosis, and with the potential for discriminating ATB from LTBI.
Collapse
Affiliation(s)
- Qinzhen Cai
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Shen
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Hongze Li
- Department of Laboratory Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Cong Yao
- Health Care Department, Tongji Medical College, Wuhan Children's Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Na Sun
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Wu
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Xiang
- Department of Laboratory Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Yun Xiang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Kathamuthu GR, Moideen K, Sridhar R, Baskaran D, Subash Babu. Diminished systemic levels of antimicrobial peptides in tuberculous lymphadenitis and their reversal after anti-tuberculosis treatment. Tuberculosis (Edinb) 2020; 122:101934. [PMID: 32275232 DOI: 10.1016/j.tube.2020.101934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/09/2020] [Accepted: 03/29/2020] [Indexed: 11/26/2022]
Abstract
Pulmonary tuberculosis is associated with higher plasma levels of antimicrobial peptides (AMPs) and lower granulysin levels. However, the association of AMPs with tuberculous lymphadenitis (TBL) is not well studied. Hence, we measured the plasma levels of human beta defensin-2 (HBD2), granulysin, human neutrophil peptides 1-3 (HNP1-3) and cathelicidin (LL37) in TBL compared to latent tuberculosis (LTB) and healthy controls (HC) and in TBL individuals upon completion of anti-tuberculosis treatment (ATT). We examined the association of AMPs with TBL lymph node culture grade or lymph node involvement. Finally, the discriminatory potential of these proteins was assessed using receiver operating characteristic (ROC) analysis. TBL individuals display significantly diminished circulating levels of AMPs (granulysin and HNP1-3) but not HBD-2 and LL-37 in comparison to LTB and HCs. Similarly, after ATT, both HBD-2 and HNP1-3 were significantly elevated and LL-37 was significantly reduced in TBL individuals. Granulysin and HNP1-3 discriminates TBL from LTB and HC individuals upon ROC analysis. AMPs did not exhibit significant correlation either with lymph node culture grades or lymph node involvement. Overall, TBL individuals show decreased AMPs and their reversal after ATT suggesting their association with underlying immune alteration in this poorly studied form of TB disease.
Collapse
Affiliation(s)
- Gokul Raj Kathamuthu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India; National Institute for Research in Tuberculosis (NIRT), Chennai, India.
| | - Kadar Moideen
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | | | - Dhanaraj Baskaran
- National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India; Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Rao Muvva J, Parasa VR, Lerm M, Svensson M, Brighenti S. Polarization of Human Monocyte-Derived Cells With Vitamin D Promotes Control of Mycobacterium tuberculosis Infection. Front Immunol 2020; 10:3157. [PMID: 32038652 PMCID: PMC6987394 DOI: 10.3389/fimmu.2019.03157] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Understanding macrophage behavior is key to decipher Mycobacterium tuberculosis (Mtb) pathogenesis. We studied the phenotype and ability of human monocyte-derived cells polarized with active vitamin D [1,25(OH)2D3] to control intracellular Mtb infection compared with polarization of conventional subsets, classical M1 or alternative M2. Methods: Human blood-derived monocytes were treated with active vitamin D or different cytokines to obtain 1,25(OH)2D3-polarized as well as M1- and M2-like cells or fully polarized M1 and M2 subsets. We used an in vitro macrophage Mtb infection model to assess both phenotype and functional markers i.e., inhibitory and scavenger receptors, costimulatory molecules, cytokines, chemokines, and effector molecules using flow cytometry and quantitative mRNA analysis. Intracellular uptake of bacilli and Mtb growth was monitored using flow cytometry and colony forming units. Results: Uninfected M1 subsets typically expressed higher levels of CCR7, TLR2, and CD86, while M2 subsets expressed higher CD163, CD200R, and CD206. Most of the investigated markers were up-regulated in all subsets after Mtb infection, generating a mixed M1/M2 phenotype, while the expression of CD206, HLADR, and CD80 was specifically up-regulated (P < 0.05) on 1,25(OH)2D3-polarized macrophages. Consistent with the pro-inflammatory features of M1 cells, Mtb uptake and intracellular Mtb growth was significantly (P < 0.01–0.001 and P < 0.05–0.01) lower in the M1 (19.3%) compared with the M2 (82.7%) subsets 4 h post-infection. However, infectivity rapidly and gradually increased in M1 cells at 24–72 h. 1,25(OH)2D3-polarized monocyte-derived cells was the most potent subset to inhibit Mtb growth at both 4 and 72 h (P < 0.05–0.01) post-Mtb infection. This ability was associated with high mRNA levels of pro-inflammatory cytokines and the antimicrobial peptide LL-37 but also anti-inflammatory IL-10, while expression of the immunosuppressive enzyme IDO (indoleamine 2,3-dioxygenase) remained low in Mtb-infected 1,25(OH)2D3-polarized cells compared with the other subsets. Conclusions: Mtb infection promoted a mixed M1/M2 macrophage activation, and 1,25(OH)2D3-polarized monocyte-derived cells expressing LL-37 but not IDO, were most effective to control intracellular Mtb growth. Macrophage polarization in the presence of vitamin D may provide the capacity to mount an antimicrobial response against Mtb and simultaneously prevent expression of inhibitory molecules that could accelerate local immunosuppression in the microenvironment of infected tissue.
Collapse
Affiliation(s)
- Jagadeeswara Rao Muvva
- Department of Medicine, Center for Infectious Medicine (CIM), ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | | | - Maria Lerm
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine (CIM), ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Brighenti
- Department of Medicine, Center for Infectious Medicine (CIM), ANA Futura, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Lim J, Koh VHQ, Cho SSL, Periaswamy B, Choi DPS, Vacca M, De Sessions PF, Kudela P, Lubitz W, Pastorin G, Alonso S. Harnessing the Immunomodulatory Properties of Bacterial Ghosts to Boost the Anti-mycobacterial Protective Immunity. Front Immunol 2019; 10:2737. [PMID: 31824511 PMCID: PMC6883722 DOI: 10.3389/fimmu.2019.02737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis (TB) pathogenesis is characterized by inadequate immune cell activation and delayed T cell response in the host. Recent immunotherapeutic efforts have been directed at stimulating innate immunity and enhancing interactions between antigen presenting cells and T cells subsets to improve the protective immunity against TB. In this study, we investigated the immunostimulatory properties of bacterial ghosts (BG) as a novel approach to potentiate the host immunity against mycobacterial infection. BG are intact cytoplasm-free Escherichia coli envelopes and have been developed as bacterial vaccines and adjuvant/delivery system in cancer immunotherapy. However, BG have yet to be exploited as immunopotentiators in the context of infectious diseases. Here, we showed that BG are potent inducers of dendritic cells (DC), which led to enhanced T cell proliferation and differentiation into effector cells. BG also induced macrophage activation, which was associated with enhanced nitric oxide production, a key anti-mycobacterial weapon. We further demonstrated that the immunostimulatory capability of BG far exceeds that of LPS and involves both TLR4-dependent and independent pathways. Consistently, BG treatment, but not LPS treatment, reduced the bacterial burden in infected mice, which correlated with increased influx of innate and adaptive effector immune cells and increased production of key cytokines in the lungs. Finally and importantly, enhanced bacilli killing was seen in mice co-administered with BG and second-line TB drugs bedaquiline and delamanid. Overall, this work paves the way for BG as potent immunostimulators that may be harnessed to improve mycobacteria killing at the site of infection.
Collapse
Affiliation(s)
- Jieling Lim
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Vanessa Hui Qi Koh
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sharol Su Lei Cho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Balamurugan Periaswamy
- Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Dawn Poh Sum Choi
- Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Maurizio Vacca
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Paola Florez De Sessions
- Genome Institute of Singapore, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Pavol Kudela
- Biotech Innovation Research Development & Consulting (BIRD-C), Vienna, Austria
| | - Werner Lubitz
- Biotech Innovation Research Development & Consulting (BIRD-C), Vienna, Austria
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Hodgkinson JW, Belosevic M, Elks PM, Barreda DR. Teleost contributions to the understanding of mycobacterial diseases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:111-125. [PMID: 30776420 DOI: 10.1016/j.dci.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Few pathogens have shaped human medicine as the mycobacteria. From understanding biological phenomena driving disease spread, to mechanisms of host-pathogen interactions and antibiotic resistance, the Mycobacterium genus continues to challenge and offer insights into the basis of health and disease. Teleost fish models of mycobacterial infections have progressed significantly over the past three decades, now supplying a range of unique tools and new opportunities to define the strategies employed by these Gram-positive bacteria to overcome host defenses, as well as those host antimicrobial pathways that can be used to limit its growth and spread. Herein, we take a comparative perspective and provide an update on the contributions of teleost models to our understanding of mycobacterial diseases.
Collapse
Affiliation(s)
- Jordan W Hodgkinson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Philip M Elks
- The Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom; Department of Infection and Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
21
|
Granulysin: killer lymphocyte safeguard against microbes. Curr Opin Immunol 2019; 60:19-29. [PMID: 31112765 DOI: 10.1016/j.coi.2019.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/26/2022]
Abstract
Primary T cell immunodeficiency and HIV-infected patients are plagued by non-viral infections caused by bacteria, fungi, and parasites, suggesting an important and underappreciated role for T lymphocytes in controlling microbes. Here, we review recent studies showing that killer lymphocytes use the antimicrobial cytotoxic granule pore-forming peptide granulysin, induced by microbial exposure, to permeabilize cholesterol-poor microbial membranes and deliver death-inducing granzymes into these pathogens. Granulysin and granzymes cause microptosis, programmed cell death in microbes, by inducing reactive oxygen species and destroying microbial antioxidant defenses and disrupting biosynthetic and central metabolism pathways required for their survival, including protein synthesis, glycolysis, and the Krebs cycle.
Collapse
|
22
|
Diedrich CR, Gideon HP, Rutledge T, Baranowski TM, Maiello P, Myers AJ, Lin PL. CD4CD8 Double Positive T cell responses during Mycobacterium tuberculosis infection in cynomolgus macaques. J Med Primatol 2019; 48:82-89. [PMID: 30723927 PMCID: PMC6519377 DOI: 10.1111/jmp.12399] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/06/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Tuberculosis (TB) kills millions of people every year. CD4 and CD8 T cells are critical in the immune response against TB. T cells expressing both CD4 and CD8 (CD4CD8 T cells) are functionally active and have not been examined in the context of TB. METHODS We examine peripheral blood mononuclear cells (PBMC) and bronchoalveolar lavage cells (BAL) and lung granulomas from 28 cynomolgus macaques during Mycobacterium tuberculosis (Mtb) infection. RESULTS CD4CD8 T cells increase in frequency during early Mtb infection in PBMC and BAL from pre-infection. Peripheral, airway, and lung granuloma CD4CD8 T cells have distinct patterns and greater cytokine production than CD4 or CD8 T cells. CONCLUSION Our data suggest that CD4CD8 T cells transient the blood and airways early during infection to reach the granulomas where they are involved directly in the host response to Mtb.
Collapse
Affiliation(s)
- Collin Richard Diedrich
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hannah Priyadarshini Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tara Rutledge
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Tonilynn Marie Baranowski
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amy J Myers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Arrey F, Löwe D, Kuhlmann S, Kaiser P, Moura-Alves P, Krishnamoorthy G, Lozza L, Maertzdorf J, Skrahina T, Skrahina A, Gengenbacher M, Nouailles G, Kaufmann SHE. Humanized Mouse Model Mimicking Pathology of Human Tuberculosis for in vivo Evaluation of Drug Regimens. Front Immunol 2019; 10:89. [PMID: 30766535 PMCID: PMC6365439 DOI: 10.3389/fimmu.2019.00089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/14/2019] [Indexed: 11/13/2022] Open
Abstract
Human immune system mice are highly valuable for in vivo dissection of human immune responses. Although they were employed for analyzing tuberculosis (TB) disease, there is little data on the spatial organization and cellular composition of human immune cells in TB granuloma pathology in this model. We demonstrate that human immune system mice, generated by transplanted human fetal liver derived hematopoietic stem cells develop a continuum of pulmonary lesions upon Mycobacterium tuberculosis aerosol infection. In particular, caseous necrotic granulomas, which contribute to prolonged TB treatment time, developed, and had cellular phenotypic spatial-organization similar to TB patients. By comparing two recommended drug regimens, we confirmed observations made in clinical settings: Adding Moxifloxacin to a classical chemotherapy regimen had no beneficial effects on bacterial eradication. We consider this model instrumental for deeper understanding of human specific features of TB pathogenesis and of particular value for the pre-clinical drug development pipeline.
Collapse
Affiliation(s)
- Frida Arrey
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Delia Löwe
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Stefanie Kuhlmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Peggy Kaiser
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Pedro Moura-Alves
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Laura Lozza
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jeroen Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Tatsiana Skrahina
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Alena Skrahina
- Republican Scientific and Practical Centre for Pulmonology and Tuberculosis, Minsk, Belarus
| | - Martin Gengenbacher
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Geraldine Nouailles
- Division of Pulmonary Inflammation, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
24
|
Day CL, Abrahams DA, Bunjun R, Stone L, de Kock M, Walzl G, Wilkinson RJ, Burgers WA, Hanekom WA. PD-1 Expression on Mycobacterium tuberculosis-Specific CD4 T Cells Is Associated With Bacterial Load in Human Tuberculosis. Front Immunol 2018; 9:1995. [PMID: 30233588 PMCID: PMC6127207 DOI: 10.3389/fimmu.2018.01995] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/13/2018] [Indexed: 01/20/2023] Open
Abstract
Persistent antigen stimulation in chronic infections has been associated with antigen-specific T cell dysfunction and upregulation of inhibitory receptors, including programmed cell death protein 1 (PD-1). Pulmonary tuberculosis (TB) disease is characterized by high levels of Mycobacterium tuberculosis (Mtb), yet the relationship between bacterial load, PD-1 expression, and Mtb-specific T cell function in human TB has not been well-defined. Using peripheral blood samples from adults with LTBI and with pulmonary TB disease, we tested the hypothesis that PD-1 expression is associated with bacterial load and functional capacity of Mtb-specific T cell responses. We found that PD-1 was expressed at significantly higher levels on Th1 cytokine-producing Mtb-specific CD4 T cells from patients with smear-positive TB, compared with smear-negative TB and LTBI, which decreased after completion of anti-TB treatment. By contrast, expression of PD-1 on Mtb-specific CD8 T cells was significantly lower than on Mtb-specific CD4 T cells and did not differ by Mtb infection and disease status. In vitro stimulation of PBMC with Mtb antigens demonstrated that PD-1 is induced on proliferating Mtb-specific CD4 T cells and that Th1 cytokine production capacity is preferentially maintained within PD-1+ proliferating CD4 T cells, compared with proliferating Mtb-specific CD4 T cells that lack PD-1 expression. Together, these data indicate that expression of PD-1 on Mtb-specific CD4 T cells is indicative of mycobacterial antigen exposure and identifies a population of effector cells with Th1 cytokine production capacity. These studies provide novel insights into the role of the PD-1 pathway in regulating CD4 and CD8 T cell responses in Mtb infection and provide rationale for future studies to evaluate PD-1 expression on antigen-specific CD4 T cells as a potential biomarker for bacterial load and treatment response in human TB.
Collapse
Affiliation(s)
- Cheryl L Day
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States.,Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Deborah A Abrahams
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Rubina Bunjun
- Division of Medical Virology, Department of Pathology, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lynnett Stone
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Marwou de Kock
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Tuberculosis Laboratory, Francis Crick Institute, London, United Kingdom.,Department of Medicine, Imperial College London, London, United Kingdom
| | - Wendy A Burgers
- Division of Medical Virology, Department of Pathology, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Willem A Hanekom
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Afsal K, Selvaraj P, Harishankar M. 1, 25-dihydroxyvitamin D 3 downregulates cytotoxic effector response in pulmonary tuberculosis. Int Immunopharmacol 2018; 62:251-260. [PMID: 30032050 DOI: 10.1016/j.intimp.2018.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022]
Abstract
1,25-dihydroxyvitaminD3 [1,25(OH)2D3] modulates both the innate and adaptive immunity in tuberculosis. We explored the effect of 1,25(OH)2D3 on cytolytic molecules like perforin, granulysin, and granzyme-B in T-cells and natural killer cells during M. tuberculosis (Mtb) infection. Peripheral blood mononuclear cells (PBMCs) from 45 healthy controls (HCs) and 45 pulmonary tuberculosis (PTB) patients were cultured with Mtb in the absence or presence of 1,25(OH)2D3 for 72 h. The percentage of perforin, granulysin, and granzyme-B positive cells were estimated by flow cytometry. 1,25(OH)2D3 significantly decreased the percentage of cytolytic molecules in total, CD4+, CD8+ and CD56+ cells in HCs and PTB patients (p < 0.05). Moreover, 1,25(OH)2D3 downregulates IFN-γ levels while upregulate the anti-inflammatory cytokine IL-10. Correlation revealed that the total percentage of cytolytic molecules were positively correlated with IFN-γ level, whereas negatively correlated with IL-10 level in both the study subjects (p < 0.05). This results suggests that 1,25(OH)2D3 downregulate the expression of cytolytic molecues and act as anti-inflammatory in adaptive immune response, which might help to reduce inflammation and tissue damage during the active stage of the disease.
Collapse
Affiliation(s)
- K Afsal
- Department of Immunology, National Institute for Research in Tuberculosis, Indian Council of Medical Research, No.1, Mayor Sathyamoorthy Road, Chennai 600 031, India; Public Health Research Institute (PHRI), New Jersey Medical School (NJMS), Rutgers Biomedical and Health Sciences (RBHS), Rutgers, The State University of New Jersey, 225 Warren Street, Newark, NJ 07103, USA
| | - P Selvaraj
- Department of Immunology, National Institute for Research in Tuberculosis, Indian Council of Medical Research, No.1, Mayor Sathyamoorthy Road, Chennai 600 031, India
| | - M Harishankar
- Department of Immunology, National Institute for Research in Tuberculosis, Indian Council of Medical Research, No.1, Mayor Sathyamoorthy Road, Chennai 600 031, India.
| |
Collapse
|
26
|
Vitamin D₃ Status and the Association with Human Cathelicidin Expression in Patients with Different Clinical Forms of Active Tuberculosis. Nutrients 2018; 10:nu10060721. [PMID: 29867045 PMCID: PMC6024873 DOI: 10.3390/nu10060721] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Low vitamin D (vitD₃) is one of the most common nutritional deficiencies in the world known to be associated with numerous medical conditions including infections such as tuberculosis (TB). In this study, vitD₃ status and its association with the antimicrobial peptide, human cathelicidin (LL-37), was investigated in Ethiopian patients with different clinical forms of TB. Patients with active TB (n = 77) and non-TB controls (n = 78) were enrolled in Ethiopia, while another group of non-TB controls (n = 62) was from Sweden. Active TB included pulmonary TB (n = 32), pleural TB (n = 20), and lymph node TB (n = 25). Concentrations of 25-hydroxyvitamin D₃ (25(OH)D₃) were assessed in plasma, while LL-37 mRNA was measured in peripheral blood and in samples obtained from the site of infection. Median 25(OH)D₃ plasma levels in active TB patients were similar to Ethiopian non-TB controls (38.5 versus 35.0 nmol/L) and vitD₃ deficiency (.
Collapse
|
27
|
Abstract
Protective immunity in tuberculosis (TB) is subject of debate in the TB research community, as this is key to fully understand TB pathogenesis and to develop new promising tools for TB diagnosis and prognosis as well as a more efficient TB vaccine. IFN-γ producing CD4+ T cells are key in TB control, but may not be sufficient to provide protection. Additional subsets have been identified that contribute to protection such as multifunctional and cytolytic T-cell subsets, including classical and nonclassical T cells as well as novel innate immune cell subsets resulting from trained immunity. However, to define protective immune responses against TB, the complexity of balancing TB immunity also has to be considered. In this review, insights into effector cell immunity and how this is modulated by regulatory cells, associated comorbidities and the host microbiome, is discussed. We systematically map how different suppressive immune cell subsets may affect effector cell responses at the local site of infection. We also dissect how common comorbidities such as HIV, helminths and diabetes may bias protective TB immunity towards pathogenic and regulatory responses. Finally, also the composition and diversity of the microbiome in the lung and gut could affect host TB immunity. Understanding these various aspects of the immunological balance in the human host is fundamental to prevent TB infection and disease.
Collapse
Affiliation(s)
- Susanna Brighenti
- Karolinska Institutet, Department of Medicine, Center for Infectious Medicine (CIM), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Simone A. Joosten
- Leiden University Medical Center, Department of Infectious Diseases, Leiden, The Netherlands
| |
Collapse
|
28
|
Luo W, Qu Z, Zhang L, Xie Y, Luo F, Tan Y, Pan Q, Zhang XL. Recombinant BCG::Rv2645 elicits enhanced protective immunity compared to BCG in vivo with induced ISGylation-related genes and Th1 and Th17 responses. Vaccine 2018; 36:2998-3009. [PMID: 29681409 DOI: 10.1016/j.vaccine.2018.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/21/2018] [Accepted: 04/10/2018] [Indexed: 12/27/2022]
Abstract
There is a need to develop protective vaccines against tuberculosis (TB). Recently, we identified an immunodominant T-cell antigen, Rv2645, from the region of deletion 13 (RD13) of M. tuberculosis (M. tb) H37Rv, which is absent in Bacille Calmette-Guérin (BCG). Here, a recombinant BCG expressing Rv2645, namely, BCG::Rv2645, was constructed. Compared to BCG, we found that BCG::Rv2645 improved the antigen presentation capacity of dendritic cells (DCs) and elicited much stronger Th1 and Th17 responses, higher CD44highCD62low effector memory CD4+ T cells (TEM), and fewer T regulated cells (Treg) and regulatory B10 in mice. Importantly, BCG::Rv2645 exhibited enhanced protective efficacy against virulent M. tb H37Rv challenge in both mice and rhesus monkeys, showing less severe pathology and reduced pathogens. Further, transcriptomic analysis and reverse transcription-quantitative real time PCR revealed that the mRNA levels of ISGylation (Isg)-related genes such as interferon-stimulated gene 15 (Isg15), and Th1- and Th17-related genes such as interferon-γ (IFN-γ) and interleukin-17A (IL-17A) were significantly up-regulated in splenocytes and macrophages after stimulation with Rv2645. This study shows that BCG::Rv2645 is a promising TB vaccine candidate with enhanced protective immunity. The enhanced Th1/Th17 immune responses and up-regulation of ISGylation-related genes induced by Rv2645 may be major factors contributing to the protective immunity of BCG::Rv2645.
Collapse
Affiliation(s)
- Wei Luo
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China; Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 30052, China
| | - Zilu Qu
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Lingyun Zhang
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Yan Xie
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Fengling Luo
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Yang Tan
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Qin Pan
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Department of Immunology, College of Basic Medical Sciences, Medical Research Institute and Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Hubei Province, Wuhan 430071, China.
| |
Collapse
|
29
|
Parasa VR, Muvva JR, Rose JF, Braian C, Brighenti S, Lerm M. Inhibition of Tissue Matrix Metalloproteinases Interferes with Mycobacterium tuberculosis-Induced Granuloma Formation and Reduces Bacterial Load in a Human Lung Tissue Model. Front Microbiol 2017; 8:2370. [PMID: 29259583 PMCID: PMC5723394 DOI: 10.3389/fmicb.2017.02370] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/16/2017] [Indexed: 12/30/2022] Open
Abstract
Granulomas are hallmarks of pulmonary tuberculosis (TB) and traditionally viewed as host-protective structures. However, recent evidence suggest that Mycobacterium tuberculosis (Mtb) uses its virulence factors to stimulate the formation of granuloma. In the present study, we investigated the contribution of matrix metalloproteinases (MMPs), host enzymes that cause degradation of the extracellular matrix, to granuloma formation and bacterial load in Mtb-infected tissue. To this end, we used our lung tissue model for TB, which is based on human lung-derived cells and primary human monocyte-derived macrophages. Global inhibition of MMPs in the Mtb-infected tissue model reduced both granuloma formation and bacterial load. The infection caused upregulation of a set of MMPs (MMP1, 3, 9, and 12), and this finding could be validated in lung biopsies from patients with non-cavitary TB. Data from this study indicate that MMP activation contributes to early TB granuloma formation, suggesting that host-directed, MMP-targeted intervention could be considered as adjunct therapy to TB treatment.
Collapse
Affiliation(s)
- Venkata R Parasa
- Division of Medical Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | - Jeronimo F Rose
- Division of Medical Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Clara Braian
- Division of Medical Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Susanna Brighenti
- Center for Infectious Medicine, Karolinska Institute, Stockholm, Sweden
| | - Maria Lerm
- Division of Medical Microbiology and Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
30
|
Parasa VR, Forsslund H, Enger T, Lorenz D, Kullberg S, Eklund A, Sköld M, Wahlström J, Grunewald J, Brighenti S. Enhanced CD8 + cytolytic T cell responses in the peripheral circulation of patients with sarcoidosis and non-Löfgren's disease. Respir Med 2017; 138S:S38-S44. [PMID: 29055517 DOI: 10.1016/j.rmed.2017.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of CD4+ T cells in the immunopathogenesis of pulmonary sarcoidosis is well-established, while less is known about the phenotype and function of CD8+ cytolytic T cells (CTLs). METHODS CD8+ CTLs were explored in peripheral blood and bronchoalveolar lavage (BAL) samples obtained from up to 25 patients with sarcoidosis and 25 healthy controls. The proportion of CTLs was assessed by the expression of cytolytic effector molecules perforin, granzyme B and granulysin in CD8+ T cells, using flow cytometry. Cytolytic function in blood lymphocytes was assessed using a standard 51Cr-release assay. Patients with Löfgren´s syndrome (LS) and an acute disease onset, were compared to non-LS patients with an insidious onset. RESULTS Higher proportions of peripheral CD8+ CTLs expressing perforin and granzyme B were observed in sarcoidosis compared to healthy controls. Blood CTLs from non-LS patients had significantly higher expression of perforin, granzyme B and granulysin compared to matched BAL, while LS patients maintained lower levels of effector molecules in both compartments. Mitogen-stimulated peripheral lymphocytes from sarcoidosis patients, particularly from the non-LS group, showed a higher target cell lysis compared to controls. CONCLUSION These results demonstrated enhanced peripheral CD8+ CTL responses in sarcoidosis, especially in non-LS patients who have an increased risk of chronic disease. Further comprehensive clinical studies are warranted to increase our understanding of CD8+ CTL responses in sarcoidosis.
Collapse
Affiliation(s)
- Venkata Ramanarao Parasa
- Karolinska Institutet, Center for Infectious Medicine, Department of Medicine Huddinge, Stockholm, Sweden
| | - Helena Forsslund
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Tobias Enger
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Daniel Lorenz
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Susanna Kullberg
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Anders Eklund
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Magnus Sköld
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Jan Wahlström
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Johan Grunewald
- Karolinska Institutet, Respiratory Medicine Unit, Department of Medicine Solna, Stockholm, Sweden
| | - Susanna Brighenti
- Karolinska Institutet, Center for Infectious Medicine, Department of Medicine Huddinge, Stockholm, Sweden.
| |
Collapse
|
31
|
Abstract
Immunity against Mycobacterium tuberculosis requires a balance between adaptive immune responses to constrain bacterial replication and the prevention of potentially damaging immune activation. Regulatory T (Treg) cells express the transcription factor Foxp3+ and constitute an essential counterbalance of inflammatory Th1 responses and are required to maintain immune homeostasis. The first reports describing the presence of Foxp3-expressing CD4+ Treg cells in tuberculosis (TB) emerged in 2006. Different Treg cell subsets, most likely specialized for different tissues and microenvironments, have been shown to expand in both human TB and animal models of TB. Recently, additional functional roles for Treg cells have been demonstrated during different stages and spectrums of TB disease. Foxp3+ regulatory cells can quickly expand during early infection and impede the onset of cellular immunity and persist during chronic TB infection. Increased frequencies of Treg cells have been associated with a detrimental outcome of active TB, and may be dependent on the M. tuberculosis strain, animal model, local environment, and the stage of infection. Some investigations also suggest that Treg cells are required together with effector T cell responses to obtain reduced pathology and sterilizing immunity. In this review, we will first provide an overview of the regulatory cells and mechanisms that control immune homeostasis. Then, we will review what is known about the phenotype and function of Treg cells from studies in human TB and experimental animal models of TB. We will discuss the potential role of Treg cells in the progression of TB disease and the relevance of this knowledge for future efforts to prevent, modulate, and treat TB.
Collapse
|
32
|
Grover A, Troy A, Rowe J, Troudt JM, Creissen E, McLean J, Banerjee P, Feuer G, Izzo AA. Humanized NOG mice as a model for tuberculosis vaccine-induced immunity: a comparative analysis with the mouse and guinea pig models of tuberculosis. Immunology 2017; 152:150-162. [PMID: 28502122 DOI: 10.1111/imm.12756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/09/2017] [Accepted: 05/01/2017] [Indexed: 12/13/2022] Open
Abstract
The humanized mouse model has been developed as a model to identify and characterize human immune responses to human pathogens and has been used to better identify vaccine candidates. In the current studies, the humanized mouse was used to determine the ability of a vaccine to affect the immune response to infection with Mycobacterium tuberculosis. Both human CD4+ and CD8+ T cells responded to infection in humanized mice as a result of infection. In humanized mice vaccinated with either BCG or with CpG-C, a liposome-based formulation containing the M. tuberculosis antigen ESAT-6, both CD4 and CD8 T cells secreted cytokines that are known to be required for induction of protective immunity. In comparison to the C57BL/6 mouse model and Hartley guinea pig model of tuberculosis, data obtained from humanized mice complemented the data observed in the former models and provided further evidence that a vaccine can induce a human T-cell response. Humanized mice provide a crucial pre-clinical platform for evaluating human T-cell immune responses in vaccine development against M. tuberculosis.
Collapse
Affiliation(s)
- Ajay Grover
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Amber Troy
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jenny Rowe
- HuMurine Technologies, La Verne, CA, USA
| | - JoLynn M Troudt
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Elizabeth Creissen
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jennifer McLean
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | | - Angelo A Izzo
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
33
|
Fu Y, Gao K, Tao E, Li R, Yi Z. Aberrantly Expressed Long Non‐Coding RNAs In CD8
+
T Cells Response to Active Tuberculosis. J Cell Biochem 2017; 118:4275-4284. [DOI: 10.1002/jcb.26078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/18/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Yurong Fu
- Department of Medical Microbiology of Clinical Medicine CollegeWeifang Medical UniversityShandong Weifang261053China
- School infirmary of Weifang Medical UniversityShandong Weifang261053China
| | - Kunshan Gao
- Department of Laboratory MedicineKey Laboratory of Clinical Laboratory Diagnostics in Universities of ShandongWeifang Medical UniversityShandong Weifang261053China
| | - Enxue Tao
- School infirmary of Weifang Medical UniversityShandong Weifang261053China
| | - Ruifang Li
- Department of Medical Microbiology of Clinical Medicine CollegeWeifang Medical UniversityShandong Weifang261053China
| | - Zhengjun Yi
- Department of Laboratory MedicineKey Laboratory of Clinical Laboratory Diagnostics in Universities of ShandongWeifang Medical UniversityShandong Weifang261053China
| |
Collapse
|
34
|
Mahamed D, Boulle M, Ganga Y, Mc Arthur C, Skroch S, Oom L, Catinas O, Pillay K, Naicker M, Rampersad S, Mathonsi C, Hunter J, Wong EB, Suleman M, Sreejit G, Pym AS, Lustig G, Sigal A. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells. eLife 2017; 6. [PMID: 28130921 PMCID: PMC5319838 DOI: 10.7554/elife.22028] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/27/2017] [Indexed: 01/09/2023] Open
Abstract
A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states. DOI:http://dx.doi.org/10.7554/eLife.22028.001 Every year, around two million people worldwide die from tuberculosis, a disease caused by the bacterium Mycobacterium tuberculosis (Mtb). The bacteria generally infect the lungs. In response, the immune system forms structures called granulomas that attempt to control and isolate the infecting pathogens. Granulomas consist of immune cells known as macrophages, which engulf the M. tuberculosis bacteria and isolate them in a cellular compartment where the bacteria either cannot grow or are killed. However, if a large number of macrophages in a granuloma die, the granuloma’s core liquefies and the structure is coughed up into the airways, from where M. tuberculosis bacteria are transmitted to other people. But how do the bacteria manage to cause the extensive death of the cells that are supposed to control the infection? By imaging M. tuberculosis in human macrophages using time-lapse microscopy, Mahamed et al. reveal that the bacteria break down macrophage control by serially killing macrophages. M. tuberculosis cells first clump together and ‘gang up’ on a macrophage, which engulfs the clump and dies because the bacteria overwhelm it. This does not kill the bacteria, and they rapidly grow inside the dead macrophage. The dead cell is then cleaned up by another macrophage. However, the increasing number of bacteria inside the dead macrophage means that the new macrophage is even more likely to die than the first one. Hence, the bacteria use dead macrophages as fuel to grow on and as bait to attract the next immune cell. Overall, Mahamed et al. show that once a clump of M. tuberculosis initiates death of a single macrophage, it may lead to serial killing of other macrophages and a loss of control over the infection. An important next step will be to understand how the initial clump of bacteria is allowed to form. DOI:http://dx.doi.org/10.7554/eLife.22028.002
Collapse
Affiliation(s)
- Deeqa Mahamed
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Mikael Boulle
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany
| | - Yashica Ganga
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Chanelle Mc Arthur
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Steven Skroch
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Lance Oom
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Oana Catinas
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Kelly Pillay
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Myshnee Naicker
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Sanisha Rampersad
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Colisile Mathonsi
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Jessica Hunter
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Emily B Wong
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
| | - Moosa Suleman
- Department of Pulmonology and Critical Care, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Department of Pulmonology, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | | | - Alexander S Pym
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Gila Lustig
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Alex Sigal
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
35
|
Thuong PH, Tam DB, Sakurada S, Hang NTL, Hijikata M, Hong LT, Ngoc PTM, Anh PT, Cuong VC, Matsushita I, Lien LT, Keicho N. Circulating granulysin levels in healthcare workers and latent tuberculosis infection estimated using interferon-gamma release assays. BMC Infect Dis 2016; 16:580. [PMID: 27756230 PMCID: PMC5070182 DOI: 10.1186/s12879-016-1911-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/11/2016] [Indexed: 12/03/2022] Open
Abstract
Background Granulysin (GNLY) is produced by human lymphocyte subpopulations and exhibits antimicrobial activity against Mycobacterium tuberculosis. We examined the association between GNLY levels in blood and latent tuberculosis (TB) infection. Methods Latency of TB infection among Vietnamese healthcare workers was estimated using interferon-gamma release assays (IGRA), and serum GNLY concentrations were measured using enzyme-linked immunosorbent assays. The levels of GNLY expression in whole blood and the presence of GNLY alleles with the exon-4 polymorphism rs11127 were also determined using PCR-based methods. Results Among 109 study participants, 41 (37.6 %) were IGRA positive and had significantly lower serum GNLY concentrations compared with IGRA-negative participants (adjusted mean, 95 % confidence interval; 2.03, 1.72–2.44 vs. 2.48, 2.10–2.92 ng/ml, P = 0.0127; analysis of covariance). Serum GNLY concentrations and TB antigen-stimulated interferon-gamma values were weakly inversely correlated (r = −0.20, P = 0.0333). Serum GNLY concentrations varied with GNLY genotypes even after adjustment for gender and age (adjusted P = 0.0015) and were moderately correlated with GNLY expression in blood cells (r = 0.40, P < 0.0001). In subsequent analyses, low serum GNLY concentrations were significantly associated with IGRA status (adjusted odds ratio and 95 % confidence interval, 0.55 and 0.31–0.98, respectively), although GNLY genotype and mRNA levels were not. Conclusions Decreased GNLY, presumably at the protein level, is linked to the immunological condition of latent TB infection.
Collapse
Affiliation(s)
| | - Do Bang Tam
- Department of Biochemistry, Hematology and Blood Transfusion, Hanoi Lung Hospital, Hanoi, Vietnam
| | - Shinsaku Sakurada
- Bureau of International Medical Cooperation, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis JATA, Tokyo, Japan
| | - Le Thi Hong
- Department of Biochemistry, Hematology and Blood Transfusion, Hanoi Lung Hospital, Hanoi, Vietnam
| | | | - Pham Thu Anh
- Department of National Tuberculosis Program, Hanoi Lung Hospital, Hanoi, Vietnam
| | | | - Ikumi Matsushita
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis JATA, Tokyo, Japan
| | | | - Naoto Keicho
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis JATA, Tokyo, Japan.,National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Jiang J, Yang B, An H, Wang X, Liu Y, Cao Z, Zhai F, Wang R, Cao Y, Cheng X. Mucosal-associated invariant T cells from patients with tuberculosis exhibit impaired immune response. J Infect 2016; 72:338-352. [PMID: 26724769 DOI: 10.1016/j.jinf.2015.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 11/02/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To identify factors which regulate MAIT cell response to Mycobacterium tuberculosis antigens, and to investigate the role of MAIT cells in patients with active tuberculosis. METHODS Immune response of MAIT cells to M. tuberculosis antigens were compared between patients with active TB and healthy controls by flow cytometry and RNA sequencing. RESULTS IFN-γ response of MAIT cells to M. tuberculosis lysates was dramatically improved by signal 3 cytokine IL-15 (p = 0.0002). Patients with active TB exhibited highly reduced IFN-γ production in MAIT cells stimulated with M. tuberculosis lysates/IL-15 compared with healthy controls (p < 0.0001) and individuals with latent TB infection (p = 0.0008). RNA sequencing of flow-sorted MAIT cells from patients with TB and healthy controls identified numerous differentially expressed genes, and the expression of genes that encode IFN-γ, TNF-α, IL-17F, granulysin and granzyme B were all down-regulated in patients with TB. MAIT cells from patients with TB has significantly lower expression of γc receptor than those from healthy controls under condition of Mtb lysates/IL-15 stimulation (p = 0.0028). Blockade of both γc and IL-2Rβ receptors resulted in highly reduced frequency of IFN-γ-producing MAIT cells (79.4%) (p = 0.0011). CONCLUSIONS MAIT cells from patients with active TB exhibited impaired cytokine and cytotoxic response to M. tuberculosis antigens.
Collapse
Affiliation(s)
- Jing Jiang
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Bingfen Yang
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Hongjuan An
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Xinjing Wang
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Yanhua Liu
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Zhihong Cao
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Fei Zhai
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Ruo Wang
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Yan Cao
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | - Xiaoxing Cheng
- Key Laboratory of Tuberculosis Prevention and Treatment, and Beijing Key Laboratory of New Techniques for Tuberculosis Diagnosis and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China.
| |
Collapse
|
37
|
Axelsson-Robertson R, Rao M, Loxton AG, Walzl G, Bates M, Zumla A, Maeurer M. Frequency of Mycobacterium tuberculosis-specific CD8+ T-cells in the course of anti-tuberculosis treatment. Int J Infect Dis 2016; 32:23-9. [PMID: 25809751 DOI: 10.1016/j.ijid.2015.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 12/30/2022] Open
Abstract
Anti-tuberculosis drug treatment is known to affect the number, phenotype, and effector functionality of antigen-specific T-cells. In order to objectively gauge Mycobacterium tuberculosis (MTB)-specific CD8+ T-cells at the single-cell level, we developed soluble major histocompatibility complex (MHC) class I multimers/peptide multimers, which allow analysis of antigen-specific T-cells without ex vivo manipulation or functional tests. We constructed 38 MHC class I multimers covering some of the most frequent MHC class I alleles (HLA-A*02:01, A*24:02, A*30:01, A*30:02, A*68:01, B*58:01, and C*07:01) pertinent to a South African or Zambian population, and presenting the following MTB-derived peptides: the early expressed secreted antigens TB10.4 (Rv0288), Ag85B (Rv1886c), and ESAT-6 (Rv3875), as well as intracellular enzymes, i.e., glycosyltransferase 1 (Rv2957), glycosyltransferase 2 (Rv2958c), and cyclopropane fatty acid synthase (Rv0447c). Anti-TB treatment appeared to impact on the frequency of multimer-positive CD8+ T-cells, with a general decrease after 6 months of therapy. Also, a reduction in the total central memory CD8+ T-cell frequencies, as well as the antigen-specific compartment in CD45RA-CCR7+ T-cells was observed. We discuss our findings on the basis of differential dynamics of MTB-specific T-cell frequencies, impact of MTB antigen load on T-cell phenotype, and antigen-specific T-cell responses in tuberculosis.
Collapse
Affiliation(s)
- Rebecca Axelsson-Robertson
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Martin Rao
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Hälsovägen F79, Karolinska University Hospital Huddinge Campus, SE14186, Stockholm, Sweden
| | - Andre G Loxton
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, South Africa
| | - Gerhard Walzl
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Health Sciences, Stellenbosch University, South Africa
| | - Matthew Bates
- Division of Infection and Immunity, University College London, London, UK; UNZA-UCLMs Research and Training Project, University Teaching Hospital, Lusaka, Zambia
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London, London, UK; UNZA-UCLMs Research and Training Project, University Teaching Hospital, Lusaka, Zambia; NIHR Biomaedical Research Centre at University College London Hospitals, London, UK
| | - Markus Maeurer
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden; Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Hälsovägen F79, Karolinska University Hospital Huddinge Campus, SE14186, Stockholm, Sweden.
| |
Collapse
|
38
|
Sarkar P, Mitra S, Pant P, Kotwal A, Kakati B, Masih V, Sindhwani G, Biswas D. Granzyme B as a diagnostic marker of tuberculosis in patients with and without HIV coinfection. Diagn Microbiol Infect Dis 2016; 85:47-52. [PMID: 26915636 DOI: 10.1016/j.diagmicrobio.2016.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 01/03/2016] [Accepted: 01/09/2016] [Indexed: 10/22/2022]
Abstract
Immunodiagnostic tests for tuberculosis (TB) are based on the estimation of interferon γ (IFN-γ) or IFN-γ-secreting CD4(+) T cells following ex vivo stimulation with ESAT6 and CFP-10. Sensitivity of these tests is likely to be compromised in CD4(+) T-cell-depleted situations, like HIV-TB coinfection. CD4(+) and CD8(+) T cells, isolated from 3 groups, viz., HIV-negative patients with active TB, HIV-TB coinfected patients, and healthy household contacts (HHCs) were cocultivated with autologous dendritic cells, and the cytokine response to rESAT6 stimulation was compared between groups in supernatants. While CD4(+) T-cell stimulation yielded significantly elevated levels of IFN-γ and interleukin 4 in HIV-negative TB patients, compared to HHCs, the levels of both these cytokines were nondiscriminatory between HIV-positive TB patients and HHCs. However, CD8(+) T-cell stimulation yielded significantly elevated granzyme B titers in both groups of patients, irrespective of HIV coinfection status. Hence, contrary to IFN-γ, granzyme B might be a useful diagnostic marker for Mycobacterium tuberculosis infection particularly in HIV coinfected patients.
Collapse
Affiliation(s)
- Pronoti Sarkar
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| | - Soumik Mitra
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| | - Priyannk Pant
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| | - Aarti Kotwal
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| | - Barnali Kakati
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| | - Victor Masih
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| | - Girish Sindhwani
- Department of Pulmonary Medicine, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| | - Debasis Biswas
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Ram Nagar, Jolly Grant, Dehradun 248140, India.
| |
Collapse
|
39
|
Hou SH, Hu J, Zhang Y, Li QL, Guo JJ. Effects of interaction between genetic variants in human leukocyte antigen DQ and granulysin genes in Chinese Han subjects infected with hepatitis B virus. Microbiol Immunol 2016; 59:209-18. [PMID: 25644528 DOI: 10.1111/1348-0421.12239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/25/2015] [Accepted: 01/28/2015] [Indexed: 12/13/2022]
Abstract
Single nucleotide polymorphisms (SNPs) of HLA-DQ and granulysin (GNLY) are reportedly associated with HBV infection. The aim of this study was to investigate the effects of interactions between SNPs in HLA-DQ and GNLY on the outcome of hepatitis B virus (HBV) infection in Chinese Han subjects. HLA-DQ (rs9275572) and GNLY (rs1866139 and rs11127) were genotyped in 310 subjects with HBV-related chronic liver disease, 295 in whom spontaneous clearance of HBV had occurred and 316 who had not been exposed to HBV. HLA-DQ rs9275572 was significantly correlated with HBV clearance (dominant genetic model: OR, 1.84; 95% CI, 1.30-2.61; adjusted P = 0.001). There was no statistical association of GNLY rs1866139 and rs11127with HBV infection outcomes. However, significant sex-specific associations with HBV susceptibility were observed in men who carried rs1866139 CG or rs11127 TC and in women who carried rs1866139 GG or rs11127 CC. The findings were the same in the validation cohort, which was composed of 829 subjects. Based on a multifactor dimensionality reduction test with permutation correction, a three-way interaction between SNPs in HLA-DQ and GNLY was identified in terms of HBV clearance. In conclusion, additional evidence for an association of HLA-DQ and GNLY SNPs with HBV infection outcomes has been identified and a SNP-SNP interaction between HLA-DQ and GNLY on HBV clearance observed.
Collapse
Affiliation(s)
- Si-hui Hou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University
| | | | | | | | | |
Collapse
|
40
|
Jasenosky LD, Scriba TJ, Hanekom WA, Goldfeld AE. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev 2015; 264:74-87. [PMID: 25703553 DOI: 10.1111/imr.12274] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The adaptive immune response mediated by T cells is critical for control of Mycobacterium tuberculosis (M. tuberculosis) infection in humans. However, the M. tuberculosis antigens and host T-cell responses that are required for an effective adaptive immune response to M. tuberculosis infection are yet to be defined. Here, we review recent findings on CD4(+) and CD8(+) T-cell responses to M. tuberculosis infection and examine the roles of distinct M. tuberculosis-specific T-cell subsets in control of de novo and latent M. tuberculosis infection, and in the evolution of T-cell immunity to M. tuberculosis in response to tuberculosis treatment. In addition, we discuss recent studies that elucidate aspects of M. tuberculosis-specific adaptive immunity during human immunodeficiency virus co-infection and summarize recent findings from vaccine trials that provide insight into effective adaptive immune responses to M. tuberculosis infection.
Collapse
Affiliation(s)
- Luke D Jasenosky
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Our understanding of the host-pathogen relationship in tuberculosis (TB) can help guide drug discovery in at least two ways. First, the recognition that host immunopathology affects lesional TB drug distribution means that pharmacokinetic evaluation of drug candidates needs to move beyond measurements of drug levels in blood, whole lungs, or alveolar epithelial lining fluid to include measurements in specific types of lesions. Second, by restricting the replication of M. tuberculosis (Mtb) subpopulations in latent TB infection and in active disease, the host immune response puts Mtb into a state associated with phenotypic tolerance to TB drugs selected for their activity against replicating Mtb. This has spurred a major effort to conduct high throughput screens in vitro for compounds that can kill Mtb when it is replicating slowly if at all. Each condition used in vitro to slow Mtb's replication and thereby model the phenotypically drug-tolerant state has advantages and disadvantages. Lead candidates emerging from such in vitro studies face daunting challenges in the design of proof-of-concept studies in animal models. Moreover, some non-replicating subpopulations of Mtb fail to resume replication when plated on agar, although their viability is demonstrable by other means. There is as yet no widely replicated assay in which to screen compounds for their ability to kill this 'viable but non-culturable' subpopulation. Despite these hurdles, drugs that can kill slowly replicating or non-replicating Mtb may offer our best hope for treatment-shortening combination chemotherapy of TB.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
42
|
Kumar NP, Moideen K, George PJ, Dolla C, Kumaran P, Babu S. Impaired Cytokine but Enhanced Cytotoxic Marker Expression in Mycobacterium tuberculosis-Induced CD8+ T Cells in Individuals With Type 2 Diabetes and Latent Mycobacterium tuberculosis Infection. J Infect Dis 2015; 213:866-70. [PMID: 26486635 DOI: 10.1093/infdis/jiv484] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (DM) is a risk factor for tuberculosis among individuals with latent Mycobacterium tuberculosis infection. To explore the influence of DM on CD8(+) T-cell responses during latent M. tuberculosis infection, we estimated the cytokine and cytotoxic marker expression pattern in individuals with latent M. tuberculosis infection with DM and those with latent M. tuberculosis infection without DM. Among individuals with latent M. tuberculosis infection, those with DM had diminished frequencies of CD8(+) T-helper type 1 (Th1), Th2, and Th17 cells following stimulation by M. tuberculosis antigen and enhanced frequencies of CD8(+) T cells expressing cytotoxic markers, compared with those without DM. Thus, our results suggest that coincident DM modulates CD8(+) T-cell function during latent M. tuberculosis infection.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research
| | - Kadar Moideen
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research
| | - Parakkal Jovvian George
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research
| | | | - Paul Kumaran
- National Institute for Research in Tuberculosis, Chennai, India
| | - Subash Babu
- National Institutes of Health-National Institute for Research in Tuberculosis-International Center for Excellence in Research
| |
Collapse
|
43
|
Ma J, Lu J, Huang H, Teng X, Tian M, Yu Q, Yuan X, Jing Y, Shi C, Li J, Fan X. Inhalation of recombinant adenovirus expressing granulysin protects mice infected with Mycobacterium tuberculosis. Gene Ther 2015; 22:968-76. [PMID: 26181627 DOI: 10.1038/gt.2015.73] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/22/2015] [Accepted: 07/08/2015] [Indexed: 11/09/2022]
Abstract
Granulysin is a cytolytic molecule with perforin and granzymes that is expressed by activated human CTLs, NK and γδ T cells, and it has broad antimicrobial activity, including to drug-sensitive and drug-resistant Mycobacterium tuberculosis. We hypothesized that approaches facilitating the expression of granulysin in M. tuberculosis-infected host cells in the lung may provide a novel treatment strategy for pulmonary TB. In this study, a recombinant replication-deficient adenovirus serotype 5-based rAdhGLi was constructed that expressed human granulysin in the cytosol of the U937 and RAW264.7 macrophage-like cell lines as confirmed by western blotting and co-localization technology using indirect immunofluorescence staining. Ninety-six hours after both cell lines were infected with M. tuberculosis, acid-fast staining and enumeration demonstrated that rAdhGLi-treated cells had a lower colony-forming units (CFU) of intracellular bacteria than culture medium or AdNull controls. Granulysin was only expressed in the lung and not in other organs following inhalation of rAdhGLi. In particular, immunocompetent BALB/c mice or SCID mice intranasally infected with ~200 CFU of virulent M. tuberculosis H37Rv intranasally were treated with rAdhGLi, and they showed decreased bacterial loads in the lung when compared with phosphate-buffered saline or AdNull controls. Importantly, a clear dose-dependent rAdhGLi treatment efficacy was found in infected BALB/c mice, with the most significant reduction in lung bacteria obtained in BALB/c mice treated with 10(9) plaque-forming units of rAdhGLi without any pathological changes. Our study indicates that rAdhGLi may be used as a novel and efficient treatment strategy with the capability to directly kill intracellular M. tuberculosis.
Collapse
Affiliation(s)
- J Ma
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - J Lu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - H Huang
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - X Teng
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - M Tian
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Q Yu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - X Yuan
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Y Jing
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - C Shi
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - J Li
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - X Fan
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Subbian S, Tsenova L, Kim MJ, Wainwright HC, Visser A, Bandyopadhyay N, Bader JS, Karakousis PC, Murrmann GB, Bekker LG, Russell DG, Kaplan G. Lesion-Specific Immune Response in Granulomas of Patients with Pulmonary Tuberculosis: A Pilot Study. PLoS One 2015; 10:e0132249. [PMID: 26133981 PMCID: PMC4489805 DOI: 10.1371/journal.pone.0132249] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/11/2015] [Indexed: 01/20/2023] Open
Abstract
The formation and maintenance of granulomas is central to the host response to Mycobacterium tuberculosis (Mtb) infection. It is widely accepted that the lungs of patients with tuberculosis (TB) usually contain multiple infection foci, and that the granulomas evolve and differentiate independently, resulting in considerable heterogeneity. Although gene expression profiles of human blood cells have been proposed as biomarkers of Mtb infection and/or active disease, the immune profiles of discrete lesion types has not been studied extensively. Using histology, immunopathology and genome-wide transcriptome analysis, we explored the immunological profile of human lung TB granulomas. We show that although the different granulomas share core similarities in their immunological/inflammatory characteristics, they also exhibit significant divergence. Despite similar numbers of CD68+ macrophages in the different lesions, the extent of immune reactivity, as determined by the density of CD3+ T cells in the macrophage rich areas, and the extent of fibrosis, shows considerable variation. Both quantitative and qualitative differences among significantly differentially expressed genes (SDEG) were noted in each of the lesion types studied. Further, network/pathway analysis of SDEG revealed differential regulation of inflammatory response, immune cell trafficking, and cell mediated immune response in the different lesions. Our data highlight the formidable challenges facing ongoing efforts to identify peripheral blood biomarkers due to the diversity of lesion types and complexity of local immune responses in the lung.
Collapse
MESH Headings
- Cellular Microenvironment
- Fibrosis
- Gene Expression Profiling
- Granuloma, Respiratory Tract/genetics
- Granuloma, Respiratory Tract/immunology
- Granuloma, Respiratory Tract/pathology
- Humans
- Inflammation
- Interleukin-7/physiology
- Lung/pathology
- Lymphocyte Activation
- Macrophages/immunology
- Necrosis
- Pilot Projects
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- Receptors, Calcitriol/physiology
- STAT1 Transcription Factor/physiology
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- Transcriptome
- Tuberculosis, Multidrug-Resistant/genetics
- Tuberculosis, Multidrug-Resistant/immunology
- Tuberculosis, Multidrug-Resistant/pathology
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/pathology
Collapse
Affiliation(s)
- Selvakumar Subbian
- Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute (PHRI), Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| | - Liana Tsenova
- Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute (PHRI), Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Biological Sciences, NYC College of Technology, Brooklyn, New York, United States of America
| | - Mi-Jeong Kim
- Department of Immunobiology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Helen C. Wainwright
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Annalie Visser
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nirmalya Bandyopadhyay
- Department of Biomedical Engineering, High-Throughput Biology Center and Institute of Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Joel S. Bader
- Department of Biomedical Engineering, High-Throughput Biology Center and Institute of Computational Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Petros C. Karakousis
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine and Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Gabriele B. Murrmann
- Department of General and Thoracic Surgery, Medisch Centrum Leeuwarden, Leeuwarden, The Netherlands
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - David G. Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gilla Kaplan
- Bill and Melinda Gates Foundation, Seattle, Washington, United States of America
| |
Collapse
|
45
|
Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis infection. Semin Immunopathol 2015; 37:239-49. [PMID: 25917388 PMCID: PMC4439333 DOI: 10.1007/s00281-015-0490-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 12/25/2022]
Abstract
Tuberculosis is primarily a respiratory disease that is caused by Mycobacterium tuberculosis. M. tuberculosis can persist and replicate in macrophages in vivo, usually in organized cellular structures called granulomas. There is substantial evidence for the importance of CD4 T cells in control of tuberculosis, but the evidence for a requirement for CD8 T cells in this infection has not been proven in humans. However, animal model data support a non-redundant role for CD8 T cells in control of M. tuberculosis infection. In humans, infection with this pathogen leads to generation of specific CD8 T cell responses. These responses include classical (MHC Class I restricted) and non-classical CD8 T cells. Here, we discuss the potential roles of CD8 T cells in defense against tuberculosis, and our current understanding of the wide range of CD8 T cell types seen in M. tuberculosis infection.
Collapse
Affiliation(s)
- Philana Ling Lin
- Department of Pediatrics, Division of Infectious Disease, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | | |
Collapse
|
46
|
Rahman S, Rehn A, Rahman J, Andersson J, Svensson M, Brighenti S. Pulmonary tuberculosis patients with a vitamin D deficiency demonstrate low local expression of the antimicrobial peptide LL-37 but enhanced FoxP3+ regulatory T cells and IgG-secreting cells. Clin Immunol 2015; 156:85-97. [DOI: 10.1016/j.clim.2014.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
|
47
|
Ivanyi J. Local Immune Responses in Tuberculosis. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00095-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Niño VE, García LF, Rojas M, Campo V, Ávila G, Klínger JC, Ortiz BL, Díaz ML. Increased percentage of IFN-γ producing CD56+CD3+ cells in active tuberculosis patients upon CFP-10 stimulation of peripheral mononuclear cells. Tuberculosis (Edinb) 2014; 94:589-98. [PMID: 25459160 DOI: 10.1016/j.tube.2014.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 09/06/2014] [Accepted: 09/26/2014] [Indexed: 11/16/2022]
Abstract
Aiming to identify a possible biomarker that distinguishes immune cellular response of active tuberculosis from latent infection. Peripheral blood mononuclear cells (PBMCs) of pulmonary tuberculosis patients (PTB), tuberculin positive household contacts (TST(+) HHC), and tuberculin negative non-household contacts (TST− Non HHC) were stimulated with PPD or CFP-10 and the percentage of CD69(+) cells, proliferating precursor and IFN-γ producing CD4(+), CD8(+), CD56(+)CD3(−) and CD56(+)CD3(+) cells were compared. IL-2, IL-12p70, IL-15, IL-18 and IL-10 were measured in culture supernatants. PTB and TST+ HHC presented higher percentages of CD69(+) cells, IFN-γ(+) and proliferating precursors in all subpopulations studied and higher IL-12p70 levels than TST- Non HHC. The increased percentage of IFN-γ producing CD56(+)CD3(+) cells in response to CFP-10 in PTB, compared with TST− Non HHC and the ratios between the percentage of CD56(+)CD3(+) cells/CD56(+)CD3(−) and CD8(+) cells producing IFN-γ suggest that these parameters may distinguish active TB from latently infected individuals.
Collapse
|
49
|
Mycobacterium tuberculosis-specific CD8+ T cell recall in convalescing TB subjects with HIV co-infection. Tuberculosis (Edinb) 2014; 93 Suppl:S60-5. [PMID: 24388651 DOI: 10.1016/s1472-9792(13)70012-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Memory T cell populations recover following phase I chemotherapy for tuberculosis (TB) and augment the effectiveness of antibiotics during the continuation phase of treatment. For those with human immunodeficiency virus (HIV), the CD8(+)T cells may have an especially important role in host defense to Mycobacterium tuberculosis (M.tb) as CD4(+)T cell function and/or numbers decline. Here we performed a preliminary study to investigate the impact of HIV infection status on CD8(+)T cell effector function during the convalescent TB period. Peripheral blood samples from convalescent HIV(+) and HIV(-) TB subjects were used to determine CD4(+)T cell count and monitor antigen-specific CD8(+) T cell activation of effector function (lymphoproliferation, IFN-γ, granulysin) in response to M.tb antigen. Our preliminary results suggest that HIV co-infection is associated with moderate suppression of the M.tb-specific memory CD8(+)T cell compartment in many subjects convalescent for TB. Interestingly, highly activated CD8(+)T cells were observed in recall experiments using peripheral blood from several HIV+ subjects that had low (<200 cells/mm(3)) CD4(+)T cell counts. Further investigation may provide important information for development of novel approaches to target M.tb-specific CD8(+)T cell memory to protect against TB in HIV-endemic regions.
Collapse
|
50
|
Geffner L, Basile JI, Yokobori N, Kviatcovsky D, Sabio y García C, Ritacco V, López B, Sasiain MDC, de la Barrera S. Mycobacterium tuberculosis multidrug resistant strain M induces an altered activation of cytotoxic CD8+ T cells. PLoS One 2014; 9:e97837. [PMID: 24836916 PMCID: PMC4024032 DOI: 10.1371/journal.pone.0097837] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/25/2014] [Indexed: 01/09/2023] Open
Abstract
In human tuberculosis (TB), CD8+ T cells contribute to host defense by the release of Th1 cytokines and the direct killing of Mycobacterium tuberculosis (Mtb)-infected macrophages via granule exocytosis pathway or the engagement of receptors on target cells. Previously we demonstrated that strain M, the most prevalent multidrug-resistant (MDR) Mtb strain in Argentine, is a weak inducer of IFN-γ and elicits a remarkably low CD8-dependent cytotoxic T cell activity (CTL). In contrast, the closely related strain 410, which caused a unique case of MDR-TB, elicits a CTL response similar to H37Rv. In this work we extend our previous study investigating some parameters that can account for this discrepancy. We evaluated the expressions of the lytic molecules perforin, granzyme B and granulysin and the chemokine CCL5 in CD8+ T cells as well as activation markers CD69 and CD25 and IL-2 expression in CD4+ and CD8+ T cells stimulated with strains H37Rv, M and 410. Our results demonstrate that M-stimulated CD8+ T cells from purified protein derivative positive healthy donors show low intracellular expression of perforin, granzyme B, granulysin and CCL5 together with an impaired ability to form conjugates with autologous M-pulsed macrophages. Besides, M induces low CD69 and IL-2 expression in CD4+ and CD8+ T cells, being CD69 and IL-2 expression closely associated. Furthermore, IL-2 addition enhanced perforin and granulysin expression as well as the degranulation marker CD107 in M-stimulated CD8+ T cells, making no differences with cells stimulated with strains H37Rv or 410. Thus, our results highlight the role of IL-2 in M-induced CTL activity that drives the proper activation of CD8+ T cells as well as CD4+ T cells collaboration.
Collapse
MESH Headings
- Adult
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Chemokine CCL5/genetics
- Chemokine CCL5/metabolism
- Cytotoxicity, Immunologic
- Drug Resistance, Multiple, Bacterial
- Female
- Granzymes/genetics
- Granzymes/metabolism
- Humans
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Interleukin-2 Receptor alpha Subunit/genetics
- Interleukin-2 Receptor alpha Subunit/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lymphocyte Activation
- Male
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Perforin/genetics
- Perforin/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Laura Geffner
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Juan Ignacio Basile
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Noemí Yokobori
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Denise Kviatcovsky
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Carmen Sabio y García
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Viviana Ritacco
- Laboratorio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Beatriz López
- Laboratorio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - María del Carmen Sasiain
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Silvia de la Barrera
- Laboratorio de Inmunología de Enfermedades Respiratorias, Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|