1
|
Cao X, Ge J, Ma Y, Li H, Han W, Lamont SJ, Sun H. MiR-20a-5p Targeting the TGFBR2 Gene Regulates Inflammatory Response of Chicken Macrophages Infected with Avian Pathogenic E. coli. Animals (Basel) 2024; 14:2277. [PMID: 39123803 PMCID: PMC11311048 DOI: 10.3390/ani14152277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Avian pathogenic E. coli (APEC) causes localized and systemic infections and are a threat to human health. microRNAs (miRNAs) play critical roles in inflammation and immune regulation following pathogen invasion. However, the related regulatory mechanism remains unclear. This study aimed to elucidate the involvement of chicken microRNA-20a-5p (gga-miR-20a-5p) in host defense against APEC in chickens and the underlying mechanisms. We evaluated the expression levels of gga-miR-20a-5p in chicken tissues and cells and observed a significant decrease in expression following APEC infection. Dual luciferase reporter assays showed that gga-miR-20a-5p directly targeted transforming growth factor-beta receptor 2 (TGFBR2), specifically by binding to the 3'-untranslated region (3'UTR) of TGFBR2. Overexpression of gga-miR-20a-5p markedly reduced both the mRNA and protein levels of TGFBR2, whereas inhibition of gga-miR-20a-5p significantly increased expression. Mechanistic investigations revealed that overexpression of gga-miR-20a-5p also attenuated the expression levels of the pro-inflammatory cytokines IL8, TNFα, IL6, and IL1β, whereas inhibition of gga-miR-20a-5p had the opposite effects. Collectively, our findings suggest that gga-miR-20a-5p regulates the immune response during APEC infection by targeting TGFBR2, thereby suppressing inflammatory cytokine production. This study provides valuable insights into the role of gga-miR-20a-5p in the host defense against APEC.
Collapse
Affiliation(s)
- Xinqi Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiayi Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Wei Han
- Jiangsu Institute of Poultry Sciences, Yangzhou 225003, China
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Li W, Li W, Wu P, Jin W, Yuan L, Wang B, Li S, Kang X. Differential responses to avian pathogenic E. coli and the regulatory role of splenic miRNAs in APEC infection in Silkie chickens. Front Cell Infect Microbiol 2024; 14:1358216. [PMID: 38533381 PMCID: PMC10963617 DOI: 10.3389/fcimb.2024.1358216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a bacterial disease that harms the poultry industry worldwide, but its effect on Chinese Silkie has not been reported. Studies on whether there are differences in Silkie individual resistance to APEC and the regulatory role of spleen miRNAs lay the foundation for strategies against APEC. Therefore, 270 Silkie chickens were infected with the median lethal dose of an E. coli O1, O2, and O78 mixture. These chickens were divided into a susceptible group (Group S) and a recovery group (Group R) according to whether they survived 15 days postinfection (dpi). Moreover, 90 uninfected APEC Silkie served as controls (Group C). The splenic miRNA expression profile was examined to evaluate the role of miRNAs in the APEC infection response. Of the 270 Silkies infected with APEC, 144 were alive at 15 dpi. Cluster analysis and principal component analysis (PCA) of splenic miRNAs revealed that the four Group R replicates were clustered with the three Group C replicates and were far from the three Group S replicates. Differentially expressed (DE) miRNAs, especially gga-miR-146b-5p, play essential roles in immune and inflammatory responses to APEC. Functional enrichment analyses of DEmiRNAs suggested that suppression of immune system processes (biological processes) might contribute to susceptibility to APEC and that FoxO signaling pathways might be closely associated with the APEC infection response and postinfection repair. This study paves the way for screening anti-APEC Silkies and provides novel insights into the regulatory role of miRNAs in APEC infection.
Collapse
Affiliation(s)
- Wenqing Li
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Wanli Li
- The Shennong Laboratory, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Pinhui Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Wei Jin
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lin Yuan
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bingxun Wang
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shengli Li
- Institute of Animal Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Li H, Sun H, Yang Y, Ma Y, Li N, Tan J, Sun C. Integrated analysis of mRNA and microRNA expression pattern reveals differential transcriptome signatures in RIPK2 over-expressing chicken macrophages infected with avian pathogenic E. coli. Br Poult Sci 2023:1-13. [PMID: 36607339 DOI: 10.1080/00071668.2022.2163153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. As RIPK2 (receptor interacting serine/threonine kinase 2) has been shown to to alleviate excessive inflammatory responses, the following study conducted a systematic and in-depth analysis of the mRNA-seq and miRNA-seq data from chicken macrophages with/without over-expression of RIPK2 (oeRIPK2) combined with/without avian pathogenic E. coli (APEC) infection to identify the miRNA-mRNA interaction network and potential signalling pathways involved.2. A total of 9,201 differentially expressed (DE) mRNAs and 300 DE miRNA were identified in both oeRIPK2+APEC vs. APEC and oeRIPK2 vs. the wild-type (WT). Moreover, 4,269 instances of co-expression between miRNAs and mRNAs were seen involving 1,652 DE mRNAs and 164 DE miRNAs.3. Functional analysis of the DE mRNAs in the miRNA-mRNA interaction network showed that 223 biological processes and five KEGG pathways were significantly enriched in the two comparisons. In total, 128 pairs of miRNA-mRNA interactions were involved in the identified MAPK signalling pathway and focal adhesion immune related pathways.4. Significantly, these screened miRNAs (gga-miR-222b-5p and gga-miR-214) and their target genes were highly correlated with APEC infection and RIPK2. These recognised key genes, miRNA and the overall miRNA-mRNA regulatory network, enables better understanding of the molecular mechanism of host response to APEC infection, especially related to RIPK2.
Collapse
Affiliation(s)
- H Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, China
- Yangzhou Engineering Research Center of Agricultural Products Intelligent Measurement and Control & Cleaner Production, Yangzhou, China
| | - H Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Y Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Y Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - N Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - J Tan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - C Sun
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, China
- Yangzhou Engineering Research Center of Agricultural Products Intelligent Measurement and Control & Cleaner Production, Yangzhou, China
| |
Collapse
|
4
|
Sun H, Yang Y, Ma Y, Li N, Tan J, Sun C, Li H. Analysis of circRNA expression in chicken HD11 cells in response to avian pathogenic E.coli. Front Vet Sci 2022; 9:1005899. [PMID: 36187840 PMCID: PMC9521048 DOI: 10.3389/fvets.2022.1005899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic E. coli (APEC), one of the widespread zoonotic-pathogen, can cause a series of diseases collectively known as colibacillosis. This disease can cause thousands of million dollars economic loss each year in poultry industry and threaten to human health via meat or egg contamination. However, the detailed molecular mechanism underlying APEC infection is still not fully understood. Circular RNAs, a new type of endogenous noncoding RNA, have been demonstrated to involve in various biological processes. However, it is still not clear whether the circRNAs participate in host response against APEC infection. Herein, we utilized the high-throughput sequence technology to identify the circRNA expression profiles in APEC infected HD11 cells. A total of 49 differentially expressed (DE) circRNAs were detected in the comparison of APEC infected HD11 cells vs. wild type HD11 cells, which were involved in MAPK signaling pathway, Endocytosis, Focal adhesion, mTOR signaling pathway, and VEGF signaling pathway. Specifically, the source genes (BRAF, PPP3CB, BCL2L13, RAB11A, and TSC2) and their corresponding DE circRNAs may play a significant role in APEC infection. Moreover, based on ceRNA regulation, we constructed the circRNA-miRNA network and identified a couple of important regulatory relationship pairs related to APEC infection, including circRAB11A-gga-miR-125b-3p, circRAB11A-gga-miR-1696, and circTSC2-gga-miR-1649-5p. Results indicate that the aforementioned specific circRNAs and circRNA-miRNA network might have important role in regulating host immune response against APEC infection. This study is the first time to investigate the circRNAs expression profile and the biological function of the source genes of the identified DE circRNAs after APEC infection of chicken HD11 cells. These results would contribute to a better understanding of the molecular mechanisms in host response against APEC infection.
Collapse
Affiliation(s)
- Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- *Correspondence: Hongyan Sun
| | - Yexin Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Nayin Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jishuang Tan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Changhua Sun
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, China
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou University, Yangzhou, China
- Huan Li
| |
Collapse
|
5
|
Sun H, Cao Y, Yang Y, Li H, Qu L. Analysis of miRNA Expression Profiling of RIP2 Knockdown in Chicken HD11 Cells When Infected with Avian Pathogenic E. coli (APEC). Int J Mol Sci 2022; 23:ijms23137319. [PMID: 35806321 PMCID: PMC9266748 DOI: 10.3390/ijms23137319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Colibacillosis is an acute and chronic avian disease caused by avian pathogenic E. coli (APEC). Previous studies have demonstrated that RIP2 plays a significant role in APEC infection. Moreover, increasing evidence indicates that microRNAs (miRNAs) are involved in host–pathogen interactions and the immune response. However, the role of miRNAs in the host against APEC infection remains unclear. Herein, we attempted to reveal new miRNAs potentially involved in the regulation of the immune and inflammatory response against APEC infection, with a particular focus on those possibly correlated with RIP2 expression, via miRNA-seq, RT-qPCR, Western blotting, dual-luciferase reporter assay, and CCK-8. The results showed that a total of 93 and 148 differentially expressed (DE) miRNAs were identified in the knockdown of RIP2 cells following APEC infection (shRIP2+APEC) vs. knockdown of RIP2 cells (shRIP2) and shRIP2 vs. wild-type cells (WT), respectively. Among those identified DE miRNAs, the biological function of gga-miR-455-5p was investigated. It was found that gga-miR-455-5p regulated by RIP2 was involved in the immune and inflammatory response against APEC infection via targeting of IRF2 to modulate the expression of type I interferons. Additionally, RIP2 could directly regulate the production of the type I interferons. Altogether, these findings highlighted the crucial role of miRNAs, especially gga-miR-455-5p, in host defense against APEC infection.
Collapse
Affiliation(s)
- Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yuxuan Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yexin Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Lujiang Qu
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| |
Collapse
|
6
|
Dehau T, Ducatelle R, Immerseel FV, Goossens E. Omics technologies in poultry health and productivity - part 1: current use in poultry research. Avian Pathol 2022; 51:407-417. [PMID: 35675291 DOI: 10.1080/03079457.2022.2086447] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In biology, molecular terms with the suffix "-omics" refer to disciplines aiming at the collective characterization of pools of molecules derived from different layers (DNA, RNA, proteins, metabolites) of living organisms using high-throughput technologies. Such omics analyses have been widely implemented in poultry research in recent years. This first part of a bipartite review on omics technologies in poultry health and productivity examines the use of multiple omics and multi-omics techniques in poultry research. More specific present and future applications of omics technologies, not only for the identification of specific diagnostic biomarkers, but also for potential future integration in the daily monitoring of poultry production, are discussed in part 2. Approaches based on omics technologies are particularly used in poultry research in the hunt for genetic markers of economically important phenotypical traits in the host, and in the identification of key bacterial species or functions in the intestinal microbiome. Integrative multi-omics analyses, however, are still scarce. Host physiology is investigated via genomics together with transcriptomics, proteomics and metabolomics techniques, to understand more accurately complex production traits such as disease resistance and fertility. The gut microbiota, as a key player in chicken productivity and health, is also a main subject of such studies, investigating the association between its composition (16S rRNA gene sequencing) or function (metagenomics, metatranscriptomics, metaproteomics, metabolomics) and host phenotypes. Applications of these technologies in the study of other host-associated microbiota and other host characteristics are still in their infancy.
Collapse
Affiliation(s)
- Tessa Dehau
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evy Goossens
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
7
|
Alabiad MA, Harb OA, Hefzi N, Ahmed RZ, Osman G, Shalaby AM, Alnemr AAA, Saraya YS. Prognostic and clinicopathological significance of TMEFF2, SMOC-2, and SOX17 expression in endometrial carcinoma. Exp Mol Pathol 2021; 122:104670. [PMID: 34339705 DOI: 10.1016/j.yexmp.2021.104670] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022]
Abstract
Background there is a need for novel biomarkers and targeting therapies for predicting Endometrial carcinoma (EC) progression and recurrence. TMEFF2 is a gene that was found to play a role in EMT. SMOC-2 is expressed in embryogenesis and it was identified as a recent stem cell-related gene that has a role in cancer progression. SRY-box 17 (SOX17) is a member of the SRY-related HMG-box (SOX) family of transcription factors. Dysregulation or downregulation of SOX17 expression was found in many cancer tissues. AIM In the present study, we aimed to assess the tissue protein expressions of TMEFF2, SMOC-2, and SOX17 in EC using immunohistochemistry to evaluate their clinicopathological values and prognostic roles in EC patients. PATIENTS AND METHODS This is prospective cohort study included 120 patients with EC. Sections from 120 paraffin blocks were retrieved and stained with TMEFF2, SMOC-2, and SOX17 using immunohistochemistry, the expression of markers in all tissue samples was assessed, analyzed and correlation of pathological parameters with the levels of expression was done. All patients were followed up till death or till the last known alive data for about 50 months (range from 25 to 60). RESULTS TMEFF2, SMOC-2 expression was correlated with the presence of lymph node metastases (p = 0.023), distant metastasis (p = 0.039) recurrence of the tumor after successful therapy, overall survival, and disease-free survival (p < 0.001). SOX17 positive expression was positively correlated with low grade (p = 0.019), absence of lymph node metastasis (p = 0.001), absence of distant metastasis (p = 0.013), low stage (p = 0.03), and its negative expression was positively correlated with recurrence of the tumor after successful therapy, overall survival and disease-free survival (p = 0.001). In conclusion, we demonstrated that both TMEFF2 and SMOC-2 were highly expressed in EC and were associated with a shortened survival rate, dismal outcome, and poor prognosis in EC patients. While SOX17 expression was related to a favorable outcome and its down-regulation was associated with dismal EC patient's survival.
Collapse
Affiliation(s)
- Mohamed Ali Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Ola A Harb
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nabila Hefzi
- Department of Clinical Oncology& Nuclear Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rham Z Ahmed
- Department of Medical Oncology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Gamal Osman
- Department of General Surgery, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Mohamed Shalaby
- Department of Histology and Cell Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amr Abd-Almohsen Alnemr
- Department of Gynecology and Obstetrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Yasser S Saraya
- Department of Gynecology and Obstetrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Monson MS, Lamont SJ. Genetic resistance to avian pathogenic Escherichia coli (APEC): current status and opportunities. Avian Pathol 2021; 50:392-401. [PMID: 33554653 DOI: 10.1080/03079457.2021.1879990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Infections with avian pathogenic Escherichia coli (APEC) can be extremely detrimental to poultry health and production. Investigating host genetic variation could identify the biological mechanisms that control resistance to this pathogen and allow selection for improved resistance in experimental and commercial poultry populations. In this review, the current knowledge of how host genetics contributes to APEC resistance and future opportunities that would benefit the understanding or application of genetic resistance are discussed. Phenotypes, such as antibody responses, lesion scores, and mortality, revealed that genetic background impacts APEC resistance and interacts with other factors including the environment and challenge conditions. Experiments have used divergent selection for APEC-specific antibody levels to facilitate genetic studies, estimated heritabilities in relevant traits, detected quantitative trait loci using microsatellites, and made associations with sequence variation in the major histocompatibility complex, which collectively suggest that improving APEC resistance through selection is feasible, although genetic control is partial, complex, and highly polygenic. Additionally, functional genomics techniques have identified antimicrobial responses, toll-like receptor and cytokine signalling, and the cell cycle as central pathways in the host response to APEC challenge. Opportunities for future research are discussed, including the expansion of existing lines of research and the application of new technologies that are relevant to the study of host genetics and APEC. This review closes with prospective strategies for improvement of host genetic resistance to APEC.
Collapse
Affiliation(s)
- Melissa S Monson
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA
| |
Collapse
|
9
|
Redweik GAJ, Horak MK, Hoven R, Ott L, Mellata M. Evaluation of Live Bacterial Prophylactics to Decrease IncF Plasmid Transfer and Association With Intestinal Small RNAs. Front Microbiol 2021; 11:625286. [PMID: 33519786 PMCID: PMC7840957 DOI: 10.3389/fmicb.2020.625286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Chicken intestinal Escherichia coli are a reservoir for virulence and antimicrobial resistance (AMR) genes that are often carried on incompatibility group F (IncF) plasmids. The rapid transfer of these plasmids between bacteria in the gut contributes to the emergence of new multidrug-resistant and virulent bacteria that threaten animal agriculture and human health. Thus, the aim of the present study was to determine whether live bacterial prophylactics could affect the distribution of large virulence plasmids and AMR in the intestinal tract and the potential role of smRNA in this process. In this study, we tested ∼100 randomly selected E. coli from pullet feces (n = 3 per group) given no treatment (CON), probiotics (PRO), a live Salmonella vaccine (VAX), or both (P + V). E. coli isolates were evaluated via plasmid profiles and several phenotypic (siderophore production and AMR), and genotypic (PCR for virulence genes and plasmid typing) screens. P + V isolates exhibited markedly attenuated siderophore production, lack of AMR and virulence genes, which are all related to the loss of IncF and ColV plasmids (P < 0.0001). To identify a causal mechanism, we evaluated smRNA levels in the ceca mucus and found a positive association between smRNA concentrations and plasmid content, with both being significantly reduced in P + V birds compared to other groups (P < 0.01). To test this positive association between IncF plasmid transfer and host smRNA concentration, we evenly pooled smRNA per group and treated E. coli mating pairs with serial concentrations of smRNA in vitro. Higher smRNA concentrations resulted in greater rates of IncF plasmid transfer between E. coli donors (APEC O2 or VAX isolate IA-EC-001) and recipient (HS-4) (all groups; P < 0.05). Finally, RNAHybrid predictive analyses detected several chicken miRNAs that hybridize with pilus assembly and plasmid transfer genes on the IncF plasmid pAPEC-O2-R. Overall, we demonstrated P + V treatment reduced smRNA levels in the chicken ceca, which was associated with a reduction in potentially virulent E. coli. Furthermore, we propose a novel mechanism in which intestinal smRNAs signal plasmid exchange between E. coli. Investigations to understand the changes in bacterial gene expression as well as smRNAs responsible for this phenomenon are currently underway.
Collapse
Affiliation(s)
- Graham A. J. Redweik
- Department of Food Science and Human Nutrition, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Mary Kate Horak
- Department of Food Science and Human Nutrition, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, United States
| | - Ryley Hoven
- Department of Food Science and Human Nutrition, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, United States
| | - Logan Ott
- Department of Food Science and Human Nutrition, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Melha Mellata
- Department of Food Science and Human Nutrition, College of Agriculture and Life Sciences, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
10
|
O’Dowd K, Emam M, El Khili MR, Emad A, Ibeagha-Awemu EM, Gagnon CA, Barjesteh N. Distinct miRNA Profile of Cellular and Extracellular Vesicles Released from Chicken Tracheal Cells Following Avian Influenza Virus Infection. Vaccines (Basel) 2020; 8:vaccines8030438. [PMID: 32764349 PMCID: PMC7565416 DOI: 10.3390/vaccines8030438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023] Open
Abstract
Innate responses provide the first line of defense against viral infections, including the influenza virus at mucosal surfaces. Communication and interaction between different host cells at the early stage of viral infections determine the quality and magnitude of immune responses against the invading virus. The release of membrane-encapsulated extracellular vesicles (EVs), from host cells, is defined as a refined system of cell-to-cell communication. EVs contain a diverse array of biomolecules, including microRNAs (miRNAs). We hypothesized that the activation of the tracheal cells with different stimuli impacts the cellular and EV miRNA profiles. Chicken tracheal rings were stimulated with polyI:C and LPS from Escherichia coli 026:B6 or infected with low pathogenic avian influenza virus H4N6. Subsequently, miRNAs were isolated from chicken tracheal cells or from EVs released from chicken tracheal cells. Differentially expressed (DE) miRNAs were identified in treated groups when compared to the control group. Our results demonstrated that there were 67 up-regulated miRNAs, 157 down-regulated miRNAs across all cellular and EV samples. In the next step, several genes or pathways targeted by DE miRNAs were predicted. Overall, this study presented a global miRNA expression profile in chicken tracheas in response to avian influenza viruses (AIV) and toll-like receptor (TLR) ligands. The results presented predicted the possible roles of some DE miRNAs in the induction of antiviral responses. The DE candidate miRNAs, including miR-146a, miR-146b, miR-205a, miR-205b and miR-449, can be investigated further for functional validation studies and to be used as novel prophylactic and therapeutic targets in tailoring or enhancing antiviral responses against AIV.
Collapse
Affiliation(s)
- Kelsey O’Dowd
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (K.O.); (C.A.G.)
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Mehdi Emam
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- McGill University Research Centre on Complex Traits (MRCCT), Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC H3G 0B1, Canada
| | - Mohamed Reda El Khili
- Department of Electrical and Computer Engineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0E9, Canada; (M.R.E.K.); (A.E.)
| | - Amin Emad
- Department of Electrical and Computer Engineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0E9, Canada; (M.R.E.K.); (A.E.)
| | - Eveline M. Ibeagha-Awemu
- Sherbrooke Research & Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC J1M 0C8, Canada;
| | - Carl A. Gagnon
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (K.O.); (C.A.G.)
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Neda Barjesteh
- Research Group on Infectious Diseases in Production Animals (GREMIP), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada; (K.O.); (C.A.G.)
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Correspondence: ; Tel.: +1-450-773-8521 (ext. 33191)
| |
Collapse
|
11
|
Videvall E, Palinauskas V, Valkiūnas G, Hellgren O. Host Transcriptional Responses to High- and Low-Virulent Avian Malaria Parasites. Am Nat 2020; 195:1070-1084. [DOI: 10.1086/708530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Song X, Qiu M, Jiang H, Xue M, Hu J, Liu H, Zhou X, Tu J, Qi K. ybjX mutation regulated avian pathogenic Escherichia coli pathogenicity though stress-resistance pathway. Avian Pathol 2019; 49:144-152. [PMID: 31670582 DOI: 10.1080/03079457.2019.1687844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ybjX gene mutation decreased the pathogenicity of the avian pathogenic Escherichia coli strain, AE17. However, the associated regulatory mechanism of ybjX remains unknown. In this study, we examined the bactericidal activity of chicken serum and blood, as well as bacterial survival in HD11 macrophages. We compared the transcriptome of ybjX mutations with those of the wild strain and studied the effects of ybjX on miRNA expression in the spleen. Our findings revealed that the mutant strain, ΔybjX, had a lower resistance to chicken serum and blood, as well as lower bacterial survival in HD11 macrophages than AE17. RNA sequencing analyses showed that the ybjX mutation reduced stress resistance by down-regulating mRNAs in metabolic pathways. Infection with the ybjX mutant strain caused changes in the splenic miRNA profile. We verified Kelch repeat and BTB domain-containing protein 11 to be the target of miR-133b. Together, these findings suggest that the ybjX mutation reduces serum, blood, and environmental stress resistance by down-regulating the mRNA in metabolic pathways.
Collapse
Affiliation(s)
- Xiangjun Song
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Mingyu Qiu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Huyan Jiang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Mei Xue
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Jiangan Hu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Hongmei Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Xiuhong Zhou
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, People's Republic of China
| |
Collapse
|
13
|
Analyses of miRNA in the ileum of diarrheic piglets caused by Clostridium perfringens type C. Microb Pathog 2019; 136:103699. [PMID: 31472261 DOI: 10.1016/j.micpath.2019.103699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/28/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022]
Abstract
Clostridium perfringens (C. perfringens) type C is one of major pathogenic causing diarrhea and other intestinal inflammatory diseases in piglets, which seriously affects the healthy development of the swine industries. Studies have found that miRNAs play important roles in regulating piglet diarrhea challenged by pathogenic E. coli and Salmonella. However, little is known miRNAs in the ileum of diarrheic piglets caused by C. perfringens type C. Therefore, we studied the expression profiles of the ileum miRNAs of 7-day-old piglets infected with C. perfringens type C using small RNA-Seq, including control (IC), susceptible (IS) and resistant (IR) groups. As a result, 53 differentially expressed miRNAs were found. KEGG pathway analysis for target genes revealed that these miRNAs were involved in ErbB signaling pathway, MAPK signaling pathway, Jak-STAT signaling pathway and Wnt signaling pathway. The expression correlation analysis between miRNAs and target genes revealed that the expression of miR-7134-5p had negative correlation with target NFATC4, miR-500 had negative correlation with target ELK1, HSPA2 and IL7R, and miR-92b-3p had negative correlation with target CLCF1 in ileum of IR vs IS group, suggesting that miR-7134-5p targeting to NFATC4, miR-500 targeting to ELK1, HSPA2 and IL7R, and miR-92b-3p targeting to CLCF1 were probably involved in piglet resisting C. perfringens type C. The results will provide value resources for better understanding of the genetic basis of C. perfringens type C resistance in piglet and lays a new foundation for identifying novel markers of C. perfringens type C resistance.
Collapse
|
14
|
Yakovlev AF. The Role of miRNA in Differentiation, Cell Proliferation, and Pathogenesis of Poultry Diseases. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419030081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Stromberg ZR, Van Goor A, Redweik GAJ, Mellata M. Characterization of Spleen Transcriptome and Immunity Against Avian Colibacillosis After Immunization With Recombinant Attenuated Salmonella Vaccine Strains. Front Vet Sci 2018; 5:198. [PMID: 30186843 PMCID: PMC6113917 DOI: 10.3389/fvets.2018.00198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/30/2018] [Indexed: 01/19/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes extraintestinal infections in poultry. Vaccines targeting APEC in chickens have been partially successful, but many lack heterologous protection. Recombinant attenuated Salmonella vaccine (RASV) strains can induce broad immunity against Salmonella and be modified to deliver E. coli antigens. Along with vaccine characteristics, understanding the host response is crucial for developing improved vaccines. The objectives of this study were to evaluate host responses to vaccination with an RASV producing E. coli common pilus (ECP) and assess protection against APEC infection in chickens. Four-day-old White Leghorn chickens were unvaccinated or orally vaccinated and boosted 2 weeks later with RASV χ8025(pYA3337), RASV χ8025(pYA4428) carrying ecp operon genes, or a combination of χ8025(pYA3337) and χ8025(pYA4428) (Combo). To assess host responses, serum IgY and intestinal IgA antibody titers were measured, and spleen samples (n = 4/group) were collected from unvaccinated and Combo vaccinated 4-week-old chickens for RNA-seq. Vaccine protection potential against Salmonella and APEC was evaluated in vitro using bacterial inhibition assays. Five-week-old chickens were challenged via air sac with either an APEC O2 or O78 strain. E. coli was enumerated from internal organs, and gross colibacillosis lesions were scored at necropsy. RASV immunized chickens elicited anti-E. coli antibodies. The spleen transcriptome revealed that 93% (89/96) of differentially expressed genes (DEG) were more highly expressed in Combo vaccinated compared to unvaccinated chickens, with signal as the most significantly impacted category. RNA-seq analysis also revealed altered cellular and metabolic processes, response to stimulus after vaccination, and immune system processes. Six DEG including genes linked to transcription regulation, actin cytoskeleton, and signaling were highly positively correlated with antibody levels. Samples from RASV immunized chickens showed protection potential against Salmonella strains using in vitro assays, but a variable response was found for APEC strains. After APEC challenges, significant differences were not detected for bacterial loads or gross lesions scores, but χ8025(pYA3337) immunized and χ8025(pYA4428) immunized chickens had significantly fewer number of APEC-O2-positive samples than unvaccinated chickens. This study shows that RASVs can prime the immune system for APEC infection, and is a first step toward developing improved therapeutics for APEC infections in chickens.
Collapse
Affiliation(s)
- Zachary R Stromberg
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Angelica Van Goor
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Graham A J Redweik
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| |
Collapse
|
16
|
Li P, Fan W, Li Q, Wang J, Liu R, Everaert N, Liu J, Zhang Y, Zheng M, Cui H, Zhao G, Wen J. Splenic microRNA Expression Profiles and Integration Analyses Involved in Host Responses to Salmonella enteritidis Infection in Chickens. Front Cell Infect Microbiol 2017; 7:377. [PMID: 28884089 PMCID: PMC5573731 DOI: 10.3389/fcimb.2017.00377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/08/2017] [Indexed: 01/26/2023] Open
Abstract
To understand the role of miRNAs in regulating genes involved in the host response to Salmonella enteritidis (SE) infection, next generation sequencing was applied to explore the altered splenic expression of microRNAs (miRNAs) and deregulated genes in specific-pathogen-free chickens. Birds were either infected or not (controls, C) and those challenged with SE were evaluated 24 h later and separated into two groups on the basis of the severity of clinical symptoms and blood load of SE: resistant (R, SE challenged-slight clinical symptoms and <105 cfu / 10 μL), and susceptible (S, SE challenged-severe clinical symptoms and >107 cfu/10 μL). Thirty-two differentially expressed (DE) miRNAs were identified in spleen, including 16 miRNAs between S and C, 13 between R and C, and 13 between S and R. Through integration analysis of DE miRNAs and mRNA, a total of 273 miRNA-target genes were identified. Functional annotation analysis showed that Apoptosis and NOD-like receptor signaling pathway and adaptive immune response were significantly enriched (P < 0.05). Interestingly, apoptosis pathway was significantly enriched in S vs. C, while NOD-like receptor pathway was enriched in R vs. C (P < 0.05). Two miRNAs, gga-miR-101-3p and gga-miR-155, in the hub positions of the miRNA-mRNA regulatory network, were identified as candidates potentially associated with SE infection. These 2 miRNAs directly repressed luciferase reporter gene activity via binding to 3'-untranslated regions of immune-related genes IRF4 and LRRC59; over-expressed gga-miR-155 and interference gga-miR-101-3p in chicken HD11 macrophage cells significantly altered expression of their target genes and decreased the production of pro-inflammatory cytokines. These findings facilitate better understanding of the mechanisms of host resistance and susceptibility to SE infection in chickens.
Collapse
Affiliation(s)
- Peng Li
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of LiègeGembloux, Belgium
- State Key Laboratory of Animal NutritionBeijing, China
| | - Wenlei Fan
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Qinghe Li
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jie Wang
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
- State Key Laboratory of Animal NutritionBeijing, China
| | - Ranran Liu
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of LiègeGembloux, Belgium
| | - Jie Liu
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
- State Key Laboratory of Animal NutritionBeijing, China
| | - Yonghong Zhang
- College of Animal Science, Jilin UniversityChangchun, China
| | - Maiqing Zheng
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Huanxian Cui
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Guiping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jie Wen
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
- State Key Laboratory of Animal NutritionBeijing, China
| |
Collapse
|