1
|
Bañuelos C, Betanzos A, Javier-Reyna R, Galindo A, Orozco E. Molecular interplays of the Entamoeba histolytica endosomal sorting complexes required for transport during phagocytosis. Front Cell Infect Microbiol 2022; 12:855797. [PMID: 36389174 PMCID: PMC9647190 DOI: 10.3389/fcimb.2022.855797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/06/2022] [Indexed: 08/23/2024] Open
Abstract
Entamoeba histolytica, the causative agent of human amoebiasis, exhibits a continuous membrane remodelling to exert its virulence properties. During this dynamic process, the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is a key player, particularly in phagocytosis, a virulence hallmark of this parasite. In addition to ESCRT, other molecules contribute to membrane remodelling, including the EhADH adhesin, EhRabs, actin, and the lysobisphosphatidic acid (LBPA). The endocytosis of a prey or molecules induces membrane invaginations, resulting in endosome and multivesicular bodies (MVBs) formation for cargo delivery into lysosomes. Alternatively, some proteins are recycled or secreted. Most of these pathways have been broadly characterized in other biological systems, but poorly described in protozoan parasites. Here, we encompass 10 years of ESCRT research in E. histolytica, highlighting the role of the ESCRT-I and ESCRT-III components and the EhADH and EhVps4-ATPase accessory proteins during phagocytosis. In particular, EhADH exhibits a multifunctional role along the endocytic pathway, from cargo recognition to endosome maturation and lysosomal degradation. Interestingly, the interaction of EhADH with EhVps32 seems to shape a concurrent route to the conventional one for MVBs biogenesis, that could optimize their formation. Furthermore, this adhesin is secreted, but its role in this event remains under study. Other components from the endosomal pathway, such as EhVps23 and LBPA, are also secreted. A proteomic approach performed here, using an anti-LBPA antibody, revealed that some proteins related to membrane trafficking, cellular transport, cytoskeleton dynamics, and transcriptional and translational functions are secreted and associated to LBPA. Altogether, the accumulated knowledge around the ESCRT machinery in E. histolytica, points it out as a dynamic platform facilitating the interaction of molecules participating in different cellular events. Seen as an integrated system, ESCRTs lead to a better understanding of E. histolytica phagocytosis.
Collapse
Affiliation(s)
- Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Abigail Betanzos
- Investigadores por Mexico, Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Ausencio Galindo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
2
|
Kadri S, Nakada-Tsukui K, Watanabe N, Jeelani G, Nozaki T. PTEN differentially regulates endocytosis, migration, and proliferation in the enteric protozoan parasite Entamoeba histolytica. PLoS Pathog 2022; 18:e1010147. [PMID: 35500038 PMCID: PMC9122207 DOI: 10.1371/journal.ppat.1010147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/20/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
PTEN is a lipid phosphatase that is highly conserved and involved in a broad range of biological processes including cytoskeletal reorganization, endocytosis, signal transduction, and cell migration in all eukaryotes. Although regulation of phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] signaling via PTEN has been well established in model organisms and mammals, it remains elusive in the parasitic protist E. histolytica, which heavily relies on PtdIns phosphate(s)-dependent membrane traffic, migration, and phago- and trogocytosis for its pathogenesis. In this study, we characterized the major PTEN from E. histolytica, EhPTEN1, which shows the highest expression at the transcript level in the trophozoite stage among 6 possible PTENs, to understand the significance of PtdIns(3,4,5)P3 signaling in this parasite. Live imaging of GFP-EhPTEN1 expressing amebic trophozoites showed localization mainly in the cytosol with a higher concentration at pseudopods and the extending edge of the phago- and trogocytic cups. Furthermore, quantitative analysis of phago- and trogocytosis using a confocal image cytometer showed that overexpression of EhPTEN1 caused reduction in trogo- and phagocytosis while transcriptional gene silencing of EhPTEN1 gene caused opposite phenotypes. These data suggest that EhPTEN1 has an inhibitory role in these biological processes. Conversely, EhPTEN1 acts as a positive regulator for fluid-phase and receptor-mediated endocytosis in E. histolytica trophozoites. Moreover, we showed that EhPTEN1 was required for optimal growth and migration of this parasite. Finally, the phosphatase activity of EhPTEN1 towards PtdIns(3,4,5)P3 was demonstrated, suggesting that the biological roles of EhPTEN1 are likely linked to its catalytic function. Taken together, these results indicate that EhPTEN1 differentially regulates multiple cellular activities essential for proliferation and pathogenesis of the organism, via PtdIns(3,4,5)P3 signaling. Elucidation of biological roles of PTEN and PtdIns(3,4,5)P3 signaling at the molecular levels promotes our understanding of the pathogenesis of this parasite.
Collapse
Affiliation(s)
- Samia Kadri
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
3
|
Apte A, Manich M, Labruyère E, Datta S. PI Kinase-EhGEF2-EhRho5 axis contributes to LPA stimulated macropinocytosis in Entamoeba histolytica. PLoS Pathog 2022; 18:e1010550. [PMID: 35594320 PMCID: PMC9173640 DOI: 10.1371/journal.ppat.1010550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/07/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Entamoeba histolytica is a protozoan responsible for several pathologies in humans. Trophozoites breach the intestinal site to enter the bloodstream and thus traverse to a secondary site. Macropinocytosis and phagocytosis, collectively accounting for heterophagy, are the two major processes responsible for sustenance of Entamoeba histolytica within the host. Both of these processes require significant rearrangements in the structure to entrap the target. Rho GTPases play an indispensable role in mustering proteins that regulate cytoskeletal remodelling. Unlike phagocytosis which has been studied in extensive detail, information on machinery of macropinocytosis in E. histolytica is still limited. In the current study, using site directed mutagenesis and RNAi based silencing, coupled with functional studies, we have demonstrated the involvement of EhRho5 in constitutive and LPA stimulated macropinocytosis. We also report that LPA, a bioactive phospholipid present in the bloodstream of the host, activates EhRho5 and translocates it from cytosol to plasma membrane and endomembrane compartments. Using biochemical and FRAP studies, we established that a PI Kinase acts upstream of EhRho5 in LPA mediated signalling. We further identified EhGEF2 as a guanine nucleotide exchange factor of EhRho5. In the amoebic trophozoites, EhGEF2 depletion leads to reduced macropinocytic efficiency of trophozoites, thus phenocopying its substrate. Upon LPA stimulation, EhGEF2 is found to sequester near the plasma membrane in a wortmannin sensitive fashion, explaining a possible mode for activation of EhRho5 in the amoebic trophozoites. Collectively, we propose that LPA stimulated macropinocytosis in E. histolytica is driven by the PI Kinase-EhGEF2-EhRho5 axis.
Collapse
Affiliation(s)
- Achala Apte
- Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Maria Manich
- Bioimage Analysis Unit, Institut Pasteur, Paris, France
| | | | - Sunando Datta
- Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| |
Collapse
|
4
|
The Multiple Roles of Trogocytosis in Immunity, the Nervous System, and Development. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1601565. [PMID: 34604381 PMCID: PMC8483919 DOI: 10.1155/2021/1601565] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
Trogocytosis is a general biological process that involves one cell physically taking small parts of the membrane and other components from another cell. In trogocytosis, one cell seems to take little “bites” from another cell resulting in multiple outcomes from these cell-cell interactions. Trogocytosis was first described in protozoan parasites, which by taking pieces of host cells, kill them and cause tissue damage. Now, it is known that this process is also performed by cells of the immune system with important consequences such as cell communication and activation, elimination of microbial pathogens, and even control of cancer cells. More recently, trogocytosis has also been reported to occur in cells of the central nervous system and in various cells during development. Some of the molecules involved in phagocytosis also participate in trogocytosis. However, the molecular mechanisms that regulate trogocytosis are still a mystery. Elucidating these mechanisms is becoming a research area of much interest. For example, why neutrophils can engage trogocytosis to kill Trichomonas vaginalis parasites, but neutrophils use phagocytosis to eliminate already death parasites? Thus, trogocytosis is a significant process in normal physiology that multiple cells from different organisms use in various scenarios of health and disease. In this review, we present the basic principles known on the process of trogocytosis and discuss the importance in this process to host-pathogen interactions and to normal functions in the immune and nervous systems.
Collapse
|
5
|
Federici L, Masulli M, Allocati N. An Overview of Biosensors Based on Glutathione Transferases and for the Detection of Glutathione. ELECTROANAL 2021. [DOI: 10.1002/elan.202100143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry University “G. d' Annunzio” Chieti Italy
- CAST (Center for Advanced Studies and Technology) University “G. d' Annunzio” Chieti Italy
- UniCamillus – Saint Camillus International University of Health Sciences Rome Italy
| | - Michele Masulli
- Department of Innovative Technologies in Medicine and Dentistry University “G. d' Annunzio” Chieti Italy
| | - Nerino Allocati
- Department of Innovative Technologies in Medicine and Dentistry University “G. d' Annunzio” Chieti Italy
| |
Collapse
|
6
|
Das K, Watanabe N, Nozaki T. Two StAR-related lipid transfer proteins play specific roles in endocytosis, exocytosis, and motility in the parasitic protist Entamoeba histolytica. PLoS Pathog 2021; 17:e1009551. [PMID: 33909710 PMCID: PMC8109825 DOI: 10.1371/journal.ppat.1009551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/10/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
Lipid transfer proteins (LTPs) are the key contributor of organelle-specific lipid distribution and cellular lipid homeostasis. Here, we report a novel implication of LTPs in phagocytosis, trogocytosis, pinocytosis, biosynthetic secretion, recycling of pinosomes, and motility of the parasitic protist E. histolytica, the etiological agent of human amoebiasis. We show that two StAR-related lipid transfer (START) domain-containing LTPs (named as EhLTP1 and 3) are involved in these biological pathways in an LTP-specific manner. Our findings provide novel implications of LTPs, which are relevant to the elucidation of pathophysiology of the diseases caused by parasitic protists. We showed that EhLTP1, but not EhLTP3, is involved in secretion of cysteine protease, the well-established degrading factor of host cells and the extracellular matrix, and in pseudopod formation and migration. In contrast, EhLTP3, but not EhLTP1, is exclusively involved in pinocytosis of the fluid-phase marker. Both EhLTP1 and EhLTP3 are also involved in trogocytosis (ingestion by nibbling) of live mammalian cells and phagocytosis of dead cells. In trogocytosis and phagcytosis, these two LTPs displayed distinct patterns of recruitment: e.g., EhLTP1 was associated at the ligand attachment site at the initiation of trogocytosis, followed by the recruitment of EhLTP3 onto the “trogocytic tunnel” at the intermediate stage of trogocytosis before the closure of the trogosome. Such tempo-spatially coordinated involvement of LTPs in the course of trogo- and phagocytosis has never been demonstrated in unicellular eukaryotes. Neither has LTP been shown to be involved in both endocytosis and exocytosis.
Collapse
Affiliation(s)
- Koushik Das
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
7
|
Watanabe N, Nakada-Tsukui K, Nozaki T. Diversity of phosphoinositide binding proteins in Entamoeba histolytica. Parasitol Int 2021; 83:102367. [PMID: 33905816 DOI: 10.1016/j.parint.2021.102367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/26/2021] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
Phosphatidylinositol phosphates (PIPs, phosphoinositides) are localized to the membranes of all cellular compartments, and play pivotal roles in multiple cellular events. To fulfill their functions, PIPs that are located to specific organelles or membrane domains bind to and recruit various proteins in spatiotemporal specific manner via protein domains that selectively bind to either a single or an array of PIPs. In Entamoeba histolytica, the human intestinal protozoan parasite, PIPs and PIP-binding proteins have been shown to be involved in their virulence-associated mechanisms such as cell motility, vesicular traffic, trogo- and phagocytosis. In silico search of the domains and the signatures implicated in PIP binding in the E. histolytica proteome allows identification of dozens of potential PIP-binding proteins. However, such analysis is often misleading unless the protein domain used as query is cautiously selected and the binding specificity of the proteins are experimentally validated. This is because all the domains initially presumed to bind PIPs in other systems are not always capable of PIP binding, but rather involved in other biological roles. In this review, we carried out in silico survey of proteins which have PIP-binding domains in the E. histolytica genome by utilizing only validated PIP-binding domains that had been experimentally proven to be faithful PIP-binding bioprobes. Our survey has identified that FYVE (Fab1, YOTB1, Vac1, EEA1) and PH (pleckstrin homology) domain containing proteins are the most expanded families in E. histolytica. A few FYVE domain-containing proteins (EhFP4 and 10) and phox homology (PX) domain containing proteins (EhSNX1 and 2) were previously studied in depth in E. histolytica. Furthermore, most of the identified PH domain-containing proteins are annotated as protein kinases and possess protein kinase domains. Overall, PIP-binding domain-containing proteins that can be identified by in silico survey of the genome using the domains from well characterized bioprobes are limited in E. histolytica. However, their domain architectures are often unique, suggesting unique evolution of PIP-binding domain-containing proteins in this organism.
Collapse
Affiliation(s)
- Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Shrivastav MT, Malik Z, Somlata. Revisiting Drug Development Against the Neglected Tropical Disease, Amebiasis. Front Cell Infect Microbiol 2021; 10:628257. [PMID: 33718258 PMCID: PMC7943716 DOI: 10.3389/fcimb.2020.628257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022] Open
Abstract
Amebiasis is a neglected tropical disease which is caused by the protozoan parasite Entamoeba histolytica. This disease is one of the leading causes of diarrhea globally, affecting largely impoverished residents in developing countries. Amebiasis also remains one of the top causes of gastrointestinal diseases in returning international travellers. Despite having many side effects, metronidazole remains the drug of choice as an amebicidal tissue-active agent. However, emergence of metronidazole resistance in pathogens having similar anaerobic metabolism and also in laboratory strains of E. histolytica has necessitated the identification and development of new drug targets and therapeutic strategies against the parasite. Recent research in the field of amebiasis has led to a better understanding of the parasite’s metabolic and cellular pathways and hence has been useful in identifying new drug targets. On the other hand, new molecules effective against amebiasis have been mined by modifying available compounds, thereby increasing their potency and efficacy and also by repurposing existing approved drugs. This review aims at compiling and examining up to date information on promising drug targets and drug molecules for the treatment of amebiasis.
Collapse
Affiliation(s)
- Manish T Shrivastav
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Zainab Malik
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Somlata
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
9
|
Taefehshokr N, Yin C, Heit B. Rab GTPases in the differential processing of phagocytosed pathogens versus efferocytosed apoptotic cells. Histol Histopathol 2020; 36:123-135. [PMID: 32990320 DOI: 10.14670/hh-18-252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phagocytosis is an important feature of innate immunity in which invading microorganisms are engulfed, killed and degraded - and in some immune cells, their antigens presented to adaptive immune system. A closely related process, efferocytosis, removes apoptotic cells, and is essential for the maintenance of homeostasis. Both phagocytosis and efferocytosis are tightly regulated processes that involve target recognition and uptake through specific receptors, followed by endolysosomal trafficking and processing of the internalized target. Central to the uptake and trafficking of these targets are the Rab family of small GTPases, which coordinate the engulfment and trafficking of both phagocytosed and efferocytosed materials through the endolysosomal system. Because of this regulatory function, Rab GTPases are often targeted by pathogens to escape phagocytosis. In this review, we will discuss the shared and differential roles of Rab GTPases in phagocytosis and efferocytosis.
Collapse
Affiliation(s)
- Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Charles Yin
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada. .,Associate Scientist, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
10
|
Watanabe N, Nakada-Tsukui K, Maehama T, Nozaki T. Dynamism of PI4-Phosphate during Interactions with Human Erythrocytes in Entamoeba histolytica. Microorganisms 2020; 8:microorganisms8071050. [PMID: 32679800 PMCID: PMC7409237 DOI: 10.3390/microorganisms8071050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022] Open
Abstract
Phosphatidylinositol phosphates (PIPs) are involved in many cellular events as important secondary messengers. In Entamoeba histolytica, a human intestinal protozoan parasite, virulence-associated mechanisms such as cell motility, vesicular traffic, trogo- and phagocytosis are regulated by PIPs. It has been well established that PI3P, PI4P, and PI(3,4,5)P3 play specific roles during amoebic trogo- and phagocytosis. In the present study, we demonstrated the nuclear localization of PI4P in E. histolytica trophozoites in steady state with immunofluorescence imaging and immunoelectron microscopy, using anti-PI4P antibodies and PI4P biosensors [substrate of the Icm/ Dot type IV secretion system (SidM)]. We further showed that the nuclear PI4P decreased after a co-culture with human erythrocytes or Chinese hamster ovary (CHO) cells. However, concomitant changes in the localization and the amount of PI(4,5)P2, which is the expected major metabolized (phosphorylated) product of PI4P, were not observed. This phenomenon was specifically caused by whole or ghost erythrocytes and CHO cells, but not artificial beads. The amount of PIP2 and PIP, biochemically estimated by [32P]-phosphate metabolic labeling and thin layer chromatography, was decreased upon erythrocyte adherence. Altogether, our data indicate for the first time in eukaryotes that erythrocyte attachment leads to the metabolism of nuclear PIPs, and metabolites other than PI(4,5)P2 may be involved in the regulation of downstream cellular events such as cytoskeleton rearrangement or transcriptional regulation.
Collapse
Affiliation(s)
- Natsuki Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan;
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
- Correspondence: ; Tel.: +81-3-5841-3526
| |
Collapse
|
11
|
Castellanos-Castro S, Bolaños J, Orozco E. Lipids in Entamoeba histolytica: Host-Dependence and Virulence Factors. Front Cell Infect Microbiol 2020; 10:75. [PMID: 32211340 PMCID: PMC7075943 DOI: 10.3389/fcimb.2020.00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
Lipids are essential players in parasites pathogenesis. In particular, the highly phagocytic trophozoites of Entamoeba histolytica, the causative agent of amoebiasis, exhibit a dynamic membrane fusion and fission, in which lipids strongly participate; particularly during the overstated motility of the parasite to reach and attack the epithelia and ingest target cells. Synthesis and metabolism of lipids in this protozoan present remarkable difference with those performed by other eukaryotes. Here, we reviewed the current knowledge on lipids in E. histolytica. Trophozoites synthesize phosphatidylcholine and phosphatidylethanolamine by the Kennedy pathway; and sphingolipids, phosphatidylserine, and phosphatidylinositol, by processes similar to those used by other eukaryotes. However, trophozoites lack enzymes for cholesterol and fatty acids synthesis, which are scavenged from the host or culture medium by specific mechanisms. Cholesterol, a fundamental molecule for the expression of virulence, is transported from the medium into the trophozoites by EhNPC1 and EhNPC2 proteins. Inside cells, lipids are distributed by different pathways, including by the participation of the endosomal sorting complex required for transport (ESCRT), involved in vesicle fusion and fission. Cholesterol interacts with the phospholipid lysobisphosphatidic acid (LBPA) and EhADH, an ALIX family protein, also involved in phagocytosis. In this review, we summarize the known information on phospholipids synthesis and cholesterol transport as well as their metabolic pathways in E. histolytica; highlighting the mechanisms used by trophozoites to dispose lipids involved in the virulence processes.
Collapse
Affiliation(s)
- Silvia Castellanos-Castro
- College of Sciences and Humanities, Autonomous University of Mexico City, Mexico City, Mexico.,BioImage Analysis Unit, Pasteur Institute, Paris, France
| | - Jeni Bolaños
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.,Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nnicolás Hidalgo, Morelia, Mexico
| | - Esther Orozco
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
12
|
Watanabe N, Nakada-Tsukui K, Nozaki T. Two isotypes of phosphatidylinositol 3-phosphate-binding sorting nexins play distinct roles in trogocytosis in Entamoeba histolytica. Cell Microbiol 2019; 22:e13144. [PMID: 31713312 PMCID: PMC7027479 DOI: 10.1111/cmi.13144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/23/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022]
Abstract
Phosphatidylinositol phosphates (PIPs) function as important second messengers in many cellular events. In the human intestinal protist Entamoeba histolytica, where phagocytosis/trogocytosis plays an indispensable role in proliferation and pathophysiology during infection, various PIPs are involved in multiple steps of phago/trogocytosis. PI3‐phosphate (PI3P) plays a pivotal role in the biogenesis of phagosome/trogosomes via recruitment of PI3P effectors. Because no known PI3P downstream effectors are conserved in E. histolytica, we exploited a unique method to identify the proteins PI3P dependently recruited to phagosomes. We rationalised that overexpression of PI3P‐binding GFP‐HrsFYVE competes for PI3P on phagosomal membranes and results in dissociation of PI3P effectors from phagosomes. EhVps26 and EhVps35, but not sorting nexins (SNXs), of the retromer complex were detected from phagosomes only without GFP‐HrsFYVE overexpression. Two potential SNXs, EhSNX1 and EhSNX2, identified in the genome, possess only phox homology domain and specifically bound to PI3P, but retromer components, EhVps26 and EhVps35, did not bind to PI3P. Live and immunofluorescence imaging showed that EhSNX1 was recruited to the trogocytic cup and tunnel‐like structures, and subsequently, EhSNX2 was recruited to trogosomes. Furthermore, EhSNX1, but not EhSNX2, specifically bound to Arp2/3 and EhVps26, which were localised to the tunnel‐like structures and the trogosomes, respectively. EhSNX2 gene silencing increased trogocytosis, suggesting that EhSNX2 plays an inhibitory role in trogocytosis.
Collapse
Affiliation(s)
- Natsuki Watanabe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Rópolo AS, Feliziani C, Touz MC. Unusual proteins in Giardia duodenalis and their role in survival. ADVANCES IN PARASITOLOGY 2019; 106:1-50. [PMID: 31630755 DOI: 10.1016/bs.apar.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The capacity of the parasite Giardia duodenalis to perform complex functions with minimal amounts of proteins and organelles has attracted increasing numbers of scientists worldwide, trying to explain how this parasite adapts to internal and external changes to survive. One explanation could be that G. duodenalis evolved from a structurally complex ancestor by reductive evolution, resulting in adaptation to its parasitic lifestyle. Reductive evolution involves the loss of genes, organelles, and functions that commonly occur in many parasites, by which the host renders some structures and functions redundant. However, there is increasing data that Giardia possesses proteins able to perform more than one function. During recent decades, the concept of moonlighting was described for multitasking proteins, which involves only proteins with an extra independent function(s). In this chapter, we provide an overview of unusual proteins in Giardia that present multifunctional properties depending on the location and/or parasite requirement. We also discuss experimental evidence that may allow some giardial proteins to be classified as moonlighting proteins by examining the properties of moonlighting proteins in general. Up to date, Giardia does not seem to require the numerous redundant proteins present in other organisms to accomplish its normal functions, and thus this parasite may be an appropriate model for understanding different aspects of moonlighting proteins, which may be helpful in the design of drug targets.
Collapse
Affiliation(s)
- Andrea S Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
14
|
Cernikova L, Faso C, Hehl AB. Roles of Phosphoinositides and Their binding Proteins in Parasitic Protozoa. Trends Parasitol 2019; 35:996-1008. [PMID: 31615721 DOI: 10.1016/j.pt.2019.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022]
Abstract
Phosphoinositides (or phosphatidylinositol phosphates, PIPs) are low-abundance membrane phospholipids that act, in conjunction with their binding partners, as important constitutive signals defining biochemical organelle identity as well as membrane trafficking and signal transduction at eukaryotic cellular membranes. In this review, we present roles for PIP residues and PIP-binding proteins in endocytosis and autophagy in protist parasites such as Trypanosoma brucei, Toxoplasma gondii, Plasmodium falciparum, Entamoeba histolytica, and Giardia lamblia. Molecular parasitologists with an interest in comparative cell and molecular biology of membrane trafficking in protist lineages beyond the phylum Apicomplexa, along with cell and molecular biologists generally interested in the diversification of membrane trafficking in eukaryotes, will hopefully find this review to be a useful resource.
Collapse
Affiliation(s)
- Lenka Cernikova
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
| | - Carmen Faso
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland; Institute of Cell Biology, University of Bern (BE), Bern, Switzerland
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland.
| |
Collapse
|
15
|
Nakada-Tsukui K, Watanabe N, Maehama T, Nozaki T. Phosphatidylinositol Kinases and Phosphatases in Entamoeba histolytica. Front Cell Infect Microbiol 2019; 9:150. [PMID: 31245297 PMCID: PMC6563779 DOI: 10.3389/fcimb.2019.00150] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (PtdIns) metabolism is indispensable in eukaryotes. Phosphoinositides (PIs) are phosphorylated derivatives of PtdIns and consist of seven species generated by reversible phosphorylation of the inositol moieties at the positions 3, 4, and 5. Each of the seven PIs has a unique subcellular and membrane domain distribution. In the enteric protozoan parasite Entamoeba histolytica, it has been previously shown that the PIs phosphatidylinositol 3-phosphate (PtdIns3P), PtdIns(4,5)P2, and PtdIns(3,4,5)P3 are localized to phagosomes/phagocytic cups, plasma membrane, and phagocytic cups, respectively. The localization of these PIs in E. histolytica is similar to that in mammalian cells, suggesting that PIs have orthologous functions in E. histolytica. In contrast, the conservation of the enzymes that metabolize PIs in this organism has not been well-documented. In this review, we summarized the full repertoire of the PI kinases and PI phosphatases found in E. histolytica via a genome-wide survey of the current genomic information. E. histolytica appears to have 10 PI kinases and 23 PI phosphatases. It has a panel of evolutionarily conserved enzymes that generate all the seven PI species. However, class II PI 3-kinases, type II PI 4-kinases, type III PI 5-phosphatases, and PI 4P-specific phosphatases are not present. Additionally, regulatory subunits of class I PI 3-kinases and type III PI 4-kinases have not been identified. Instead, homologs of class I PI 3-kinases and PTEN, a PI 3-phosphatase, exist as multiple isoforms, which likely reflects that elaborate signaling cascades mediated by PtdIns(3,4,5)P3 are present in this organism. There are several enzymes that have the nuclear localization signal: one phosphatidylinositol phosphate (PIP) kinase, two PI 3-phosphatases, and one PI 5-phosphatase; this suggests that PI metabolism also has conserved roles related to nuclear functions in E. histolytica, as it does in model organisms.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Sharma S, Bhattacharya S, Bhattacharya A. PtdIns(4,5)P 2 is generated by a novel phosphatidylinositol 4-phosphate 5-kinase in the protist parasite Entamoeba histolytica. FEBS J 2019; 286:2216-2234. [PMID: 30843363 DOI: 10.1111/febs.14804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/03/2019] [Accepted: 03/05/2019] [Indexed: 01/02/2023]
Abstract
Entamoeba histolytica is an intestinal protist parasite that causes amoebiasis, a major source of morbidity and mortality in developing countries. Phosphoinositides are involved in signalling systems that have a role in invasion and pathogenesis of this parasite. Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) catalyses the generation of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P2 ), a key species of phosphoinositide that regulates various cellular processes. However, phosphatidylinositol phosphate kinase (PIPK) family of enzymes have not been characterized in E. histolytica. Here, we report the identification and characterization of type I PIPK (EhPIPKI) of E. histolytica. Computational analysis revealed homologs of type I and III PIPK family in E. histolytica and the absence of type II PIPK. In spite of low overall sequence identity, the kinase domain was found to be highly conserved. Interestingly, a unique insertion of a tandem repeat motif was observed in EhPIPKI distinguishing it from existing PIPKs of other organisms. Substrate profiling showed that EhPIPKI could phosphorylate at third and fifth hydroxyl positions of phosphatidylinositols, though the predominant substrate was phosphatidylinositol 4-phosphate (PtdIns(4)P). Furthermore, EhPIPKI underwent intracellular cleavage close to the amino-terminal, generating two distinct fragments Nter-EhPIPKI (27p) and Cter-EhPIPKI (47p). Immunofluorescence and cellular fractionation revealed that the full-length EhPIPKI and the Cter-EhPIPKI containing carboxyl-terminal activation loop were present in the plasma membrane while the Nter-EhPIPKI was observed in the cytosolic region. In conclusion, E. histolytica has a single EhPIPKI gene that displays novel properties of post-translational processing, the presence of a repeat domain and substrate specificity not observed in any PIPK enzyme so far.
Collapse
Affiliation(s)
- Shalini Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
17
|
Das K, Nozaki T. Non-vesicular Lipid Transport Machinery in Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:315. [PMID: 30283742 PMCID: PMC6156432 DOI: 10.3389/fcimb.2018.00315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic cells are organized into separate membrane-bound compartments that have specialized biochemical signature and function. Maintenance and regulation of distinct identity of each compartment is governed by the uneven distribution and intra-cellular movement of two essential biomolecules, lipids, and proteins. Non-vesicular lipid transport mediated by lipid transfer proteins plays a pivotal role in intra-cellular lipid trafficking and homeostasis whereas vesicular transport plays a central role in protein trafficking. Comparative study of lipid transport machinery in protist helps to better understand the pathogenesis and parasitism, and provides insight into eukaryotic evolution. Amebiasis, which is caused by Entamoeba histolytica, is one of the major enteric infections in humans, resulting in 40–100 thousand deaths annually. This protist has undergone remarkable alterations in the content and function of its sub-cellular compartments as well represented by its unique diversification of mitochondrion-related organelle, mitosome. We conducted domain-based search on AmoebaDB coupled with bioinformatics analyses and identified 22 potential lipid transfer protein homologs in E. histolytica, which are grouped into several sub-classes. Such in silico analyses have demonstrated the existence of well-organized lipid transport machinery in this parasite. We summarized and discussed the conservation and unique features of the whole repertoire of lipid transport proteins in E. histolytica.
Collapse
Affiliation(s)
- Koushik Das
- Graduate School of Medicine, The University of Tokyo, Bunkyō, Japan
| | - Tomoyoshi Nozaki
- Graduate School of Medicine, The University of Tokyo, Bunkyō, Japan
| |
Collapse
|
18
|
Delgado-Galván CJ, Padilla-Vaca F, Montiel FBR, Rangel-Serrano Á, Paramo-Pérez I, Anaya-Velázquez F, Franco B. Red fluorescent protein (DsRFP) optimization for Entamoeba histolytica expression. Exp Parasitol 2018; 187:86-92. [PMID: 29476758 DOI: 10.1016/j.exppara.2018.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 12/01/2022]
Abstract
Entamoeba histolytica genetic organization and genome structure is complex and under intense research. The genome is fully sequenced, and several tools have been developed for the molecular study of this organism. Nevertheless, good protein tracking tags that are easy to measure and image, like the fluorescent proteins are lacking. In this report, we codon-optimized the red fluorescent protein from the coral Discosoma striata (DsRFP) for its use in E. histolytica and demonstrated functionality in vivo. We envision that this protein can be widely used for the development of transcriptional reporter systems and protein-tagging applications.
Collapse
Affiliation(s)
- Cindy Jazmín Delgado-Galván
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Fátima Berenice Ramírez Montiel
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Ángeles Rangel-Serrano
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Itzel Paramo-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Fernando Anaya-Velázquez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico.
| |
Collapse
|
19
|
Knockdown of Five Genes Encoding Uncharacterized Proteins Inhibits Entamoeba histolytica Phagocytosis of Dead Host Cells. Infect Immun 2016; 84:1045-1053. [PMID: 26810036 DOI: 10.1128/iai.01325-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/15/2016] [Indexed: 12/17/2022] Open
Abstract
Entamoeba histolytica is the protozoan parasite that causes invasive amebiasis, which is endemic to many developing countries and characterized by dysentery and liver abscesses. The virulence of E. histolytica correlates with the degree of host cell engulfment, or phagocytosis, and E. histolytica phagocytosis alters amebic gene expression in a feed-forward manner that results in an increased phagocytic ability. Here, we used a streamlined RNA interference screen to silence the expression of 15 genes whose expression was upregulated in phagocytic E. histolytica trophozoites to determine whether these genes actually function in the phagocytic process. When five of these genes were silenced, amebic strains with significant decreases in the ability to phagocytose apoptotic host cells were produced. Phagocytosis of live host cells, however, was largely unchanged, and the defects were surprisingly specific for phagocytosis. Two of the five encoded proteins, which we named E. histolytica ILWEQ (EhILWEQ) and E. histolytica BAR (EhBAR), were chosen for localization via SNAP tag labeling and localized to the site of partially formed phagosomes. Therefore, both EhILWEQ and EhBAR appear to contribute to E. histolytica virulence through their function in phagocytosis, and the large proportion (5/15 [33%]) of gene-silenced strains with a reduced ability to phagocytose host cells validates the previously published microarray data set demonstrating feed-forward control of E. histolytica phagocytosis. Finally, although only limited conclusions can be drawn from studies using the virulence-deficient G3 Entamoeba strain, the relative specificity of the defects induced for phagocytosis of apoptotic cells but not healthy cells suggests that cell killing may play a rate-limiting role in the process of Entamoeba histolytica host cell engulfment.
Collapse
|
20
|
Castellanos-Castro S, Cerda-García-Rojas CM, Javier-Reyna R, Pais-Morales J, Chávez-Munguía B, Orozco E. Identification of the phospholipid lysobisphosphatidic acid in the protozoan Entamoeba histolytica: An active molecule in endocytosis. Biochem Biophys Rep 2015; 5:224-236. [PMID: 28955828 PMCID: PMC5600446 DOI: 10.1016/j.bbrep.2015.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/25/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022] Open
Abstract
Phospholipids are essential for vesicle fusion and fission and both are fundamental events for Entamoeba histolytica phagocytosis. Our aim was to identify the lysobisphosphatidic acid (LBPA) in trophozoites and investigate its cellular fate during endocytosis. LBPA was detected by TLC in a 0.5 Rf spot of total lipids, which co-migrated with the LBPA standard. The 6C4 antibody, against LBPA recognized phospholipids extracted from this spot. Reverse phase LC-ESI-MS and MS/MS mass spectrometry revealed six LBPA species of m/z 772.58–802.68. LBPA was associated to pinosomes and phagosomes. Intriguingly, during pinocytosis, whole cell fluorescence quantification showed that LBPA dropped 84% after 15 min incubation with FITC-Dextran, and after 60 min, it increased at levels close to steady state conditions. Similarly, during erythrophagocytosis, after 15 min, LBPA also dropped in 36% and increased after 60 and 90 min. EhRab7A protein appeared in some vesicles with LBPA in steady state conditions, but after phagocytosis co-localization of both molecules increased and in late phases of erythrophagocytosis they were found in huge phagosomes or multivesicular bodies with many intraluminal vacuoles, and surrounding ingested erythrocytes and phagosomes. The 6C4 and anti-EhADH (EhADH is an ALIX family protein) antibodies and Lysotracker merged in about 50% of the vesicles in steady state conditions and throughout phagocytosis. LBPA and EhADH were also inside huge phagosomes. These results demonstrated that E. histolytica LBPA is associated to pinosomes and phagosomes during endocytosis and suggested differences of LBPA requirements during pinocytosis and phagocytosis. LBPA is identified for the first time in the protozoan Entamoeba histolytica. LBPA is found in pinosomes and in 10–20 µm diameter phagosomes or multivesicular bodies. LBPA appeared associated with EhRab7A protein, a late endosomes marker. LBPA interacts with EhADH (an ALIX family protein) during phagocytosis.
Collapse
Affiliation(s)
- Silvia Castellanos-Castro
- Departamento de Infectómica y Patogénesis Molecular, Mexico.,Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, Dr. García Diego 168, CP 06720, D.F. México, México
| | - Carlos M Cerda-García-Rojas
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, Avenue IPN, 2508, CP 07360, D.F. México, México
| | | | | | | | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Mexico
| |
Collapse
|
21
|
Saha A, Bhattacharya S, Bhattacharya A. Regulation of serum-responsive transmembrane kinase EhTMKB1-9 by an unsaturated lipid, oleic acid in protistan parasite Entamoeba histolytica. Mol Biochem Parasitol 2014; 198:48-57. [PMID: 25497959 DOI: 10.1016/j.molbiopara.2014.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
Transmembrane kinases of Entamoeba histolytica are known to play a wide range of roles from virulence, phagocytosis, and proliferation to stress response. Transmembrane kinase EhTMKB1-9 is thought to be involved in early proliferative response and it was originally identified as a serum inducible gene. Ability to stimulate EhTMKB1 expression of serum starved cells resides in unsaturated fatty acids associated with albumin fraction of serum and the mechanism of stimulation follows activation of EhTMKB1-9 promoter. Gel shift assay showed the presence of proteins that bind to the specific site of EhTMKB1-9 upstream region and the concentration of these protein(s) go down on serum starvation, but level of binding protein(s) go up on serum or fatty acid replenishment. This increase in concentration of binding molecule(s) is due to new synthesis rather than activation of existing molecule(s) as a protein synthesis inhibitor blocked enhanced level of gel shifted material on replenishment. The stimulating activity resides in the fatty acyl chain, but not in the head group. Moreover, the fatty acid initiates signaling through class I PI3 kinases that result in activation of EhTMKB1-9 expression. These results suggest a novel mechanism of gene regulation in E. histolytica, and unsaturated fatty acids as potential new signaling molecules.
Collapse
Affiliation(s)
- Arpita Saha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
22
|
Koushik AB, Welter BH, Rock ML, Temesvari LA. A genomewide overexpression screen identifies genes involved in the phosphatidylinositol 3-kinase pathway in the human protozoan parasite Entamoeba histolytica. EUKARYOTIC CELL 2014; 13:401-11. [PMID: 24442890 PMCID: PMC3957588 DOI: 10.1128/ec.00329-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/12/2014] [Indexed: 11/20/2022]
Abstract
Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen.
Collapse
Affiliation(s)
- Amrita B. Koushik
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Brenda H. Welter
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Michelle L. Rock
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| | - Lesly A. Temesvari
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
23
|
Localization of phosphatidylinositol 4,5-bisphosphate to lipid rafts and uroids in the human protozoan parasite Entamoeba histolytica. Infect Immun 2013; 81:2145-55. [PMID: 23545298 DOI: 10.1128/iai.00040-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Entamoeba histolytica is an intestinal protozoan parasite and is the causative agent of amoebiasis. During invasive infection, highly motile amoebae destroy the colonic epithelium, enter the blood circulation, and disseminate to other organs such as liver, causing liver abscess. Motility is a key factor in E. histolytica pathogenesis, and this process relies on a dynamic actomyosin cytoskeleton. In other systems, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is known to regulate a wide variety of cellular functions, including signal transduction, actin remodeling, and cell motility. Little is known about the role of PI(4,5)P2 in E. histolytica pathogenicity. In this study, we demonstrate that PI(4,5)P2 is localized to cholesterol-rich microdomains, lipid rafts, and the actin-rich fractions of the E. histolytica membrane. Microscopy revealed that the trailing edge of polarized trophozoites, uroids, are highly enriched in lipid rafts and their constituent lipid, PI(4,5)P2. Polarization and enrichment of uroids and rafts with PI(4,5)P2 were enhanced upon treatment of E. histolytica cells with cholesterol. Exposure to cholesterol also increased intracellular calcium, which is a downstream effector of PI(4,5)P2, with a concomitant increase in motility. Together, our data suggest that in E. histolytica, PI(4,5)P2 may signal from lipid rafts and cholesterol may play a role in triggering PI(4,5)P2-mediated signaling to enhance the motility of this pathogen.
Collapse
|
24
|
Cysteine protease-binding protein family 6 mediates the trafficking of amylases to phagosomes in the enteric protozoan Entamoeba histolytica. Infect Immun 2013; 81:1820-9. [PMID: 23509141 DOI: 10.1128/iai.00915-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phagocytosis plays a pivotal role in nutrient acquisition and evasion from the host defense systems in Entamoeba histolytica, the intestinal protozoan parasite that causes amoebiasis. We previously reported that E. histolytica possesses a unique class of a hydrolase receptor family, designated the cysteine protease-binding protein family (CPBF), that is involved in trafficking of hydrolases to lysosomes and phagosomes, and we have also reported that CPBF1 and CPBF8 bind to cysteine proteases or β-hexosaminidase α-subunit and lysozymes, respectively. In this study, we showed by immunoprecipitation that CPBF6, one of the most highly expressed CPBF proteins, specifically binds to α-amylase and γ-amylase. We also found that CPBF6 is localized in lysosomes, based on immunofluorescence imaging. Immunoblot and proteome analyses of the isolated phagosomes showed that CPBF6 mediates transport of amylases to phagosomes. We also demonstrated that the carboxyl-terminal cytosolic region of CPBF6 is engaged in the regulation of the trafficking of CPBF6 to phagosomes. Our proteome analysis of phagosomes also revealed new potential phagosomal proteins.
Collapse
|
25
|
A genome-wide over-expression screen identifies genes involved in phagocytosis in the human protozoan parasite, Entamoeba histolytica. PLoS One 2012; 7:e43025. [PMID: 22905196 PMCID: PMC3419234 DOI: 10.1371/journal.pone.0043025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/16/2012] [Indexed: 11/23/2022] Open
Abstract
Functional genomics and forward genetics seek to assign function to all known genes in a genome. Entamoeba histolytica is a protozoan parasite for which forward genetics approaches have not been extensively applied. It is the causative agent of amoebic dysentery and liver abscess, and infection is prevalent in developing countries that cannot prevent its fecal-oral spread. It is responsible for considerable global morbidity and mortality. Given that the E. histolytica genome has been sequenced, it should be possible to apply genomic approaches to discover gene function. We used a genome-wide over-expression screen to uncover genes regulating an important virulence function of E. histolytica, namely phagocytosis. We developed an episomal E. histolytica cDNA over-expression library, transfected the collection of plasmids into trophozoites, and applied a high-throughput screen to identify phagocytosis mutants in the population of over-expressing cells. The screen was based on the phagocytic uptake of human red blood cells loaded with the metabolic toxin, tubercidin. Expression plasmids were isolated from trophozoites that survived exposure to tubercidin-charged erythrocytes (phagocytosis mutants), and the cDNAs were sequenced. We isolated the gene encoding profilin, a well-characterized cytoskeleton-regulating protein with a known role in phagocytosis. This supports the validity of our approach. Furthermore, we assigned a phagocytic role to several genes not previously known to function in this manner. To our knowledge, this is the first genome-wide forward genetics screen to be applied to this pathogen. The study demonstrates the power of forward genetics in revealing genes regulating virulence in E. histolytica. In addition, the study validates an E. histolytica cDNA over-expression library as a valuable tool for functional genomics.
Collapse
|
26
|
Christy NCV, Buss SN, Petri WA. Common pathways for receptor-mediated ingestion of Escherichia coli and LDL cholesterol by Entamoeba histolytica regulated in part by transmembrane kinase 39. Int J Parasitol 2012; 42:393-400. [PMID: 22619755 DOI: 10.1016/j.ijpara.2012.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The single-celled parasite, Entamoeba histolytica, is an enteric pathogen that ingests bacteria and host cells. Inhibition of phagocytosis renders the parasite avirulent. The ligand/receptor interactions that allow E. histolytica to phagocytose are not well understood. We hypothesised that E. histolytica trophozoites might accomplish ingestion through the utilisation of a scavenger receptor for cholesterol. Here we show that acetylated low density lipoprotein cholesterol was phagocytosed by amoebae via receptor mediated mechanisms. Acetylated low density lipoprotein cholesterol competitively inhibited by 31 ± 1.3% (P < 0.005) the ingestion of Escherichia coli, but not erythrocytes and Jurkat T lymphocytes, suggesting a partially redundant phagocytic pathway for E. coli and cholesterol. Inducible expression ofa signalling-dead dominant-negative version of E. histolytica transmembrane kinase 39 inhibited ingestion of E. coli by 55 ± 3% (P < 0.005) but not LDL particles. We concluded that ingestion of E. coli was regulated by TMK39 and partially shared the acetylated low density lipoprotein cholesterol uptake pathway.
Collapse
Affiliation(s)
- Nathaniel C V Christy
- Department of Microbiology, Immunology and Cancer Biology, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
27
|
Exposure to host ligands correlates with colocalization of Gal/GalNAc lectin subunits in lipid rafts and phosphatidylinositol (4,5)-bisphosphate signaling in Entamoeba histolytica. EUKARYOTIC CELL 2012; 11:743-51. [PMID: 22505337 DOI: 10.1128/ec.00054-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Entamoeba histolytica is an intestinal parasite that causes dysentery and liver abscess. Parasite cell surface receptors, such as the Gal/GalNAc lectin, facilitate attachment to host cells and extracellular matrix. The Gal/GalNAc lectin binds to galactose or N-acetylgalactosamine residues on host components and is composed of heavy (Hgl), intermediate (Igl), and light (Lgl) subunits. Although Igl is constitutively localized to lipid rafts (cholesterol-rich membrane domains), Hgl and Lgl transiently associate with this compartment in a cholesterol-dependent fashion. In this study, trophozoites were exposed to biologically relevant ligands to determine if ligand binding influences the submembrane distribution of the subunits. Exposure to human red blood cells (hRBCs) or collagen, which are bona fide Gal/GalNAc lectin ligands, was correlated with enrichment of Hgl and Lgl in rafts. This enrichment was abrogated in the presence of galactose, suggesting that direct lectin-ligand interactions are necessary to influence subunit location. Using a cell line that is able to attach to, but not phagocytose, hRBCs, it was shown that physical attachment to ligands was not sufficient to induce the enrichment of lectin subunits in rafts. Additionally, the mutant had lower levels of phosphatidylinositol (4,5)-bisphosphate (PIP(2)); PIP(2) loading restored the ability of this mutant to respond to ligands with enrichment of subunits in rafts. Finally, intracellular calcium levels increased upon attachment to collagen; this increase was essential for the enrichment of lectin subunits in rafts. Together, these data provide evidence that ligand-induced enrichment of lectin subunits in rafts may be the first step in a signaling pathway that involves both PIP(2) and calcium signaling.
Collapse
|
28
|
Christy NCV, Petri WA. Mechanisms of adherence, cytotoxicity and phagocytosis modulate the pathogenesis of Entamoeba histolytica. Future Microbiol 2011; 6:1501-19. [DOI: 10.2217/fmb.11.120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The unicellular parasite Entamoeba histolytica, the causative agent of the human disease amebiasis, has traditionally been distinguished from its nonpathogenic cousin Entamoeba dispar by its propensity for the ingestion of erythrocytes. This classic feature, along with the parasite’s ability to cause extensive host cell death, are critical mechanisms of pathogenesis during human infection. Recent advances have led to a greater understanding of the molecular components that allow E. histolytica to kill and phagocytose extracellular targets during human infection and include detailed studies of the role of the parasite’s cysteine proteinases and other effectors of cytotoxicity, as well as the mechanisms of ligand recognition, signaling and intracellular trafficking during phagocytosis.
Collapse
Affiliation(s)
- Nathaniel CV Christy
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, 22908, USA
| | | |
Collapse
|