1
|
Xiao S, Zuo W, Xiang Q, Xie Y, Xiao Y. Advances in the Role of Antimicrobial Peptides in the Management of Sexually Transmitted Infections. J Clin Lab Anal 2025:e70041. [PMID: 40366090 DOI: 10.1002/jcla.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/08/2025] [Accepted: 04/12/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Sexually transmitted infections (STIs) are a major threat to global health, and the emergence of antibiotic-resistant strains has made therapeutic strategies more complex. Antimicrobial peptides (AMPs) are a ubiquitous class of natural compounds that are expected to be an alternative to conventional antibiotics due to their broad spectrum of activity and lower propensity for resistance, promising alternatives to conventional antibiotics. OBJECTIVE To emphasize the importance of antimicrobial peptides in the fight against STIs and to review recent advances in AMPs for the treatment and prevention of STIs. METHODS This article focuses on reviewing the progress of research on AMPs in the treatment and prognosis of STIs such as gonorrhea, HIV, HPV, and chlamydia, and discusses the challenges and future directions of the field. RESULTS AMPs have great potential in the prevention and treatment of STIs. However, AMPs for the treatment of STIs face challenges such as enzymatic degradation, safety and high cost, while nanotechnology and peptide modification are expected to enhance the stability and bioavailability of AMPs. CONCLUSION AMPs have the potential to become an important tool for the treatment of STIs with further research and technological innovation.
Collapse
Affiliation(s)
- Shuangwen Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Zuo
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qing Xiang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Wilton ZER, Jamus AN, Core SB, Frietze KM. Pathogenic and Protective Roles of Neutrophils in Chlamydia trachomatis Infection. Pathogens 2025; 14:112. [PMID: 40005489 PMCID: PMC11858174 DOI: 10.3390/pathogens14020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Chlamydia trachomatis (Ct) is an obligate intracellular pathogen that causes the most commonly diagnosed bacterial sexually transmitted infection (STI) and is a leading cause of preventable blindness globally. Ct infections can generate a strong pro-inflammatory immune response, leading to immune-mediated pathology in infected tissues. Neutrophils play an important role in mediating both pathology and protection during infection. Excessive neutrophil activation, migration, and survival are associated with host tissue damage during Chlamydia infections. In contrast, neutrophils also perform phagocytic killing of Chlamydia in the presence of IFN-γ and anti-Chlamydia antibodies. Neutrophil extracellular traps (NETs) and many neutrophil degranulation products have also demonstrated strong anti-Chlamydia functions. To counteract this neutrophil-mediated protection, Chlamydia has developed several evasion strategies. Various Chlamydia proteins can limit potentially protective neutrophil responses by directly targeting receptors present on the surface of neutrophils or neutrophil degranulation products. In this review, we provide a survey of current knowledge regarding the role of neutrophils in pathogenesis and protection, including the ways that Chlamydia circumvents neutrophil functions, and we propose critical areas for future research.
Collapse
Affiliation(s)
| | | | | | - Kathryn M. Frietze
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA
| |
Collapse
|
3
|
Xu Y, Wang Y, Winner H, Yang H, He R, Wang J, Zhong G. Regulation of chlamydial spreading from the small intestine to the large intestine by IL-22-producing CD4 + T cells. Infect Immun 2024; 92:e0042123. [PMID: 38047677 PMCID: PMC10790816 DOI: 10.1128/iai.00421-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Following an oral inoculation, Chlamydia muridarum descends to the mouse large intestine for long-lasting colonization. However, a mutant C. muridarum that lacks the plasmid-encoded protein pGP3 due to an engineered premature stop codon (designated as CMpGP3S) failed to do so even following an intrajejunal inoculation. This was because a CD4+ T cell-dependent immunity prevented the spread of CMpGP3S from the small intestine to the large intestine. In the current study, we found that mice deficient in IL-22 (IL-22-/-) allowed CMpGP3S to spread from the small intestine to the large intestine on day 3 after intrajejunal inoculation, indicating a critical role of IL-22 in regulating the chlamydial spread. The responsible IL-22 is produced by CD4+ T cells since IL-22-/- mice were rescued to block the CMpGP3S spread by donor CD4+ T cells from C57BL/6J mice. Consistently, CD4+ T cells lacking IL-22 failed to block the spread of CMpGP3S in Rag2-/- mice, while IL-22-competent CD4+ T cells did block. Furthermore, mice deficient in cathelicidin-related antimicrobial peptide (CRAMP) permitted the CMpGP3S spread, but donor CD4+ T cells from CRAMP-/- mice were still sufficient for preventing the CMpGP3S spread in Rag2-/- mice, indicating a critical role of CRAMP in regulating chlamydial spreading, and the responsible CRAMP is not produced by CD4+ T cells. Thus, the IL-22-producing CD4+ T cell-dependent regulation of chlamydial spreading correlated with CRAMP produced by non-CD4+ T cells. These findings provide a platform for further characterizing the subset(s) of CD4+ T cells responsible for regulating bacterial spreading in the intestine.
Collapse
Affiliation(s)
- Ying Xu
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yihui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Halah Winner
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Huijie Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rongze He
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
4
|
Huang Y, He Z, Zhou H, Wen Y, Ji X, Ding W, Zhu B, Zhang Y, Tan Y, Yang K, Wang Y. The Treatment of Tubal Inflammatory Infertility using Yinjia Tablets through EGFR/MEK/ERK Signaling Pathway based on Network Pharmacology. Curr Pharm Biotechnol 2024; 25:499-509. [PMID: 38572608 DOI: 10.2174/0113892010234591230919074245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 04/05/2024]
Abstract
Background: Salpingitis obstructive infertility (SOI) refers to infertility caused by abnormal conditions such as tubal adhesion and blockage caused by acute and chronic salpingitis. SOI has a serious impact on women's physical and mental health and family harmony, and it is a clinical problem that needs to be solved urgently. Objective: The purpose of the present study was to explore the potential pharmacological mechanisms of the Yinjia tablets (Yin Jia Pian, YJP) on tubal inflammation. Methods: Networks of YJP-associated targets and tubal inflammation-related genes were constructed through the STRING database. Potential targets and pathway enrichment analysis related to the therapeutic efficacy of YJP were identified using Cytoscape and Database for Annotation, Visualization, and Integrated Discovery (metascape). E. coli was used to establish a rat model of tubal inflammation and to validate the predictions of network pharmacology and the therapeutic efficacy of YJP. H&E staining was used to observe the pathological changes in fallopian tubes. TEM observation of the ultrastructure of the fallopian tubes. ELISA was used to detect the changes of IL-6 and TNF-α in fallopian tubes. Immunohistochemistry was used to detect the expression of ESR1. The changes of Bcl-2, ERK1/2, p-ERK1/2, MEK, p-MEK, EGFR, and p-EGFR were detected by western blot. Results: Through database analysis, it was found that YJP shared 105 identical targets with the disease. Network pharmacology analysis showed that IL-6, TNF, and EGFR belong to the top 5 core proteins associated with salpingitis, and EGFR/MEK/ERK may be the main pathway involved. The E. coli-induced disease rat model of fallopian tube tissue showed damage, mitochondrial disruption, and increased levels of the inflammatory factors IL-6 and TNF-α. Tubal inflammatory infertility rats have increased expression of Bcl-2, p-ERK1/2, p-MEK, and p-EGFR, and decreased expression of ESR1. In vivo, experiments showed that YJP improved damage of tissue, inhibited shedding of tubal cilia, and suppressed the inflammatory response of the body. Furthermore, YJP inhibited EGFR/MEK/ERK signaling, inhibited the apoptotic protein Bcl-2, and upregulated ESR1. Conclusion: This study revealed that YJP Reducing tubal inflammation and promoting tissue repair may be associated with inhibition of the EGFR/MEK/ERK signaling pathway. .
Collapse
Affiliation(s)
- Yefang Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhelin He
- Guang'an Traditional Chinese Medicine Hospital, Guang'an, Sichuan, China
| | - Hang Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Wen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoli Ji
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Boyu Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yongqing Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Tan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Luo Y, Sun Z, Chen Q, Xiao J, Yan X, Li Y, Wu Y. TLR2 mediates autophagy through ERK signaling pathway in Chlamydia psittaci CPSIT_p7 protein-stimulated RAW264.7 cells. Microbiol Immunol 2023; 67:469-479. [PMID: 37615441 DOI: 10.1111/1348-0421.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Chlamydia psittaci is a zoonotic pathogen found in birds and humans. Macrophages, major components of the innate immune system, can resist chlamydial infections and trigger adaptive immune responses. However, the molecular mechanisms underlying the action of macrophages against C. psittaci infection are not well understood. This study investigated the roles and mechanisms of plasmid-encoded protein CPSIT_p7 of C. psittaci in regulating autophagy in RAW264.7 cells. The results demonstrated that stimulation of RAW264.7 with C. psittaci plasmid protein CPSIT_p7 induced the expressions of the autophagy signaling primary regulators LC3 and Beclin1, which could also significantly induce the phosphorylation levels of ERK, JNK, p38, and Akt. Next, siRNA knockdown of TLR2 resulted in significant downregulation of CPSIT_p7-triggered autophagy in RAW264.7 cells. Moreover, the extracellular regulated protein kinase (ERK) inhibitor PD98059 markedly reduced autophagy in CPSIT_p7-stimulated macrophages. In summary, these results indicated that TLR2 plays an essential role in the induction of autophagy through the ERK signaling pathway in CPSIT_p7-stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Ying Luo
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
- Department of Molecular Diagnosis Center, The Sixth Affiliated Hospital of Guangzhou Medical University/Qingyuan People's Hospital, Qingyuan, China
| | - Zhenjie Sun
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Qian Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jian Xiao
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, China
| | - XiaoLiang Yan
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yimou Wu
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
6
|
Liu C, Mokashi NV, Darville T, Sun X, O’Connell CM, Hufnagel K, Waterboer T, Zheng X. A Machine Learning-Based Analytic Pipeline Applied to Clinical and Serum IgG Immunoproteome Data To Predict Chlamydia trachomatis Genital Tract Ascension and Incident Infection in Women. Microbiol Spectr 2023; 11:e0468922. [PMID: 37318345 PMCID: PMC10434056 DOI: 10.1128/spectrum.04689-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
We developed a reusable and open-source machine learning (ML) pipeline that can provide an analytical framework for rigorous biomarker discovery. We implemented the ML pipeline to determine the predictive potential of clinical and immunoproteome antibody data for outcomes associated with Chlamydia trachomatis (Ct) infection collected from 222 cis-gender females with high Ct exposure. We compared the predictive performance of 4 ML algorithms (naive Bayes, random forest, extreme gradient boosting with linear booster [xgbLinear], and k-nearest neighbors [KNN]), screened from 215 ML methods, in combination with two different feature selection strategies, Boruta and recursive feature elimination. Recursive feature elimination performed better than Boruta in this study. In prediction of Ct ascending infection, naive Bayes yielded a slightly higher median value of are under the receiver operating characteristic curve (AUROC) 0.57 (95% confidence interval [CI], 0.54 to 0.59) than other methods and provided biological interpretability. For prediction of incident infection among women uninfected at enrollment, KNN performed slightly better than other algorithms, with a median AUROC of 0.61 (95% CI, 0.49 to 0.70). In contrast, xgbLinear and random forest had higher predictive performances, with median AUROC of 0.63 (95% CI, 0.58 to 0.67) and 0.62 (95% CI, 0.58 to 0.64), respectively, for women infected at enrollment. Our findings suggest that clinical factors and serum anti-Ct protein IgGs are inadequate biomarkers for ascension or incident Ct infection. Nevertheless, our analysis highlights the utility of a pipeline that searches for biomarkers and evaluates prediction performance and interpretability. IMPORTANCE Biomarker discovery to aid early diagnosis and treatment using machine learning (ML) approaches is a rapidly developing area in host-microbe studies. However, lack of reproducibility and interpretability of ML-driven biomarker analysis hinders selection of robust biomarkers that can be applied in clinical practice. We thus developed a rigorous ML analytical framework and provide recommendations for enhancing reproducibility of biomarkers. We emphasize the importance of robustness in selection of ML methods, evaluation of performance, and interpretability of biomarkers. Our ML pipeline is reusable and open-source and can be used not only to identify host-pathogen interaction biomarkers but also in microbiome studies and ecological and environmental microbiology research.
Collapse
Affiliation(s)
- Chuwen Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Neha Vivek Mokashi
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xuejun Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Catherine M. O’Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katrin Hufnagel
- Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany
| | - Xiaojing Zheng
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Turman BJ, Darville T, O'Connell CM. Plasmid-mediated virulence in Chlamydia. Front Cell Infect Microbiol 2023; 13:1251135. [PMID: 37662000 PMCID: PMC10469868 DOI: 10.3389/fcimb.2023.1251135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Chlamydia trachomatis infection of ocular conjunctiva can lead to blindness, while infection of the female genital tract can lead to chronic pelvic pain, ectopic pregnancy, and/or infertility. Conjunctival and fallopian tube inflammation and the resulting disease sequelae are attributed to immune responses induced by chlamydial infection at these mucosal sites. The conserved chlamydial plasmid has been implicated in enhancing infection, via improved host cell entry and exit, and accelerating innate inflammatory responses that lead to tissue damage. The chlamydial plasmid encodes eight open reading frames, three of which have been associated with virulence: a secreted protein, Pgp3, and putative transcriptional regulators, Pgp4 and Pgp5. Although Pgp3 is an important plasmid-encoded virulence factor, recent studies suggest that chlamydial plasmid-mediated virulence extends beyond the expression of Pgp3. In this review, we discuss studies of genital, ocular, and gastrointestinal infection with C. trachomatis or C. muridarum that shed light on the role of the plasmid in disease development, and the potential for tissue and species-specific differences in plasmid-mediated pathogenesis. We also review evidence that plasmid-associated inflammation can be independent of bacterial burden. The functions of each of the plasmid-encoded proteins and potential molecular mechanisms for their role(s) in chlamydial virulence are discussed. Although the understanding of plasmid-associated virulence has expanded within the last decade, many questions related to how and to what extent the plasmid influences chlamydial infectivity and inflammation remain unknown, particularly with respect to human infections. Elucidating the answers to these questions could improve our understanding of how chlamydia augment infection and inflammation to cause disease.
Collapse
Affiliation(s)
- Breanna J. Turman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Toni Darville
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
8
|
Safi R, Sánchez-Álvarez M, Bosch M, Demangel C, Parton RG, Pol A. Defensive-lipid droplets: Cellular organelles designed for antimicrobial immunity. Immunol Rev 2023; 317:113-136. [PMID: 36960679 DOI: 10.1111/imr.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Microbes have developed many strategies to subvert host organisms, which, in turn, evolved several innate immune responses. As major lipid storage organelles of eukaryotes, lipid droplets (LDs) are an attractive source of nutrients for invaders. Intracellular viruses, bacteria, and protozoan parasites induce and physically interact with LDs, and the current view is that they "hijack" LDs to draw on substrates for host colonization. This dogma has been challenged by the recent demonstration that LDs are endowed with a protein-mediated antibiotic activity, which is upregulated in response to danger signals and sepsis. Dependence on host nutrients could be a generic "Achilles' heel" of intracellular pathogens and LDs a suitable chokepoint harnessed by innate immunity to organize a front-line defense. Here, we will provide a brief overview of the state of the conflict and discuss potential mechanisms driving the formation of the 'defensive-LDs' functioning as hubs of innate immunity.
Collapse
Affiliation(s)
- Rémi Safi
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Miguel Sánchez-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (IIB), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Caroline Demangel
- Immunobiology and Therapy Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis (CMM), University of Queensland, Brisbane, Queensland, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
9
|
Bastidas RJ, Valdivia RH. The emerging complexity of Chlamydia trachomatis interactions with host cells as revealed by molecular genetic approaches. Curr Opin Microbiol 2023; 74:102330. [PMID: 37247566 PMCID: PMC10988583 DOI: 10.1016/j.mib.2023.102330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Chlamydia trachomatis (Ct) is an intracellular bacterial pathogen that relies on the activity of secreted proteins known as effectors to promote replication and avoidance of immune clearance. Understanding the contribution of Ct effectors to pathogenesis has proven to be challenging, given that these proteins often perform multiple functions during intracellular infection. Recent advances in molecular genetic analysis of Ct have provided valuable insights into the multifaceted nature of secreted effector proteins and their impact on the interaction between Ct and host cells and tissues. This review highlights significant findings from genetic analysis of Ct effector functions, shedding light on their diverse roles. We also discuss the challenges faced in this field of study and explore potential opportunities for further research.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Raphael H Valdivia
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Huang Y, Wu H, Sun Y, Liu Y. Tryptophan residue of plasmid-encoded Pgp3 is important for Chlamydia muridarum to induce hydrosalpinx in mice. Front Microbiol 2023; 14:1216372. [PMID: 37497542 PMCID: PMC10367112 DOI: 10.3389/fmicb.2023.1216372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
The crucial role of plasmid-encoded protein Pgp3 in Chlamydia pathogenesis has been demonstrated in various animal models. Previous studies have revealed that the Pgp3-deficient C. muridarum mutant fails to induce hydrosalpinx after vaginal inoculation in mice. Structural analysis of C. trachomatis Pgp3 trimer has indicated that Trp234 may play a critical role in trimeric crystal packing interactions and that Tyr197 is involved at predominant cation-binding sites. In this study, we constructed C. muridarum transformants harboring Pgp3, Trp234, or Tyr197 point mutations (Pgp3W234A and Pgp3Y197A). C3H/HeJ mice infected with Pgp3W234A mutant failed to induce severe hydrosalpinx in the oviduct tissue, which largely phenocopied the full-length Pgp3-deficient C. muridarum. The Pgp3Y197A variant induced an intermediate severity of pathology. The attenuated pathogenicity caused by the Pgp3W234A mutant may be due to its decreased survival in the lower genital tracts of mice, reduced ascension to the oviduct, and milder induction of inflammatory cell infiltration in the oviduct tissue. Thus, our results point to an important amino acid residue involved in Pgp3 virulence, providing a potential therapeutic target for chlamydial infection.
Collapse
Affiliation(s)
- Yumeng Huang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Haoqing Wu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Yina Sun
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yuanjun Liu
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
11
|
Cheong HC, Cheok YY, Chan YT, Tang TF, Sulaiman S, Looi CY, Gupta R, Arulanandam B, Chang LY, Wong WF. Chlamydia trachomatis plasmid-encoding Pgp3 protein induces secretion of distinct inflammatory signatures from HeLa cervical epithelial cells. BMC Microbiol 2023; 23:58. [PMID: 36870960 PMCID: PMC9985209 DOI: 10.1186/s12866-023-02802-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Genital Chlamydia trachomatis infection is the most common bacterial sexual transmitted disease that causes severe complications including pelvic inflammatory disease, ectopic pregnancy, and infertility in females. The Pgp3 protein encoded by C. trachomatis plasmid has been speculated to be an important player in chlamydial pathogenesis. However, the precise function of this protein is unknown and thus remains to be thoroughly investigated. METHODS In this study, we synthesized Pgp3 protein for in vitro stimulation in the Hela cervical carcinoma cells. RESULTS AND CONCLUSION We showed that Pgp3 induced prominent expression of host inflammatory cytokine genes including interleukin-6 (IL-6), IL-8, tumor necrosis factor alpha-induced protein 3 (TNFAIP3), and chemokine C-X-C motif ligand 1 (CXCL1), implying a possible role of Pgp3 in modulating the inflammatory reaction in the host.
Collapse
Affiliation(s)
- Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Bernard Arulanandam
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA.,Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Virulence Protein Pgp3 Is Insufficient To Mediate Plasmid-Dependent Infectivity of Chlamydia trachomatis. Infect Immun 2023; 91:e0039222. [PMID: 36722979 PMCID: PMC9933628 DOI: 10.1128/iai.00392-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chlamydia trachomatis is the most common cause of infectious blindness and sexually transmitted bacterial infection globally. C. trachomatis contains a conserved chlamydial plasmid with eight coding sequences. Plasmid-cured Chlamydia strains are attenuated and display reduced infectivity in cell culture and in vivo genital infection of female mice. Mutants that do not express the plasmid-encoded proteins Pgp3, a secreted protein with unknown function, or Pgp4, a putative regulator of pgp3 and other chromosomal loci, display an infectivity defect similar to plasmid-deficient strains. Our objective was to determine the combined and individual contributions of Pgp3 and Pgp4 to this phenotype. Deletion of pgp3 and pgp4 resulted in an infectivity defect detected by competition assay in cell culture and in mice. The pgp3 locus was placed under the control of an anhydrotetracycline-inducible promoter to examine the individual contributions of Pgp3 and Pgp4 to infectivity. Expression of pgp3 was induced 100- to 1,000-fold after anhydrotetracycline administration, regardless of the presence or absence of pgp4. However, secreted Pgp3 was not detected when pgp4 was deleted, confirming a role for Pgp4 in Pgp3 secretion. We discovered that expression of pgp3 or pgp4 alone was insufficient to restore normal infectivity, which required expression of both Pgp3 and Pgp4. These results suggest Pgp3 and Pgp4 are both required for infectivity during C. trachomatis infection. Future studies are required to determine the mechanism by which Pgp3 and Pgp4 influence chlamydial infectivity as well as the potential roles of Pgp4-regulated loci.
Collapse
|
13
|
N'Gadjaga MD, Perrinet S, Connor MG, Bertolin G, Millot GA, Subtil A. Chlamydia trachomatis development requires both host glycolysis and oxidative phosphorylation but has only minor effects on these pathways. J Biol Chem 2022; 298:102338. [PMID: 35931114 PMCID: PMC9449673 DOI: 10.1016/j.jbc.2022.102338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The obligate intracellular bacteria Chlamydia trachomatis obtain all nutrients from the cytoplasm of their epithelial host cells and stimulate glucose uptake by these cells. They even hijack host ATP, exerting a strong metabolic pressure on their host at the peak of the proliferative stage of their developmental cycle. However, it is largely unknown whether infection modulates the metabolism of the host cell. Also, the reliance of the bacteria on host metabolism might change during their progression through their biphasic developmental cycle. Herein, using primary epithelial cells and 2 cell lines of nontumoral origin, we showed that between the 2 main ATP-producing pathways of the host, oxidative phosphorylation (OxPhos) remained stable and glycolysis was slightly increased. Inhibition of either pathway strongly reduced bacterial proliferation, implicating that optimal bacterial growth required both pathways to function at full capacity. While we found C. trachomatis displayed some degree of energetic autonomy in the synthesis of proteins expressed at the onset of infection, functional host glycolysis was necessary for the establishment of early inclusions, whereas OxPhos contributed less. These observations correlated with the relative contributions of the pathways in maintaining ATP levels in epithelial cells, with glycolysis contributing the most. Altogether, this work highlights the dependence of C. trachomatis on both host glycolysis and OxPhos for efficient bacterial replication. However, ATP consumption appears at equilibrium with the normal production capacity of the host and the bacteria, so that no major shift between these pathways is required to meet bacterial needs.
Collapse
Affiliation(s)
- Maimouna D N'Gadjaga
- Institut Pasteur, CNRS UMR3691, Cellular Biology of Microbial Infection, Université Paris Cité, Paris, France; Sorbonne Université, Collège Doctoral, Paris, France
| | - Stéphanie Perrinet
- Institut Pasteur, CNRS UMR3691, Cellular Biology of Microbial Infection, Université Paris Cité, Paris, France
| | - Michael G Connor
- Institut Pasteur, Chromatin and Infection, Université Paris Cité, Paris, France
| | - Giulia Bertolin
- CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Univ Rennes, Rennes, France
| | - Gaël A Millot
- Institut Pasteur, Hub Bioinformatique et Biostatistique-DBC, Université Paris Cité, Paris, France
| | - Agathe Subtil
- Institut Pasteur, CNRS UMR3691, Cellular Biology of Microbial Infection, Université Paris Cité, Paris, France.
| |
Collapse
|
14
|
Liu C, Hufnagel K, O'Connell CM, Goonetilleke N, Mokashi N, Waterboer T, Tollison TS, Peng X, Wiesenfeld HC, Hillier SL, Zheng X, Darville T. Reduced Endometrial Ascension and Enhanced Reinfection Associated with IgG Antibodies to Specific Chlamydia trachomatis Proteins in Women at Risk for Chlamydia. J Infect Dis 2021; 225:846-855. [PMID: 34610131 DOI: 10.1093/infdis/jiab496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous research revealed antibodies targeting Chlamydia trachomatis (CT) elementary bodies was not associated with reduced endometrial or incident infection in CT-exposed women. However, data on the role of CT protein-specific antibodies in protection are limited. METHODS A whole-proteome CT array screening serum pools from CT-exposed women identified 121 immunoprevalent proteins. Individual sera were probed using a focused array. IgG antibody frequencies and endometrial or incident infection relationships were examined using Wilcoxon Rank sum test. The impact of breadth and magnitude of protein-specific IgGs on ascension and incident infection were examined using multivariable stepwise logistic regression. Complementary RNA-sequencing quantified CT gene transcripts in cervical swabs from infected women. RESULTS IgG to Pgp3 and CT005 were associated with reduced endometrial infection; anti-CT443, -CT486 and -CT123 were associated with increased incident infection. Increased breadth of protein recognition did not however predict protection from endometrial or incident infection. mRNAs for immunoprevalent CT proteins were highly abundant in the cervix. CONCLUSIONS Protein-specific CT antibodies are not sufficient to protect against ascending or incident infection but broad recognition of CT proteins by IgG correlates with cervical CT gene transcript abundance, suggesting CT protein abundance correlates with immunogenicity and signifies their potential as vaccine candidates.
Collapse
Affiliation(s)
- Chuwen Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katrin Hufnagel
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Neha Mokashi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Tammy S Tollison
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Harold C Wiesenfeld
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Pittsburgh School of Medicine, The Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Sharon L Hillier
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Pittsburgh School of Medicine, The Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Xiaojing Zheng
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
Bosch M, Sweet MJ, Parton RG, Pol A. Lipid droplets and the host-pathogen dynamic: FATal attraction? J Cell Biol 2021; 220:e202104005. [PMID: 34165498 PMCID: PMC8240858 DOI: 10.1083/jcb.202104005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
In the ongoing conflict between eukaryotic cells and pathogens, lipid droplets (LDs) emerge as a choke point in the battle for nutrients. While many pathogens seek the lipids stored in LDs to fuel an expensive lifestyle, innate immunity rewires lipid metabolism and weaponizes LDs to defend cells and animals. Viruses, bacteria, and parasites directly and remotely manipulate LDs to obtain substrates for metabolic energy, replication compartments, assembly platforms, membrane blocks, and tools for host colonization and/or evasion such as anti-inflammatory mediators, lipoviroparticles, and even exosomes. Host LDs counterattack such advances by synthesizing bioactive lipids and toxic nucleotides, organizing immune signaling platforms, and recruiting a plethora of antimicrobial proteins to provide a front-line defense against the invader. Here, we review the current state of this conflict. We will discuss why, when, and how LDs efficiently coordinate and precisely execute a plethora of immune defenses. In the age of antimicrobial resistance and viral pandemics, understanding innate immune strategies developed by eukaryotic cells to fight and defeat dangerous microorganisms may inform future anti-infective strategies.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
16
|
A Chlamydial Plasmid-Dependent Secretion System for the Delivery of Virulence Factors to the Host Cytosol. mBio 2021; 12:e0117921. [PMID: 34101486 PMCID: PMC8262877 DOI: 10.1128/mbio.01179-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chlamydia are obligate intracellular Gram-negative bacteria distinguished by a unique developmental biology confined within a parasitophorous vacuole termed an inclusion. The chlamydial plasmid is a central virulence factor in the pathogenesis of infection. Plasmid gene protein 4 (Pgp4) regulates the expression of plasmid gene protein 3 (Pgp3) and chromosomal glycogen synthase (GlgA), virulence factors secreted from the inclusion to the host cytosol by an unknown mechanism. Here, we identified a plasmid-dependent secretion system for the cytosolic delivery of Pgp3 and GlgA. The secretion system consisted of a segregated population of globular structures originating from midcycle reticulate bodies. Globular structures contained the Pgp4-regulated proteins CT143, CT144, and CT050 in addition to Pgp3 and GlgA. Genetic replacement of Pgp4 with Pgp3 or GlgA negated the formation of globular structures, resulting in retention of Pgp3 and GlgA in chlamydial organisms. The generation of globular structures and secretion of virulence factors occurred independently of type 2 and type 3 secretion systems. Globular structures were enriched with lipopolysaccharide but lacked detectable major outer membrane protein and heat shock protein 60, implicating them as outer membrane vesicles. Thus, we have discovered a novel chlamydial plasmid-dependent secretion system that transports virulence factor cargo from the chlamydial inclusion to the host cytosol.
Collapse
|
17
|
Zhang Y, Ma M, Li J, Wu Y, Xue L, Zhao R, Wang L, Hou S, Wang H. Anti-Psoriatic Effects of Middle Fragment of Chlamydial Plasmid-Encoded Protein pGP3 in an Imiquimod-Induced Psoriasis Mouse Model. Med Sci Monit 2021; 27:e929781. [PMID: 34088889 PMCID: PMC8188830 DOI: 10.12659/msm.929781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Previously, we demonstrated that the chlamydial protein pGP3 forms a stable complex with LL-37 to neutralize its proinflammatory activity during the pathogenesis of psoriasis. The middle domain of pGP3 (pGP3M) is critical for the binding and neutralization of LL-37. Here, we further examined the mechanism underlying pGP3-mediated inhibition of psoriasis progression and evaluated the inhibitory effect of pGP3M on the development of psoriasis-like skin lesions in mice. Material/Methods Stock solutions of pGP3M and pGP3 (100 μg/mL) were prepared using sterile ultrapure water and intramuscularly injected into the left leg of the imiquimod (IMQ)-induced psoriasis mouse model. The severity of skin lesions was evaluated based on the psoriasis area and severity index score and ear skin thickness. The skin biopsy and blood samples were collected on the 8th day for histological analysis and inflammatory cytokines detection. Results Erythema, scaling, and thickening were observed on the dorsal skin and the right ear skin of IMQ-treated mice. Treatment with pGP3 and pGP3M alleviated the IMQ-induced erythema, inflammatory cell infiltration, and scaly plaques. Compared with IMQ-treated and PBS-treated mice, pGP3- and PGP3M-treated mice had less inflammatory cell infiltration in skin tissues and had significantly reduced IL-17A, IFN-γ, and IL-22 levels in serum. Conclusions The anti-psoriatic efficacy of exogenous pGP3M was similar to that of pGP3. This indicated that pGP3M attenuated the IMQ-induced inflammatory and psoriatic symptoms in mice by binding and inhibiting LL-37. Further research is needed to examine the toxicity of pGP3 and pGP3M before clinical trial evaluation.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Dermatology, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Miaomiao Ma
- Department of Dermatology and Venereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jun Li
- Department of Anesthesiology, Chinese Traditional Medicine Hospital of Lanling County, Linyi, Shandong, China (mainland)
| | - Yingye Wu
- Department of Dermatology and Venereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Lu Xue
- Department of Dermatology and Venereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Rongrong Zhao
- Department of Dermatology and Venereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Lu Wang
- Department of Dermatology and Venereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Shuping Hou
- Department of Dermatology and Venereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Huiping Wang
- Department of Dermatology and Venereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| |
Collapse
|
18
|
Banerjee A, Nelson DE. The growing repertoire of genetic tools for dissecting chlamydial pathogenesis. Pathog Dis 2021; 79:ftab025. [PMID: 33930127 PMCID: PMC8112481 DOI: 10.1093/femspd/ftab025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/28/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple species of obligate intracellular bacteria in the genus Chlamydia are important veterinary and/or human pathogens. These pathogens all share similar biphasic developmental cycles and transition between intracellular vegetative reticulate bodies and infectious elementary forms, but vary substantially in their host preferences and pathogenic potential. A lack of tools for genetic engineering of these organisms has long been an impediment to the study of their biology and pathogenesis. However, the refinement of approaches developed in C. trachomatis over the last 10 years, and adaptation of some of these approaches to other Chlamydia spp. in just the last few years, has opened exciting new possibilities for studying this ubiquitous group of important pathogens.
Collapse
Affiliation(s)
- Arkaprabha Banerjee
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
19
|
Zhong G. Chlamydia overcomes multiple gastrointestinal barriers to achieve long-lasting colonization. Trends Microbiol 2021; 29:1004-1012. [PMID: 33865675 DOI: 10.1016/j.tim.2021.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/19/2022]
Abstract
Chlamydia trachomatis (CT) is frequently detected in the human gastrointestinal (GI) tract despite its leading role in sexually transmitted bacterial infections in the genital tract. Chlamydia muridarum (CM), a model pathogen for investigating CT pathogenesis in the genital tract, can also colonize the mouse GI tract for long periods. Genital-tract mutants of CM no longer colonize the GI tract. The mutants lacking plasmid functions are more defective in colonizing the upper GI tract while certain chromosomal gene-deficient mutants are more defective in the lower GI tract, suggesting that Chlamydia may use the plasmid for promoting its spread to the large intestine while using the chromosome-encoded factors for maintaining its colonization in the large intestine. The plasmid-encoded Pgp3 is critical for Chlamydia to resist the acid barrier in the stomach and to overcome a CD4+ T cell barrier in the small intestine. On reaching the large intestine, Pgp3 is no longer required. Instead, the chromosome-encoded open reading frames TC0237/TC0668 become essential for Chlamydia to evade the group 3-like innate lymphoid cell-secreted interferon (IFN)γ in the large intestine. These findings are important for exploring the medical significance of chlamydial colonization in the gut and for understanding the mechanisms of chlamydial pathogenicity in the genital tract.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
20
|
Peel E, Cheng Y, Djordjevic JT, O’Meally D, Thomas M, Kuhn M, Sorrell TC, Huston WM, Belov K. Koala cathelicidin PhciCath5 has antimicrobial activity, including against Chlamydia pecorum. PLoS One 2021; 16:e0249658. [PMID: 33852625 PMCID: PMC8046226 DOI: 10.1371/journal.pone.0249658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/22/2021] [Indexed: 11/18/2022] Open
Abstract
Devastating fires in Australia over 2019-20 decimated native fauna and flora, including koalas. The resulting population bottleneck, combined with significant loss of habitat, increases the vulnerability of remaining koala populations to threats which include disease. Chlamydia is one disease which causes significant morbidity and mortality in koalas. The predominant pathogenic species, Chlamydia pecorum, causes severe ocular, urogenital and reproductive tract disease. In marsupials, including the koala, gene expansions of an antimicrobial peptide family known as cathelicidins have enabled protection of immunologically naïve pouch young during early development. We propose that koala cathelicidins are active against Chlamydia and other bacteria and fungi. Here we describe ten koala cathelicidins, five of which contained full length coding sequences that were widely expressed in tissues throughout the body. Focusing on these five, we investigate their antimicrobial activity against two koala C. pecorum isolates from distinct serovars; MarsBar and IPTaLE, as well as other bacteria and fungi. One cathelicidin, PhciCath5, inactivated C. pecorum IPTaLE and MarsBar elementary bodies and significantly reduced the number of inclusions compared to the control (p<0.0001). Despite evidence of cathelicidin expression within tissues known to be infected by Chlamydia, natural PhciCath5 concentrations may be inadequate in vivo to prevent or control C. pecorum infections in koalas. PhciCath5 also displayed antimicrobial activity against fungi and Gram negative and positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Electrostatic interactions likely drive PhciCath5 adherence to the pathogen cell membrane, followed by membrane permeabilisation leading to cell death. Activity against E. coli was reduced in the presence of 10% serum and 20% whole blood. Future modification of the PhciCath5 peptide to enhance activity, including in the presence of serum/blood, may provide a novel solution to Chlamydia infection in koalas and other species.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Julianne T. Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, New South Wales, Australia
| | - Denis O’Meally
- Center for Gene Therapy, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Mark Thomas
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Michael Kuhn
- Zoetis, Veterinary Medicine Research and Development, Kalamazoo, Michigan, United States of America
| | - Tania C. Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, New South Wales, Australia
| | - Wilhelmina M. Huston
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
21
|
Dockterman J, Coers J. Immunopathogenesis of genital Chlamydia infection: insights from mouse models. Pathog Dis 2021; 79:ftab012. [PMID: 33538819 PMCID: PMC8189015 DOI: 10.1093/femspd/ftab012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chlamydiae are pathogenic intracellular bacteria that cause a wide variety of diseases throughout the globe, affecting the eye, lung, coronary arteries and female genital tract. Rather than by direct cellular toxicity, Chlamydia infection generally causes pathology by inducing fibrosis and scarring that is largely mediated by host inflammation. While a robust immune response is required for clearance of the infection, certain elements of that immune response may also damage infected tissue, leading to, in the case of female genital infection, disease sequelae such as pelvic inflammatory disease, infertility and ectopic pregnancy. It has become increasingly clear that the components of the immune system that destroy bacteria and those that cause pathology only partially overlap. In the ongoing quest for a vaccine that prevents Chlamydia-induced disease, it is important to target mechanisms that can achieve protective immunity while preventing mechanisms that damage tissue. This review focuses on mouse models of genital Chlamydia infection and synthesizes recent studies to generate a comprehensive model for immunity in the murine female genital tract, clarifying the respective contributions of various branches of innate and adaptive immunity to both host protection and pathogenic genital scarring.
Collapse
Affiliation(s)
- Jacob Dockterman
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
| | - Jörn Coers
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 22710, USA
| |
Collapse
|
22
|
Chlamydia trachomatis Plasmid Gene Protein 3 Is Essential for the Establishment of Persistent Infection and Associated Immunopathology. mBio 2020; 11:mBio.01902-20. [PMID: 32817110 PMCID: PMC7439461 DOI: 10.1128/mbio.01902-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chlamydia trachomatis can cause persistent infection that drives damaging inflammatory responses resulting in infertility and blindness. Little is known about chlamydial genes that cause persistence or factors that drive damaging pathology. In this work, we show that the C. trachomatis plasmid protein gene 3 (Pgp3) is the essential virulence factor for establishing persistent female genital tract infection and provide supportive evidence that Pgp3 functions similarly in a nonhuman primate trachoma model. We further show that persistent Ppg3-dependent infection drives damaging immunopathology. These results are important advances in understanding the pathophysiology of chlamydial persistence. Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes blinding trachoma and sexually transmitted disease afflicting hundreds of millions of people globally. A fundamental but poorly understood pathophysiological characteristic of chlamydial infection is the propensity to cause persistent infection that drives damaging inflammatory disease. The chlamydial plasmid is a virulence factor, but its role in the pathogenesis of persistent infection capable of driving immunopathology is unknown. Here, we show by using mouse and nonhuman primate infection models that the secreted plasmid gene protein 3 (Pgp3) is essential for establishing persistent infection. Ppg3-dependent persistent genital tract infection resulted in a severe endometritis caused by an intense infiltration of endometrial submucosal macrophages. Pgp3 released from the cytosol of lysed infected oviduct epithelial cells, not organism outer membrane-associated Pgp3, inhibited the chlamydial killing activity of antimicrobial peptides. Genetic Pgp3 rescue experiments in cathelin-related antimicrobial peptide (CRAMP)-deficient mice showed Pgp3-targeted antimicrobial peptides to subvert innate immunity as a pathogenic strategy to establish persistent infection. These findings provide important advances in understanding the role of Pgp3 in the pathogenesis of persistent chlamydial infection and associated immunopathology.
Collapse
|
23
|
Dong X, Zhang W, Hou J, Ma M, Zhu C, Wang H, Hou S. Chlamydial-Secreted Protease Chlamydia High Temperature Requirement Protein A (cHtrA) Degrades Human Cathelicidin LL-37 and Suppresses Its Anti-Chlamydial Activity. Med Sci Monit 2020; 26:e923909. [PMID: 32634134 PMCID: PMC7366784 DOI: 10.12659/msm.923909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Chlamydia trachomatis is an obligate intracellular pathogen that can cause severe reproductive tract complications while ascending infection occurs. When spreading from cell to cell in a host, C. trachomatis utilizes various survival strategies to offset host defense mechanisms. One such strategy is to degrade host antimicrobial defense proteins before they can attack the invading C. trachomatis cells. Material/Methods We expressed and purified recombinant chlamydia high temperature requirement protein A (cHtrA) including 2 cHtrA mutants (MT-H143A and MT-S247A), and also extracted endogenous cHtrA. Proteins were identified and their purity evaluated by SDS-PAGE and Western blot. The anti-chlamydial activity and degradation of 5 antimicrobial peptides (cathelicidin LL-37, α-defensin-1 and -3, and β-defensin-2 and -4) by cHtrA and 2 cHtrA mutants (MT-H143A and MT-S247A) were tested by immunoassay and Western blot. Results Of the 5 antimicrobial peptides (cathelicidin LL-37, α-defensin-1 and -3, and β-defensin-2 and -4) tested, cathelicidin LL-37 showed the strongest anti-chlamydial activity. Interestingly, cHtrA effectively and specifically degraded LL-37, suppressing its anti-chlamydial activity. The 2 cHtrA mutants (MT-H143A and MT-S247A) were unable to degrade LL-37. Comparison of cHtrA activity from C. trachomatis D, L2, and MoPn strains on LL-37 showed similar responses. Conclusions cHtrA may contribute to C. trachomatis pathogenicity by clearing the passage of invasion by specific LL-37 degradation.
Collapse
Affiliation(s)
- Xiaohua Dong
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, Hebei, China (mainland)
| | - Wanxing Zhang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jianmei Hou
- Department of Pharmacy, Chinese Traditional Medicine Hospital of Lanling County, Linyi, Shandong, China (mainland)
| | - Miaomiao Ma
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Congzhong Zhu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Huiping Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Shuping Hou
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| |
Collapse
|
24
|
Choi KYG, Wu BC, Lee AHY, Baquir B, Hancock REW. Utilizing Organoid and Air-Liquid Interface Models as a Screening Method in the Development of New Host Defense Peptides. Front Cell Infect Microbiol 2020; 10:228. [PMID: 32509598 PMCID: PMC7251080 DOI: 10.3389/fcimb.2020.00228] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Host defense peptides (HDPs), also known as antimicrobial peptides, are naturally occurring polypeptides (~12–50 residues) composed of cationic and hydrophobic amino acids that adopt an amphipathic conformation upon folding usually after contact with membranes. HDPs have a variety of biological activities including immunomodulatory, anti-inflammatory, anti-bacterial, and anti-biofilm functions. Although HDPs have the potential to address the global threat of antibiotic resistance and to treat immune and inflammatory disorders, they have yet to achieve this promise. Indeed, there are several challenges associated with bringing peptide-based drug candidates from the lab bench to clinical practice, including identifying appropriate indications, stability, toxicity, and cost. These challenges can be addressed in part by the development of innate defense regulator (IDR) peptides and peptidomimetics, which are synthetic derivatives of HDPs with similar or better efficacy, increased stability, and reduced toxicity and cost of the original HDP. However, one of the largest gaps between basic research and clinical application is the validity and translatability of conventional model systems, such as cell lines and animal models, for screening HDPs and their derivatives as potential drug therapies. Indeed, such translation has often relied on animal models, which have only limited validity. Here we discuss the recent development of human organoids for disease modeling and drug screening, assisted by the use of omics analyses. Organoids, developed from primary cells, cell lines, or human pluripotent stem cells, are three-dimensional, self-organizing structures that closely resemble their corresponding in vivo organs with regards to immune responses, tissue organization, and physiological properties; thus, organoids represent a reliable method for studying efficacy, formulation, toxicity and to some extent drug stability and pharmacodynamics. The use of patient-derived organoids enables the study of patient-specific efficacy, toxicogenomics and drug response predictions. We outline how organoids and omics data analysis can be leveraged to aid in the clinical translation of IDR peptides.
Collapse
Affiliation(s)
- Ka-Yee Grace Choi
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Bing Catherine Wu
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Amy Huei-Yi Lee
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Beverlie Baquir
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Robert E W Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Luo F, Shu M, Gong S, Wen Y, He B, Su S, Li Z. Antiapoptotic activity of Chlamydia trachomatis Pgp3 protein involves activation of the ERK1/2 pathway mediated by upregulation of DJ-1 protein. Pathog Dis 2020; 77:5714752. [PMID: 31971555 DOI: 10.1093/femspd/ftaa003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Chlamydia trachomatis has evolved strategies to prevent host cell apoptosis to evade the host immune defense. However, the precise mechanisms of antiapoptotic activity of C. trachomatis still need to be clarified. Pgp3, one of eight plasmid proteins of C. trachomatis, has been identified to be closely associated with chlamydial virulence. In this study, we attempted to explore the effects and the mechanisms of Pgp3 protein on apoptosis in HeLa cells; the results showed that Pgp3 increased Bcl-2/Bax ratio and prevented caspase-3 activation to suppress apoptosis induced by TNF-α and cycloheximide (CHX) through ERK1/2 pathway activation. Downregulation of DJ-1 with siRNA-DJ-1(si-DJ-1) reduced ERK1/2 phosphorylation and elevated apoptotic rate significantly in Pgp3-HeLa cells. However, inhibition of ERK1/2 signal pathway with ERK inhibitor PD98059 had little effect on DJ-1 expression. These findings confirm that plasmid protein Pgp3 contributes to apoptosis resistance through ERK1/2 signal pathway mediated by upregulation of DJ-1 expression. Therefore, the present study provided novel insights into the role of Pgp3 in apoptosis and suggested that manipulation of the host apoptosis response could be a new approach for the prevention and treatment of C. trachomatis infection.
Collapse
Affiliation(s)
- Fangzhen Luo
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Mingyi Shu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Silu Gong
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Bei He
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Shengmei Su
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P. R. China
| |
Collapse
|
26
|
Jones CA, Hadfield J, Thomson NR, Cleary DW, Marsh P, Clarke IN, O’Neill CE. The Nature and Extent of Plasmid Variation in Chlamydia trachomatis. Microorganisms 2020; 8:microorganisms8030373. [PMID: 32155798 PMCID: PMC7143637 DOI: 10.3390/microorganisms8030373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen of humans, causing both the sexually transmitted infection, chlamydia, and the most common cause of infectious blindness, trachoma. The majority of sequenced C. trachomatis clinical isolates carry a 7.5-Kb plasmid, and it is becoming increasingly evident that this is a key determinant of pathogenicity. The discovery of the Swedish New Variant and the more recent Finnish variant highlight the importance of understanding the natural extent of variation in the plasmid. In this study we analysed 524 plasmid sequences from publicly available whole-genome sequence data. Single nucleotide polymorphisms (SNP) in each of the eight coding sequences (CDS) were identified and analysed. There were 224 base positions out of a total 7550 bp that carried a SNP, which equates to a SNP rate of 2.97%, nearly three times what was previously calculated. After normalising for CDS size, CDS8 had the highest SNP rate at 3.97% (i.e., number of SNPs per total number of nucleotides), whilst CDS6 had the lowest at 1.94%. CDS5 had the highest total number of SNPs across the 524 sequences analysed (2267 SNPs), whereas CDS6 had the least SNPs with only 85 SNPs. Calculation of the genetic distances identified CDS6 as the least variable gene at the nucleotide level (d = 0.001), and CDS5 as the most variable (d = 0.007); however, at the amino acid level CDS2 was the least variable (d = 0.001), whilst CDS5 remained the most variable (d = 0.013). This study describes the largest in-depth analysis of the C. trachomatis plasmid to date, through the analysis of plasmid sequence data mined from whole genome sequences spanning 50 years and from a worldwide distribution, providing insights into the nature and extent of existing variation within the plasmid as well as guidance for the design of future diagnostic assays. This is crucial at a time when single-target diagnostic assays are failing to detect natural mutants, putting those infected at risk of a serious long-term and life-changing illness.
Collapse
Affiliation(s)
- Charlotte A. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA;
| | - Nicholas R. Thomson
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK;
| | - David W. Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - Peter Marsh
- Public Health England, Porton Down, Wiltshire SP40JG, UK;
| | - Ian N. Clarke
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - Colette E. O’Neill
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
- Correspondence:
| |
Collapse
|
27
|
Bugalhão JN, Mota LJ. The multiple functions of the numerous Chlamydia trachomatis secreted proteins: the tip of the iceberg. MICROBIAL CELL 2019; 6:414-449. [PMID: 31528632 PMCID: PMC6717882 DOI: 10.15698/mic2019.09.691] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chlamydia trachomatis serovars are obligate intracellular bacterial pathogens mainly causing ocular and urogenital infections that affect millions of people worldwide and which can lead to blindness or sterility. They reside and multiply intracellularly within a membrane-bound vacuolar compartment, known as inclusion, and are characterized by a developmental cycle involving two morphologically and physiologically distinct chlamydial forms. Completion of the developmental cycle involves the secretion of > 70 C. trachomatis proteins that function in the host cell cytoplasm and nucleus, in the inclusion membrane and lumen, and in the extracellular milieu. These proteins can, for example, interfere with the host cell cytoskeleton, vesicular and non-vesicular transport, metabolism, and immune signalling. Generally, this promotes C. trachomatis invasion into, and escape from, host cells, the acquisition of nutrients by the chlamydiae, and evasion of cell-autonomous, humoral and cellular innate immunity. Here, we present an in-depth review on the current knowledge and outstanding questions about these C. trachomatis secreted proteins.
Collapse
Affiliation(s)
- Joana N Bugalhão
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
28
|
The Plasmid-Encoded pGP3 Promotes Chlamydia Evasion of Acidic Barriers in Both Stomach and Vagina. Infect Immun 2019; 87:IAI.00844-18. [PMID: 30858342 DOI: 10.1128/iai.00844-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
Although Chlamydia trachomatis is a human genital tract pathogen, chlamydial organisms have frequently been detected in both vaginal and rectal swab samples of animals and humans. The plasmid-encoded pGP3, a genital tract virulence factor, is essential for Chlamydia muridarum to colonize the mouse gastrointestinal tract. However, intracolon inoculation to bypass the gastric barrier rescued the colonization ability of a pGP3-deficient C. muridarum mutant, suggesting that pGP3 is required for C. muridarum to reach but not to colonize the large intestine. The pGP3-deficient mutant was rapidly cleared in the stomach and was 100-fold more susceptible to gastric killing. In mice genetically deficient in gastrin, a key regulator for gastric acid production, or pharmacologically treated with a proton pump inhibitor, the ability of pGP3-deficient C. muridarum to colonize the gastrointestinal tract was rescued. The pGP3-dependent resistance was further recapitulated in vitro with treatments with HCl, pepsin, or sarkosyl. In the genital tract, deficiency in pGP3 significantly reduced C. muridarum survival in the mouse vagina and increased C. muridarum susceptibility to vaginal killing by ∼8 times. The pGP3-deficient C. muridarum was more susceptible to lactic acid killing, and the pGP3 deficiency also significantly increased C. trachomatis susceptibility to lactic acid. The above-described observations together suggest that Chlamydia may have acquired the plasmid-encoded pGP3 to overcome the gastric barrier during its adaptation to the gastrointestinal tract and the pGP3-dependent resistance may enable chlamydial evasion of the female lower genital tract barrier during sexual transmission.
Collapse
|
29
|
Bondareva NE, Koroleva EA, Zigangirova NA. The Role of Chlamydial Colonization of the Gastrointestinal Tract in the Development and Persistence of Chronic Chlamydial Infections. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2019. [DOI: 10.3103/s089141681804002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Huang Y, Sun Y, Qin T, Liu Y. The Structural Integrity of Plasmid-Encoded Pgp3 Is Essential for Induction of Hydrosalpinx by Chlamydia muridarum. Front Cell Infect Microbiol 2019; 9:13. [PMID: 30805313 PMCID: PMC6370636 DOI: 10.3389/fcimb.2019.00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/16/2019] [Indexed: 11/17/2022] Open
Abstract
Pgp3 consists of globular N- and C-terminal domains connected by a triple-helical coiled-coil middle domain. We demonstrated previously that Pgp3 is required for induction of hydrosalpinx by Chlamydia muridarum. We constructed C. muridarum transformants harboring deletion of the Pgp3 N-terminus (pgp3Δn), C-terminus (pgp3Δc), or middle domain (pgp3Δm). C3H/HeJ and CBA/J mice infected with pgp3Δn or pgp3Δm failed to induce hydrosalpinx in oviduct tissue. However, the pgp3Δc transformant induced mild hydrosalpinx in 20% of C3H/HeJ mice (severity score 0.2 ± 0.6) and in 40% of CBA/J mice (severity score 0.8 ± 1.3). The attenuated pathogenicity of the transformants harboring Pgp3 domain deletions was correlated with impaired in vitro growth and significantly reduced infectivity in the mouse lower genital tract. Moreover, the oviduct tissue of C3H/HeJ and CBA/J mice infected with the Pgp3-domain-deficient transformants displayed less inflammatory cell infiltration. Thus, the structural integrity of plasmid-encoded Pgp3 is essential for induction of hydrosalpinx by C. muridarum.
Collapse
Affiliation(s)
- Yumeng Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yina Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Tai Qin
- Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuanjun Liu
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
31
|
He B, Zhao Y, Yang X, Su S, Wen Y, Chen H, Zhou Z, Huang Q, Li Z. Chlamydia trachomatis pORF5 plasmid-encoded protein regulates autophagy and apoptosis of HeLa cells. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1659183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Bei He
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Yuqi Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Xiaoyu Yang
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Shengmei Su
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Hongliang Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Zhou Zhou
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Qiulin Huang
- Department of General Surgery, Gastric Cancer Research Center of Hunan Province, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| |
Collapse
|
32
|
Barr FD, Ochsenbauer C, Wira CR, Rodriguez-Garcia M. Neutrophil extracellular traps prevent HIV infection in the female genital tract. Mucosal Immunol 2018; 11:1420-1428. [PMID: 29875403 PMCID: PMC6162173 DOI: 10.1038/s41385-018-0045-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/18/2018] [Accepted: 04/29/2018] [Indexed: 02/04/2023]
Abstract
Women acquire human immunodeficiency virus (HIV) mainly through sexual intercourse. However, low transmission rates per sexual act indicate that local immune mechanisms contribute to HIV prevention. Neutrophils represent 10-20% of the genital immune cells in healthy women. Neutrophils mediate mucosal protection against bacterial and fungal pathogens through different mechanisms, including the release of neutrophil extracellular traps (NETs). NETs are DNA fragments associated with antimicrobial granular proteins. Despite neutrophil abundance and central contributions to innate immunity in the genital tract, their role in protection against HIV acquisition is unknown. We found that stimulation of human genital neutrophils with HIV viral-like particles (HIV-VLPs) induced NET release within minutes of viral exposure, through reactive oxygen species-independent mechanisms that resulted in immediate entrapment of HIV-VLPs. Incubation of infectious HIV with pre-formed genital NETs prevented infection of susceptible cells through irreversible viral inactivation. HIV inactivation by NETs from genital neutrophils could represent a previously unrecognized form of mucosal protection against HIV acquisition.
Collapse
Affiliation(s)
- Fiona D. Barr
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Christina Ochsenbauer
- Department of Medicine and UAB Center for AIDS Research, University of Alabama at Birmingham, AL
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Marta Rodriguez-Garcia
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA,Corresponding author: Address correspondence to Dr. Marta Rodriguez-Garcia, Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, One Medical Center Drive, Lebanon, NH 03756. Fax number: 603-6507717. Telephone number: 603-6502583.
| |
Collapse
|
33
|
Hou S, Xu R, Zhu C, Shan S, Han L, Wang H. Chlamydial Plasmid-Encoded Protein pGP3 Inhibits Development of Psoriasis-Like Lesions in Mice. Med Sci Monit 2018; 24:5159-5167. [PMID: 30043770 PMCID: PMC6071496 DOI: 10.12659/msm.910472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background The anti-microbial protein cathelicidin LL-37 plays an important role in the pathogenesis of psoriasis by inducing inflammation. Our previous study showed that the chlamydial plasmid-encoded protein pGP3 forms a stable complex with LL-37 to neutralize its pro-inflammatory activity. Here, we explored whether pGP3 can inhibit the development of lesions in mice with imiquimod-induced psoriasis. Material/Methods The protein pGP3 was expressed in bacteria and purified using glutathione-conjugated agarose beads and a precision protease. The ability of the purified pGP3 to block chemotaxis mediated by LL-37 was tested in vitro using bone marrow-derived neutrophils. The ability of the protein to inhibit the development of psoriasis-like lesions was tested by topically or subcutaneously administering pGP3 in doses of 10 or 50 μg to mice previously treated with imiquimod. Mouse skin was evaluated using the psoriasis area and severity index (PASI) score and photography. Skin biopsies were taken on day 8 and analyzed histologically. Results Purified pGP3 inhibited LL-37-mediated chemotaxis. Mice treated with 50 μg pGP3 showed clinical improvement with less severe erythema, infiltration, and scales; these mice also showed thinner dermis and less hyperkeratosis, parakeratosis, and inflammatory cell infiltration than mice treated with without 10 μg pGP3. Conclusions PGP3 can inhibit the development of psoriasis-like lesions in mice, possibly through its ability to bind LL-37. Future work should examine the mechanisms underlying this therapeutic effect.
Collapse
Affiliation(s)
- Shuping Hou
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Rong Xu
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Congzhong Zhu
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Shijun Shan
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Long Han
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Huiping Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| |
Collapse
|
34
|
Khurshid S, Govada L, Wills G, McClure MO, Helliwell JR, Chayen NE. Chlamydia protein Pgp3 studied at high resolution in a new crystal form. IUCRJ 2018; 5:439-448. [PMID: 30002845 PMCID: PMC6038952 DOI: 10.1107/s2052252518007637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
The protein Pgp3 is implicated in the sexually transmitted disease chlamydia and comprises an extended complex arrangement of a C-terminal domain (CTD) and an N-terminal domain (NTD) linked by a triple-helix coiled coil (THCC). Here, the X-ray crystal structure of Pgp3 from an LGV1 strain is reported at the highest X-ray diffraction resolution obtained to date for the full protein. The protein was crystallized using a high concentration of potassium bromide, which resulted in a new crystal form with relatively low solvent content that diffracted to a resolution of 1.98 Å. The three-dimensional structure of this new crystal form is described and compared with those of other crystal forms, and the potassium bromide binding sites and the relevance to chlamydia isolates from around the globe are described. The crystal packing is apparently driven by the CTDs. Since the threefold axes of the THCC and NTD are not collinear with the threefold axis of a CTD, this naturally leads to disorder in the THCC and the portion of the NTD that does not directly interact with the CTD via crystal packing. The key avenue to resolving these oddities in the crystal structure analysis was a complete new analysis in space group P1 and determining the space group as P212121. This space-group assignment was that originally determined from the diffraction pattern but was perhaps complicated by translational noncrystallographic symmetry. This crystal structure of a three-domain multi-macromolecular complex with two misaligned threefold axes was a unique challenge and has not been encountered before. It is suggested that a specific intermolecular interaction, possibly of functional significance in receptor binding in chlamydia, might allow the design of a new chemotherapeutic agent against chlamydia.
Collapse
Affiliation(s)
- Sahir Khurshid
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, England
| | - Lata Govada
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, England
| | - Gillian Wills
- Department of Medicine, Imperial College London, St Mary’s Campus, London W2 1PG, England
| | - Myra O. McClure
- Department of Medicine, Imperial College London, St Mary’s Campus, London W2 1PG, England
| | - John R. Helliwell
- School of Chemistry, The University of Manchester, Manchester M13 9PL, England
| | - Naomi E. Chayen
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, England
| |
Collapse
|
35
|
Chlamydial plasmid-encoded virulence factor Pgp3 interacts with human cathelicidin peptide LL-37 to modulate immune response. Microbes Infect 2018; 21:50-55. [PMID: 29959096 DOI: 10.1016/j.micinf.2018.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 11/23/2022]
Abstract
We have previously reported that Chlamydia trachomatis plasmid-encoded Pgp3 is able to neutralize anti-chlamydial activity of human cathelicidin peptide LL-37 by binding to and forming stable complex with LL-37. Besides its microbicidal activity, LL-37 also modulates immune response, including inducing cytokine/chemokine production in fibroblast/epithelial cells and recruitment of inflammatory cells. We now report that LL-37 was significantly induced in the genital tracts of women diagnosed positive for C. trachomatis. Both the LL-37-stimulated IL-6/8 production in human endometrial epithelial cells and the LL-37-induced neutrophil chemotaxis were blocked by Pgp3. Interestingly, although Pgp3 itself alone could not induce cytokines in epithelial cell cells, it did so in neutrophils. Importantly, the Pgp3 proinflammatory activity in neutrophils was significantly enhanced by forming complex with LL-37 although LL-37 alone failed to induce cytokine production in neutrophils. Thus, we have demonstrated that Pgp3 can modulate the proinflammatory activities of LL-37 on epithelial cells by forming stable complex with LL-37 but the Pgp3's own proinflammatory activity on myeloid cells is enhanced by forming the same complex. We hypothesize that Chlamydia may use Pgp3 to both block detrimental inflammation for improving its own fitness in the genital tract epithelial tissue and activate myeloid cell-mediated inflammation for potentially promoting spreading between the hosts, the latter of which may inevitably contribute to the development of inflammatory sequelae such as tubal fibrosis.
Collapse
|
36
|
Zou Y, Dai W, Lei W, Su S, Huang Q, Zhou Z, Chen C, Li Z. Identification of proteins interacting with pORF5 in the pathogenesis of C. trachomatis. Am J Transl Res 2018; 10:1633-1647. [PMID: 30018706 PMCID: PMC6038076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/21/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE This study is to identify and investigate the proteins interacting with pORF5 implicated in the pathogenesis of C. trachomatis. METHODS The isobaric tags for relative and absolute quantitation (iTRAQ) approach combined with nano liquid chromatography-tandem mass spectrometry (NanoLC-MS/MS) analysis was applied to identify and quantify the differentially expressed proteins in the pORF5-transfected HeLa (pORF5-HeLa) cells and the control vector-transfected HeLa (vector-HeLa) cells. Quantitative real-time PCR (qRT-PCR) and Western blot analysis were performed to detect the mRNA and protein expression levels. RESULTS Totally 3355 proteins were quantified by employing biological replicates, 314 of which were differentially expressed between the pORF5-HeLa and vector-HeLa cells. Nine differentially expressed proteins (HIST1H1C, HBA1, PARK7, HMGB1, HMGB2, CLIC1, KRT7, SFN, and CDKN2A) were subjected to qRT-PCR, and two over-expressed proteins (HMGB1 and PRAK7) were subjected to the Western blot analysis, to validate the proteomic results. The results from the qRT-PCR and Western blot analysis were consistent with the findings from the proteomic analysis. Moreover, pORF5 could inhibit the TNF-α-induced apoptosis in HeLa cells. Through siRNA-mediated functional screening, the high-mobility group box 1 (HMGB1) was shown to be relevant to the inhibition of the apoptotic response in the host cells. CONCLUSION Identification of key proteins interacting with pORF5 could contribute to the understanding and further exploration of the function of pORF5 in the pathogenic mechanisms of C. trachomatis.
Collapse
Affiliation(s)
- Yan Zou
- Pathogenic Biology Institute, School of Medicine, University of South ChinaHengyang 421001, Hunan, China
| | - Wenting Dai
- Pathogenic Biology Institute, School of Medicine, University of South ChinaHengyang 421001, Hunan, China
| | - Wenbo Lei
- Pathogenic Biology Institute, School of Medicine, University of South ChinaHengyang 421001, Hunan, China
| | - Shengmei Su
- Pathogenic Biology Institute, School of Medicine, University of South ChinaHengyang 421001, Hunan, China
| | - Qiulin Huang
- Department of General Surgery, The First Affiliated Hospital of University of South ChinaHengyang 421001, Hunan, China
| | - Zhou Zhou
- Pathogenic Biology Institute, School of Medicine, University of South ChinaHengyang 421001, Hunan, China
| | - Chaoqun Chen
- Pathogenic Biology Institute, School of Medicine, University of South ChinaHengyang 421001, Hunan, China
| | - Zhongyu Li
- Pathogenic Biology Institute, School of Medicine, University of South ChinaHengyang 421001, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug StudyHengyang 421001, Hunan, China
| |
Collapse
|
37
|
Plasmid Negative Regulation of CPAF Expression Is Pgp4 Independent and Restricted to Invasive Chlamydia trachomatis Biovars. mBio 2018; 9:mBio.02164-17. [PMID: 29382731 PMCID: PMC5790913 DOI: 10.1128/mbio.02164-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes blinding trachoma and sexually transmitted disease. C. trachomatis isolates are classified into 2 biovars—lymphogranuloma venereum (LGV) and trachoma—which are distinguished biologically by their natural host cell infection tropism. LGV biovars infect macrophages and are invasive, whereas trachoma biovars infect oculo-urogenital epithelial cells and are noninvasive. The C. trachomatis plasmid is an important virulence factor in the pathogenesis of these infections. Central to its pathogenic role is the transcriptional regulatory function of the plasmid protein Pgp4, which regulates the expression of plasmid and chromosomal virulence genes. As many gene regulatory functions are post-transcriptional, we employed a comparative proteomic study of cells infected with plasmid-cured C. trachomatis serovars A and D (trachoma biovar), a L2 serovar (LGV biovar), and the L2 serovar transformed with a plasmid containing a nonsense mutation in pgp4 to more completely elucidate the effects of the plasmid on chlamydial infection biology. Our results show that the Pgp4-dependent elevations in the levels of Pgp3 and a conserved core set of chromosomally encoded proteins are remarkably similar for serovars within both C. trachomatis biovars. Conversely, we found a plasmid-dependent, Pgp4-independent, negative regulation in the expression of the chlamydial protease-like activity factor (CPAF) for the L2 serovar but not the A and D serovars. The molecular mechanism of plasmid-dependent negative regulation of CPAF expression in the LGV serovar is not understood but is likely important to understanding its macrophage infection tropism and invasive infection nature. The Chlamydia trachomatis plasmid is an important virulence factor in the pathogenesis of chlamydial infection. It is known that plasmid protein 4 (Pgp4) functions in the transcriptional regulation of the plasmid virulence protein 3 (Pgp3) and multiple chromosomal loci of unknown function. Since many gene regulatory functions can be post-transcriptional, we undertook a comparative proteomic analysis to better understand the plasmid’s role in chlamydial and host protein expression. We report that Pgp4 is a potent and specific master positive regulator of a common core of plasmid and chromosomal virulence genes shared by multiple C. trachomatis serovars. Notably, we show that the plasmid is a negative regulator of the expression of the chlamydial virulence factor CPAF. The plasmid regulation of CPAF is independent of Pgp4 and restricted to a C. trachomatis macrophage-tropic strain. These findings are important because they define a previously unknown role for the plasmid in the pathophysiology of invasive chlamydial infection.
Collapse
|
38
|
Zhong G. Chlamydia Spreading from the Genital Tract to the Gastrointestinal Tract - A Two-Hit Hypothesis. Trends Microbiol 2017; 26:611-623. [PMID: 29289422 DOI: 10.1016/j.tim.2017.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022]
Abstract
Chlamydia trachomatis, a leading bacterial cause of sexually transmitted infection-induced infertility, is frequently detected in the gastrointestinal tract. Chlamydia muridarum, a model pathogen for investigating C. trachomatis pathogenesis, readily spreads from the mouse genital tract to the gastrointestinal tract, establishing long-lasting colonization. C. muridarum mutants, despite their ability to activate acute oviduct inflammation, are attenuated in inducing tubal fibrosis and are no longer able to colonize the gastrointestinal tract, suggesting that the spread of C. muridarum to the gastrointestinal tract may contribute to its pathogenicity in the upper genital tract. However, gastrointestinal C. muridarum cannot directly autoinoculate the genital tract. Both antigen-specific CD8+ T cells and profibrotic cytokines, such as TNFα and IL-13, are essential for C. muridarum to induce tubal fibrosis; this may be induced by the gastrointestinal C. muridarum, as a second hit, to transmucosally convert tubal repairing - initiated by C. muridarum infection of tubal epithelial cells (serving as the first hit) - into pathogenic fibrosis. Testing the two-hit mouse model should both add new knowledge to the growing list of mechanisms by which gastrointestinal microbes contribute to pathologies in extragastrointestinal tissues and provide information for investigating the potential role of gastrointestinal C. trachomatis in human chlamydial pathogenesis.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
39
|
The Genital Tract Virulence Factor pGP3 Is Essential for Chlamydia muridarum Colonization in the Gastrointestinal Tract. Infect Immun 2017; 86:IAI.00429-17. [PMID: 29038127 DOI: 10.1128/iai.00429-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
Abstract
The cryptic plasmid is essential for Chlamydia muridarum dissemination from the genital tract to the gastrointestinal (GI) tract. Following intravaginal inoculation, a C. muridarum strain deficient in plasmid-encoded pGP3 or pGP4 but not pGP5, pGP7, or pGP8 failed to spread to the mouse gastrointestinal tract, although mice infected with these strains developed productive genital tract infections. pGP3- or pGP4-deficient strains also failed to colonize the gastrointestinal tract when delivered intragastrically. pGP4 regulates pGP3, while pGP3 does not affect pGP4 expression, indicating that pGP3 is critical for C. muridarum colonization of the gastrointestinal tract. Mutants deficient in GlgA, a chromosome-encoded protein regulated by pGP4, also consistently colonized the mouse gastrointestinal tract. Interestingly, C. muridarum colonization of the gastrointestinal tract positively correlated with pathogenicity in the upper genital tract. pGP3-deficient C. muridarum strains did not induce hydrosalpinx or spread to the GI tract even when delivered to the oviduct by intrabursal inoculation. Thus, the current study not only has revealed that pGP3 is a novel chlamydial colonization factor in the gastrointestinal tract but also has laid a foundation for investigating the significance of gastrointestinal Chlamydia.
Collapse
|
40
|
Zhong G, Brunham RC, de la Maza LM, Darville T, Deal C. National Institute of Allergy and Infectious Diseases workshop report: "Chlamydia vaccines: The way forward". Vaccine 2017; 37:7346-7354. [PMID: 29097007 DOI: 10.1016/j.vaccine.2017.10.075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/24/2017] [Indexed: 01/06/2023]
Abstract
Chlamydia trachomatis (Ct), an intracellular pathogen, is the most common bacterial sexually transmitted infection. In addition to acute cervicitis and urethritis, Ct can lead to serious sequelae of significant public health burden including pelvic inflammatory disease (PID) and infertility. Ct control efforts have not resulted in desired outcomes such as reduced incidence and reinfection, and this highlights the need for the development of an effective Ct vaccine. To this end, NIAID organized a workshop to consider the current status of Ct vaccine research and address critical questions in Ct vaccine design and clinical testing. Topics included the goal(s) of a vaccine and the feasibility of achieving these goals, animal models of infection including mouse and nonhuman primate (NHP) models, and correlates of protection to guide vaccine design. Decades of research have provided both whole cell-based and subunit vaccine candidates for development. At least one is currently in clinical development and efforts now need to be directed toward further development of the most attractive candidates. Overall, the discussions and presentations from the workshop highlighted optimism about the current status of Ct vaccine research and detailed the remaining gaps and questions needed to move vaccines forward.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Robert C Brunham
- Vaccine Research Laboratory, UBC Centre for Disease Control, University of British Columbia, Vancouver, BC V5Z 4R4, Canada
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599-7509, USA
| | - Carolyn Deal
- Division of Microbiology and Infectious Diseases, NIAID, Bethesda, MD, USA
| |
Collapse
|
41
|
Petersen RL. Strategies Using Bio-Layer Interferometry Biosensor Technology for Vaccine Research and Development. BIOSENSORS-BASEL 2017; 7:bios7040049. [PMID: 29088096 PMCID: PMC5746772 DOI: 10.3390/bios7040049] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 12/13/2022]
Abstract
Bio-layer interferometry (BLI) real-time, label-free technology has greatly contributed to advances in vaccine research and development. BLI Octet platforms offer high-throughput, ease of use, reliability, and high precision analysis when compared with common labeling techniques. Many different strategies have been used to immobilize the pathogen or host molecules on BLI biosensors for real-time kinetics and affinity analysis, quantification, or high-throughput titer. These strategies can be used in multiple applications and shed light onto the structural and functional aspects molecules play during pathogen-host interactions. They also provide crucial information on how to achieve protection. This review summarizes some key BLI strategies used in human vaccine research and development.
Collapse
|
42
|
Update on Chlamydia trachomatis Vaccinology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00543-16. [PMID: 28228394 DOI: 10.1128/cvi.00543-16] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections.
Collapse
|
43
|
Winstanley CE, Ramsey KH, Marsh P, Clarke IN. Development and evaluation of an enzyme-linked immunosorbent assay for the detection of antibodies to a common urogenital derivative of Chlamydia trachomatis plasmid-encoded PGP3. J Immunol Methods 2017; 445:23-30. [PMID: 28283408 DOI: 10.1016/j.jim.2017.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/19/2017] [Accepted: 03/03/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Urogenital infection with Chlamydia trachomatis is the most commonly diagnosed sexually transmitted infection in the developed world. Accurate measurement and therefore understanding the seroprevalence of urogenital C. trachomatis infections requires a rigorously optimised and validated ELISA. Previous ELISAs based on the C. trachomatis plasmid-encoded protein, PGP3, have been described but lack standardisation and critical controls or use a less common PGP3 as the capture antigen. METHODOLOGY/PRINCIPAL FINDINGS A sensitive and specific indirect ELISA was developed based on recombinant PGP3 derived from a urogenital strain of C. trachomatis, serovar E (pSW2), using a rigorous validation protocol. Serum samples were collected from 166 genitourinary medicine (GUM) clinic patients diagnosed as positive or negative for urogenital C. trachomatis infection by nucleic acid amplification testing (NAATs). Overall sensitivity and specificity compared to NAATs was 68.18% and 98.0%, respectively. Sensitivities for female and male samples were 71.93% and 64.15%, respectively. Comparison of samples from these patients diagnosed positive for C. trachomatis by NAAT and patients diagnosed negative by NAAT revealed statistical significance (p≤0.0001). CONCLUSIONS We have developed and validated a sensitive and specific ELISA to detect anti-PGP3 antibodies as an indicator of past and current infection to C. trachomatis using PGP3 from a common urogenital strain. It is anticipated that this assay will be used for seroepidemiological analysis of urogenital C. trachomatis in populations.
Collapse
Affiliation(s)
- Catherine E Winstanley
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, Hampshire, United Kingdom.
| | - Kyle H Ramsey
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Peter Marsh
- Public Health England Regional Microbiology Laboratory, Southampton General Hospital, Southampton, Hampshire, United Kingdom
| | - Ian N Clarke
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, Hampshire, United Kingdom
| |
Collapse
|
44
|
Chlamydia trachomatis Pgp3 Antibody Population Seroprevalence before and during an Era of Widespread Opportunistic Chlamydia Screening in England (1994-2012). PLoS One 2017; 12:e0152810. [PMID: 28129328 PMCID: PMC5271337 DOI: 10.1371/journal.pone.0152810] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/19/2016] [Indexed: 11/19/2022] Open
Abstract
Background Opportunistic chlamydia screening of <25 year-olds was nationally-implemented in England in 2008 but its impact on chlamydia transmission is poorly understood. We undertook a population-based seroprevalence study to explore the impact of screening on cumulative incidence of chlamydia, as measured by C.trachomatis-specific antibody. Methods Anonymised sera from participants in the nationally-representative Health Surveys for England (HSE) were tested for C.trachomatis antibodies using two novel Pgp3 enzyme-linked immunosorbent assays (ELISAs) as a marker of past infection. Determinants of being seropositive were explored using logistic regression among 16–44 year-old women and men in 2010 and 2012 (years when sexual behaviour questions were included in the survey) (n = 1,402 women; 1,119 men). Seroprevalence trends among 16–24 year-old women (n = 3,361) were investigated over ten time points from 1994–2012. Results In HSE2010/2012, Pgp3 seroprevalence among 16–44 year-olds was 24.4% (95%CI 22.0–27.1) in women and 13.9% (11.8–16.2) in men. Seroprevalence increased with age (up to 33.5% [27.5–40.2] in 30–34 year-old women, 18.7% [13.4–25.6] in 35–39 year-old men); years since first sex; number of lifetime sexual partners; and younger age at first sex. 76.7% of seropositive 16–24 year-olds had never been diagnosed with chlamydia. Among 16–24 year-old women, a non-significant decline in seroprevalence was observed from 2008–2012 (prevalence ratio per year: 0.94 [0.84–1.05]). Conclusion Our application of Pgp3 ELISAs demonstrates a high lifetime risk of chlamydia infection among women and a large proportion of undiagnosed infections. A decrease in age-specific cumulative incidence following national implementation of opportunistic chlamydia screening has not yet been demonstrated. We propose these assays be used to assess impact of chlamydia control programmes.
Collapse
|
45
|
Zhong G. Chlamydial Plasmid-Dependent Pathogenicity. Trends Microbiol 2016; 25:141-152. [PMID: 27712952 DOI: 10.1016/j.tim.2016.09.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/11/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
Most Chlamydia species carry a 7.5kb plasmid encoding eight open reading frames conventionally called plasmid glycoproteins 1-8 or pGP1-8. Although the plasmid is not critical for chlamydial growth in vitro, its role in chlamydial pathogenesis is clearly demonstrated in the genital tracts of mice infected with Chlamydia muridarum, a model for investigating the human pathogen Chlamydia trachomatis. Plasmid-free C. trachomatis is also attenuated in both the mouse genital tract and nonhuman primate ocular tissue. Deficiency in pGP3 alone, which is regulated by pGP4, largely reproduced the in vivo but not in vitro phenotypes of the plasmid-free organisms, suggesting that pGP3 is a key in vivo virulence factor. The positive and negative regulations of some chromosomal genes by pGP4 and pGP5, respectively, may allow the plasmid to promote chlamydial adaptation to varied animal tissue environments. The focus of this review is to summarize the progress on the pathogenic functions of the plasmid-encoded open reading frames, which may motivate further investigation of the molecular mechanisms of chlamydial pathogenicity and development of medical utility of the chlamydial plasmid system.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
46
|
Abstract
Etiology, transmission and protection: Chlamydia
trachomatis is the leading cause of bacterial sexually transmitted
infection (STI) globally. However, C. trachomatis also causes
trachoma in endemic areas, mostly Africa and the Middle East, and is a leading
cause of preventable blindness worldwide. Epidemiology, incidence and
prevalence: The World Health Organization estimates 131 million
new cases of C. trachomatis genital infection occur annually.
Globally, infection is most prevalent in young women and men (14-25 years),
likely driven by asymptomatic infection, inadequate partner treatment and
delayed development of protective immunity.
Pathology/Symptomatology: C.
trachomatis infects susceptible squamocolumnar or transitional
epithelial cells, leading to cervicitis in women and urethritis in men. Symptoms
are often mild or absent but ascending infection in some women may lead to
Pelvic Inflammatory Disease (PID), resulting in reproductive sequelae such as
ectopic pregnancy, infertility and chronic pelvic pain. Complications of
infection in men include epididymitis and reactive arthritis.
Molecular mechanisms of infection: Chlamydiae
manipulate an array of host processes to support their obligate intracellular
developmental cycle. This leads to activation of signaling pathways resulting in
disproportionate influx of innate cells and the release of tissue damaging
proteins and pro-inflammatory cytokines. Treatment and
curability: Uncomplicated urogenital infection is treated with
azithromycin (1 g, single dose) or doxycycline (100 mg twice daily x 7 days).
However, antimicrobial treatment does not ameliorate established disease. Drug
resistance is rare but treatment failures have been described. Development of an
effective vaccine that protects against upper tract disease or that limits
transmission remains an important goal.
Collapse
Affiliation(s)
- Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Morgan E Ferone
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
47
|
Yang Z, Tang L, Zhou Z, Zhong G. Neutralizing antichlamydial activity of complement by chlamydia-secreted protease CPAF. Microbes Infect 2016; 18:669-674. [PMID: 27436813 DOI: 10.1016/j.micinf.2016.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/22/2016] [Accepted: 07/05/2016] [Indexed: 01/19/2023]
Abstract
Ascending infection by sexually transmitted Chlamydia trachomatis is required for chlamydial induction of tubal pathology. To achieve ascension, the C. trachomatis organisms may have to spread from cell to cell, which inevitably exposes the organisms to extracellular mucosal effectors such as complement factors that are known to possess strong antichlamydial activities. Here, we report that the chlamydia-secreted protease CPAF efficiently neutralized complement factor C3-dependent antichlamydial activity. The neutralization was dependent on the proteolytic activity of CPAF and correlated with the CPAF-mediated degradation of complement factor C3 and factor B. As a result, CPAF preferentially inhibited the alternative complement activation pathway. The significance and limitation of these observations were discussed.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Lingli Tang
- Department of Clinic Diagnosis, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Endocrinology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangming Zhong
- Department of Microbiology & Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
48
|
Recombinant Human Peptidoglycan Recognition Proteins Reveal Antichlamydial Activity. Infect Immun 2016; 84:2124-2130. [PMID: 27160295 DOI: 10.1128/iai.01495-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/03/2016] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycan recognition proteins (PGLYRPs) are innate immune components that recognize the peptidoglycan and lipopolysaccharides of bacteria and exhibit antibacterial activity. Recently, the obligate intracellular parasite Chlamydia trachomatis was shown to have peptidoglycan. However, the antichlamydial activity of PGLYRPs has not yet been demonstrated. The aim of our study was to test whether PGLYRPs exhibit antibacterial activity against C. trachomatis Thus, we cloned the regions containing the human Pglyrp1, Pglyrp2, Pglyrp3, and Pglyrp4 genes for subsequent expression in human cell lines. We obtained stable HeLa cell lines that secrete recombinant human PGLYRPs into culture medium. We also generated purified recombinant PGLYRP1, -2, and -4 and confirmed their activities against Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. Furthermore, we examined the activities of recombinant PGLYRPs against C. trachomatis and determined their MICs. We also observed a decrease in the infectious ability of chlamydial elementary bodies in the next generation after a single exposure to PGLYRPs. Finally, we demonstrated that PGLYRPs attach to C. trachomatis elementary bodies and activate the expression of the chlamydial two-component stress response system. Thus, PGLYRPs inhibit the development of chlamydial infection.
Collapse
|