1
|
Krone L, Mahankali S, Geiger T. Cytolysin A is an intracellularly induced and secreted cytotoxin of typhoidal Salmonella. Nat Commun 2024; 15:8414. [PMID: 39341826 PMCID: PMC11438861 DOI: 10.1038/s41467-024-52745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Typhoidal Salmonella enterica serovars, such as Typhi and Paratyphi A, cause severe systemic infections, thereby posing a significant threat as human-adapted pathogens. This study focuses on cytolysin A (ClyA), a virulence factor essential for bacterial dissemination within the human body. We show that ClyA is exclusively expressed by intracellular S. Paratyphi A within the Salmonella-containing vacuole (SCV), regulated by the PhoP/Q system and SlyA. ClyA localizes in the bacterial periplasm, suggesting potential secretion. Deletion of TtsA, an essential Type 10 Secretion System component, completely abolishes intracellular ClyA detection and its presence in host cell supernatants. Host cells infected with wild-type S. Paratyphi A contain substantial ClyA, with supernatants capable of lysing neighboring cells. Notably, ClyA selectively lyses macrophages and erythrocytes while sparing epithelial cells. These findings identify ClyA as an intracellularly induced cytolysin, dependent on the SCV environment and secreted via a Type 10 Secretion System, with specific cytolytic activity.
Collapse
Affiliation(s)
- Lena Krone
- Max von Pettenkofer-Institute, Chair for Medical Microbiology and Hygiene, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Srujita Mahankali
- Max von Pettenkofer-Institute, Chair for Medical Microbiology and Hygiene, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Tobias Geiger
- Max von Pettenkofer-Institute, Chair for Medical Microbiology and Hygiene, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany.
| |
Collapse
|
2
|
Performance of Immunodiagnostic Tests for Typhoid Fever: A Systematic Review and Meta-Analysis. Pathogens 2021; 10:pathogens10091184. [PMID: 34578216 PMCID: PMC8467574 DOI: 10.3390/pathogens10091184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022] Open
Abstract
Typhoid fever, also known as typhoid, is a life-threatening bacterial infection that remains a global health concern. The infection is associated with a significant morbidity and mortality rate, resulting in an urgent need for specific and rapid detection tests to aid prevention and management of the disease. The present review aims to assess the specificity and sensitivity of the available literature on the immunodiagnostics of typhoid fever. A literature search was conducted using three databases (PubMed, ProQuest and Scopus) and manual searches through the references of identified full texts to retrieve relevant literature published between 1 January 2011 and 31 December 2020. Of the 577 studies identified in our search, 12 were included in further analysis. Lipopolysaccharides (LPS) and hemolysin E (HlyE) were the most frequently studied antigens. The specimens examined in these studies included serum and saliva. Using blood culture as the gold standard, anti-LPS IgA gave the highest sensitivity of 96% (95% CI: 93–99) and specificity of 96% (95% CI: 93–99) for distinguishing between typhoid cases and healthy controls, whereas the combination of anti-LPS and anti-flagellin total IgGAM gave the highest sensitivity of 93% (95% CI: 86–99) and specificity of 95% (95% CI: 89–100) for distinguishing typhoid cases and other febrile infections. A comparably high sensitivity of 92% (95% CI: 86–98) and specificity of 89% (95% CI: 78–100) were shown in testing based on detection of the combination of anti-LPS (IgA and IgM) and anti-HlyE IgG as well as a slightly lower sensitivity of 91% (95% CI: 74–100) in the case of anti-50kDa IgA. Anti-50kDa IgM had the lowest sensitivity of 36% (95% CI: 6–65) against both healthy and febrile controls. The development of a rapid diagnostic test targeting antibodies against lipopolysaccharides combined with flagellin appeared to be a suitable approach for the rapid detection test of typhoid fever. Saliva is added benefit for rapid typhoid diagnosis since it is less invasive. As a result, further studies could be done to develop additional approaches for adopting such samples.
Collapse
|
3
|
Enteric Fever Diagnosis: Current Challenges and Future Directions. Pathogens 2021; 10:pathogens10040410. [PMID: 33915749 PMCID: PMC8065732 DOI: 10.3390/pathogens10040410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022] Open
Abstract
Enteric fever is a life-threatening systemic febrile disease caused by Salmonella enterica serovars Typhi and Paratyphi (S. Typhi and S. Paratyphi). Unfortunately, the burden of the disease remains high primarily due to the global spread of various drug-resistant Salmonella strains despite continuous advancement in the field. An accurate diagnosis is critical for effective control of the disease. However, enteric fever diagnosis based on clinical presentations is challenging due to overlapping symptoms with other febrile illnesses that are also prevalent in endemic areas. Current laboratory tests display suboptimal sensitivity and specificity, and no diagnostic methods are available for identifying asymptomatic carriers. Several research programs have employed systemic approaches to identify more specific biomarkers for early detection and asymptomatic carrier detection. This review discusses the pros and cons of currently available diagnostic tests for enteric fever, the advancement of research toward improved diagnostic tests, and the challenges of discovering new ideal biomarkers and tests.
Collapse
|
4
|
Sathyanarayana P, Visweswariah SS, Ayappa KG. Mechanistic Insights into Pore Formation by an α-Pore Forming Toxin: Protein and Lipid Bilayer Interactions of Cytolysin A. Acc Chem Res 2021; 54:120-131. [PMID: 33291882 DOI: 10.1021/acs.accounts.0c00551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pore forming toxins (PFTs) are the largest class of bacterial toxins playing a central role in bacterial pathogenesis. They are proteins specifically designed to form nanochannels in the membranes of target cells, ultimately resulting in cell death and establishing infection. PFTs are broadly classified as α- and β-PFTs, depending on secondary structures that form the transmembrane channel. A unique feature about this class of proteins is the drastic conformational changes and complex oligomerization pathways that occur upon exposure to the plasma membrane. A molecular understanding of pore formation has implications in designing novel intervention strategies to combat rising antimicrobial resistance, targeted-cancer therapy, as well as designing nanopores for specialized technologies. Central to unraveling the pore formation pathway is the availability of high resolution crystal structures. In this regard, β-toxins are better understood, when compared with α-toxins whose pore forming mechanisms are complicated by an incomplete knowledge of the driving forces for amphiphatic membrane-inserted helices to organize into functional pores. With the publication of the first crystal structure for an α-toxin, cytolysin A (ClyA), in 2009 we embarked on an extensive multiscale study to unravel its pore forming mechanism. This Account represents the collective mechanistic knowledge gained in our laboratories using a variety of experimental and theoretical techniques which include large scale molecular dynamics (MD) simulations, kinetic modeling studies, single-molecule fluorescence imaging, and super-resolution spectroscopy. We reported MD simulations of the ClyA protomer, oligomeric intermediates, and full pore complex in a lipid bilayer and mapped the conformational transitions that accompany membrane binding. Using single-molecule fluorescence imaging, the conformational transition was experimentally verified by analysis of various diffusion states of membrane bound ClyA. Importantly, we have uncovered a hitherto unknown putative cholesterol binding motif in the membrane-inserted helix of ClyA. Distinct binding pockets for cholesterol formed by adjacent membrane-inserted helices are revealed in MD simulations. Cholesterol appears to play a dual role by stabilizing both the membrane-inserted protomer as well as oligomeric intermediates. Molecular dynamics simulations and kinetic modeling studies suggest that the membrane-inserted arcs oligomerize reversibly to form the predominant transmembrane oligomeric intermediates during pore formation. We posit that this mechanistic understanding of the complex action of α-PFTs has implications in unraveling pore assembly across the wider family of bacterial toxins. With emerging antimicrobial resistance, alternate therapies may rely on disrupting pore functionality or oligomerization of these pathogenic determinants utilized by bacteria, and our study includes assessing the potential for dendrimers as pore blockers.
Collapse
Affiliation(s)
- Pradeep Sathyanarayana
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 560012
| | - Sandhya S. Visweswariah
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 560012
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India 560012
| | - K. Ganapathy Ayappa
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 560012
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
5
|
Evaluation of Salmonella Typhi antigen YncE alongside HlyE for the detection of typhoid fever and its carriers. Med Microbiol Immunol 2020; 209:593-601. [PMID: 32246197 DOI: 10.1007/s00430-020-00667-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/16/2020] [Indexed: 01/10/2023]
Abstract
Typhoid fever is a disease caused by Salmonella Typhi that was implicated in millions of illnesses worldwide annually. Individuals that do not recover fully from typhoid fever can become asymptomatic carriers of the disease. Host antibodies against the S. Typhi antigens, HlyE (for acute typhoid) and YncE (for carriers) were previously reported to be useful biomarkers for the disease. Here, we expressed and purified recombinant HlyE and YncE antigens and tested the IgG, IgA and IgM responses in 422 sera samples retrieved from acute typhoid patients, other febrile, food handlers, and healthy individuals. The results showed that HlyE-IgG, -IgA and -IgM ELISAs have a collective sensitivity of 83% while YncE-IgG and -IgA ELISAs identified 16 possible carriers based on their antibody profiles. The identification of sensitive biomarkers for typhoid carrier detection is crucial for disease eradication.
Collapse
|
6
|
Roderer D, Benke S, Schuler B, Glockshuber R. Soluble Oligomers of the Pore-forming Toxin Cytolysin A from Escherichia coli Are Off-pathway Products of Pore Assembly. J Biol Chem 2016; 291:5652-5663. [PMID: 26757820 DOI: 10.1074/jbc.m115.700757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 11/06/2022] Open
Abstract
The α-pore-forming toxin Cytolysin A (ClyA) is responsible for the hemolytic activity of various Escherichia coli and Salmonella enterica strains. Soluble ClyA monomers spontaneously assemble into annular dodecameric pore complexes upon contact with membranes or detergent. At ClyA monomer concentrations above ∼100 nm, the rate-limiting step in detergent- or membrane- induced pore assembly is the unimolecular reaction from the monomer to the assembly-competent protomer, which then oligomerizes rapidly to active pore complexes. In the absence of detergent, ClyA slowly forms soluble oligomers. Here we show that soluble ClyA oligomers cannot form dodecameric pore complexes after the addition of detergent and are hemolytically inactive. In addition, we demonstrate that the natural cysteine pair Cys-87/Cys-285 of ClyA forms a disulfide bond under oxidizing conditions and that both the oxidized and reduced ClyA monomers assemble to active pores via the same pathway in the presence of detergent, in which an unstructured, monomeric intermediate is transiently populated. The results show that the oxidized ClyA monomer assembles to pore complexes about one order of magnitude faster than the reduced monomer because the unstructured intermediate of oxidized ClyA is less stable and dissolves more rapidly than the reduced intermediate. Moreover, we show that oxidized ClyA forms soluble, inactive oligomers in the absence of detergent much faster than the reduced monomer, providing an explanation for several contradictory reports in which oxidized ClyA had been described as inactive.
Collapse
Affiliation(s)
- Daniel Roderer
- From the Institute of Molecular Biology and Biophysics ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland and.
| | - Stephan Benke
- the Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Benjamin Schuler
- the Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Rudi Glockshuber
- From the Institute of Molecular Biology and Biophysics ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland and
| |
Collapse
|
7
|
Ong EBB, Ignatius J, Anthony AA, Aziah I, Ismail A, Lim TS. Multi-isotype antibody responses against the multimeric Salmonella Typhi recombinant hemolysin E antigen. Microbiol Immunol 2015; 59:43-7. [PMID: 25399538 DOI: 10.1111/1348-0421.12211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/16/2014] [Accepted: 11/11/2014] [Indexed: 11/27/2022]
Abstract
The detection and measurement of different antibody isotypes in the serum provide valuable indicators of the different stages of typhoid infection. Here, the ability of S. Typhi recombinant hemolysin E (HlyE) to detect multi-isotype antibody responses in sera of patients with typhoid and paratyphoid A was investigated using an indirect antibody immunoassay. Nanogram amounts of HlyE were found to be sufficient for detection of IgG and IgA isotypes and, in a study of individuals' sera (n = 100), the immunoassay was able to distinguish between typhoid and non-typhoid sera. The overall sensitivity, specificity and efficiency of the ELISA were 70% (39/56), 100% (44/44) and 83% respectively.
Collapse
Affiliation(s)
- Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Minden, Malaysia
| | | | | | | | | | | |
Collapse
|
8
|
Jofré MR, Rodríguez LM, Villagra NA, Hidalgo AA, Mora GC, Fuentes JA. RpoS integrates CRP, Fis, and PhoP signaling pathways to control Salmonella Typhi hlyE expression. BMC Microbiol 2014; 14:139. [PMID: 24885225 PMCID: PMC4105832 DOI: 10.1186/1471-2180-14-139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/21/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND SPI-18 is a pathogenicity island found in some Salmonella enterica serovars, including S. Typhi. SPI-18 harbors two ORFs organized into an operon, hlyE and taiA genes, both implicated in virulence. Regarding the hlyE regulation in S. Typhi, it has been reported that RpoS participates as transcriptional up-regulator under low pH and high osmolarity. In addition, CRP down-regulates hlyE expression during exponential growth. Previously, it has been suggested that there is another factor related to catabolite repression, different from CRP, involved in the down-regulation of hlyE. Moreover, PhoP-dependent hlyE up-regulation has been reported in bacteria cultured simultaneously under low pH and low concentration of Mg2+. Nevertheless, the relative contribution of each environmental signal is not completely clear. In this work we aimed to better understand the regulation of hlyE in S. Typhi and the integration of different environmental signals through global regulators. RESULTS We found that Fis participates as a CRP-independent glucose-dependent down-regulator of hlyE. Also, Fis and CRP seem to exert the repression over hlyE through down-regulating rpoS. Moreover, PhoP up-regulates hlyE expression via rpoS under low pH and low Mg2+ conditions. CONCLUSIONS All these results together show that, at least under the tested conditions, RpoS is the central regulator in the hlyE regulatory network, integrating multiple environmental signals and global regulators.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan A Fuentes
- Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
9
|
Immunoproteomic analysis of antibody in lymphocyte supernatant in patients with typhoid fever in Bangladesh. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:280-5. [PMID: 24371257 DOI: 10.1128/cvi.00661-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have previously shown that an assay based on detection of anti-Salmonella enterica serotype Typhi antibodies in supernatant of lymphocytes harvested from patients presenting with typhoid fever (antibody in lymphocyte supernatant [ALS] assay) can identify 100% of patients with blood culture-confirmed typhoid fever in Bangladesh. In order to define immunodominant proteins within the S. Typhi membrane preparation used as antigen in these prior studies and to identify potential biomarkers unique to S. Typhi bacteremic patients, we probed microarrays containing 2,724 S. Typhi proteins with ALS collected at the time of clinical presentation from 10 Bangladeshis with acute typhoid fever. We identified 62 immunoreactive antigens when evaluating both the IgG and IgA responses. Immune responses to 10 of these antigens discriminated between individuals with acute typhoid infection and healthy control individuals from areas where typhoid infection is endemic, as well as Bangladeshi patients presenting with fever who were subsequently confirmed to have a nontyphoid illness. Using an ALS enzyme-linked immunosorbent assay (ELISA) format and purified antigen, we then confirmed that immune responses against the antigen with the highest immunoreactivity (hemolysin E [HlyE]) correctly identified individuals with acute typhoid or paratyphoid fever in Dhaka, Bangladesh. These observations suggest that purified antigens could be used with ALS and corresponding acute-phase activated B lymphocytes in diagnostic platforms to identify acutely infected patients, even in areas where enteric fever is endemic.
Collapse
|
10
|
Los FCO, Randis TM, Aroian RV, Ratner AJ. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 2013; 77:173-207. [PMID: 23699254 PMCID: PMC3668673 DOI: 10.1128/mmbr.00052-12] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pore-forming toxins (PFTs) are the most common bacterial cytotoxic proteins and are required for virulence in a large number of important pathogens, including Streptococcus pneumoniae, group A and B streptococci, Staphylococcus aureus, Escherichia coli, and Mycobacterium tuberculosis. PFTs generally disrupt host cell membranes, but they can have additional effects independent of pore formation. Substantial effort has been devoted to understanding the molecular mechanisms underlying the functions of certain model PFTs. Likewise, specific host pathways mediating survival and immune responses in the face of toxin-mediated cellular damage have been delineated. However, less is known about the overall functions of PFTs during infection in vivo. This review focuses on common themes in the area of PFT biology, with an emphasis on studies addressing the roles of PFTs in in vivo and ex vivo models of colonization or infection. Common functions of PFTs include disruption of epithelial barrier function and evasion of host immune responses, which contribute to bacterial growth and spreading. The widespread nature of PFTs make this group of toxins an attractive target for the development of new virulence-targeted therapies that may have broad activity against human pathogens.
Collapse
Affiliation(s)
| | - Tara M. Randis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Raffi V. Aroian
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Adam J. Ratner
- Department of Pediatrics, Columbia University, New York, New York, USA
| |
Collapse
|
11
|
Neurologic manifestations associated with an outbreak of typhoid fever, Malawi--Mozambique, 2009: an epidemiologic investigation. PLoS One 2012; 7:e46099. [PMID: 23226492 PMCID: PMC3513310 DOI: 10.1371/journal.pone.0046099] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 08/28/2012] [Indexed: 12/02/2022] Open
Abstract
Background The bacterium Salmonella enterica serovar Typhi causes typhoid fever, which is typically associated with fever and abdominal pain. An outbreak of typhoid fever in Malawi-Mozambique in 2009 was notable for a high proportion of neurologic illness. Objective Describe neurologic features complicating typhoid fever during an outbreak in Malawi-Mozambique Methods Persons meeting a clinical case definition were identified through surveillance, with laboratory confirmation of typhoid by antibody testing or blood/stool culture. We gathered demographic and clinical information, examined patients, and evaluated a subset of patients 11 months after onset. A sample of persons with and without neurologic signs was tested for vitamin B6 and B12 levels and urinary thiocyanate. Results Between March – November 2009, 303 cases of typhoid fever were identified. Forty (13%) persons had objective neurologic findings, including 14 confirmed by culture/serology; 27 (68%) were hospitalized, and 5 (13%) died. Seventeen (43%) had a constellation of upper motor neuron findings, including hyperreflexia, spasticity, or sustained ankle clonus. Other neurologic features included ataxia (22, 55%), parkinsonism (8, 20%), and tremors (4, 10%). Brain MRI of 3 (ages 5, 7, and 18 years) demonstrated cerebral atrophy but no other abnormalities. Of 13 patients re-evaluated 11 months later, 11 recovered completely, and 2 had persistent hyperreflexia and ataxia. Vitamin B6 levels were markedly low in typhoid fever patients both with and without neurologic signs. Conclusions Neurologic signs may complicate typhoid fever, and the diagnosis should be considered in persons with acute febrile neurologic illness in endemic areas.
Collapse
|
12
|
Huang LJ, Cui J, Piao HH, Hong Y, Choy HE, Ryu PY. Molecular cloning and characterization of clyA genes in various serotypes of Salmonella enterica. J Microbiol 2010; 48:663-7. [PMID: 21046345 DOI: 10.1007/s12275-010-9268-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 06/08/2010] [Indexed: 11/28/2022]
Abstract
Cytolysin A (ClyA) is a pore-forming hemolytic protein encoded by the clyA gene. It has been identified in Salmonella enterica serovars Typhi and Paratyphi A. To identify and characterize the clyA genes in various Salmonella enterica strains, 21 different serotypes of strains isolated from clinical specimens were presently examined. Full-length clyA genes were found in S. enterica serovar Brandenburg, Indiana, Panama, and Schwarzengrund strains by polymerase chain reaction amplification. The ClyA proteins from these four strains showed >97% amino acid identity to that of S. enterica serovar Typhi. Although all four serovars expressed detectable levels of ClyA as determined by Western blot analysis, they did not show a strong hemolytic effect on blood agar, indicating that ClyA may not be efficiently expressed or secreted. Escherichia coli transformed with clyA genes from the four serovars enhanced production of ClyA proteins and hemolytic activities to a level similar to S. enterica serovar Typhi ClyA. The present results suggest that ClyA may play a role in the pathogenesis of S. enterica serovar Brandenburg, Indiana, Panama and Schwarzengrund.
Collapse
Affiliation(s)
- Lan Ji Huang
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Cytotoxicity of the Bacillus cereus Nhe enterotoxin requires specific binding order of its three exoprotein components. Infect Immun 2010; 78:3813-21. [PMID: 20624910 DOI: 10.1128/iai.00247-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study focuses on the interaction of the three components of the Bacillus cereus Nhe enterotoxin with particular emphasis on the functional roles of NheB and NheC. The results demonstrated that both NheB and NheC were able to bind to Vero cells directly while NheA lacked this ability. It was also shown that Nhe-induced cytotoxicity required a specific binding order of the individual components whereby the presence of NheC in the priming step as well as the presence of NheA in the final incubation step was mandatory. Priming of cells with NheB alone and addition of NheA plus NheC in the second step failed to induce toxic effects. Furthermore, in solution, excess NheC inhibited binding of NheB to Vero cells, whereas priming of cells with excess NheC resulted in full toxicity if unbound NheC was removed before addition of NheB. By using mutated NheC proteins where the two cysteine residues in the predicted beta-tongue were replaced with glycine (NheCcys-) or where the entire hydrophobic stretch was deleted (NheChr-), the predicted hydrophobic beta-tongue of NheC was found essential for binding to cell membranes but not for interaction with NheB in solution. All data presented here are compatible with the following model. The first step in the mode of action of Nhe is associated with binding of NheC and NheB to the cell surface and probably accompanied by conformational changes. These events allow subsequent binding of NheA, leading to cell lysis.
Collapse
|
14
|
Characterization of anti-Salmonella enterica serotype Typhi antibody responses in bacteremic Bangladeshi patients by an immunoaffinity proteomics-based technology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1188-95. [PMID: 20573880 DOI: 10.1128/cvi.00104-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Salmonella enterica serotype Typhi is the cause of typhoid fever and a human-restricted pathogen. Currently available typhoid vaccines provide 50 to 90% protection for 2 to 5 years, and available practical diagnostic assays to identify individuals with typhoid fever lack sensitivity and/or specificity. Identifying immunogenic S. Typhi antigens expressed during human infection could lead to improved diagnostic assays and vaccines. Here we describe a platform immunoaffinity proteomics-based technology (IPT) that involves the use of columns charged with IgG, IgM, or IgA antibody fractions recovered from humans bacteremic with S. Typhi to capture S. Typhi proteins that were subsequently identified by mass spectrometry. This screening tool identifies immunogenic proteins recognized by antibodies from infected hosts. Using this technology and the plasma of patients with S. Typhi bacteremia in Bangladesh, we identified 57 proteins of S. Typhi, including proteins known to be immunogenic (PagC, HlyE, OmpA, and GroEL) and a number of proteins present in the human-restricted serotypes S. Typhi and S. Paratyphi A but rarely found in broader-host-range Salmonella spp. (HlyE, CdtB, PltA, and STY1364). We categorized identified proteins into a number of major groupings, including those involved in energy metabolism, protein synthesis, iron homeostasis, and biosynthetic and metabolic functions and those predicted to localize to the outer membrane. We assessed systemic and mucosal anti-HlyE responses in S. Typhi-infected patients and detected anti-HlyE responses at the time of clinical presentation in patients but not in controls. These findings could assist in the development of improved diagnostic assays.
Collapse
|
15
|
Mutations affecting export and activity of cytolysin A from Escherichia coli. J Bacteriol 2010; 192:4001-11. [PMID: 20511497 DOI: 10.1128/jb.01283-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytolysin A (known as ClyA, HlyE, and SheA) is a cytolytic pore-forming protein toxin found in several Escherichia coli and Salmonella enterica strains. The structure of its water-soluble monomeric form and that of dodecameric ClyA pores is known, but the mechanisms of ClyA export from bacterial cells and of pore assembly are only partially understood. Here we used site-directed mutagenesis to study the importance of different regions of the E. coli ClyA protein for export and activity. The data indicate that ClyA translocation to the periplasm requires several protein segments located closely adjacent to each other in the "tail" domain of the ClyA monomer, namely, the N- and C-terminal regions and the hydrophobic sequence ranging from residues 89 to 101. Deletion of most of the "head" domain of the monomer (residues 181 to 203), on the other hand, did not strongly affect ClyA secretion, suggesting that the tail domain plays a particular role in export. Furthermore, we found that the N-terminal amphipathic helix alphaA1 of ClyA is crucial for the formation and the properties of the transmembrane channel, and hence for hemolytic activity. Several mutations affecting the C-terminal helix alphaG, the "beta-tongue" region in the head domain, or the hydrophobic region in the tail domain of the ClyA monomer strongly impaired the hemolytic activity and reduced the activity toward planar lipid bilayer membranes but did not totally prevent formation of wild-type-like channels in these artificial membranes. The latter regions thus apparently promote membrane interaction without being directly required for pore formation in a lipid bilayer.
Collapse
|
16
|
Complete genome sequence and comparative metabolic profiling of the prototypical enteroaggregative Escherichia coli strain 042. PLoS One 2010; 5:e8801. [PMID: 20098708 PMCID: PMC2808357 DOI: 10.1371/journal.pone.0008801] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 12/14/2009] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Escherichia coli can experience a multifaceted life, in some cases acting as a commensal while in other cases causing intestinal and/or extraintestinal disease. Several studies suggest enteroaggregative E. coli are the predominant cause of E. coli-mediated diarrhea in the developed world and are second only to Campylobacter sp. as a cause of bacterial-mediated diarrhea. Furthermore, enteroaggregative E. coli are a predominant cause of persistent diarrhea in the developing world where infection has been associated with malnourishment and growth retardation. METHODS In this study we determined the complete genomic sequence of E. coli 042, the prototypical member of the enteroaggregative E. coli, which has been shown to cause disease in volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains revealing previously uncharacterised virulence factors including a variety of secreted proteins and a capsular polysaccharide biosynthetic locus. In addition, by using Biolog Phenotype Microarrays we have provided a full metabolic profiling of E. coli 042 and the non-pathogenic lab strain E. coli K-12. We have highlighted the genetic basis for many of the metabolic differences between E. coli 042 and E. coli K-12. CONCLUSION This study provides a genetic context for the vast amount of experimental and epidemiological data published thus far and provides a template for future diagnostic and intervention strategies.
Collapse
|
17
|
Hunt S, Green J, Artymiuk PJ. Hemolysin E (HlyE, ClyA, SheA) and related toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 677:116-26. [PMID: 20687485 DOI: 10.1007/978-1-4419-6327-7_10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Certain strains of Escherichia coli, Salmonella enterica and Shigella flexneri produce a pore-forming toxin hemolysin E (HlyE), also known as cytolysin A (ClyA) and silent hemolysin, locus A (SheA). HlyE lyses erythrocytes and mammalian cells, forming transmembrane pores with a minimum internal diameter of-25 A. We review the current knowledge of HlyE structure and function in its solution and pore forms, models for membrane insertion, its potential use in biotechnology applications and its relationship to a wider superfamily of toxins.
Collapse
Affiliation(s)
- Stuart Hunt
- The Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
18
|
Fuentes JA, Jofré MR, Villagra NA, Mora GC. RpoS- and Crp-dependent transcriptional control of Salmonella Typhi taiA and hlyE genes: role of environmental conditions. Res Microbiol 2009; 160:800-8. [PMID: 19835951 DOI: 10.1016/j.resmic.2009.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/23/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
A novel pathogenicity island, SPI-18, carries the taiA-hlyE operon, encoding virulence factors in Salmonella Typhi. To determine the effects of certain environmental conditions on the expression of these genes, beta-galactosidase assays, RT-PCR reactions, western blot analyses and measurement of hemolytic activity were performed. The conditions studied are those likely found by S. Typhi during infection in the human host. We found RpoS-dependent transcriptional upregulation in low pH and high osmolarity for both genes. Our results show that oxygen depletion apparently did not affect transcription of the taiA-hlyE operon. On the other hand, the transcriptional regulator Crp, previously described as an activator of hlyE transcription in Escherichia coli, is involved in transcriptional repression of hlyE in S. Typhi. Moreover, addition of glucose to the growth medium results in decreasing the hlyE mRNA, suggesting that there is another factor related to catabolite repression different from Crp and involved in downregulation of hlyE in S. Typhi.
Collapse
Affiliation(s)
- Juan A Fuentes
- Laboratorio de Microbiología, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, República 217, Santiago de Chile, Chile.
| | | | | | | |
Collapse
|
19
|
Charles RC, Harris JB, Chase MR, Lebrun LM, Sheikh A, LaRocque RC, Logvinenko T, Rollins SM, Tarique A, Hohmann EL, Rosenberg I, Krastins B, Sarracino DA, Qadri F, Calderwood SB, Ryan ET. Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium. PLoS One 2009; 4:e6994. [PMID: 19746165 PMCID: PMC2736619 DOI: 10.1371/journal.pone.0006994] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 07/24/2009] [Indexed: 12/20/2022] Open
Abstract
Background S. Typhi, a human-restricted Salmonella
enterica serovar, causes a systemic intracellular infection in
humans (typhoid fever). In comparison, S. Typhimurium
causes gastroenteritis in humans, but causes a systemic typhoidal illness in
mice. The PhoP regulon is a well studied two component (PhoP/Q) coordinately
regulated network of genes whose expression is required for intracellular
survival of S. enterica. Methodology/Principal Findings Using high performance liquid chromatography mass spectrometry (HPLC-MS/MS),
we examined the protein expression profiles of three sequenced S.
enterica strains: S. Typhimurium LT2,
S. Typhi CT18, and S. Typhi Ty2 in
PhoP-inducing and non-inducing conditions in vitro and
compared these results to profiles of
phoP−/Q−
mutants derived from S. Typhimurium LT2 and
S. Typhi Ty2. Our analysis identified 53 proteins in
S. Typhimurium LT2 and 56 proteins in
S. Typhi that were regulated in a PhoP-dependent manner. As
expected, many proteins identified in S. Typhi demonstrated
concordant differential expression with a homologous protein in
S. Typhimurium. However, three proteins (HlyE, STY1499, and
CdtB) had no homolog in S. Typhimurium. HlyE is a
pore-forming toxin. STY1499 encodes a stably expressed protein of unknown
function transcribed in the same operon as HlyE. CdtB is a cytolethal
distending toxin associated with DNA damage, cell cycle arrest, and cellular
distension. Gene expression studies confirmed up-regulation of mRNA of HlyE,
STY1499, and CdtB in S. Typhi in PhoP-inducing
conditions. Conclusions/Significance This study is the first protein expression study of the PhoP virulence
associated regulon using strains of Salmonella mutant in
PhoP, has identified three Typhi-unique proteins (CdtB, HlyE and STY1499)
that are not present in the genome of the wide host-range Typhimurium, and
includes the first protein expression profiling of a live attenuated
bacterial vaccine studied in humans (Ty800).
Collapse
Affiliation(s)
- Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Effect of iron on cytolysin A expression in Salmonella enterica serovar Typhi. J Microbiol 2009; 47:479-85. [PMID: 19763423 DOI: 10.1007/s12275-009-0039-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 03/29/2009] [Indexed: 12/23/2022]
Abstract
Previously, a novel protein ClyA (Cytolysin A) has been identified in Escherichia coli K-12, Salmonella enterica serovars Typhi and Paratyphi A and Shigella. Salmonella spp. synthesize substantial amounts of ClyA upon infection of the human host, although the mechanism by which ClyA is induced in vivo is unclear. Since environmental signals could control the expression of virulence determinants, ClyA expression in S. Typhi Ty2 was tested by Western blotting in the presence of normal pooled human serum (NPS). The level of ClyA expression increased in the presence of NPS in a concentration-dependent manner. RPMI 1640 medium similarly induced ClyA expression. ClyA expression was inversely proportional to the concentration of iron in RPMI medium. Therefore, we speculated that iron inhibited the expression of ClyA in S. Typhi Ty2, and free iron depletion may be one of the causes of S. Typhi-mediated induction of ClyA in vivo. Transcription from a clyA-lacZ fusion gene decreased as iron concentration increased, but not as significantly as the ClyA protein expression. It is concluded that the regulatory effect of iron on clyA expression is mainly at translational level.
Collapse
|
21
|
Faucher SP, Forest C, Béland M, Daigle F. A novel PhoP-regulated locus encoding the cytolysin ClyA and the secreted invasin TaiA of Salmonella enterica serovar Typhi is involved in virulence. Microbiology (Reading) 2009; 155:477-488. [DOI: 10.1099/mic.0.022988-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Salmonella enterica serovar Typhi causes a human-restricted systemic infection called typhoid fever. We have identified a Typhi genomic region encoding two ORFs, STY1498 and STY1499, that are expressed during infection of human macrophages and organized in an operon. STY1498 corresponds to clyA, which encodes a pore-forming cytolysin, and STY1499 encodes a 27 kDa protein, without any attributed function, which we have named TaiA (Typhi-associated invasin A). In order to evaluate the roles of these genes in Typhi pathogenesis, isogenic Typhi strains harbouring a non-polar mutation of either clyA or taiA were constructed. In macrophages, taiA was involved in increasing phagocytosis, as taiA deletion reduced bacterial uptake, whereas clyA reduced or controlled bacterial growth, as clyA deletion enhanced Typhi survival within macrophages without affecting cytotoxicity. In epithelial cells, deletion of taiA had no effect on invasion, whereas deletion of clyA enhanced the Typhi invasion rate, and reduced cytotoxicity. Overexpression of taiA in Typhi or in Escherichia coli resulted in a higher invasion rate of epithelial cells. We have demonstrated that TaiA is secreted independently of both the Salmonella pathogenicity island (SPI)-1 and the SPI-2 type three secretion systems. We have shown that this operon is regulated by the virulence-associated regulator PhoP. Moreover, our results revealed that products of this operon might be involved in promoting the use of macrophages as a sheltered reservoir for Typhi and allowing long-term persistence inside the host.
Collapse
Affiliation(s)
- Sébastien P. Faucher
- Department of Microbiology and Immunology, University of Montreal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Chantal Forest
- Department of Microbiology and Immunology, University of Montreal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Maxime Béland
- Department of Microbiology and Immunology, University of Montreal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - France Daigle
- Department of Microbiology and Immunology, University of Montreal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
22
|
von Rhein C, Bauer S, Simon V, Ludwig A. Occurrence and characteristics of the cytolysin A gene in Shigella strains and other members of the family Enterobacteriaceae. FEMS Microbiol Lett 2008; 287:143-8. [PMID: 18754791 DOI: 10.1111/j.1574-6968.2008.01290.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cytolysin A (ClyA, HlyE, SheA) is a hemolytic pore-forming toxin found in Escherichia coli and Salmonella enterica serovars Typhi and Paratyphi A. In the present study, analysis of several Shigella strains revealed that they harbor only nonfunctional clyA gene copies that have been inactivated either by the integration of insertion sequence (IS) elements (Shigella dysenteriae, Shigella boydii, and Shigella sonnei strains) or by a frameshift mutation (Shigella flexneri). Shigella dysenteriae and S. boydii strains also exhibited IS-associated deletions at the clyA locus. PCR and Southern blot analyses as well as database searches indicated that clyA-related DNA sequences are completely absent in strains belonging to various other genera of the family Enterobacteriaceae. According to these data, ClyA may play a role only for a rather small subset of the enteric bacteria.
Collapse
Affiliation(s)
- Christine von Rhein
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Klinikum der Johann Wolfgang Goethe-Universität, Paul-Ehrlich-Strasse 40, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
23
|
Hunt S, Moir AJG, Tzokov S, Bullough PA, Artymiuk PJ, Green J. The formation and structure of Escherichia coli K-12 haemolysin E pores. MICROBIOLOGY (READING, ENGLAND) 2008; 154:633-642. [PMID: 18227266 DOI: 10.1099/mic.0.2007/011700-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
Some enteric bacteria synthesize a pore-forming toxin, HlyE, which is cytolytic and cytotoxic to host cells. Measurement of HlyE binding to erythrocyte ghosts and the kinetics of HlyE-mediated erythrocyte lysis suggests that interaction with target membranes is not the rate-limiting step in the formation of HlyE pores, but that there is a temperature-dependent lag phase before a functional pore is formed. Circular dichroism and fluorescence energy transfer analyses show that HlyE protomers retain an alpha-helical structure when oligomerized to form a pore consisting of parallel HlyE protomers. Comparison of the proteolytic sensitivities of the water-soluble and oligomeric forms of HlyE identifies inner and outer surfaces of the pore. This new information has been used to constrain a model of the HlyE pore, which allows a more detailed interpretation of previous low-resolution 3D reconstructions and suggests a novel mechanism for insertion of HlyE into target membranes.
Collapse
Affiliation(s)
- Stuart Hunt
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Arthur J G Moir
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Svetomir Tzokov
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Per A Bullough
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Peter J Artymiuk
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jeffrey Green
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
24
|
Lithgow JK, Haider F, Roberts IS, Green J. Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12. Mol Microbiol 2007; 66:685-98. [PMID: 17892462 PMCID: PMC2156107 DOI: 10.1111/j.1365-2958.2007.05950.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Haemolysin E is a cytolytic pore-forming toxin found in several Escherichia coli and Salmonella enterica strains. Expression of hlyE is repressed by the global regulator H-NS (histone-like nucleoid structuring protein), but can be activated by the regulator SlyA. Expression of a chromosomal hlyE–lacZ fusion in an E. coli slyA mutant was reduced to 60% of the wild-type level confirming a positive role for SlyA. DNase I footprint analysis revealed the presence of two separate SlyA binding sites, one located upstream, the other downstream of the hlyE transcriptional start site. These sites overlap AT-rich H-NS binding sites. Footprint and gel shift data showed that whereas H-NS prevented binding of RNA polymerase (RNAP) at the hlyE promoter (PhlyE), SlyA allowed binding of RNAP, but inhibited binding of H-NS. Accordingly, in vitro transcription analyses showed that addition of SlyA protein relieved H-NS-mediated repression of hlyE. Based on these observations a model for SlyA/H-NS regulation of hlyE expression is proposed in which the relative concentrations of SlyA and H-NS govern the nature of the nucleoprotein complexes formed at PhlyE. When H-NS is dominant RNAP binding is inhibited and hlyE expression is silenced; when SlyA is dominant H-NS binding is inhibited allowing RNAP access to the promoter facilitating hlyE transcription.
Collapse
Affiliation(s)
- James K Lithgow
- Department of Molecular Biology and Biotechnology, The University of SheffieldWestern Bank, Sheffield S10 2TN, UK.
| | - Fouzia Haider
- Department of Molecular Biology and Biotechnology, The University of SheffieldWestern Bank, Sheffield S10 2TN, UK.
| | - Ian S Roberts
- 1.800 Stopford Building, Faculty of Life Sciences, University of ManchesterOxford Road, Manchester M13 9PT, UK.
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, The University of SheffieldWestern Bank, Sheffield S10 2TN, UK.
- For correspondence. E-mail ; Tel. (+44) 114 222 4403; Fax (+44) 0114 222 2800
| |
Collapse
|