1
|
Alam S, Kumaresan V, Palanisamy R, Zhang Y, Seshu J, Xiong N, Zhang G. Coxiella burnetii Nine Mile phase I primary infection derived protective immunity against C. burnetii reinfection in mice depends on both B and T cells, but T cells play a critical role. Front Immunol 2024; 15:1427822. [PMID: 39469719 PMCID: PMC11513344 DOI: 10.3389/fimmu.2024.1427822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular Gram-negative bacterium that causes acute and chronic Q fever in humans. Acute Q fever is usually a flu-like, self-limiting or treatable illness, but some infections can turn into a severe and sometimes fatal chronic disease. There is currently no FDA-approved vaccine available for the prevention of human Q fever in the US, development of a safe and effective vaccine for the prevention of human Q fever remains an important goal for public health. However, there is a fundamental gap in knowledge regarding the mechanism of protective immunity against C. burnetii infection. To understand the mechanism of C. burnetii infection induced protective immunity, we examined if C. burnetii Nine Mile phase I (NMI) infection induces protection against C. burnetii reinfection in mice. Our results indicate that NMI-infected mice conferred significant protection against C. burnetii reinfection. We also found that NMI infection derived protection did not depend on the routes of infection and antibodies are required for NMI infection derived protection. In addition, NMI infection elicited a comparable level of protection in Wild type, CD4+ T cell deficient, and CD8+ T cell deficient mice, partial protection in B cell deficient mice but no protection in T cell deficient mice. These results suggest that both B cells and T cells are required for NMI-infection derived protection, but T cells may play a critical role. Therefore, the new generation vaccine for the prevention of human Q fever should be focused on boosting both humoral and T cell immune responses.
Collapse
Affiliation(s)
- Shawkat Alam
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Venkatesh Kumaresan
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Rajesh Palanisamy
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Yan Zhang
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Janakiram Seshu
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center San Antonio, San Antonio, TX, United States
| | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
2
|
Palanisamy R, Zhang Y, Zhang G. Role of Type 4B Secretion System Protein, IcmE, in the Pathogenesis of Coxiella burnetii. Pathogens 2024; 13:405. [PMID: 38787259 PMCID: PMC11123719 DOI: 10.3390/pathogens13050405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular Gram-negative bacterium that causes Q fever, a life-threatening zoonotic disease. C. burnetii replicates within an acidified parasitophorous vacuole derived from the host lysosome. The ability of C. burnetii to replicate and achieve successful intracellular life in the cell cytosol is vastly dependent on the Dot/Icm type 4B secretion system (T4SSB). Although several T4SSB effector proteins have been shown to be important for C. burnetii virulence and intracellular replication, the role of the icmE protein in the host-C. burnetii interaction has not been investigated. In this study, we generated a C. burnetii Nine Mile Phase II (NMII) mutant library and identified 146 transposon mutants with a single transposon insertion. Transposon mutagenesis screening revealed that disruption of icmE gene resulted in the attenuation of C. burnetii NMII virulence in SCID mice. ELISA analysis indicated that the levels of pro-inflammatory cytokines, including interleukin-1β, IFN-γ, TNF-α, and IL-12p70, in serum from Tn::icmE mutant-infected SCID mice were significantly lower than those in serum from wild-type (WT) NMII-infected mice. Additionally, Tn::icmE mutant bacteria were unable to replicate in mouse bone marrow-derived macrophages (MBMDM) and human macrophage-like cells (THP-1). Immunoblotting results showed that the Tn::icmE mutant failed to activate inflammasome components such as IL-1β, caspase 1, and gasdermin-D in THP-1 macrophages. Collectively, these results suggest that the icmE protein may play a vital role in C. burnetii virulence, intracellular replication, and activation of inflammasome mediators during NMII infection.
Collapse
Affiliation(s)
| | | | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
3
|
Raju Paul S, Scholzen A, Reeves PM, Shepard R, Hess JM, Dzeng RK, Korek S, Garritsen A, Poznansky MC, Sluder AE. Cytometry profiling of ex vivo recall responses to Coxiella burnetii in previously naturally exposed individuals reveals long-term changes in both adaptive and innate immune cellular compartments. Front Immunol 2023; 14:1249581. [PMID: 37885896 PMCID: PMC10598782 DOI: 10.3389/fimmu.2023.1249581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Q fever, caused by the intracellular bacterium Coxiella burnetii, is considered an occupational and biodefense hazard and can result in debilitating long-term complications. While natural infection and vaccination induce humoral and cellular immune responses, the exact nature of cellular immune responses to C. burnetii is incompletely understood. The current study seeks to investigate more deeply the nature of long-term cellular recall responses in naturally exposed individuals by both cytokine release assessment and cytometry profiling. Methods Individuals exposed during the 2007-2010 Dutch Q fever outbreak were grouped in 2015, based on a C. burnetii-specific IFNγ release assay (IGRA), serological status, and self-reported clinical symptoms during initial infection, into asymptomatic IGRA-negative/seronegative controls, and three IGRA-positive groups (seronegative/asymptomatic; seropositive/asymptomatic and seropositive/symptomatic). Recall responses following in vitro re-stimulation with heat-inactivated C. burnetii in whole blood, were assessed in 2016/2017 by cytokine release assays (n=55) and flow cytometry (n=36), and in blood mononuclear cells by mass cytometry (n=36). Results Cytokine release analysis showed significantly elevated IL-2 responses in all seropositive individuals and elevated IL-1β responses in those recovered from symptomatic infection. Comparative flow cytometry analysis revealed significantly increased IFNγ, TNFα and IL-2 recall responses by CD4 T cells and higher IL-6 production by monocytes from symptomatic, IGRA-positive/seropositive individuals compared to controls. Mass cytometry profiling and unsupervised clustering analysis confirmed recall responses in seropositive individuals by two activated CD4 T cell subsets, one characterized by a strong Th1 cytokine profile (IFNγ+IL-2+TNFα+), and identified C. burnetii-specific activation of CD8 T cells in all IGRA-positive groups. Remarkably, increased C. burnetii-specific responses in IGRA-positive individuals were also observed in three innate cell subpopulations: one characterized by an IFNγ+IL-2+TNFα+ Th1 cytokine profile and lack of canonical marker expression, and two IL-1β-, IL-6- and IL-8-producing CD14+ monocyte subsets that could be the drivers of elevated secretion of innate cytokines in pre-exposed individuals. Discussion These data highlight that there are long-term increased responses to C. burnetii in both adaptive and innate cellular compartments, the latter being indicative of trained immunity. These findings warrant future studies into the protective role of these innate responses and may inform future Q fever vaccine design.
Collapse
Affiliation(s)
- Susan Raju Paul
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | | | - Patrick M. Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | - Robert Shepard
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | - Joshua M. Hess
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | - Richard K. Dzeng
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | - Skylar Korek
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | | | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | - Ann E. Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
4
|
Sam G, Stenos J, Graves SR, Rehm BHA. Q fever immunology: the quest for a safe and effective vaccine. NPJ Vaccines 2023; 8:133. [PMID: 37679410 PMCID: PMC10484952 DOI: 10.1038/s41541-023-00727-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Q fever is an infectious zoonotic disease, caused by the Gram-negative bacterium Coxiella burnetii. Transmission occurs from livestock to humans through inhalation of a survival form of the bacterium, the Small Cell Variant, often via handling of animal parturition products. Q fever manifests as an acute self-limiting febrile illness or as a chronic disease with complications such as vasculitis and endocarditis. The current preventative human Q fever vaccine Q-VAX poses limitations on its worldwide implementation due to reactogenic responses in pre-sensitized individuals. Many strategies have been undertaken to develop a universal Q fever vaccine but with little success to date. The mechanisms of the underlying reactogenic responses remain only partially understood and are important factors in the development of a safe Q fever vaccine. This review provides an overview of previous and current experimental vaccines developed for use against Q fever and proposes approaches to develop a vaccine that establishes immunological memory while eliminating harmful reactogenic responses.
Collapse
Affiliation(s)
- Gayathri Sam
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital, Geelong, VIC, 3220, Australia
| | - Stephen R Graves
- Australian Rickettsial Reference Laboratory, University Hospital, Geelong, VIC, 3220, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, 2567, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
5
|
Hester MM, Oliveira LVN, Wang R, Mou Z, Lourenco D, Ostroff GR, Specht CA, Levitz SM. Cross-reactivity between vaccine antigens from the chitin deacetylase protein family improves survival in a mouse model of cryptococcosis. Front Immunol 2022; 13:1015586. [PMID: 36248898 PMCID: PMC9554598 DOI: 10.3389/fimmu.2022.1015586] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Meningitis due to the fungal pathogen Cryptococcus neoformans is estimated to cause nearly 200,000 deaths annually, mostly in resource-limited regions. We previously identified cryptococcal protein antigens which, when delivered in glucan particles, afford vaccine-mediated protection against an otherwise lethal infection. Many of these proteins exhibit significant homology to other similar cryptococcal proteins leading us to hypothesize that protection may be augmented by immunologic cross-reactivity to multiple members of a protein family. To examine the significance of protein cross-reactivity in vaccination, we utilized strains of Cryptococcus that are genetically deficient in select antigens, yet are still lethal in mice. Vaccination with a protein without homologs (e.g., Mep1 and Lhc1) protected against challenge with wild-type Cryptococcus, but not against a deletion strain lacking that protein. Contrastingly, vaccination with a single chitin deacetylase (Cda) protein protected against the corresponding deletion strain, presumably due to host recognition of one or more other family members still expressed in this strain. Vaccination with a single Cda protein induced cross-reactive antibody and interferon-gamma (IFNγ) immune responses to other Cda protein family members. Paradoxically, we saw no evidence of cross-protection within the carboxypeptidase family of proteins. Factors such as in vivo protein expression and the degree of homology across the family could inform the extent to which vaccine-mediated immunity is amplified. Together, these data suggest a role for prioritizing protein families in fungal vaccine design: increasing the number of immune targets generated by a single antigen may improve efficacy while diminishing the risk of vaccine-resistant strains arising from gene mutations.
Collapse
Affiliation(s)
- Maureen M. Hester
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Lorena V. N. Oliveira
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Ruiying Wang
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Zhongming Mou
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Diana Lourenco
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Gary R. Ostroff
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Charles A. Specht
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Stuart M. Levitz
- Department of Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
6
|
Sluder AE, Raju Paul S, Moise L, Dold C, Richard G, Silva-Reyes L, Baeten LA, Scholzen A, Reeves PM, Pollard AJ, Garritsen A, Bowen RA, De Groot AS, Rollier C, Poznansky MC. Evaluation of a Human T Cell-Targeted Multi-Epitope Vaccine for Q Fever in Animal Models of Coxiella burnetii Immunity. Front Immunol 2022; 13:901372. [PMID: 35651616 PMCID: PMC9149306 DOI: 10.3389/fimmu.2022.901372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
T cell-mediated immunity plays a central role in the control and clearance of intracellular Coxiella burnetii infection, which can cause Q fever. Therefore, we aimed to develop a novel T cell-targeted vaccine that induces pathogen-specific cell-mediated immunity to protect against Q fever in humans while avoiding the reactogenicity of the current inactivated whole cell vaccine. Human HLA class II T cell epitopes from C. burnetii were previously identified and selected by immunoinformatic predictions of HLA binding, conservation in multiple C. burnetii isolates, and low potential for cross-reactivity with the human proteome or microbiome. Epitopes were selected for vaccine inclusion based on long-lived human T cell recall responses to corresponding peptides in individuals that had been naturally exposed to the bacterium during a 2007-2010 Q fever outbreak in the Netherlands. Multiple viral vector-based candidate vaccines were generated that express concatemers of selected epitope sequences arranged to minimize potential junctional neo-epitopes. The vaccine candidates caused no antigen-specific reactogenicity in a sensitized guinea pig model. A subset of the vaccine epitope peptides elicited antigenic recall responses in splenocytes from C57BL/6 mice previously infected with C. burnetii. However, immunogenicity of the vaccine candidates in C57BL/6 mice was dominated by a single epitope and this was insufficient to confer protection against an infection challenge, highlighting the limitations of assessing human-targeted vaccine candidates in murine models. The viral vector-based vaccine candidates induced antigen-specific T cell responses to a broader array of epitopes in cynomolgus macaques, establishing a foundation for future vaccine efficacy studies in this large animal model of C. burnetii infection.
Collapse
Affiliation(s)
- Ann E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | - Susan Raju Paul
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | | | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, The National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | - Laura Silva-Reyes
- Oxford Vaccine Group, Department of Paediatrics, The National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Laurie A Baeten
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Patrick M Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, The National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | - Richard A Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | | | - Christine Rollier
- Oxford Vaccine Group, Department of Paediatrics, The National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
7
|
Xiao M, Tian F, Liu X, Zhou Q, Pan J, Luo Z, Yang M, Yi C. Virus Detection: From State-of-the-Art Laboratories to Smartphone-Based Point-of-Care Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105904. [PMID: 35393791 PMCID: PMC9110880 DOI: 10.1002/advs.202105904] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2022] [Indexed: 05/07/2023]
Abstract
Infectious virus outbreaks pose a significant challenge to public healthcare systems. Early and accurate virus diagnosis is critical to prevent the spread of the virus, especially when no specific vaccine or effective medicine is available. In clinics, the most commonly used viral detection methods are molecular techniques that involve the measurement of nucleic acids or proteins biomarkers. However, most clinic-based methods require complex infrastructure and expensive equipment, which are not suitable for low-resource settings. Over the past years, smartphone-based point-of-care testing (POCT) has rapidly emerged as a potential alternative to laboratory-based clinical diagnosis. This review summarizes the latest development of virus detection. First, laboratory-based and POCT-based viral diagnostic techniques are compared, both of which rely on immunosensing and nucleic acid detection. Then, various smartphone-based POCT diagnostic techniques, including optical biosensors, electrochemical biosensors, and other types of biosensors are discussed. Moreover, this review covers the development of smartphone-based POCT diagnostics for various viruses including COVID-19, Ebola, influenza, Zika, HIV, et al. Finally, the prospects and challenges of smartphone-based POCT diagnostics are discussed. It is believed that this review will aid researchers better understand the current challenges and prospects for achieving the ultimate goal of containing disease-causing viruses worldwide.
Collapse
Affiliation(s)
- Meng Xiao
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Feng Tian
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHunghomHong Kong999077P. R. China
| | - Xin Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Qiaoqiao Zhou
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Jiangfei Pan
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Zhaofan Luo
- Department of Clinical LaboratoryThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Mo Yang
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHunghomHong Kong999077P. R. China
| | - Changqing Yi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| |
Collapse
|
8
|
Fratzke AP, van Schaik EJ, Samuel JE. Immunogenicity and Reactogenicity in Q Fever Vaccine Development. Front Immunol 2022; 13:886810. [PMID: 35693783 PMCID: PMC9177948 DOI: 10.3389/fimmu.2022.886810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterium which, in humans, causes the disease Q fever. Although Q fever is most often a mild, self-limiting respiratory disease, it can cause a range of severe syndromes including hepatitis, myocarditis, spontaneous abortion, chronic valvular endocarditis, and Q fever fatigue syndrome. This agent is endemic worldwide, except for New Zealand and Antarctica, transmitted via aerosols, persists in the environment for long periods, and is maintained through persistent infections in domestic livestock. Because of this, elimination of this bacterium is extremely challenging and vaccination is considered the best strategy for prevention of infection in humans. Many vaccines against C. burnetii have been developed, however, only a formalin-inactivated, whole cell vaccine derived from virulent C. burnetii is currently licensed for use in humans. Unfortunately, widespread use of this whole cell vaccine is impaired due to the severity of reactogenic responses associated with it. This reactogenicity continues to be a major barrier to access to preventative vaccines against C. burnetii and the pathogenesis of this remains only partially understood. This review provides an overview of past and current research on C. burnetii vaccines, our knowledge of immunogenicity and reactogenicity in C. burnetii vaccines, and future strategies to improve the safety of vaccines against C. burnetii.
Collapse
Affiliation(s)
- Alycia P. Fratzke
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Erin J. van Schaik
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| | - James E. Samuel
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
9
|
Kumaresan V, Alam S, Zhang Y, Zhang G. The Feasibility of Using Coxiella burnetii Avirulent Nine Mile Phase II Viable Bacteria as a Live Attenuated Vaccine Against Q fever. Front Immunol 2021; 12:754690. [PMID: 34795669 PMCID: PMC8594375 DOI: 10.3389/fimmu.2021.754690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to explore if viable C. burnetii avirulent Nine Mile phase II (NMII) can elicit protective immunity against virulent NM phase I (NMI) infection. Interestingly, mice immunized with viable NMII elicited significant protection against NMI infection at different time points post-immunization. Viable NMII induced a dose-dependent NMI-specific IgG response in mice, but all doses of NMII-immunized mice conferred a similar level of protection. Comparing different routes of immunization indicated that intranasally immunized mice showed significantly higher levels of protection than other immunization routes. The observation that viable NMII induced a similar level of long-term protection against NMI challenge as the formalin-inactivated NMI vaccine (PIV) suggests that viable NMII bacteria can induce a similar level of long-term protection against virulent NMI challenge as the PIV. Viable NMII also induced significant protection against challenge with virulent Priscilla and Scurry strains, suggesting that viable NMII can elicit broad protection. Immune sera and splenocytes from viable NMII-immunized mice are protective against NMI infection, but immune serum-receiving mice did not control NMI replication. Additionally, viable NMII conferred a comparable level of protection in wild-type, CD4+ T cell-deficient, and CD8+ T cell-deficient mice, and partial protection in B cell-deficient mice. However, NMII-immunized T cell-deficient mice were unable to prevent C. burnetii replication. Thus, both B cells and T cells are required for viable NMII-induced protective immunity but T cells may play a critical role. Collectively, this study demonstrates the feasibility of using avirulent NMII as a live attenuated vaccine against human Q fever.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Shawkat Alam
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Yan Zhang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
10
|
Q Fever Vaccine Development: Current Strategies and Future Considerations. Pathogens 2021; 10:pathogens10101223. [PMID: 34684172 PMCID: PMC8539696 DOI: 10.3390/pathogens10101223] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Q fever is a zoonotic disease caused by the intracellular pathogen Coxiella burnetii. This disease typically manifests as a self-limiting, febrile illness known as acute Q fever. Due to the aerosol transmissibility, environmental persistence, and infectivity of C. burnetii, this pathogen is a notable bioterrorism threat. Despite extensive efforts to develop next-generation human Q fever vaccines, only one vaccine, Q-Vax®, is commercially available. Q-Vax® is a phase I whole-cell vaccine, and its licensed use is limited to Australia, presumably due to the potential for a post-vaccination hypersensitivity response. Pre-clinical Q fever vaccine development is a major area of interest, and diverse approaches have been undertaken to develop an improved Q fever vaccine. Following a brief history of Q fever vaccine development, current approaches will be discussed along with future considerations for an improved Q fever vaccine.
Collapse
|
11
|
Long CM, Beare PA, Cockrell DC, Fintzi J, Tesfamariam M, Shaia CI, Heinzen RA. Contributions of lipopolysaccharide and the type IVB secretion system to Coxiella burnetii vaccine efficacy and reactogenicity. NPJ Vaccines 2021; 6:38. [PMID: 33741986 PMCID: PMC7979919 DOI: 10.1038/s41541-021-00296-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
Coxiella burnetii is the bacterial causative agent of the zoonosis Q fever. The current human Q fever vaccine, Q-VAX®, is a fixed, whole cell vaccine (WCV) licensed solely for use in Australia. C. burnetii WCV administration is associated with a dermal hypersensitivity reaction in people with pre-existing immunity to C. burnetii, limiting wider use. Consequently, a less reactogenic vaccine is needed. Here, we investigated contributions of the C. burnetii Dot/Icm type IVB secretion system (T4BSS) and lipopolysaccharide (LPS) in protection and reactogenicity of fixed WCVs. A 32.5 kb region containing 23 dot/icm genes was deleted in the virulent Nine Mile phase I (NMI) strain and the resulting mutant was evaluated in guinea pig models of C. burnetii infection, vaccination-challenge, and post-vaccination hypersensitivity. The NMI ∆dot/icm strain was avirulent, protective as a WCV against a robust C. burnetii challenge, and displayed potentially altered reactogenicity compared to NMI. Nine Mile phase II (NMII) strains of C. burnetii that produce rough LPS, were similarly tested. NMI was significantly more protective than NMII as a WCV; however, both vaccines exhibited similar reactogenicity. Collectively, our results indicate that, like phase I LPS, the T4BSS is required for full virulence by C. burnetii. Conversely, unlike phase I LPS, the T4BSS is not required for vaccine-induced protection. LPS length does not appear to contribute to reactogenicity while the T4BSS may contribute to this response. NMI ∆dot/icm represents an avirulent phase I strain with full vaccine efficacy, illustrating the potential of genetically modified C. burnetii as improved WCVs.
Collapse
Affiliation(s)
- Carrie M Long
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Diane C Cockrell
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan Fintzi
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mahelat Tesfamariam
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl I Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
12
|
Failure of CD4 T Cell-Deficient Hosts To Control Chronic Nontyphoidal Salmonella Infection Leads to Exacerbated Inflammation, Chronic Anemia, and Altered Myelopoiesis. Infect Immun 2020; 89:IAI.00417-20. [PMID: 33046510 DOI: 10.1128/iai.00417-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022] Open
Abstract
Immunocompromised patients are more susceptible to recurrent nontyphoidal Salmonella (NTS) bacteremia. A key manifestation of HIV infection is the loss of CD4 T cells, which are crucial for immunity to Salmonella infection. We characterized the consequences of CD4 T cell depletion in mice where virulent Salmonella establish chronic infection, similar to chronic NTS disease in humans. Salmonella-infected, CD4-depleted 129X1/SvJ mice remained chronically colonized for at least 5 weeks, displaying increased splenomegaly and more severe splenitis than infected mice with CD4 T cells. Mature erythrocytes, immature erythroid cells, and phagocytes accounted for the largest increase in splenic cellularity. Anemia, which is associated with increased mortality in Salmonella-infected humans, was exacerbated by CD4 depletion in infected mice and was accompanied by increased splenic sequestration of erythrocytes and fewer erythropoietic elements in the bone marrow, despite significantly elevated levels of circulating erythropoietin. Splenic sequestration of red blood cells, the appearance of circulating poikilocytes, and elevated proinflammatory cytokines suggest inflammation-induced damage to erythrocytes contributes to anemia and splenic retention of damaged cells in infected animals. Depleting CD4 T cells led to increased myeloid cells in peripheral blood, spleen, and bone marrow, as well as expansion of CD8 T cells, which has been observed in CD4-depleted humans. This work describes a mouse model of Salmonella infection that recapitulates several aspects of human disease and will allow us to investigate the interplay of innate and adaptive immune functions with chronic inflammation, anemia, and susceptibility to Salmonella infection.
Collapse
|
13
|
Reeves PM, Raju Paul S, Baeten L, Korek SE, Yi Y, Hess J, Sobell D, Scholzen A, Garritsen A, De Groot AS, Moise L, Brauns T, Bowen R, Sluder AE, Poznansky MC. Novel multiparameter correlates of Coxiella burnetii infection and vaccination identified by longitudinal deep immune profiling. Sci Rep 2020; 10:13311. [PMID: 32770104 PMCID: PMC7414860 DOI: 10.1038/s41598-020-69327-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Q-fever is a flu-like illness caused by Coxiella burnetii (Cb), a highly infectious intracellular bacterium. There is an unmet need for a safe and effective vaccine for Q-fever. Correlates of immune protection to Cb infection are limited. We proposed that analysis by longitudinal high dimensional immune (HDI) profiling using mass cytometry combined with other measures of vaccination and protection could be used to identify novel correlates of effective vaccination and control of Cb infection. Using a vaccine-challenge model in HLA-DR transgenic mice, we demonstrated significant alterations in circulating T-cell and innate immune populations that distinguished vaccinated from naïve mice within 10 days, and persisted until at least 35 days post-vaccination. Following challenge, vaccinated mice exhibited reduced bacterial burden and splenomegaly, along with distinct effector T-cell and monocyte profiles. Correlation of HDI data to serological and pathological measurements was performed. Our data indicate a Th1-biased response to Cb, consistent with previous reports, and identify Ly6C, CD73, and T-bet expression in T-cell, NK-cell, and monocytic populations as distinguishing features between vaccinated and naïve mice. This study refines the understanding of the integrated immune response to Cb vaccine and challenge, which can inform the assessment of candidate vaccines for Cb.
Collapse
Affiliation(s)
- P M Reeves
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA.
| | - S Raju Paul
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - L Baeten
- Colorado State University, Fort Collins, CO, USA
| | - S E Korek
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - Y Yi
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - J Hess
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - D Sobell
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - A Scholzen
- InnatOss Laboratories B.V, Oss, The Netherlands
| | - A Garritsen
- InnatOss Laboratories B.V, Oss, The Netherlands
| | - A S De Groot
- EpiVax, Inc, Providence, RI, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - L Moise
- EpiVax, Inc, Providence, RI, USA.,Institute for Immunology and Informatics, Department of Cell and Molecular Biology, University of Rhode Island, Providence, RI, USA
| | - T Brauns
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - R Bowen
- Colorado State University, Fort Collins, CO, USA
| | - A E Sluder
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA
| | - M C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|