1
|
Kenchappa DB, Korolkova O, Sakwe N, Odiase P, Izban MG, Sakwe A, Ochieng J. Fetuin-A Modulates Tumor Growth and Invasion in a Basal-like Triple Negative Breast Cancer Cell line, MDA-MB-468. JOURNAL OF PHARMACY AND PHARMACOLOGY RESEARCH 2025; 9:1-9. [PMID: 40124677 PMCID: PMC11928157 DOI: 10.26502/fjppr.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The present studies were undertaken to address the innovative role of fetuin-A in the growth and invasion potential in a triple negative breast cancer (TNBC) cell line, MDA-MB-468. Basal like TNBC that express high levels of ectopic fetuin-A have poorer prognosis for the patients compared to those that express low levels of the protein. We overexpressed fetuin-A in MDA-MB-468 and then determined the invasive potential of fetuin-A overexpressing cells vs controls transfected with empty vector. We also determined the adhesion and growth potential of the cells in the presence of only fetuin-A in serum free medium and also in complete medium. Our data suggest that fetuin-A overexpression significantly enhances the invasive potential of the cells and also the expression of Toll like receptor 4 (TLR4) on these cells. More importantly, the cells rely on fetuin-A-TLR4 signaling network for growth and invasion because the specific TLR4 inhibitor CLI-095 (resatorvid) abrogates fetuin-A mediated growth and invasion. Taken together, the data suggest that fetuin-A-TLR4 signaling network plays a significant role in the growth and invasion potential of TNBC.
Collapse
Affiliation(s)
- Divya B Kenchappa
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, 1005 Dr. D.B. Todd Blvd., Nashville, TN 37208
- Present Address: Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Olga Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, 1005 Dr. D.B. Todd Blvd., Nashville, TN 37208
| | - Nobelle Sakwe
- Department of Biomedical Science, Graduate School, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208
| | - Peace Odiase
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, 1005 Dr. D.B. Todd Blvd., Nashville, TN 37208
| | - Michael G Izban
- Department of Pathology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208
| | - Amos Sakwe
- Department of Biomedical Science, Graduate School, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208
| | - Josiah Ochieng
- Department of Biomedical Science, Graduate School, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208
| |
Collapse
|
2
|
Bhattacharjee A, Sahoo OS, Sarkar A, Bhattacharya S, Chowdhury R, Kar S, Mukherjee O. Infiltration to infection: key virulence players of Helicobacter pylori pathogenicity. Infection 2024; 52:345-384. [PMID: 38270780 DOI: 10.1007/s15010-023-02159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
PURPOSE This study aims to comprehensively review the multifaceted factors underlying the successful colonization and infection process of Helicobacter pylori (H. pylori), a prominent Gram-negative pathogen in humans. The focus is on elucidating the functions, mechanisms, genetic regulation, and potential cross-interactions of these elements. METHODS Employing a literature review approach, this study examines the intricate interactions between H. pylori and its host. It delves into virulence factors like VacA, CagA, DupA, Urease, along with phase variable genes, such as babA, babC, hopZ, etc., giving insights about the bacterial perspective of the infection The association of these factors with the infection has also been added in the form of statistical data via Funnel and Forest plots, citing the potential of the virulence and also adding an aspect of geographical biasness to the virulence factors. The biochemical characteristics and clinical relevance of these factors and their effects on host cells are individually examined, both comprehensively and statistically. RESULTS H. pylori is a Gram-negative, spiral bacterium that successfully colonises the stomach of more than half of the world's population, causing peptic ulcers, gastric cancer, MALT lymphoma, and other gastro-duodenal disorders. The clinical outcomes of H. pylori infection are influenced by a complex interplay between virulence factors and phase variable genes produced by the infecting strain and the host genetic background. A meta-analysis of the prevalence of all the major virulence factors has also been appended. CONCLUSION This study illuminates the diverse elements contributing to H. pylori's colonization and infection. The interplay between virulence factors, phase variable genes, and host genetics determines the outcome of the infection. Despite biochemical insights into many factors, their comprehensive regulation remains an understudied area. By offering a panoramic view of these factors and their functions, this study enhances understanding of the bacterium's perspective, i.e. H. pylori's journey from infiltration to successful establishment within the host's stomach.
Collapse
Affiliation(s)
- Arghyadeep Bhattacharjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
- Department of Microbiology, Kingston College of Science, Beruanpukuria, Barasat, West Bengal, 700219, India
| | - Om Saswat Sahoo
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Ahana Sarkar
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Saurabh Bhattacharya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001, Jerusalem, Israel
| | - Rukhsana Chowdhury
- School of Biological Sciences, RKM Vivekananda Educational and Research Institute Narendrapur, Kolkata, India
| | - Samarjit Kar
- Department of Mathematics, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Oindrilla Mukherjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
3
|
Fan J, Zhu J, Xu H. Strategies of Helicobacter pylori in evading host innate and adaptive immunity: insights and prospects for therapeutic targeting. Front Cell Infect Microbiol 2024; 14:1342913. [PMID: 38469348 PMCID: PMC10925771 DOI: 10.3389/fcimb.2024.1342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Meliț LE, Mărginean CO, Borka Balas R. The Most Recent Insights into the Roots of Gastric Cancer. Life (Basel) 2024; 14:95. [PMID: 38255710 PMCID: PMC10817233 DOI: 10.3390/life14010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Helicobacter pylori (H. pylori) is the most common bacterial infection worldwide, usually being acquired during childhood, and its persistence into adulthood represents one of the main contributors of gastric carcinogenesis. Based on these statements, it would be of great importance to know if the most early premalignant transformation occurs in children or later since, this would enable the development of effective anti-tumorigenesis strategies. The interplay between H. pylori virulence factors, the host's responses modified by this infection, and the gastric microecology are complex and eventually lead to the development of gastric cancer in susceptible individuals. Several biomarkers were identified as major contributors of this long-lasting process, such as pepsinogens, gastrin 17, lipid-, glucose- and iron-metabolism parameters, immunity players, aberrant bacterial DNA methylation, H. pylori virulence factors, and hallmarks of gastric dysbiosis. Several of these biomarkers were also identified in children with H. pylori infection, independently of the presence of premalignant lesions, which were also proven to be present in a subgroup of H. pylori-infected children, especially those carrying extremely virulent strains. Therefore, the most incipient premalignant gastric changes might indeed occur early during childhood, opening a promising research gate for further studies to delineate the border between infection and cancer.
Collapse
Affiliation(s)
| | - Cristina Oana Mărginean
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Târgu Mureș, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (L.E.M.)
| | | |
Collapse
|
5
|
Zhang X, Zhang K, Yan L, Wang P, Zhao F, Hu S. The role of toll-like receptors in immune tolerance induced by Helicobacter pylori infection. Helicobacter 2023; 28:e13020. [PMID: 37691007 DOI: 10.1111/hel.13020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Helicobacter pylori (H. pylori) is a gram-negative, microaerobic bacterium that colonizes the gastric mucosa in about half of the world's population. H. pylori infection can lead to various diseases. Chronic infection by H. pylori exposes the gastric mucosa to bacterial components such as lipopolysaccharide (LPS), outer membrane vesicles (OMVs), and several toxic proteins. Infected with H. pylori activates the release of pro-inflammatory factors and triggers inflammatory responses that damage the gastric mucosa. As the only microorganism that permanently colonizes the human stomach, H. pylori can suppress host immunity to achieve long-term colonization. Toll-like receptors (TLRs) play a crucial role in T-cell activation, promoting innate immune responses and immune tolerance during H. pylori infection. Among the 10 TLRs found in humans, TLR2, TLR4, TLR5, and TLR9 have been thoroughly investigated in relation to H. pylori-linked immune regulation. In the present review, we provide a comprehensive analysis of the various mechanisms employed by different TLRs in the induction of immune tolerance upon H. pylori infection, which will contribute to the research of pathogenic mechanism of H. pylori.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Ke Zhang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Linlin Yan
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Pengfei Wang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Fan Zhao
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Shoukui Hu
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
6
|
Nakazawa N, Yokobori T, Sohda M, Hosoi N, Watanabe T, Shimoda Y, Ide M, Sano A, Sakai M, Erkhem-Ochir B, Ogawa H, Shirabe K, Saeki H. Significance of Lipopolysaccharides in Gastric Cancer and Their Potential as a Biomarker for Nivolumab Sensitivity. Int J Mol Sci 2023; 24:11790. [PMID: 37511547 PMCID: PMC10380503 DOI: 10.3390/ijms241411790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Lipopolysaccharides are a type of polysaccharide mainly present in the bacterial outer membrane of Gram-negative bacteria. Recent studies have revealed that lipopolysaccharides contribute to the immune response of the host by functioning as a cancer antigen. We retrospectively recruited 198 patients with gastric cancer who underwent surgery. The presence of lipopolysaccharides was determined using immunohistochemical staining, with the intensity score indicating positivity. The relationship between lipopolysaccharides and CD8, PD-L1, TGFBI (a representative downstream gene of TGF-β signaling), wnt3a, and E-cadherin (epithelial-mesenchymal transition marker) was also investigated. Thereafter, we identified 20 patients with advanced gastric cancer receiving nivolumab and investigated the relationship between lipopolysaccharides and nivolumab sensitivity. After staining for lipopolysaccharides in the nucleus of cancer cells, 150 negative (75.8%) and 48 positive cases (24.2%) were found. The lipopolysaccharide-positive group showed increased cancer stromal TGFBI expression (p < 0.0001) and PD-L1 expression in cancer cells (p = 0.0029). Lipopolysaccharide positivity was significantly correlated with increased wnt3a signaling (p = 0.0028) and decreased E-cadherin expression (p = 0.0055); however, no significant correlation was found between lipopolysaccharide expression and overall survival rate (p = 0.71). In contrast, high TGFBI expression in the presence of LPS was associated with a worse prognosis than that in the absence of LPS (p = 0.049). Among cases receiving nivolumab, the lipopolysaccharide-negative and -positive groups had disease control rates of 66.7% and 11.8%, respectively (p = 0.088). Lipopolysaccharide positivity was associated with wnt3a, TGF-β signaling, and epithelial-mesenchymal transition and was considered to tend to promote therapeutic resistance to nivolumab.
Collapse
Affiliation(s)
- Nobuhiro Nakazawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University, Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Nobuhiro Hosoi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Takayoshi Watanabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Yuki Shimoda
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Munenori Ide
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Akihiko Sano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Bilguun Erkhem-Ochir
- Division of Integrated Oncology Research, Gunma University, Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8510, Japan
| |
Collapse
|
7
|
Liu M, Hu Z, Wang C, Zhang Y. The TLR/MyD88 signalling cascade in inflammation and gastric cancer: the immune regulatory network of Helicobacter pylori. J Mol Med (Berl) 2023; 101:767-781. [PMID: 37195446 DOI: 10.1007/s00109-023-02332-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
Helicobacter pylori-induced chronic gastritis represents a well-established risk factor for gastric cancer (GC). However, the mechanism by which chronic inflammation caused by H. pylori induces the development of GC is unclear. H. pylori can influence host cell signalling pathways to induce gastric disease development and mediate cancer promotion and progression. Toll-like receptors (TLRs), as pattern recognition receptors (PRRs), play a key role in the gastrointestinal innate immune response, and their signalling has been implicated in the pathogenesis of an increasing number of inflammation-associated cancers. The core adapter myeloid differentiation factor-88 (MyD88) is shared by most TLRs and functions primarily in H. pylori-triggered innate immune signalling. MyD88 is envisioned as a potential target for the regulation of immune responses and is involved in the regulation of tumourigenesis in a variety of cancer models. In recent years, the TLR/MyD88 signalling pathway has received increasing attention for its role in regulating innate and adaptive immune responses, inducing inflammatory activation and promoting tumour formation. In addition, TLR/MyD88 signalling can manipulate the expression of infiltrating immune cells and various cytokines in the tumour microenvironment (TME). In this review, we discuss the pathogenetic regulatory mechanisms of the TLR/MyD88 signalling cascade pathway and its downstream molecules in H. pylori infection-induced-associated GC. The focus is to elucidate the immunomolecular mechanisms of pathogen recognition and innate immune system activation of H. pylori in the TME of inflammation-associated GC. Ultimately, this study will provide insight into the mechanism of H. pylori-induced chronic inflammation-induced GC development and provide thoughts for GC prevention and treatment strategies.
Collapse
Affiliation(s)
- Meiqi Liu
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China
| | - Zhizhong Hu
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China
| | - Chengkun Wang
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China.
| | - Yang Zhang
- Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, China.
| |
Collapse
|
8
|
Joon A, Chandel S, Ghosh S. Role of TLRs in EGFR-mediated IL-8 secretion by enteroaggregative Escherichia coli-infected cultured human intestinal epithelial cells. J Cell Commun Signal 2023:10.1007/s12079-023-00776-5. [PMID: 37347390 DOI: 10.1007/s12079-023-00776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging enteric pathogen associated with persistent diarrhea in travelers, immunocompromised patients and children worldwide. However, the pathogenesis of this organism is yet to be established. In this study, the role of Toll-like receptors (TLRs) was evaluated in epidermal growth factor receptor (EGFR)-mediated IL-8 secretion by EAEC-infected human small intestinal and colonic epithelial cells (INT-407 and HCT-15, respectively). We observed that EAEC-induced upregulation of TLR2, TLR4 and TLR5 transcripts in both types of cells, and the maximum level of these transcripts was seen in cells infected with EAEC-T8 (an invasive clinical isolate). All these TLRs made a significant contribution to the EAEC-T8-mediated EGFR activation in these cells. Furthermore, these TLRs were found to be associated with activation of the downstream effectors (ERK-1/2, PI3 kinase and Akt) and transcription factors (NF-κB, c-Jun, c-Fos and STAT-3) of EGFR-mediated signal transduction pathways. Moreover, the involvement of these TLRs was also noted in IL-8 secretion by both EAEC-T8-infected cell types. Our findings suggest that EAEC-induced upregulation of TLR2, TLR4 and TLR5 is important for the IL-8 response via EGFR-mediated signal transduction pathways in these cells.
Collapse
Affiliation(s)
- Archana Joon
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Shipra Chandel
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
9
|
Li S, Zhao W, Xia L, Kong L, Yang L. How Long Will It Take to Launch an Effective Helicobacter pylori Vaccine for Humans? Infect Drug Resist 2023; 16:3787-3805. [PMID: 37342435 PMCID: PMC10278649 DOI: 10.2147/idr.s412361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Helicobacter pylori infection often occurs in early childhood, and can last a lifetime if not treated with medication. H. pylori infection can also cause a variety of stomach diseases, which can only be treated with a combination of antibiotics. Combinations of antibiotics can cure H. pylori infection, but it is easy to relapse and develop drug resistance. Therefore, a vaccine is a promising strategy for prevention and therapy for the infection of H. pylori. After decades of research and development, there has been no appearance of any H. pylori vaccine reaching the market, unfortunately. This review summarizes the aspects of candidate antigens, immunoadjuvants, and delivery systems in the long journey of H. pylori vaccine research, and also introduces some clinical trials that have displayed encouraging or depressing results. Possible reasons for the inability of an H. pylori vaccine to be available over the counter are cautiously discussed and some propositions for the future of H. pylori vaccines are outlined.
Collapse
Affiliation(s)
- Songhui Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Wenfeng Zhao
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Lei Xia
- Bloomage Biotechnology Corporation Limited, Jinan, People’s Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| |
Collapse
|
10
|
Manilla V, Di Tommaso N, Santopaolo F, Gasbarrini A, Ponziani FR. Endotoxemia and Gastrointestinal Cancers: Insight into the Mechanisms Underlying a Dangerous Relationship. Microorganisms 2023; 11:microorganisms11020267. [PMID: 36838231 PMCID: PMC9963870 DOI: 10.3390/microorganisms11020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Lipopolysaccharide (LPS), also known as endotoxin, is a component of the membrane of gram-negative bacteria and a well-recognized marker of sepsis. In case of disruption of the intestinal barrier, as occurs with unhealthy diets, alcohol consumption, or during chronic diseases, the microbiota residing in the gastrointestinal tract becomes a crucial factor in amplifying the systemic inflammatory response. Indeed, the translocation of LPS into the bloodstream and its interaction with toll-like receptors (TLRs) triggers molecular pathways involved in cytokine release and immune dysregulation. This is a critical step in the exacerbation of many diseases, including metabolic disorders and cancer. Indeed, the role of LPS in cancer development is widely recognized, and examples include gastric tumor related to Helicobacter pylori infection and hepatocellular carcinoma, both of which are preceded by a prolonged inflammatory injury; in addition, the risk of recurrence and development of metastasis appears to be associated with endotoxemia. Here, we review the mechanisms that link the promotion and progression of tumorigenesis with endotoxemia, and the possible therapeutic interventions that can be deployed to counteract these events.
Collapse
Affiliation(s)
- Vittoria Manilla
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Natalia Di Tommaso
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
11
|
Anang V, Singh A, Kottarath SK, Verma C. Receptors of immune cells mediates recognition for tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:219-267. [PMID: 36631194 DOI: 10.1016/bs.pmbts.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the last few decades, the immune system has been steered toward eradication of cancer cells with the help of cancer immunotherapy. T cells, B cells, monocytes/macrophages, dendritic cells, T-reg cells, and natural killer (NK) cells are some of the numerous immune cell types that play a significant part in cancer cell detection and reduction of inflammation, and the antitumor response. Briefly stated, chimeric antigen receptors, adoptive transfer and immune checkpoint modulators are currently the subjects of research focus for successful immunotherapy-based treatments for a variety of cancers. This chapter discusses ongoing investigations on the mechanisms and recent developments by which receptors of immune cells especially that of lymphocytes and monocytes/macrophages regulate the detection of immune system leading to malignancies. We will also be looking into the treatment strategies based on these mechanisms.
Collapse
Affiliation(s)
- Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Sarat Kumar Kottarath
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Huston, TX, United States.
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
12
|
Gene Networks and Pathways Involved in LPS-Induced Proliferative Response of Bovine Endometrial Epithelial Cells. Genes (Basel) 2022; 13:genes13122342. [PMID: 36553609 PMCID: PMC9778113 DOI: 10.3390/genes13122342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria involved in the pathogenic processes leading to mastitis and metritis in animals such as dairy cattle. LPS causes cell proliferation associated with endometrium inflammation. Former in vitro studies have demonstrated that LPS induces an intense stimulation of the proliferation of a pure population of bovine endometrial epithelial cells. In a follow-up transcriptomic study based on RNA-sequencing data obtained after 24 h exposure of primary bovine endometrial epithelial cells to 0, 2, and 8 μg/mL LPS, 752 and 727 differentially expressed genes (DEGs) were detected between the controls and LPS-treated samples that encode proteins known to be associated with either proliferation or apoptosis, respectively. The present bioinformatic analysis was performed to decipher the gene networks involved to obtain a deeper understanding of the mechanisms underlying the proliferative and apoptosis processes. Our findings have revealed 116 putative transcription factors (TFs) and the most significant number of interactions between these TFs and DEGs belong to NFKβ1, TP53, STAT1, and HIF1A. Moreover, our results provide novel insights into the early signaling and metabolic pathways in bovine endometrial epithelial cells associated with the innate immune response and cell proliferation to Escherichia coli-LPS infection. The results further indicated that LPS challenge elicited a strong transcriptomic response, leading to potent activation of pro-inflammatory pathways that are associated with a marked endometrial cancer, Toll-like receptor, NFKβ, AKT, apoptosis, and MAPK signaling pathways. This effect may provide a mechanistic explanation for the relationship between LPS and cell proliferation.
Collapse
|
13
|
Cheok YY, Tan GMY, Lee CYQ, Abdullah S, Looi CY, Wong WF. Innate Immunity Crosstalk with Helicobacter pylori: Pattern Recognition Receptors and Cellular Responses. Int J Mol Sci 2022; 23:ijms23147561. [PMID: 35886908 PMCID: PMC9317022 DOI: 10.3390/ijms23147561] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is one of the most successful gastric pathogens that has co-existed with human for centuries. H. pylori is recognized by the host immune system through human pattern recognition receptors (PRRs), such as toll-like receptors (TLRs), C-type lectin like receptors (CLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs), which activate downstream signaling pathways. Following bacterial recognition, the first responders of the innate immune system, including neutrophils, macrophages, and dendritic cells, eradicate the bacteria through phagocytic and inflammatory reaction. This review provides current understanding of the interaction between the innate arm of host immunity and H. pylori, by summarizing H. pylori recognition by PRRs, and the subsequent signaling pathway activation in host innate immune cells.
Collapse
Affiliation(s)
- Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (G.M.Y.T.); (C.Y.Q.L.)
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (G.M.Y.T.); (C.Y.Q.L.)
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (G.M.Y.T.); (C.Y.Q.L.)
| | - Suhailah Abdullah
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (G.M.Y.T.); (C.Y.Q.L.)
- Correspondence:
| |
Collapse
|
14
|
Li Y, Li X, Tan Z. Basic Traditional Chinese Medicinal Compound for Adjuvant Treatment of Helicobacter pylori-Related Gastritis: Implication for Anti- H. pylori-Related Gastritis Drug Discovery. Nat Prod Commun 2022; 17. [DOI: 10.1177/1934578x221113968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
This study was aimed at evaluating the efficacy of traditional Chinese medicine (TCM) in the adjuvant treatment of Helicobacter pylori-associated gastritis (HPAG) and exploring the molecular mechanism underlying the action of the basic TCM compounds against HPAG. Eight representative Chinese and British databases were combed for pertinent literature. In light of the basic principle of evidence-based medicine, this work rigorously stuck to the inclusion and exclusion of criteria so as to plump for qualified articles. Also, the data mining method was adopted to help determine the basic TCM compound for HPAG treatment. Furthermore, a network pharmacology-based strategy was used to uncover the underlying mechanisms of the basic TCM compound against HPAG. Ultimately, molecular docking was used for preliminary verification. TCM combined with triple or quadruple therapy against HPAG possessed more advantages in improving the total effective rate and H. pylori eradication rate than triple or quadruple therapy alone. The basic TCM plant materials against HPAG consisted of Citrus reticulata Blanco, Glycyrrhiza uralensis Fisch, Pinellia ternata (Thunb.) Breit, Coptis chinensis Franch, and Poria cocos (Schw.) Wolf. Quercetin, kaempferol, naringenin, baicalein, nobiletin, and hederagenin were determined as the key active ingredients of the basic TCM preparation against HPAG. Moreover, these ingredients played a therapeutic role by acting on AKT1, TP53, interleukin (IL)-6, VEGFA, CASP3, MAPK3, JUN, TNF, and MAPK8 via Pathways in cancer, PI3K-Akt signaling pathway, TNF signaling pathway, and MAPK signaling pathway. The results of molecular docking indicated that the key ingredients could bind stably with the core targets. The efficacy of the TCM in the adjuvant treatment of HPAG is worthy of affirmation. Compatible use of the key ingredients of the basic TCM compound is a novel idea of drug research with profound clinical significance and research value in the development of anti- H. pylori drugs.
Collapse
Affiliation(s)
- Yuli Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiaoya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
15
|
Lai CH, Lin TL, Huang MZ, Li SW, Wu HY, Chiu YF, Yang CY, Chiu CH, Lai HC. Gut Commensal Parabacteroides goldsteinii MTS01 Alters Gut Microbiota Composition and Reduces Cholesterol to Mitigate Helicobacter pylori-Induced Pathogenesis. Front Immunol 2022; 13:916848. [PMID: 35844600 PMCID: PMC9281563 DOI: 10.3389/fimmu.2022.916848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori infection is closely associated with various gastrointestinal diseases and poses a serious threat to human health owing to its increasing antimicrobial resistance. H. pylori possesses two major virulence factors, vacuolating cytotoxin A (VacA) and cytotoxin-associated gene A (CagA), which are involved in its pathogenesis. Probiotics have recently been used to eradicate H. pylori infection and reduce the adverse effects of antibiotic-based therapies. Parabacteroides goldsteinii MTS01 is a novel next-generation probiotic (NGP) with activities that can alleviate specific diseases by altering the gut microbiota. However, the mechanism by which P. goldsteinii MTS01 exerts its probiotic effects against H. pylori infection remains unclear. Our results showed that administration of P. goldsteinii MTS01 to H. pylori-infected model mice altered the composition of the gut microbiota and significantly reduced serum cholesterol levels, which mitigated H. pylori-induced gastric inflammation. In addition, the pathogenic effects of H. pylori VacA and CagA on gastric epithelial cells were markedly abrogated by treatment with P. goldsteinii MTS01. These results indicate that P. goldsteinii MTS01 can modulate gut microbiota composition and has anti-virulence factor functions, and thus could be developed as a novel functional probiotic for reducing H. pylori-induced pathogenesis.
Collapse
Affiliation(s)
- Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
- *Correspondence: Chih-Ho Lai, ; Hsin-Chih Lai,
| | - Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Zi Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Shiao-Wen Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Yu Wu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Yu Yang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Medical Research Center, Xiamen Chang Gung hospital, Xiamen, China
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- *Correspondence: Chih-Ho Lai, ; Hsin-Chih Lai,
| |
Collapse
|
16
|
Puri P, Grimmett G, Faraj R, Gibson L, Gilbreath E, Yoder BK. Elevated Protein Kinase A Activity in Stomach Mesenchyme Disrupts Mesenchymal-epithelial Crosstalk and Induces Preneoplasia. Cell Mol Gastroenterol Hepatol 2022; 14:643-668.e1. [PMID: 35690337 PMCID: PMC9421585 DOI: 10.1016/j.jcmgh.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Mesenchymal-epithelial crosstalk (MEC) in the stomach is executed by pathways such as bone morphogenetic protein (BMP) and extracellular signal-regulated kinase (ERK). Mis-regulation of MEC disrupts gastric homeostasis and causes tumorigenesis. Protein Kinase A (PKA) crosstalks with BMP and ERK signaling; however, PKA function(s) in stomach development and homeostasis remains undefined. METHODS We generated a novel Six2-Cre+/-PKAcαRfl/wt (CA-PKA) mouse in which expression of constitutive-active PKAcαR was induced in gastric mesenchyme progenitors. Lineage tracing determined spatiotemporal activity of Six2-Cre in the stomach. For phenotyping CA-PKA mice histological, co-immunofluorescence, immunoblotting, mRNA sequencing, and bioinformatics analyses were performed. RESULTS Lineage tracing showed that Six2-Cre activity in the stomach is restricted to the mesenchymal compartment. CA-PKA mice showed disruption of gastric homeostasis characterized by aberrant mucosal development and epithelial hyperproliferation; ultimately developing multiple features of gastric corpus preneoplasia including decreased parietal cells, mucous cell hyperplasia, spasmolytic peptide expressing metaplasia with intestinal characteristics, and dysplastic and invasive cystic glands. Furthermore, mutant corpus showed marked chronic inflammation characterized by infiltration of lymphocytes and myeloid-derived suppressor cells along with the upregulation of innate and adaptive immune system components. Striking upregulation of inflammatory mediators and STAT3 activation was observed. Mechanistically, we determined there is an activation of ERK1/2 and downregulation of BMP/SMAD signaling characterized by marked upregulation of BMP inhibitor gremlin 1. CONCLUSIONS We report a novel role of PKA signaling in gastric MEC execution and show that PKA activation in the gastric mesenchyme drives preneoplasia by creating a proinflammatory and proproliferative microenvironment associated with the downregulation of BMP/SMAD signaling and activation of ERK1/2.
Collapse
Affiliation(s)
- Pawan Puri
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama,Correspondence Address correspondence to: Pawan Puri, DVM, PhD, Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, A310 Patterson Hall, Tuskegee, AL 36088; tel. (334) 724-4486; fax: (334) 727-8177.
| | - Garfield Grimmett
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama
| | - Rawah Faraj
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama
| | - Laurielle Gibson
- Department of Biomedical Sciences, Tuskegee University College of Veterinary Medicine, Tuskegee, Alabama
| | - Ebony Gilbreath
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama
| | - Bradley K. Yoder
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama, Birmingham, Alabama
| |
Collapse
|
17
|
Association of Progranulin Gene Expression from Dyspeptic Patients with Virulent Helicobacter pylori Strains; In Vivo Model. Microorganisms 2022; 10:microorganisms10050998. [PMID: 35630441 PMCID: PMC9145319 DOI: 10.3390/microorganisms10050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Gastric cancer, the fourth most common cause of death from tumors in the world, is closely associated with Helicobacter pylori. Timely diagnosis, therefore, is essential to achieve a higher survival rate. In Chile, deaths from gastric cancer are high, mainly due to late diagnosis. Progranulin has reflected the evolution of some cancers, but has been poorly studied in gastric lesions. Aiming to understand the role of progranulin in H. pylori infection and its evolution in development of gastric lesions, we evaluated the genic expression of progranulin in gastric tissue from infected and non-infected patients, comparing it according to the epithelial status and virulence of H. pylori strains. (2) Methods: The genic expression of progranulin by q-PCR was quantified in gastric biopsies from Chilean dyspeptic patients (n = 75) and individuals who were uninfected (n = 75) by H. pylori, after receiving prior informed consent. Bacteria were grown on a medium Columbia agar with equine-blood 7%, antibiotics (Dent 2%, OxoidTM), in a microaerophilic environment, and genetically characterized for the ureC, vacA, cagA, and iceA genes by PCR. The status of the tissue was determined by endoscopic observation. (3) Results: Minor progranulin expression was detected in atrophic tissue, with a sharp drop in the tissue colonized by H. pylori that carried greater virulence, VacAs1m1+CagA+IceA1+. (4) Conclusions: Progranulin shows a differential behavior according to the lesions and virulence of H. pylori, affecting the response of progranulin against gastric inflammation.
Collapse
|
18
|
Sangwan V, Al-Marzouki L, Pal S, Stavrakos V, Alzahrani M, Antonatos D, Nevo Y, Camilleri-Broët S, Rayes R, Bourdeau F, Giannias B, Bertos N, Bailey S, Rousseau S, Cools-Lartigue J, Spicer JD, Ferri L. Inhibition of LPS-mediated TLR4 activation abrogates gastric adenocarcinoma-associated peritoneal metastasis. Clin Exp Metastasis 2022; 39:323-333. [PMID: 34767138 DOI: 10.1007/s10585-021-10133-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/06/2021] [Indexed: 01/20/2023]
Abstract
Surgical resection, the cornerstone of curative intent treatment for gastric adenocarcinoma, is associated with a high rate of infection-related post-operative complications, leading to an increased incidence of metastasis to the peritoneum. However, the mechanisms underlying this process are poorly understood. Lipopolysaccharide (LPS), an antigen from Gram-negative bacteria, represents a potential mechanism via induction of local and systemic inflammation through activation of Toll-like receptor (TLR). Here, we use both a novel ex vivo model of peritoneal metastasis and in vivo animal models to assess gastric cancer cell adhesion to peritoneum both before and after inhibition of the TLR4 pathway. We demonstrate that activation of TLR4 by either LPS or Gram-negative bacteria (E. coli) significantly increases the adherence of gastric cancer cells to human peritoneal mesothelial cells, and that this increased adherence is abrogated by inhibition of the TLR4 signal cascade and downstream TAK1 and MEK1/2 pathways. We also demonstrate that the influence of LPS on adherence extends to peritoneal tissue and metastatic spread. Furthermore, we show that loss of TLR4 at the site of metastasis reduces tumor cell adhesion, implicating the TLR4 signaling cascade in potentiating metastatic adhesion and peritoneal spread. These results identify potential therapeutic targets for the clinical management of patients undergoing resection for gastric cancer.
Collapse
Affiliation(s)
- Veena Sangwan
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada.,Research Institute - McGill University Health Centre, Montreal, Canada
| | - Luai Al-Marzouki
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada.,Research Institute - McGill University Health Centre, Montreal, Canada
| | - Sanjima Pal
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada.,Research Institute - McGill University Health Centre, Montreal, Canada
| | - Vivian Stavrakos
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada.,Research Institute - McGill University Health Centre, Montreal, Canada
| | - Malak Alzahrani
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada.,Research Institute - McGill University Health Centre, Montreal, Canada.,Department of Pathology, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Dorothy Antonatos
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada.,Research Institute - McGill University Health Centre, Montreal, Canada
| | - Yehonatan Nevo
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada.,Research Institute - McGill University Health Centre, Montreal, Canada
| | - Sophie Camilleri-Broët
- Department of Pathology, McGill University, Montreal, Quebec, Canada.,Research Institute - McGill University Health Centre, Montreal, Canada
| | - Roni Rayes
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada.,Research Institute - McGill University Health Centre, Montreal, Canada
| | - France Bourdeau
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada.,Research Institute - McGill University Health Centre, Montreal, Canada
| | - Betty Giannias
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada.,Research Institute - McGill University Health Centre, Montreal, Canada
| | - Nicholas Bertos
- Research Institute - McGill University Health Centre, Montreal, Canada
| | - Swneke Bailey
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada.,Research Institute - McGill University Health Centre, Montreal, Canada
| | - Simon Rousseau
- Department of Medicine, McGill University, Montreal, Quebec, Canada.,Research Institute - McGill University Health Centre, Montreal, Canada
| | - Jonathan Cools-Lartigue
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada.,Research Institute - McGill University Health Centre, Montreal, Canada
| | - Jonathan D Spicer
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada.,Research Institute - McGill University Health Centre, Montreal, Canada
| | - Lorenzo Ferri
- Division of Thoracic Surgery, Department of Surgery, McGill University, Montreal, Quebec, Canada. .,Research Institute - McGill University Health Centre, Montreal, Canada. .,Departments of Surgery and Oncology, Montreal General Hospital, McGill University, 1650 Cedar Avenue, Room L8-505, Montreal, Quebec, H3G 1A4, Canada.
| |
Collapse
|
19
|
Lima de Souza Gonçalves V, Cordeiro Santos ML, Silva Luz M, Santos Marques H, de Brito BB, França da Silva FA, Souza CL, Oliveira MV, de Melo FF. From Helicobacter pylori infection to gastric cancer: Current evidence on the immune response. World J Clin Oncol 2022; 13:186-199. [PMID: 35433296 PMCID: PMC8966509 DOI: 10.5306/wjco.v13.i3.186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/31/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the result of a multifactorial process whose main components are infection by Helicobacter pylori (H. pylori), bacterial virulence factors, host immune response and environmental factors. The development of the neoplastic microenvironment also depends on genetic and epigenetic changes in oncogenes and tumor suppressor genes, which results in deregulation of cell signaling pathways and apoptosis process. This review summarizes the main aspects of the pathogenesis of GC and the immune response involved in chronic inflammation generated by H. pylori.
Collapse
Affiliation(s)
| | - Maria Luísa Cordeiro Santos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Universidade Estadual do Sudoeste da Bahia, Campus Vitória da Conquista, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Breno Bittencourt de Brito
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Cláudio Lima Souza
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Márcio Vasconcelos Oliveira
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
20
|
Avci S, Kuscu N, Kilinc L, Ustunel I. Relationship of Notch Signal, Surfactant Protein A, and Indomethacin in Cervix During Preterm Birth: Mast Cell and Jagged-2 May Be Key in Understanding Infection-mediated Preterm Birth. J Histochem Cytochem 2022; 70:121-138. [PMID: 34927491 PMCID: PMC8777376 DOI: 10.1369/00221554211061615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Although it is thought that there is a close relationship between Notch signal and preterm birth, the functioning of this mechanism in the cervix is unknown. The efficacy of surfactants and prostaglandin inhibitors in preterm labor is also still unclear. In this study, 48 female CD-1 mice were distributed to pregnant control (PC), Sham, PBS, indomethacin (2 mg/kg; intraperitoneally), lipopolysaccharides (LPS) (25 μg/100 μl; intrauterine), LPS + IND, and Surfactant Protein A Block (SP-A Block: SP-A B; the anti-SP-A antibody was applied 20 µg/100μl; intrauterine) groups. Tissues were examined by immunohistochemistry, immunofluorescence, and Western blot analysis. LPS administration increased the expression of N1 Dll-1 and Jagged-2 (Jag-2). Although Toll-like receptor (Tlr)-2 significantly increased in the LPS-treated and SP-A-blocked groups, Tlr-4 significantly increased only in the LPS-exposed groups. It was observed that Jag-2 is specifically expressed by mast cells. Overall, this experimental model shows that some protein responses increase throughout the uterus, starting at a specific point on the cervix epithelium. Surfactant Protein A, which we observed to be significantly reduced by LPS, may be associated with the regulation of the epithelial response, especially during preterm delivery due to infection. On the contrary, prostaglandin inhibitors can be considered an option to delay infection-related preterm labor with their dose-dependent effects. Finally, the link between mast cells and Jag-2 could potentially be a control switch for preterm birth.
Collapse
Affiliation(s)
| | - Nilay Kuscu
- Department of Histology and Embryology, Medical
School, Akdeniz University, Antalya, Turkey
| | - Leyla Kilinc
- Department of Histology and Embryology, Medical
School, Akdeniz University, Antalya, Turkey
| | - Ismail Ustunel
- Ismail Ustunel, Department of Histology and
Embryology, Medical School, Akdeniz University, 07100 Antalya, Turkey. E-mail:
| |
Collapse
|
21
|
Hernández C, Toledo-Stuardo K, García-González P, Garrido-Tapia M, Kramm K, Rodríguez-Siza JA, Hermoso M, Ribeiro CH, Molina MC. Heat-killed Helicobacter pylori upregulates NKG2D ligands expression on gastric adenocarcinoma cells via Toll-like receptor 4. Helicobacter 2021; 26:e12812. [PMID: 33928707 DOI: 10.1111/hel.12812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/14/2021] [Accepted: 04/03/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Natural killer (NK) cells are paramount for immunity against infectious agents and tumors. Their cytokine and cytolytic responses can be mediated by natural killer group 2, member D (NKG2D), an activating receptor whose ligands (NKG2DL) expression is induced in conditions of cell stress and malignant transformation. Since sustained expression of NKG2DL MICA is related to lower survival rates in gastric adenocarcinoma patients, and Helicobacter pylori infection contributes to tumorigenesis; we asked whether H. pylori stimulus could promote NKG2DL expression on human gastric adenocarcinoma cells. METHODS Heat-killed H. pylori (HKHP) was used to stimulate MKN45 cells before analysis of NKG2DL and Toll-like receptor 4 (TLR4) protein levels by flow cytometry and transcripts by real-time PCR. LPS from Rhodobacter sphaeroides and inhibitory peptide Pepinh MYD were used to inhibit TLR4/MyD88 signaling pathway to assess its participation on NKG2DL expression. NK cell-mediated cytotoxicity was measured by lactate dehydrogenase (LDH) and CD107a mobilization assays. RESULTS Stimulation of MKN45 cells with HKHP increased MICA, ULBP4 (another NKG2DL), and TLR4 at the protein and transcriptional levels. MICA, but not ULBP4 expression, was upregulated in a TLR4/MyD88-dependent manner. Furthermore, the presence of NKG2DL on the surface of HKHP-stimulated MKN45 cells enabled NK cell cytotoxic activation. CONCLUSIONS Our data indicate that induction of NKG2DL expression on gastric adenocarcinoma cells by H. pylori promotes an immune response that may ultimately contribute to either gastric tissue damage, as a consequence of persistent activation of immunity, or tumor immune evasion due to chronic NKG2DL expression.
Collapse
Affiliation(s)
- Carolina Hernández
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - Karen Toledo-Stuardo
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - Paulina García-González
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - Macarena Garrido-Tapia
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - Karina Kramm
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - José Alejandro Rodríguez-Siza
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - Marcela Hermoso
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - Carolina H Ribeiro
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile
| | - María Carmen Molina
- Faculty of Medicine, Immunology Program, Biomedical Sciences Institute (ICBM), University of Chile, Santiago de Chile, Chile.,Centro de InmunoBiotecnología, Immunology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago de Chile, Chile
| |
Collapse
|
22
|
Herrera-Pariente C, Capó-García R, Díaz-Gay M, Carballal S, Muñoz J, Llach J, Sánchez A, Bonjoch L, Arnau-Collell C, Soares de Lima Y, Golubicki M, Jung G, Lozano JJ, Castells A, Balaguer F, Bujanda L, Castellví-Bel S, Moreira L. Identification of New Genes Involved in Germline Predisposition to Early-Onset Gastric Cancer. Int J Mol Sci 2021; 22:1310. [PMID: 33525650 PMCID: PMC7866206 DOI: 10.3390/ijms22031310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
The genetic cause for several families with gastric cancer (GC) aggregation is unclear, with marked relevance in early-onset patients. We aimed to identify new candidate genes involved in GC germline predisposition. Whole-exome sequencing (WES) of germline samples was performed in 20 early-onset GC patients without previous germline mutation identified. WES was also performed in nine tumor samples to analyze the somatic profile using SigProfilerExtractor tool. Sequencing germline data were filtered to select those variants with plausible pathogenicity, rare frequency and previously involved in cancer. Then, a manual filtering was performed to prioritize genes according to current knowledge and function. These genetic variants were prevalidated with Integrative Genomics Viewer 2.8.2 (IGV). Subsequently, a further selection step was carried out according to function and information obtained from tumor samples. After IGV and selection step, 58 genetic variants in 52 different candidate genes were validated by Sanger sequencing. Among them, APC, FAT4, CTNND1 and TLR2 seem to be the most promising genes because of their role in hereditary cancer syndromes, tumor suppression, cell adhesion and Helicobacter pylori recognition, respectively. These encouraging results represent the open door to the identification of new genes involved in GC germline predisposition.
Collapse
Affiliation(s)
- Cristina Herrera-Pariente
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Roser Capó-García
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Marcos Díaz-Gay
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sabela Carballal
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Jenifer Muñoz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Joan Llach
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Ariadna Sánchez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Laia Bonjoch
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Coral Arnau-Collell
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Yasmin Soares de Lima
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Mariano Golubicki
- Oncology Section, Hospital of Gastroenterology “Dr. C. B. Udaondo”, C1264 Buenos Aires, Argentina;
- Molecular Biology Laboratory, Hospital of Gastroenterology “Dr. C. B. Udaondo”, C1264 Buenos Aires, Argentina
| | - Gerhard Jung
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Juan José Lozano
- Bioinformatics Platform, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, 08036 Barcelona, Spain;
| | - Antoni Castells
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Francesc Balaguer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Biodonostia Health Research Institute, Basque Country University (UPV/EHU), 20014 San Sebastián, Spain;
| | - Sergi Castellví-Bel
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| | - Leticia Moreira
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain; (C.H.-P.); (R.C.-G.); (M.D.-G.); (S.C.); (J.M.); (J.L.); (A.S.); (L.B.); (C.A.-C.); (Y.S.d.L.); (G.J.); (A.C.); (F.B.)
| |
Collapse
|
23
|
Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, Maciejewski R. Helicobacter pylori Virulence Factors-Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells 2020; 10:27. [PMID: 33375694 PMCID: PMC7824444 DOI: 10.3390/cells10010027] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer constitutes one of the most prevalent malignancies in both sexes; it is currently the fourth major cause of cancer-related deaths worldwide. The pathogenesis of gastric cancer is associated with the interaction between genetic and environmental factors, among which infection by Helicobacter pylori (H. pylori) is of major importance. The invasion, survival, colonization, and stimulation of further inflammation within the gastric mucosa are possible due to several evasive mechanisms induced by the virulence factors that are expressed by the bacterium. The knowledge concerning the mechanisms of H. pylori pathogenicity is crucial to ameliorate eradication strategies preventing the possible induction of carcinogenesis. This review highlights the current state of knowledge and the most recent findings regarding H. pylori virulence factors and their relationship with gastric premalignant lesions and further carcinogenesis.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Danuta Krasowska
- Department of Dermatology, Venerology and Paediatric Dermatology of Medical University of Lublin, 20-081 Lublin, Poland;
| | | |
Collapse
|
24
|
Helicobacter pylori-Mediated Immunity and Signaling Transduction in Gastric Cancer. J Clin Med 2020; 9:jcm9113699. [PMID: 33217986 PMCID: PMC7698755 DOI: 10.3390/jcm9113699] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori infection is a leading cause of gastric cancer, which is the second-most common cancer-related death in the world. The chronic inflammatory environment in the gastric mucosal epithelia during H. pylori infection stimulates intracellular signaling pathways, namely inflammatory signals, which may lead to the promotion and progression of cancer cells. We herein report two important signal transduction pathways, the LPS-TLR4 and CagA-MET pathways. Upon H. pylori stimulation, lipopolysaccharide (LPS) binds to toll-like receptor 4 (TLR4) mainly on macrophages and gastric epithelial cells. This induces an inflammatory response in the gastric epithelia to upregulate transcription factors, such as NF-κB, AP-1, and IRFs, all of which contribute to the initiation and progression of gastric cancer cells. Compared with other bacterial LPSs, H. pylori LPS has a unique function of inhibiting the mononuclear cell (MNC)-based production of IL-12 and IFN-γ. While this mechanism reduces the degree of inflammatory reaction of immune cells, it also promotes the survival of gastric cancer cells. The HGF/SF-MET signaling plays a major role in promoting cellular proliferation, motility, migration, survival, and angiogenesis, all of which are essential factors for cancer progression. H. pylori infection may facilitate MET downstream signaling in gastric cancer cells through its CagA protein via phosphorylation-dependent and/or phosphorylation-independent pathways. Other signaling pathways involved in H. pylori infection include EGFR, FAK, and Wnt/β-Catenin. These pathways function in the inflammatory process of gastric epithelial mucosa, as well as the progression of gastric cancer cells. Thus, H. pylori infection-mediated chronic inflammation plays an important role in the development and progression of gastric cancer.
Collapse
|
25
|
Inaba H, Yoshida S, Nomura R, Kato Y, Asai F, Nakano K, Matsumoto-Nakano M. Porphyromonas gulae lipopolysaccharide elicits inflammatory responses through toll-like receptor 2 and 4 in human gingivalis epithelial cells. Cell Microbiol 2020; 22:e13254. [PMID: 32827217 DOI: 10.1111/cmi.13254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/29/2022]
Abstract
Porphyromonas gulae, a Gram-negative black-pigmented anaerobe, has been associated with periodontal disease in companion animals and its virulence has been attributed to various factors, including lipopolysaccharide (LPS), protease and fimbriae. Toll-like receptors (TLRs) recognise pathogen-associated molecular patterns, such as peptidoglycan, lipids, lipoproteins, nucleic acid and LPS. Following P. gulae infection, some inflammatory responses are dependent on both TLR2 and TLR4. In addition, a recent clinical study revealed that acute and persistent inflammatory responses enhance the expressions of TLR2 and TLR4 in the oral cavity. In this study, we investigated the interaction between P. gulae LPS and human gingivalis epithelial cells (Ca9-22 cells). P. gulae LPS was found to increase TLR2 and TLR4 mRNA expressions and protein productions, and enhanced inflammatory responses, such as COX2 , TNF-ɑ, IL-6 and IL-8. Stimulated Ca9-22 cells exhibited phosphorylation of ERK1/2 and p38, and their inhibitors diminished inflammatory responses, while knockdown of the TLR2 and/or TLR4 genes with small interfering RNA (siRNA) prevented inflammatory responses. Moreover, p38 and ERK1/2 phosphorylation was decreased in TLR2 and TLR4 gene knockdown cells. These findings suggest that P. gulae LPS activates p38 and ERK1/2 via TLR2 and TLR4, leading to inflammatory responses in human gingival epithelial cells.
Collapse
Affiliation(s)
- Hiroaki Inaba
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sho Yoshida
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yukio Kato
- Department of Veterinary Public Health II, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Fumitoshi Asai
- Department of Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
26
|
Cuomo P, Papaianni M, Fulgione A, Guerra F, Capparelli R, Medaglia C. An Innovative Approach to Control H. pylori-Induced Persistent Inflammation and Colonization. Microorganisms 2020; 8:microorganisms8081214. [PMID: 32785064 PMCID: PMC7463796 DOI: 10.3390/microorganisms8081214] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/23/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium which colonizes the human stomach. The ability of H. pylori to evade the host defense system and the emergence of antibiotic resistant strains result in bacteria persistence and chronic inflammation, which leads to both severe gastric and extra-gastric diseases. Consequently, innovative approaches able to overcome H. pylori clinical outcomes are needed. In this work, we develop a novel non-toxic therapy based on the synergistic action of H. pylori phage and lactoferrin adsorbed on hydroxyapatite nanoparticles, which effectively impairs bacteria colonization and minimizes the damage of the host pro-inflammatory response.
Collapse
Affiliation(s)
- Paola Cuomo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (P.C.); (M.P.)
| | - Marina Papaianni
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (P.C.); (M.P.)
| | - Andrea Fulgione
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Naples, Italy;
| | - Fabrizia Guerra
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (P.C.); (M.P.)
- Correspondence:
| | - Chiara Medaglia
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland;
| |
Collapse
|
27
|
Li B, Xia Y, Hu B. Infection and atherosclerosis: TLR-dependent pathways. Cell Mol Life Sci 2020; 77:2751-2769. [PMID: 32002588 PMCID: PMC7223178 DOI: 10.1007/s00018-020-03453-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/15/2022]
Abstract
Atherosclerotic vascular disease (ASVD) is a chronic process, with a progressive course over many years, but it can cause acute clinical events, including acute coronary syndromes (ACS), myocardial infarction (MI) and stroke. In addition to a series of typical risk factors for atherosclerosis, like hyperlipidemia, hypertension, smoking and obesity, emerging evidence suggests that atherosclerosis is a chronic inflammatory disease, suggesting that chronic infection plays an important role in the development of atherosclerosis. Toll-like receptors (TLRs) are the most characteristic members of pattern recognition receptors (PRRs), which play an important role in innate immune mechanism. TLRs play different roles in different stages of infection of atherosclerosis-related pathogens such as Chlamydia pneumoniae (C. pneumoniae), periodontal pathogens including Porphyromonas gingivalis (P. gingivalis), Helicobacter pylori (H. pylori) and human immunodeficiency virus (HIV). Overall, activation of TLR2 and 4 seems to have a profound impact on infection-related atherosclerosis. This article reviews the role of TLRs in the process of atherosclerosis after C. pneumoniae and other infections and the current status of treatment, with a view to providing a new direction and potential therapeutic targets for the study of ASVD.
Collapse
Affiliation(s)
- Bowei Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
28
|
Qu X, Guo S, Yan L, Zhu H, Li H, Shi Z. TNFα-Erk1/2 signaling pathway-regulated SerpinE1 and SerpinB2 are involved in lipopolysaccharide-induced porcine granulosa cell proliferation. Cell Signal 2020; 73:109702. [PMID: 32619562 DOI: 10.1016/j.cellsig.2020.109702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Lipopolysaccharide (LPS) is an inhibitory factor that causes hormonal imbalance and subsequently affects ovarian function and fertility in mammals. Previous studies have shown that the exposure of granulosa cells (GC) to LPS leads to steroidogenesis dysfunction. However, the effects of LPS on the viability of GC remain largely unclear. In the present study, we aimed to address this question and unveil the underlying molecular mechanisms using cultured porcine GC. Results showed that GC proliferation and tumor necrosis factor α (TNFα) secretion were significantly increased after exposure to LPS, and these effects were completely reversed by blocking the TNFα sheddase, ADAM17. Moreover, GC proliferation induced by LPS was mimicked by treatment with recombinant TNFα. In addition, SerpinE1 and SerpinB2 expression levels increased in GC after treatment with LPS or recombinant TNFα, whereas blocking the Erk1/2 pathway completely abolished these effects and also inhibited GC proliferation. Further, consistent with the effects of blocking the Erk1/2 pathway, cell proliferation was completely inhibited by knocking down SerpinE1 or SerpinB2 in the presence of LPS or recombinant TNFα. Mitochondrial membrane potential (MMP) polarization in GC was increased by LPS or recombinant TNFα treatment, and these changes were completely negated by Erk1/2 inhibition, but not by SerpinE1 or SerpinB2 knockdown. Taken together, these results suggested that the TNFα-mediated upregulation of SerpinE1 and SerpinB2, through activation of the Erk1/2 pathway plays a crucial role in LPS-stimulated GC proliferation, and the increase in GC MMP may synergistically influence this process.
Collapse
Affiliation(s)
- Xiaolu Qu
- College of Animal Science and technology, Jilin Agricultural University, Changchun 130118, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key laboratory of Animal Breeding and Reproduction, Nanjing 210014, China
| | - Shuangshuang Guo
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key laboratory of Animal Breeding and Reproduction, Nanjing 210014, China
| | - Leyan Yan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key laboratory of Animal Breeding and Reproduction, Nanjing 210014, China
| | - Huanxi Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key laboratory of Animal Breeding and Reproduction, Nanjing 210014, China
| | - Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key laboratory of Animal Breeding and Reproduction, Nanjing 210014, China.
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key laboratory of Animal Breeding and Reproduction, Nanjing 210014, China.
| |
Collapse
|
29
|
Xin Q, Sun Q, Zhang CS, Zhang Q, Li CJ. Functions and mechanisms of chemokine receptor 7 in tumors of the digestive system. World J Clin Cases 2020; 8:2448-2463. [PMID: 32607322 PMCID: PMC7322425 DOI: 10.12998/wjcc.v8.i12.2448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
Chemokine (C-X-C motif) receptor 7 (CXCR7), recently termed ACKR3, belongs to the G protein-coupled cell surface receptor family, binds to stromal cell-derived factor-1 [SDF-1, or chemokine (C-X-C motif) ligand 12] or chemokine (C-X-C motif) ligand 11, and is the most common chemokine receptor expressed in a variety of cancer cells. SDF-1 binds to its receptor chemokine (C-X-C motif) receptor 4 (CXCR4) and regulates cell proliferation, survival, angiogenesis and migration. In recent years, another new receptor for SDF-1, CXCR7, has been discovered, and CXCR7 has also been found to be expressed in a variety of tumor cells and tumor-related vascular endothelial cells. Many studies have shown that CXCR7 can promote the growth and metastasis of a variety of malignant tumor cells. Unlike CXCR4, CXCR7 exhibits a slight modification in the DRYLAIV motif and does not induce intracellular Ca2+ release following ligand binding, which is essential for recruiting and activating G proteins. CXCR7 is generally thought to work in three ways: (1) Recruiting β-arrestin 2; (2) Heterodimerizing with CXCR4; and (3) Acting as a “scavenger” of SDF-1, thus lowering the level of SDF-1 to weaken the activity of CXCR4. In the present review, the expression and role of CXCR7, as well as its prognosis in cancers of the digestive system, were investigated.
Collapse
Affiliation(s)
- Qi Xin
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Quan Sun
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Chuan-Shan Zhang
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Qin Zhang
- Department of Pathology, Tianjin Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China
| | - Chun-Jun Li
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300121, China
| |
Collapse
|
30
|
Lipopolysaccharides From Non-Helicobacter pylori Gastric Bacteria Potently Stimulate Interleukin-8 Production in Gastric Epithelial Cells. Clin Transl Gastroenterol 2020; 10:e00024. [PMID: 30913125 PMCID: PMC6445647 DOI: 10.14309/ctg.0000000000000024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gastric acid secretion is compromised in chronic Helicobacter pylori (H. pylori) infection allowing overgrowth of non-H. pylori gastric bacteria (NHGB) in the stomach.
Collapse
|
31
|
Clyne M, Rowland M. The Role of Host Genetic Polymorphisms in Helicobacter pylori Mediated Disease Outcome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:151-172. [PMID: 31016623 DOI: 10.1007/5584_2019_364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical outcome of infection with the chronic gastric pathogen Helicobacter pylori is not the same for all individuals and also differs in different ethnic groups. Infection occurs in early life (<3 years of age), and while all infected persons mount an immune response and develop gastritis, the majority of individuals are asymptomatic. However, up to 10-15% develop duodenal ulceration, up to 1% develop gastric cancer (GC) and up to 0.1% can develop gastric mucosa-associated lymphoid tissue (MALT) lymphoma. The initial immune response fails to clear infection and H. pylori can persist for decades. H. pylori has been classified as a group one carcinogen by the WHO. Interestingly, development of duodenal ulceration protects against GC. Factors that determine the outcome of infection include the genotype of the infecting strains and the environment. Host genetic polymorphisms have also been identified as factors that play a role in mediating the clinical outcome of infection. Several studies present compelling evidence that polymorphisms in genes involved in the immune response such as pro and anti-inflammatory cytokines and pathogen recognition receptors (PRRs) play a role in modulating disease outcome. However, as the number of studies grows emerging confounding factors are small sample size and lack of appropriate controls, lack of consideration of environmental and bacterial factors and ethnicity of the population. This chapter is a review of current evidence that host genetic polymorphisms play a role in mediating persistent H. pylori infection and the consequences of the subsequent inflammatory response.
Collapse
Affiliation(s)
- Marguerite Clyne
- School of Medicine and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| | - Marion Rowland
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Li H, Xu CX, Gong RJ, Chi JS, Liu P, Liu XM. How does Helicobacter pylori cause gastric cancer through connexins: An opinion review. World J Gastroenterol 2019; 25:5220-5232. [PMID: 31558869 PMCID: PMC6761244 DOI: 10.3748/wjg.v25.i35.5220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium with a number of virulence factors, such as cytotoxin-associated gene A, vacuolating cytotoxin A, its pathogenicity island, and lipopolysaccharide, which cause gastrointestinal diseases. Connexins function in gap junctional homeostasis, and their downregulation is closely related to gastric carcinogenesis. Investigations into H. pylori infection and the fine-tuning of connexins in cells or tissues have been reported in previous studies. Therefore, in this review, the potential mechanisms of H. pylori-induced gastric cancer through connexins are summarized in detail.
Collapse
Affiliation(s)
- Huan Li
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Can-Xia Xu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Ren-Jie Gong
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Jing-Shu Chi
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Peng Liu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Xiao-Ming Liu
- Department of Gastroenterology, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
33
|
Li H, Xu CX, Gong RJ, Chi JS, Liu P, Liu XM. How does Helicobacter pyloricause gastric cancer through connexins: An opinion review. World J Gastroenterol 2019. [DOI: 10.3748/wjg.v25.i355220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
34
|
Zhang P, Yang M, Zhang Y, Xiao S, Lai X, Tan A, Du S, Li S. Dissecting the Single-Cell Transcriptome Network Underlying Gastric Premalignant Lesions and Early Gastric Cancer. Cell Rep 2019; 27:1934-1947.e5. [DOI: 10.1016/j.celrep.2019.04.052] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
|
35
|
Tongtawee T, Simawaranon T, Wattanawongdon W, Dechsukhum C, Leeanansaksiri W. Toll-like receptor 2 and 4 polymorphisms associated with Helicobacter pylori susceptibility and gastric cancer. TURKISH JOURNAL OF GASTROENTEROLOGY 2019; 30:15-20. [PMID: 30301709 DOI: 10.5152/tjg.2018.17461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS Genetic polymorphisms in Toll-like receptors (TLRs) are important influence on gastric lesion development and Helicobacter pylori susceptibility. MATERIALS AND METHODS TLR2 rs3804099 and rs3804100 and TLR4 rs10759932 were determined in a total of 400 patients. The association among genotypes and the risk of gastric lesion development and H. pylori susceptibility were evaluated by the odds ratios (ORs) and 95% confidence intervals (95% CIs) from logistic regression analyses. RESULTS TLR4 rs10759932, C/C homozygous genotype was associated with an increased risk of premalignant/malignant (OR=2.48, 95% CI=1.96-4.62, p=0.015). The recessive model of TLR4 rs10759932 showed a decreased risk of H. pylori susceptibility (adjusted OR=0.52, 95% CI=0.38-0.82, p=0.046). Meanwhile, the recessive model was associated with an increased risk of non-malignant (OR=3.46, 95% CI=2.25-5.67, p=0.001). In subjects with H. pylori infection, the recessive model was associated with an increased risk of non-malignant (OR=2.28, 95% CI=1.24-3.57, p=0.001) and premalignant/malignant (OR=1.83, 95% CI=1.16-2.84, p=0.027). CONCLUSION TLR4 rs10759932, but not TLR2 rs3804099 and rs3804100, was associated with risk of premalignant and/or malignant and H. pylori susceptibility. H. pylori infection seems to contribute to chronic gastritis, and premalignant/malignant supported the development of the premalignant/malignant lesions involved in H. pylori infection that is critical to gastric cancer in Thai patients.
Collapse
Affiliation(s)
- Taweesak Tongtawee
- Department of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Theeraya Simawaranon
- Department of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Wareeporn Wattanawongdon
- Department of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chavaboon Dechsukhum
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Wilairat Leeanansaksiri
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
36
|
Maoduo Z, Hao Y, Wei W, Feng W, Dagan M. Effects of LPS on the accumulation of lipid droplets, proliferation, and steroidogenesis in goat luteinized granulosa cells. J Biochem Mol Toxicol 2019; 33:e22329. [PMID: 30934154 DOI: 10.1002/jbt.22329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 12/26/2022]
Abstract
Lipopolysaccharide (LPS) can cause ovarian dysfunction and infertility in mammals. The purpose of this study was to investigate the effects of LPS on the accumulation of lipid droplets (LDs), proliferation, and steroidogenesis in goat luteinized granulosa cells (LGCs). GCs isolated from the ovarian follicles were spontaneously luteinized under media with fetal bovine serum, resulting in increased progesterone and shifted shape from spherical to star with multiple prolongations. Then, LGCs were treated with LPS (0-10 μg/mL) for 0-48 hours. Oil Red O staining was performed to observe LDs accumulation and commercial kit was applied to detect intracellular triglyceride (TG) content. The cell proliferation were detected by cell counting kit-8. Expressions of cell-cycle-related genes were determined by real-time polymerase chain reaction. Estradiol (E 2 ) and progesterone (P 4 ) from cell supernatants were determined by enzyme-linked immunosorbent assay, and expressions of STAR, P450scc, 3β-hydroxysteroid dehydrogenase (3β-HSD) and CYP19A1 were detected by Western blot. Results showed that LPS treatment significantly increased LDs accumulation after 24 hours, and 5 μg/mL LPS increased TG content ( P < 0.05). LPS treatment for 24 hours stimulated the LGCs activities ( P<0.05), which was confirmed by the increases in the expressions of proliferating cell nuclear antigen (PCNA), cyclinB1 and cyclinD1, while 48 hours treatment had no effect. LPS treatment suppressed E 2 and P 4 output of LGCs ( P < 0.05). Western blot results showed that 10 μg/mL LPS decreased the protein expression of 3β-HSD in LGCs ( P < 0.05). In conclusion, LPS increased LDs accumulation and cell proliferation, and LPS-mediated P 4 reduction could be attributed to the decreased 3β-HSD protein expression, which provide new information for the regulation of ovarian function in goats.
Collapse
Affiliation(s)
- Zhang Maoduo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yu Hao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Wang Wei
- Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Wang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Mao Dagan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
37
|
The Relationship between Toll-like Receptors and Helicobacter pylori-Related Gastropathies: Still a Controversial Topic. J Immunol Res 2019; 2019:8197048. [PMID: 30863783 PMCID: PMC6378784 DOI: 10.1155/2019/8197048] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022] Open
Abstract
Innate immunity represents the first barrier against bacterial invasion. Toll-like receptors (TLRs) belong to the large family of pattern recognition receptors (PRRs), and their activation leads to the induction of inflammatory cytokines, chemokines, antigen-presenting molecules, and costimulatory molecules. Recent studies have focused on identifying the association between TLRs and Helicobacter pylori- (H. pylori-) related diseases. Therefore, this minireview focuses on assessing the role of these TLRs in the development of H. pylori-related gastropathies. Both TLR2 and TLR were found to be involved in H. pylori LPS recognition, with contradictory results most likely due to both the inability to obtain pure LPS in experimental studies and the heterogeneity of the bacterial LPS. In addition, TLR2 was found to be the most extensively expressed gene among all the TLRs in gastric tumors. High levels of TLR4 were also associated with a higher risk of gastric cancer. TLR5 was initially associated with the recognition of H. pylori flagellin, but it seems that this bacterium has developed mechanisms to escape this recognition representing an important factor involved in the persistence of this infection and subsequent carcinogenesis. TLR9, the only TLR with both anti- and proinflammatory roles, was involved in the recognition of H. pylori DNA. The dichotomous role of TLR9, promoting or suppressing the infection, depends on the gastric environment. Recently, TLR7 and TLR8 were shown to recognize purified H. pylori RNA, thereby inducing proinflammatory cytokines. TLR1 and TLR10 gene polymorphisms were associated with a higher risk for gastric cancer in H. pylori-infected individuals. Different gene polymorphisms of these TLRs were found to be associated with gastric cancer depending mostly on ethnicity. Further studies are required in order to develop preventive and therapeutic strategies against H. pylori infections based on the functions of TLRs.
Collapse
|
38
|
Li N, Xu H, Ou Y, Feng Z, Zhang Q, Zhu Q, Cai Z. LPS-induced CXCR7 expression promotes gastric Cancer proliferation and migration via the TLR4/MD-2 pathway. Diagn Pathol 2019; 14:3. [PMID: 30636642 PMCID: PMC6330400 DOI: 10.1186/s13000-019-0780-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS) from Helicobacter pylori (HP) plays an important role in gastric cancer occurrence and development. Toll-like receptor 4 (TLR4) and myeloid differential protein-2 (MD-2) are also reported to be involved in gastric cancer cell proliferation and invasion. CXC chemokine receptor 7 (CXCR7), a second receptor for CXCL12, has been detected in multiple types of tumor tissues. Nevertheless, the biological function and regulation of CXCR7 and its relationship with TLR4 and MD-2 in gastric cancer are not completely understood and therefore warrant further study. METHODS CXCR7 expression was examined in 150 gastric cancer tissues using immunohistochemistry (IHC). RT-PCR and western blotting were used to detect CXCR7 expression in several gastric cancer cell lines (SGC7901, AGS, MGC-803, MKN-45 and BGC823). shRNAs were designed using a pGPU6/GFP/Neo vector. A CCK-8 assay was used to assess cell proliferation, and transwell assays were performed to assess cell migration. In addition, a gastric cancer xenograft model was generated. RESULTS The LPS-TLR4-MD-2 pathway elevates CXCR7 expression in SGC7901 cells, and TLR4/MD-2-mediated increases in CXCR7 levels modulate the proliferation and migration of tumor cells. Knockdown of TLR4 and MD-2 demonstrated that both are essential for LPS-induced CXCR7 expression, which in turn is responsible for LPS-induced SGC7901 cell proliferation and migration. Moreover, higher TLR4, MD-2 and CXCR7 expression was detected in gastric cancer tissues than in paracancerous normal control tissues. The expression levels of TLR4, MD-2 and CXCR7 were closely related to gastric cancer TNM stage and lymph node metastasis. In an animal model, significant differences in CXCR7 expression in tumor masses were observed between the control group and experimental group. CONCLUSIONS The results of this study indicate that CXCR7 plays an important role in gastric cancer progression via inflammatory mechanisms, suggesting that CXCR7 could provide a basis for the development and clinical application of a targeted drug for gastric cancer.
Collapse
Affiliation(s)
- Nan Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Yurong Ou
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Zhenzhong Feng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Qiong Zhang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Qing Zhu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,Department of Pathology, Bengbu Medical College, Bengbu, China
| | - Zhaogen Cai
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China. .,Department of Pathology, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
39
|
Pozdeev ОК, Pozdeeva АО, Valeeva YV, Gulyaev PE. MECHANISMS OF INTERRACTION OF HELICOBACTER PYLORI WITH EPITHELIUM OF GASTRIC MUCOSA. I. PATHOGENIC FACTORS PROMOTING SUCCESSFUL COLONIZATION. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2018; 8:273-283. [DOI: 10.15789/2220-7619-2018-3-273-283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
H. pylori is a Gram-negative, crimp and motile bacterium that colonizes the hostile microniche of the human stomach roughly one half of the human population. Then persists for the host’s entire life, but only causes overt gastric disease in a subset of infected hosts. To the reasons contributing to the development of diseases, usually include: concomitant infections of the gastrointestinal tract, improper sterilization of medical instruments, usually endoscopes, nonobservance of personal hygiene rules, prolonged contact with infected or carriers, including family members and a number of other factors. Clinically, H. pylori plays a causative role in the development of a wide spectrum of diseases including chronic active gastritis, peptic and duodenal ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Due to the global distribution of H. pylori, we are able to conclude that smart strategies are contributing to adaptation of the bacterium in an aggressive environment of a stomach and lifelong permanent circulation in its host. Thirty-four years after the discovery of this bacterium, there are still many unanswered questions. For example, which strategies help the bacterium to survive in this inhospitable conditions? Understanding the mechanisms governing H. pylori persistence will improve identification of the increased risk of different gastric diseases in persons infected with this bacterium. A well-defined and long-term equilibrium between the human host and H. pylori allows bacterial persistence in the gastric microniche; although this coexistence leads to a high risk of severe diseases the diseases which are listed above. In this review, we discuss the pathogenesis of this bacterium and the mechanisms it uses to promote persistent colonization of the gastric mucosa, with a focus on recent insights into the role of some virulence factors like urease, LPS, outer membrane proteins, cytotoxins, factors, promoting invasion. Information on the mechanisms related to H. pylori persistence can also provide the direction for future research concerning effective therapy and management of gastroduodenal disorders. The topics presented in the current review are important for elucidating the strategies used by H. pylori to help the bacterium persist in relation to the many unfavorable features of living in the gastric microniche.
Collapse
|
40
|
Chen L, Feng J, Wu S, Xu B, Zhou Y, Wu C, Jiang J. Decreased RIG-I expression is associated with poor prognosis and promotes cell invasion in human gastric cancer. Cancer Cell Int 2018; 18:144. [PMID: 30250402 PMCID: PMC6146491 DOI: 10.1186/s12935-018-0639-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Retinoic acid-induced protein I (RIG-I), known as a cytoplastic pattern recognition receptor, can recognize exogenous viral RNAs, and then initiate immune response. Recently, numerous studies also showed that RIG-I play an important role in oncogenesis and cancer progression as well. As of now, the expression pattern and the role of RIG-I in gastric cancer still remain largely unexplored. In this study, we investigated the clinical associations of RIG-I expression in human gastric cancer tissues and further explore its important contribution in the regulation of malignant phenotype of gastric cancer cells. METHODS Immunohistochemistry was performed to study the correlation between patients' clinical parameters and RIG-I expression in gastric cancer tissues. Knockdown of RIG-I was achieved by RNAi technology to examine the contribution of RIG-I in the regulation of biological functions in the cell lines of human gastric cancer. The Affymetrix GeneChip was performed to figure out the differential gene expression profile between RIG-I wild type and RIG-I knockdown cell lines of gastric cancer. RESULTS Immunohistochemistry result demonstrated that the expression of RIG-I in gastric cancer tissues significantly correlated with pathological stage and patients' prognoses. Furthermore, decreased RIG-I expression in human gastric cancer cell lines could significantly increase the cell migration, cell viability, and the ratio of cells in G2/M phase. Our microarray analysis also revealed that the differentially expressed gene profiles were enriched in related signal pathways or biological processes in KEGG or GO analysis respectively. CONCLUSIONS Our present findings showed that the decreased RIG-I expression significantly correlated with patients' prognoses, and such down-regulation could promote the cell invasion in this malignancy.
Collapse
Affiliation(s)
- Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Jun Feng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Shaoxian Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Bin Xu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - You Zhou
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, 213003 Jiangsu China
| |
Collapse
|
41
|
Li H, Xia JQ, Zhu FS, Xi ZH, Pan CY, Gu LM, Tian YZ. LPS promotes the expression of PD-L1 in gastric cancer cells through NF-κB activation. J Cell Biochem 2018; 119:9997-10004. [PMID: 30145830 DOI: 10.1002/jcb.27329] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022]
Abstract
Gastric cancers are a group of highly aggressive malignancies with a huge disease burden worldwide. Gastric infections, such as helicobacter pylori, can induce the occurrence of gastric cancers. However, the role of gastric infection in gastric cancer development is unclear. Programmed death-ligand 1 (PD-L1, B7-H1) is a member of the B7 family of cell surface ligands, which binds the PD-1 transmembrane receptor and inhibits T-cell activation within cancer tissues. It has been reported that the expression of PD-L1 is inversely related to the prognosis of patients with gastric cancers. Therefore, the regulation of PD-L1 expression in gastric cancers needs to be studied. In the current study, we explored the possible effects of lipopolysaccharide (LPS) on PD-L1 expression in gastric cancer cells. We observed that LPS stimulation could markedly increase PD-L1 expression in gastric cancer cells. Furthermore, we found that nuclear factor-κB (NF-κB) activation was involved in PD-L1 expression in gastric cancer cells exposed to LPS stimulation through p65-binding to the PD-L1 promoter. Taken together, these data indicate that gastric infection might promote the development of gastric cancers thought the LPS-NF-κB-PD-L1 axis.
Collapse
Affiliation(s)
- Hui Li
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jun-Quan Xia
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fang-Shi Zhu
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhao-Hong Xi
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Cheng-Yu Pan
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li-Mei Gu
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yao-Zhou Tian
- Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
42
|
Gui L, Zhang Q, Cai Y, Deng X, Zhang Y, Li C, Guo Q, He X, Huang J. Effects of let-7e on LPS-Stimulated THP-1 Cells Assessed by iTRAQ Proteomic Analysis. Proteomics Clin Appl 2018; 12:e1700012. [PMID: 29505169 DOI: 10.1002/prca.201700012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 01/06/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE Previous studies have demonstrated that let-7e is associated with inflammatory responses. To date, the roles and mechanisms of let-7e have not been completely revealed.Therefore, we aim to identify proteins associated with let-7e overexpression and explore their functions in the immune responses, including in cytokine production. EXPERIMENTAL DESIGN High-throughput isobaric tag for relative and absolute quantitation (iTRAQ) technology is used to provide the first genome-wide study of THP-1 cells transfected with let-7e mimic followed by lipopolysaccharide (LPS) stimulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database and KEGG pathway enrichment analyses are used to analyze a large number of differentially expressed proteins (DEPs) associated with let-7e overexpression or LPS stimulation. Quantitative reverse transcription PCR (qRT-PCR) and 50% tissue culture infective dose (TCID50) assays are processed to confirm the relationship of let-7e and dengue virus replication. RESULTS iTRAQ results show that let-7e is associated with the expression of anti-viral proteins. What's more, calcineurin subunit B type 1, an anti-tumor factor, is upregulated by let-7e after LPS stimulation. KEGG analyses identify that some DEPS associated with let-7e overexpression are involved in the measles and influenza A pathways, and LPS-stimulated proteins in THP-1 cells are mainly enriched in transcriptional misregulation in cancer pathway and hippo signaling pathway (multiple species). The results of qRT-PCRand TCID50 show that let-7e promotes dengue virus replication, which is in agreement with the iTRAQ results. CONCLUSIONS AND CLINICAL RELEVANCE These results provide molecular insights into the regulatory mechanisms of let-7e in cytokine expression, virus replication, and anti-tumor function.
Collapse
Affiliation(s)
- Lian Gui
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P. R. China
| | - Qianqian Zhang
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yan Cai
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaohong Deng
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yingke Zhang
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P. R. China
| | - Cheukfai Li
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Qi Guo
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoshun He
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Junqi Huang
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.,Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
43
|
Kido D, Mizutani K, Takeda K, Mikami R, Matsuura T, Iwasaki K, Izumi Y. Impact of diabetes on gingival wound healing via oxidative stress. PLoS One 2017; 12:e0189601. [PMID: 29267310 PMCID: PMC5739411 DOI: 10.1371/journal.pone.0189601] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022] Open
Abstract
The aim of this study is to investigate the mechanisms linking high glucose to gingival wound healing. Bilateral wounds were created in the palatal gingiva adjacent to maxillary molars of control rats and rats with streptozotocin-induced diabetes. After evaluating postsurgical wound closure by digital imaging, the maxillae including wounds were resected for histological examinations. mRNA expressions of angiogenesis, inflammation, and oxidative stress markers in the surgical sites were quantified by real-time polymerase chain reaction. Primary fibroblast culture from the gingiva of both rats was performed in high glucose and normal medium. In vitro wound healing and cell proliferation assays were performed. Oxidative stress marker mRNA expressions and reactive oxygen species production were measured. Insulin resistance was evaluated via PI3K/Akt and MAPK/Erk signaling following insulin stimulation using Western blotting. To clarify oxidative stress involvement in high glucose culture and cells of diabetic rats, cells underwent N-acetyl-L-cysteine treatment; subsequent Akt activity was measured. Wound healing in diabetic rats was significantly delayed compared with that in control rats. Nox1, Nox2, Nox4, p-47, and tumor necrosis factor-α mRNA levels were significantly higher at baseline in diabetic rats than in control rats. In vitro study showed that cell proliferation and migration significantly decreased in diabetic and high glucose culture groups compared with control groups. Nox1, Nox2, Nox4, and p47 expressions and reactive oxygen species production were significantly higher in diabetic and high glucose culture groups than in control groups. Akt phosphorylation decreased in the high glucose groups compared with the control groups. Erk1/2 phosphorylation increased in the high glucose groups, with or without insulin treatment, compared with the control groups. Impaired Akt phosphorylation partially normalized after antioxidant N-acetyl-L-cysteine treatment. Thus, delayed gingival wound healing in diabetic rats occurred because of impaired fibroblast proliferation and migration. Fibroblast dysfunction may occur owing to high glucose-induced insulin resistance via oxidative stress.
Collapse
Affiliation(s)
- Daisuke Kido
- Department of Periodontology, Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- * E-mail:
| | - Kohei Takeda
- Department of Periodontology, Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Risako Mikami
- Department of Periodontology, Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takanori Matsuura
- Department of Periodontology, Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kengo Iwasaki
- Department of Nanomedicine, Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate school of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
44
|
Simawaranon T, Wattanawongdon W, Tongtawee T. Toll-Like Receptors are Associated with Helicobacter pylori Infection and Gastric Mucosa Pathology. Jundishapur J Microbiol 2017; 10. [DOI: 10.5812/jjm.58351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
45
|
Mommersteeg MC, Yu J, Peppelenbosch MP, Fuhler GM. Genetic host factors in Helicobacter pylori-induced carcinogenesis: Emerging new paradigms. Biochim Biophys Acta Rev Cancer 2017; 1869:42-52. [PMID: 29154808 DOI: 10.1016/j.bbcan.2017.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 02/09/2023]
Abstract
Helicobacter Pylori is a gram negative rod shaped microaerophilic bacterium that colonizes the stomach of approximately half the world's population. Infection with c may cause chronic gastritis which via a quite well described process known as Correas cascade can progress through sequential development of atrophic gastritis, intestinal metaplasia and dysplasia to gastric cancer. H. pylori is currently the only bacterium that is classified as a class 1 carcinogen by the WHO, although the exact mechanisms by which this bacterium contributes to gastric carcinogenesis are still poorly understood. Only a minority of H. pylori-infected patients will eventually develop gastric cancer, suggesting that host factors may be important in determining the outcome of H. pylori infection. This is supported by a growing body of evidence suggesting that the host genetic background contributes to risk of H. pylori infection and gastric carcinogenesis. In particular single nucleotide polymorphisms in genes that influence bacterial handling via pattern recognition receptors appear to be involved, further strengthening the link between host risk factors, H. pylori incidence and cancer. Many of these genes influence cellular pathways leading to inflammatory signaling, inflammasome formation and autophagy. In this review we summarize known carcinogenic effects of H. pylori, and discuss recent findings that implicate host genetic pattern recognition pathways in the development of gastric cancer and their relation with H. pylori.
Collapse
Affiliation(s)
- Michiel C Mommersteeg
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical center Rotterdam, Office NA-619, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Jun Yu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences and CUHK-Shenzhen Research Institute, Rm 707A, 7/F., Li Ka Shing Medical Science Building, The Chinese University of Hong Kong, Hong Kong.
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical center Rotterdam, Office NA-619, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical center Rotterdam, Office NA-619, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
46
|
Resistin facilitates breast cancer progression via TLR4-mediated induction of mesenchymal phenotypes and stemness properties. Oncogene 2017; 37:589-600. [PMID: 28991224 DOI: 10.1038/onc.2017.357] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022]
Abstract
Growing evidence indicates that resistin-an obesity-related cytokine-is upregulated in breast cancer patients, yet its impact on breast cancer behavior remains to be ascertained. Similarly, Toll-like receptor 4 (TLR4) has been implicated in breast cancer progression, however, its clinically relevant endogenous ligand remains elusive. In this study, we observed that high serum resistin levels in breast cancer patients positively correlated with tumor stage, size and lymph node metastasis. These findings were replicated in animal models of breast cancer tumorigenesis and metastasis. Resistin was found to promote epithelial-mesenchymal transition and stemness in breast cancer cells-mechanisms critical to tumorigenesis and metastasis-through a TLR4/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/signal transducer and activator of transcription 3 (STAT3) signaling pathway and negated by TLR4-specific antibody and antagonist. These findings provide clear evidence that resistin is a clinically relevant endogenous ligand for TLR4, which promotes tumor progression via TLR4/NF-κB/STAT3 signaling, providing insights into a novel therapeutic target in breast cancer.
Collapse
|
47
|
de Oliveira GA, Cheng RYS, Ridnour LA, Basudhar D, Somasundaram V, McVicar DW, Monteiro HP, Wink DA. Inducible Nitric Oxide Synthase in the Carcinogenesis of Gastrointestinal Cancers. Antioxid Redox Signal 2017; 26:1059-1077. [PMID: 27494631 PMCID: PMC5488308 DOI: 10.1089/ars.2016.6850] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Gastrointestinal (GI) cancer taken together constitutes one of the most common cancers worldwide with a broad range of etiological mechanisms. In this review, we have examined the impact of nitric oxide (NO) on the etiology of colon, colorectal, gastric, esophageal, and liver cancers. Recent Advances: Despite differences in etiology, initiation, and progression, chronic inflammation has been shown to be a common element within these cancers showing interactions of numerous pathways. NO generated at the inflammatory site contributes to the initiation and progression of disease. The amount of NO generated, time, and site vary and are an important determinant of the biological effects initiated. Among the nitric oxide synthase enzymes, the inducible isoform has the most diverse range, participating in numerous carcinogenic processes. There is emerging evidence showing that inducible nitric oxide synthase (NOS2) plays a central role in the process of tumor initiation and/or development. CRITICAL ISSUES Redox inflammation through NOS2 and cyclooxygenase-2 participates in driving the mechanisms of initiation and progression in GI cancers. FUTURE DIRECTIONS Understanding the underlying mechanism involved in NOS2 activation can provide new insights into important prevention and treatment strategies. Antioxid. Redox Signal. 26, 1059-1077.
Collapse
Affiliation(s)
- Graciele Almeida de Oliveira
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Robert Y S Cheng
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Lisa A Ridnour
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Debashree Basudhar
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Veena Somasundaram
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Daniel W McVicar
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| | - Hugo Pequeno Monteiro
- 2 Laboratório de Sinalização Celular, Universidade Federal de São Paulo , São Paulo, Brazil
| | - David A Wink
- 1 Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland
| |
Collapse
|
48
|
Nemati M, Larussa T, Khorramdelazad H, Mahmoodi M, Jafarzadeh A. Toll-like receptor 2: An important immunomodulatory molecule during Helicobacter pylori infection. Life Sci 2017; 178:17-29. [PMID: 28427896 DOI: 10.1016/j.lfs.2017.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022]
Abstract
Toll like receptors (TLRs) are an essential subset of pathogen recognition receptors (PRRs) which identify the microbial components and contribute in the regulation of innate and adaptive immune responses against the infectious agents. The TLRs, especially TLR2, TLR4, TLR5 and TLR9, participate in the induction of immune response against H. pylori. TLR2 is expressed on a number of immune and non-immune cells and recognizes a vast broad of microbial components due to its potential to form heterodimers with other TLRs, including TLR1, TLR6 and TLR10. A number of H. pylori-related molecules may contribute to TLR2-dependent responses, including HP-LPS, HP-HSP60 and HP-NAP. TLR2 plays a pivotal role in regulation of immune response to H. pylori through activation of NF-κB and induction of cytokine expression in epithelial cells, monocytes/macrophages, dendritic cells, neutrophils and B cells. The TLR2-related immune response that is induced by H. pylori-derived components may play an important role regarding the outcome of the infection toward bacterial elimination, persistence or pathological reactions. The immunomodulatory and immunoregulatory roles of TLR2 during H. pylori infection were considered in this review. TLR2 could be considered as an interesting therapeutic target for treatment of H. pylori-related diseases.
Collapse
Affiliation(s)
- Maryam Nemati
- Department of Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Microbiology, School of Medicine, Islamic Azad University Branch of Kerman, Kerman, Iran
| | - Tiziana Larussa
- Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Merat Mahmoodi
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdollah Jafarzadeh
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
49
|
Hattar K, Reinert CP, Sibelius U, Gökyildirim MY, Subtil FSB, Wilhelm J, Eul B, Dahlem G, Grimminger F, Seeger W, Grandel U. Lipoteichoic acids from Staphylococcus aureus stimulate proliferation of human non-small-cell lung cancer cells in vitro. Cancer Immunol Immunother 2017; 66:799-809. [PMID: 28314957 PMCID: PMC5445152 DOI: 10.1007/s00262-017-1980-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 02/24/2017] [Indexed: 12/22/2022]
Abstract
Pulmonary infections are frequent complications in lung cancer and may worsen its outcome and survival. Inflammatory mediators are suspected to promote tumor growth in non-small-cell lung cancer (NSCLC). Hence, bacterial pathogens may affect lung cancer growth by activation of inflammatory signalling. Against this background, we investigated the effect of purified lipoteichoic acids (LTA) of Staphylococcus aureus (S. aureus) on cellular proliferation and liberation of interleukin (IL)-8 in the NSCLC cell lines A549 and H226. A549 as well as H226 cells constitutively expressed TLR-2 mRNA. Even in low concentrations, LTA induced a prominent increase in cellular proliferation of A549 cells as quantified by automatic cell counting. In parallel, metabolic activity of A549 cells was enhanced. The increase in proliferation was accompanied by an increase in IL-8 mRNA expression and a dose- and time-dependent release of IL-8. Cellular proliferation as well as the release of IL-8 was dependent on specific ligation of TLR-2. Interestingly, targeting IL-8 by neutralizing antibodies completely abolished the LTA-induced proliferation of A549 cells. The pro-proliferative effect of LTA could also be reproduced in the squamous NSCLC cell line H226. In summary, LTA of S. aureus induced proliferation of NSCLC cell lines of adeno- and squamous cell carcinoma origin. Ligation of TLR-2 followed by auto- or paracrine signalling by endogenously synthesized IL-8 is centrally involved in LTA-induced tumor cell proliferation. Therefore, pulmonary infections may exert a direct pro-proliferative effect on lung cancer growth.
Collapse
Affiliation(s)
- Katja Hattar
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany
| | - Christian P Reinert
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany
| | - Ulf Sibelius
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany
| | - Mira Y Gökyildirim
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany
| | | | - Jochen Wilhelm
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Bastian Eul
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany
| | - Gabriele Dahlem
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany
| | - Werner Seeger
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ulrich Grandel
- Department of Internal Medicine IV/V, University of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 33, Giessen, Germany. .,Asklepios Klinik Lich, Lich, Germany.
| |
Collapse
|
50
|
CMTM3 decreases EGFR expression and EGF-mediated tumorigenicity by promoting Rab5 activity in gastric cancer. Cancer Lett 2017; 386:77-86. [DOI: 10.1016/j.canlet.2016.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/27/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023]
|