1
|
Mediati DG, Blair TA, Costas A, Monahan LG, Söderström B, Charles IG, Duggin IG. Genetic requirements for uropathogenic E. coli proliferation in the bladder cell infection cycle. mSystems 2024; 9:e0038724. [PMID: 39287381 PMCID: PMC11495030 DOI: 10.1128/msystems.00387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) requires an adaptable physiology to survive the wide range of environments experienced in the host, including gut and urinary tract surfaces. To identify UPEC genes required during intracellular infection, we developed a transposon-directed insertion-site sequencing approach for cellular infection models and searched for genes in a library of ~20,000 UTI89 transposon-insertion mutants that are specifically required at the distinct stages of infection of cultured bladder epithelial cells. Some of the bacterial functional requirements apparent in host bladder cell growth overlapped with those for M9-glycerol, notably nutrient utilization, polysaccharide and macromolecule precursor biosynthesis, and cell envelope stress tolerance. Two genes implicated in the intracellular bladder cell infection stage were confirmed through independent gene deletion studies: neuC (sialic acid capsule biosynthesis) and hisF (histidine biosynthesis). Distinct sets of UPEC genes were also implicated in bacterial dispersal, where UPEC erupts from bladder cells in highly filamentous or motile forms upon exposure to human urine, and during recovery from infection in a rich medium. We confirm that the dedD gene linked to septal peptidoglycan remodeling is required during UPEC dispersal from human bladder cells and may help stabilize cell division or the cell wall during envelope stress created by host cells. Our findings support a view that the host intracellular environment and infection cycle are multi-nutrient limited and create stress that demands an array of biosynthetic, cell envelope integrity, and biofilm-related functions of UPEC. IMPORTANCE Urinary tract infections (UTIs) are one of the most frequent infections worldwide. Uropathogenic Escherichia coli (UPEC), which accounts for ~80% of UTIs, must rapidly adapt to highly variable host environments, such as the gut, bladder sub-surface, and urine. In this study, we searched for UPEC genes required for bacterial growth and survival throughout the cellular infection cycle. Genes required for de novo synthesis of biomolecules and cell envelope integrity appeared to be important, and other genes were also implicated in bacterial dispersal and recovery from infection of cultured bladder cells. With further studies of individual gene function, their potential as therapeutic targets may be realized. This study expands knowledge of the UTI cycle and establishes an approach to genome-wide functional analyses of stage-resolved microbial infections.
Collapse
Affiliation(s)
- Daniel G. Mediati
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Tamika A. Blair
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Ariana Costas
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
- Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Leigh G. Monahan
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Ian G. Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Iain G. Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
2
|
Lau M, Monis PT, King BJ. The efficacy of current treatment processes to remove, inactivate, or reduce environmental bloom-forming Escherichia coli. Microbiol Spectr 2024; 12:e0085624. [PMID: 38980016 PMCID: PMC11302305 DOI: 10.1128/spectrum.00856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Escherichia coli is excreted in high numbers from the intestinal tract of humans, other mammals, and birds. Traditionally, it had been thought that E. coli could grow only within human or animal hosts and would perish in the environment. Therefore, the presence of E. coli in water has become universally accepted as a key water quality indicator of fecal pollution. However, recent research challenges the assumption that the presence of E. coli in water is always an indicator of fecal contamination, with some types of E. coli having evolved to survive and grow in aquatic environments. These strains can form blooms in water storages, resulting in high E. coli counts even without fecal contamination. Although these bloom-forming strains lack virulence genes and pose little threat to public health, their presence in treated water triggers the same response as fecal-derived E. coli. Yet, little is known about the effectiveness of treatment processes in removing or inactivating them. This study evaluated the effectiveness of current treatment processes to remove bloom-forming strains, in comparison to fecal-derived strains, with conventional coagulation-flocculation-sedimentation and filtration investigated. Second, the effectiveness of current disinfection processes-chlorination, chloramination, and ultraviolet (UV) light to disinfect bloom-forming strains in comparison to fecal-derived strains-was assessed. These experiments showed that the responses of bloom isolates were not significantly different from those of fecal E. coli strains. Therefore, commonly used water treatment and disinfection processes are effective to remove bloom-forming E. coli strains from water.IMPORTANCEThe presence of Escherichia coli in water has long been used globally as a key indicator of fecal pollution and for quantifying water safety. Traditionally, it was believed that E. coli could only thrive within hosts and would perish outside, making its presence in water indicative of fecal contamination. However, recent research has unveiled strains of E. coli capable of surviving and proliferating in aquatic environments, forming blooms even in the absence of fecal contamination. While these bloom-forming strains lack the genes to be pathogenic, their detection in source or drinking water triggers the same response as fecal-derived E. coli. Yet, little is known about the efficacy of treatment processes in removing them. This study evaluated the effectiveness of conventional treatment and disinfection processes in removing bloom-forming strains compared to fecal-derived strains. Results indicate that these commonly used processes are equally effective against both types of E. coli, reassuring that bloom-forming E. coli strains can be eliminated from water.
Collapse
Affiliation(s)
- Melody Lau
- South Australian Water Corporation, Adelaide, South Australia, Australia
| | - Paul T. Monis
- South Australian Water Corporation, Adelaide, South Australia, Australia
| | - Brendon J. King
- South Australian Water Corporation, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Schwartz L, de Dios Ruiz-Rosado J, Stonebrook E, Becknell B, Spencer JD. Uropathogen and host responses in pyelonephritis. Nat Rev Nephrol 2023; 19:658-671. [PMID: 37479904 PMCID: PMC10913074 DOI: 10.1038/s41581-023-00737-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections seen in clinical practice. The ascent of UTI-causing pathogens to the kidneys results in pyelonephritis, which can trigger kidney injury, scarring and ultimately impair kidney function. Despite sizable efforts to understand how infections develop or are cleared in the bladder, our appreciation of the mechanisms by which infections develop, progress or are eradicated in the kidney is limited. The identification of virulence factors that are produced by uropathogenic Escherichia coli to promote pyelonephritis have begun to fill this knowledge gap, as have insights into the mechanisms by which kidney tubular epithelial cells oppose uropathogenic E. coli infection to prevent or eradicate UTIs. Emerging data also illustrate how specific cellular immune responses eradicate infection whereas other immune cell populations promote kidney injury. Insights into the mechanisms by which uropathogenic E. coli circumvent host immune defences or antibiotic therapy to cause pyelonephritis is paramount to the development of new prevention and treatment strategies to mitigate pyelonephritis and its associated complications.
Collapse
Affiliation(s)
- Laura Schwartz
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Juan de Dios Ruiz-Rosado
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emily Stonebrook
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
4
|
Arredondo-Alonso S, Blundell-Hunter G, Fu Z, Gladstone RA, Fillol-Salom A, Loraine J, Cloutman-Green E, Johnsen PJ, Samuelsen Ø, Pöntinen AK, Cléon F, Chavez-Bueno S, De la Cruz MA, Ares MA, Vongsouvath M, Chmielarczyk A, Horner C, Klein N, McNally A, Reis JN, Penadés JR, Thomson NR, Corander J, Taylor PW, McCarthy AJ. Evolutionary and functional history of the Escherichia coli K1 capsule. Nat Commun 2023; 14:3294. [PMID: 37322051 PMCID: PMC10272209 DOI: 10.1038/s41467-023-39052-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
Escherichia coli is a leading cause of invasive bacterial infections in humans. Capsule polysaccharide has an important role in bacterial pathogenesis, and the K1 capsule has been firmly established as one of the most potent capsule types in E. coli through its association with severe infections. However, little is known about its distribution, evolution and functions across the E. coli phylogeny, which is fundamental to elucidating its role in the expansion of successful lineages. Using systematic surveys of invasive E. coli isolates, we show that the K1-cps locus is present in a quarter of bloodstream infection isolates and has emerged in at least four different extraintestinal pathogenic E. coli (ExPEC) phylogroups independently in the last 500 years. Phenotypic assessment demonstrates that K1 capsule synthesis enhances E. coli survival in human serum independent of genetic background, and that therapeutic targeting of the K1 capsule re-sensitizes E. coli from distinct genetic backgrounds to human serum. Our study highlights that assessing the evolutionary and functional properties of bacterial virulence factors at population levels is important to better monitor and predict the emergence of virulent clones, and to also inform therapies and preventive medicine to effectively control bacterial infections whilst significantly lowering antibiotic usage.
Collapse
Affiliation(s)
- Sergio Arredondo-Alonso
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | | | - Zuyi Fu
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Rebecca A Gladstone
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Alfred Fillol-Salom
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | | | - Elaine Cloutman-Green
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Pål J Johnsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Anna K Pöntinen
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - François Cléon
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Susana Chavez-Bueno
- University of Missouri Kansas City, Kansas City, USA
- Division of Infectious Diseases, Children's Mercy Hospital Kansas City, UMKC School of Medicine, Kansas City, USA
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Agnieszka Chmielarczyk
- Faculty of Medicine, Chair of Microbiology, Jagiellonian University Medical College, Czysta str. 18, 31-121, Kraków, Poland
| | - Carolyne Horner
- British Society for Antimicrobial Chemotherapy, Birmingham, UK
| | - Nigel Klein
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joice N Reis
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Salvador, Brazil
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
| | - José R Penadés
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Nicholas R Thomson
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway.
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK.
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| | - Peter W Taylor
- School of Pharmacy, University College London, London, UK.
| | - Alex J McCarthy
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| |
Collapse
|
5
|
Identification of novel genes involved in the biofilm formation process of Avian Pathogenic Escherichia coli (APEC). PLoS One 2022; 17:e0279206. [PMID: 36534660 PMCID: PMC9762606 DOI: 10.1371/journal.pone.0279206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is the etiological agent of avian colibacillosis, a leading cause of economic loss to the poultry industry worldwide. APEC causes disease using a diverse repertoire of virulence factors and has the ability to form biofilms, which contributes to the survival and persistence of APEC in harsh environments. The objective of this study was to identify genes most widespread and important in APEC that contribute to APEC biofilm formation. Using the characterized APEC O18 as the template strain, a total of 15,660 mutants were randomly generated using signature tagged mutagenesis and evaluated for decreased biofilm formation ability using the crystal violet assay. Biofilm deficient mutants were sequenced, and a total of 547 putative biofilm formation genes were identified. Thirty of these genes were analyzed by PCR for prevalence among 109 APEC isolates and 104 avian fecal E. coli (AFEC) isolates, resulting in nine genes with significantly greater prevalence in APEC than AFEC. The expression of these genes was evaluated in the wild-type APEC O18 strain using quantitative real-time PCR (qPCR) in both the exponential growth phase and the mature biofilm phase. To investigate the role of these genes in biofilm formation, isogenic mutants were constructed and evaluated for their biofilm production and planktonic growth abilities. Four of the mutants (rfaY, rfaI, and two uncharacterized genes) displayed significantly decreased biofilm formation, and of those four, one (rfaI) displayed significantly decreased growth compared to the wild type. Overall, this study identified novel genes that may be important in APEC and its biofilm formation. The data generated from this study will benefit further investigation into the mechanisms of APEC biofilm formation.
Collapse
|
6
|
Differential expression of glycans in the urothelial layers of horse urinary bladder. Ann Anat 2022; 244:151988. [PMID: 35987426 DOI: 10.1016/j.aanat.2022.151988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Urothelium is a multilayer epithelium covering the inner surface of the urinary bladder that acts as a blood-urine barrier and is involved in maintaining the wellbeing of the whole organism. Glycans serve in the maturation and differentiation of cells and thus play a key role in the morphology and function of the multilayered epithelium. The aim of the present study was to examine the glycoprotein pattern of the horse urinary bladder urothelium by lectin histochemistry. METHODS The study involved urinary bladders from four horse stallions. Tissue sections were stained with a panel of eleven lectins, in combination with saponification and sialidase digestion (Ks). RESULTS Basal cells displayed high-mannose N-glycans (Con A), α2,6-linked sialic acid (SNA), and O-linked sialoglycans with sialic acids linked to Galβl,3GalNAc (T antigen) (KsPNA) and terminal N-acetylgalactosamine (Tn antigen) (KsSBA). The young intermediate cells expressed terminal N-acetylglucosamine (GlcNAc) (GSA II), galactose (GSA I-B4), T- and Tn antigens (PNA, SBA). The mature intermediate cells showed additional high-mannose N-glycans, O-linked sialoglycans (sialyl-T antigen, sialyl-Tn antigen), α2,6- and α2,3-linked sialic acid (MAL II), α1,2-linked fucose (UEA I), and GlcNAc (KsWGA). The latter residue marked the boundary with the overlying surface layer. Few Con A positive intermediate cells were seen to cross the entire urothelium thickness. The surface cells showed additional glycans such as T antigen and sialic acids linked to GalNAc binding DBA (KsDBA). Few surface cells contained α1,3-linked fucose (LTA), whereas some other cells displayed intraluminal secretion of mucin-type glycans terminating with GalNAcα1,3(LFucα1,2)Galβ1,3/4GlcNAcβ1 (DBA). The luminal surface expressed the most complex glycan pattern in the urothelium because only α1,3-linked fucose lacked among the demonstrated glycans. CONCLUSIONS This study showed that the glycan pattern becomes more complex from the basal to surface layer of the urothelium and that surface cells could modify the composition of urine via the secretion of glycoproteins.
Collapse
|
7
|
Firoozeh F, Zibaei M, Badmasti F, Khaledi A. Virulence factors, antimicrobial resistance and the relationship between these characteristics in uropathogenic Escherichia coli. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Aldawood E, Roberts IS. Regulation of Escherichia coli Group 2 Capsule Gene Expression: A Mini Review and Update. Front Microbiol 2022; 13:858767. [PMID: 35359738 PMCID: PMC8960920 DOI: 10.3389/fmicb.2022.858767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
The expression of a group 2 capsule (K antigen), such as the K1 or K5 antigen, is a key virulence factor of Escherichia coli responsible for extra-intestinal infections. Capsule expression confers resistance to innate host defenses and plays a critical role in invasive disease. Capsule expression is temperature-dependent being expressed at 37°C but not at 20°C when outside the host. Group 2 capsule gene expression involves two convergent promoters PR1 and PR3, the regulation of which is critical to capsule expression. Temperature-dependent expression is controlled at transcriptional level directly by the binding of H-NS to PR1 and PR3 and indirectly through BipA with additional input from IHF and SlyA. More recently, other regulatory proteins, FNR, Fur, IHF, MprA, and LrhA, have been implicated in regulating capsule gene expression in response to other environmental stimuli and there is merging data for the growth phase-dependent regulation of the PR1 and PR3 promoters. The aim of the present Mini Review is to provide a unified update on the latest data on how the expression of group 2 capsules is regulated in response to a number of stimuli and the growth phase something that has not to date been addressed.
Collapse
Affiliation(s)
- Esraa Aldawood
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Clinical Laboratory Science, Collage of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Ian S. Roberts
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- *Correspondence: Ian S. Roberts,
| |
Collapse
|
9
|
Ishigaki H, Itoh Y. Detection of Sialic Acids on the Cell Surface Using Flow Cytometry. Methods Mol Biol 2022; 2556:31-35. [PMID: 36175624 DOI: 10.1007/978-1-0716-2635-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We described a method to detect α2-3 linked and α2-6 linked sialic acids on the cell surface with using flow cytometry. Cells were fixed with 4% paraformaldehyde, and then α2-3 and α2-6 sialic acids were stained with biotinylated MAACKIA AMURENSIS LECTIN II (MALII) and biotinylated ELDERBERRY BARK LECTIN (SNA), respectively. Sialic acids on the cell surface were cleaved by sialidase in acetate buffer at pH 5.5 to confirm the specificity of staining. Streptavidin conjugated with Alexa flour 488 was used to detect biotinylated lectins. Thus, the α2-3 linked and α2-6 linked sialic acids on the cell surface were semi-quantitatively detected by flow cytometry.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Shiga, Japan.
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
10
|
The Short-Chain Fatty Acids Propionate and Butyrate Augment Adherent-Invasive Escherichia coli Virulence but Repress Inflammation in a Human Intestinal Enteroid Model of Infection. Microbiol Spectr 2021; 9:e0136921. [PMID: 34612688 PMCID: PMC8510176 DOI: 10.1128/spectrum.01369-21] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Short-chain fatty acids (SCFAs), which consist of six or fewer carbons, are fermentation products of the bacterial community that inhabits the intestine. Due to an immunosuppressive effect on intestinal tissue, they have been touted as a therapeutic for inflammatory conditions of the bowel. Here, we study the impact of acetate, propionate, and butyrate, the three most abundant SCFAs in the intestine, on gene expression in the intestinal pathobiont adherent-invasive Escherichia coli. We pair this with adherence, invasion, and inflammation in Caco-2 and human intestinal enteroid (HIE)-derived monolayer models of the intestinal epithelium. We report that propionate and butyrate upregulate transcription of adherent-invasive Escherichia coli (AIEC) flagellar synthesis genes and decrease expression of capsule assembly and transport genes. These changes are predicted to augment AIEC invasiveness. In fact, SCFA supplementation increases AIEC adherence to and invasion of the Caco-2 monolayer but has no effect on these parameters in the HIE model. We attribute this to the anti-inflammatory effect of propionate and butyrate on HIEs but not on Caco-2 cells. We conclude that the potential of SCFAs to increase the virulence of intestinal pathogens should be considered in their use as anti-inflammatory agents. IMPORTANCE The human terminal ileum and colon are colonized by a community of microbes known as the microbiota. Short-chain fatty acids (SCFAs) excreted by bacterial members of the microbiota define the intestinal environment. These constitute an important line of communication within the microbiota and between the microbiota and the host epithelium. In inflammatory conditions of the bowel, SCFAs are often low and there is a preponderance of a conditionally virulent bacterium termed adherent-invasive Escherichia coli (AIEC). A connection between SCFA abundance and AIEC has been suggested. Here, we study AIEC in monoculture and in coculture with human intestinal enteroid-derived monolayers and show that the SCFAs propionate and butyrate increase expression of AIEC virulence genes while concurrently bolstering the intestinal epithelial barrier and reducing intestinal inflammation. While these SCFAs have been promoted as a therapy for inflammatory bowel conditions, our findings demonstrate that their effect on bacterial virulence must be considered.
Collapse
|
11
|
Vaill M, Chen DY, Diaz S, Varki A. Improved methods to characterize the length and quantity of highly unstable PolySialic acids subject category: (Carbohydrates, chromatographic techniques). Anal Biochem 2021; 635:114426. [PMID: 34687617 DOI: 10.1016/j.ab.2021.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022]
Abstract
Polysialic acid (polySia) is a linear homopolymer of α2-8-linked sialic acids that is highly expressed during early stages of mammalian brain development and modulates a multitude of cellular functions. While degree of polymerization (DP) can affect such functions, currently available methods do not accurately characterize this parameter, because of the instability of the polymer. We developed two improved methods to characterize the DP and total polySia content in biological samples. PolySia chains with exposed reducing termini can be derivatized with DMB for subsequent HPLC analysis. However, application to biological samples of polySia-glycoproteins requires release of polySia chains from the underlying glycan, which is difficult to achieve without concurrent partial hydrolysis of the α2-8-linkages of the polySia chain, affecting its accurate characterization. We report an approach to protect internal α2-8sia linkages of long polySia chains, using previously known esterification conditions that generate stable polylactone structures. Such polylactonized molecules are more stable during acid hydrolysis release and acidic DMB derivatization. Additionally, we used the highly specific Endoneuraminidase-NF enzyme to discriminate polysialic acid and other sialic acid and developed an approach to precisely measure the total content of polySia in a biological sample. These two methods provide improved quantification and characterization of polySia.
Collapse
Affiliation(s)
- Michael Vaill
- Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Glycobiology Research and Training Center (GRTC), University of California, San Diego, La Jolla, CA, USA
| | - Dillon Y Chen
- Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Glycobiology Research and Training Center (GRTC), University of California, San Diego, La Jolla, CA, USA
| | - Sandra Diaz
- Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Glycobiology Research and Training Center (GRTC), University of California, San Diego, La Jolla, CA, USA
| | - Ajit Varki
- Department of Cellular & Molecular Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Glycobiology Research and Training Center (GRTC), University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Serra DO, Hengge R. Bacterial Multicellularity: The Biology of Escherichia coli Building Large-Scale Biofilm Communities. Annu Rev Microbiol 2021; 75:269-290. [PMID: 34343018 DOI: 10.1146/annurev-micro-031921-055801] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widespread multicellular form of bacterial life. The spatial structure and emergent properties of these communities depend on a polymeric extracellular matrix architecture that is orders of magnitude larger than the cells that build it. Using as a model the wrinkly macrocolony biofilms of Escherichia coli, which contain amyloid curli fibers and phosphoethanolamine (pEtN)-modified cellulose as matrix components, we summarize here the structure, building, and function of this large-scale matrix architecture. Based on different sigma and other transcription factors as well as second messengers, the underlying regulatory network reflects the fundamental trade-off between growth and survival. It controls matrix production spatially in response to long-range chemical gradients, but it also generates distinct patterns of short-range matrix heterogeneity that are crucial for tissue-like elasticity and macroscopic morphogenesis. Overall, these biofilms confer protection and a potential for homeostasis, thereby reducing maintenance energy, which makes multicellularity an emergent property of life itself. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Diego O Serra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), 2000 Rosario, Argentina
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| |
Collapse
|
13
|
Bile salts regulate zinc uptake and capsule synthesis in a mastitis-associated extraintestinal pathogenic Escherichia coli strain. Infect Immun 2021; 89:e0035721. [PMID: 34228495 DOI: 10.1128/iai.00357-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are major causes of urinary and bloodstream infections. ExPEC reservoirs are not completely understood. Some mastitis-associated E. coli (MAEC) strains carry genes associated with ExPEC virulence, including metal scavenging, immune avoidance, and host attachment functions. In this study, we investigated the role of the high-affinity zinc uptake (znuABC) system in the MAEC strain M12. Elimination of znuABC moderately decreased fitness during mouse mammary gland infections. The ΔznuABC mutant strain exhibited an unexpected growth delay in the presence of bile salts, which was alleviated by the addition of excess zinc. We isolated ΔznuABC mutant suppressor mutants with improved growth of in bile salts, several of which no longer produced the K96 capsule made by strain M12. Addition of bile salts also reduced capsule production by strain M12 and ExPEC strain CP9, suggesting that capsule synthesis may be detrimental when bile salts are present. To better understand the role of the capsule, we compared the virulence of mastitis strain M12 with its unencapsulated ΔkpsCS mutant in two models of ExPEC disease. The wild type strain successfully colonized mouse bladders and kidneys and was highly virulent in intraperitoneal infections. Conversely, the ΔkpsCS mutant was unable to colonize kidneys and was unable to cause sepsis. These results demonstrate that some MAEC may be capable of causing human ExPEC illness. Virulence of strain M12 in these infections is dependent on its capsule. However, capsule may interfere with zinc homeostasis in the presence of bile salts while in the digestive tract.
Collapse
|
14
|
Lupo F, Ingersoll MA, Pineda MA. The glycobiology of uropathogenic E. coli infection: the sweet and bitter role of sugars in urinary tract immunity. Immunology 2021; 164:3-14. [PMID: 33763853 PMCID: PMC8358714 DOI: 10.1111/imm.13330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 12/25/2022] Open
Abstract
Urinary tract infections (UTI) are among the most prevalent infectious diseases and the most common cause of nosocomial infections, worldwide. Uropathogenic E. coli (UPEC) are responsible for approximately 80% of all UTI, which most commonly affect the bladder. UPEC colonize the urinary tract by ascension of the urethra, followed by cell invasion, and proliferation inside and outside urothelial cells, thereby causing symptomatic infections and quiescent intracellular reservoirs that may lead to recurrence. Sugars, or glycans, are key molecules for host–pathogen interactions, and UTI are no exception. Surface glycans regulate many of the events associated with UPEC adhesion and infection, as well as induction of the host immune response. While the bacterial protein FimH binds mannose‐containing host glycoproteins to initiate infection and UPEC‐secreted polysaccharides block immune mechanisms to favour intracellular replication, host glycans on the urothelial surface and on secreted glycoproteins prevent or limit infection by inhibiting UPEC adhesion. Given the importance of glycans during UTI, here we review the glycobiology of UPEC infection to highlight fundamental sugar‐mediated processes of immunological interest for their potential clinical applications. Interdisciplinary approaches incorporating glycomics and infection biology may help to develop novel non‐antibiotic‐based therapeutic strategies for bacterial infections as the spread of antimicrobial‐resistant uropathogens is currently threatening modern healthcare systems.
Collapse
Affiliation(s)
- Federico Lupo
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Miguel A Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Loubet P, Ranfaing J, Dinh A, Dunyach-Remy C, Bernard L, Bruyère F, Lavigne JP, Sotto A. Alternative Therapeutic Options to Antibiotics for the Treatment of Urinary Tract Infections. Front Microbiol 2020; 11:1509. [PMID: 32719668 PMCID: PMC7350282 DOI: 10.3389/fmicb.2020.01509] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/10/2020] [Indexed: 12/29/2022] Open
Abstract
Urinary tract infections (UTIs) mainly caused by Uropathogenic Escherichia coli (UPEC), are common bacterial infections. Many individuals suffer from chronically recurring UTIs, sometimes requiring long-term prophylactic antibiotic regimens. The global emergence of multi-drug resistant uropathogens in the last decade underlines the need for alternative non-antibiotic therapeutic and preventative strategies against UTIs. The research on non-antibiotic therapeutic options in UTIs has focused on the following phases of the pathogenesis: colonization, adherence of pathogens to uroepithelial cell receptors and invasion. In this review, we discuss vaccines, small compounds, nutraceuticals, immunomodulating agents, probiotics and bacteriophages, highlighting the challenges each of these approaches face. Most of these treatments show interesting but only preliminary results. Lactobacillus-containing products and cranberry products in conjunction with propolis have shown the most robust results to date and appear to be the most promising new alternative to currently used antibiotics. Larger efficacy clinical trials as well as studies on the interplay between non-antibiotic therapies, uropathogens and the host immune system are warranted.
Collapse
Affiliation(s)
- Paul Loubet
- VBMI, INSERM U1047, Université de Montpellier, Service des Maladies Infectieuses et Tropicales, CHU Nîmes, Nîmes, France
| | - Jérémy Ranfaing
- VBMI, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, Nîmes, France
| | - Aurélien Dinh
- Service des Maladies Infectieuses, AP-HP Raymond-Poincaré, Garches, France
| | - Catherine Dunyach-Remy
- VBMI, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, Nîmes, France
| | - Louis Bernard
- PRES Centre Val de Loire, Université François Rabelais de Tours, Tours, France.,Service des Maladies Infectieuses, CHU Tours, Tours, France
| | - Franck Bruyère
- PRES Centre Val de Loire, Université François Rabelais de Tours, Tours, France.,Service d'Urologie, CHU Tours, Tours, France
| | - Jean-Philippe Lavigne
- VBMI, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, Nîmes, France
| | - Albert Sotto
- VBMI, INSERM U1047, Université de Montpellier, Service des Maladies Infectieuses et Tropicales, CHU Nîmes, Nîmes, France
| |
Collapse
|
16
|
Zhang Y, Zhang S, He Y, Sun Z, Cai W, Lv Y, Jiang L, Li Q, Zhu S, Li W, Ye C, Wu B, Xue Y, Chen H, Cai H, Chen T. Murine SIGNR1 (CD209b) Contributes to the Clearance of Uropathogenic Escherichia coli During Urinary Tract Infections. Front Cell Infect Microbiol 2020; 9:457. [PMID: 31998663 PMCID: PMC6965063 DOI: 10.3389/fcimb.2019.00457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/16/2019] [Indexed: 12/28/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC), a Gram-negative bacterial pathogen, is a major causative agent of urinary tract infections (UTIs). However, the molecular mechanisms of how UPEC causes infections have not been determined. Recent studies indicated that certain enteric Gram-negative bacteria interact with and hijack innate immune receptors DC-SIGN (CD209a) and SIGNR1 (CD209b), often expressed by antigen-presenting cells (APCs), such as macrophages, leading to dissemination and infection. It was not known whether UPEC could utilize DC-SIGN receptors to promote its infection and dissemination similarly to the enteric pathogens. The results of this study reveal that UPEC interacts with CD209-expressing macrophages and transfectants. This interaction is inhibited by anti-CD209 antibody, indicating that CD209s are receptors for UPEC. Additionally, in contrast to the results of previous studies, mice lacking SIGNR1 are more susceptible to infection of this uropathogen, leading to prolonged bacterial persistence. Overall, the results of our study indicate that the innate immune receptor CD209s participate in the clearance of UPEC during UTIs.
Collapse
Affiliation(s)
- Yingmiao Zhang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxia He
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ziyong Sun
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wentong Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yin Lv
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Lingyu Jiang
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Qiao Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Sizhe Zhu
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Wenjin Li
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Chenglin Ye
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Bicong Wu
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Ying Xue
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huahua Cai
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Tie Chen
- Department of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
17
|
The role of major virulence factors and pathogenicity of adherent-invasive Escherichia coli in patients with Crohn's disease. GASTROENTEROLOGY REVIEW 2020; 15:279-288. [PMID: 33777266 PMCID: PMC7988836 DOI: 10.5114/pg.2020.93235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a term that describes Crohn's disease (CD) and ulcerative colitis (UC), and these two conditions are characterised by chronic inflammation of the gastrointestinal tract. Dysbiosis of intestinal microbiota has been consistently linked to patients with IBD. In the last two decades, the progressive implication of adherent-invasive Escherichia coli (AIEC) pathogenesis in patients with CD has been increasing. Here we discuss recent findings that indicate the role and mechanisms of AIEC in IBD. We also highlight AIEC virulence factor genes and mechanisms that suggest an important role in the severity of inflammation in CD patients. Finally, we emphasise data on the prevalence of AIEC in CD patients.
Collapse
|
18
|
Comparative genomic analyses reveal diverse virulence factors and antimicrobial resistance mechanisms in clinical Elizabethkingia meningoseptica strains. PLoS One 2019; 14:e0222648. [PMID: 31600234 PMCID: PMC6786605 DOI: 10.1371/journal.pone.0222648] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
Three human clinical isolates of bacteria (designated strains Em1, Em2 and Em3) had high average nucleotide identity (ANI) to Elizabethkingia meningoseptica. Their genome sizes (3.89, 4.04 and 4.04 Mb) were comparable to those of other Elizabethkingia species and strains, and exhibited open pan-genome characteristics, with two strains being nearly identical and the third divergent. These strains were susceptible only to trimethoprim/sulfamethoxazole and ciprofloxacin amongst 16 antibiotics in minimum inhibitory tests. The resistome exhibited a high diversity of resistance genes, including 5 different lactamase- and 18 efflux protein- encoding genes. Forty-four genes encoding virulence factors were conserved among the strains. Sialic acid transporters and curli synthesis genes were well conserved in E. meningoseptica but absent in E. anophelis and E. miricola. E. meningoseptica carried several genes contributing to biofilm formation. 58 glycoside hydrolases (GH) and 25 putative polysaccharide utilization loci (PULs) were found. The strains carried numerous genes encoding two-component system proteins (56), transcription factor proteins (187~191), and DNA-binding proteins (6~7). Several prophages and CRISPR/Cas elements were uniquely present in the genomes.
Collapse
|
19
|
Liu Y, Liu B, Yang P, Wang T, Chang Z, Wang J, Wang Q, Li W, Wu J, Huang D, Jiang L, Yang B. LysR-type transcriptional regulator OvrB encoded in O island 9 drives enterohemorrhagic Escherichia coli O157:H7 virulence. Virulence 2019; 10:783-792. [PMID: 31502495 PMCID: PMC6768210 DOI: 10.1080/21505594.2019.1661721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 (O157) is a major foodborne pathogen that causes severe illness in humans worldwide. The genome of O157 contains 177 genomic islands known as O islands (OIs), including Shiga toxin-converting phages (OI-45 and OI-93) and the locus for enterocyte effacement (LEE) pathogenicity island (OI-148). However, most genes in OIs are uncharacterized and code for unknown functions. In this study, we demonstrated, for the first time, that OI-9 encodes a novel transcriptional activator, Z0346 (named OvrB), which is required for bacterial adherence to host cells and LEE gene expression in O157. OvrB directly binds to the promoter region of LEE1 and activates the transcription of ler (encoding a master regulator of LEE genes), which in turn activates LEE1–5 genes to promote O157 adherence. Furthermore, mouse oral infection assays showed that OvrB promotes O157 colonization in the mouse intestine. Finally, OvrB is shown to be a widespread transcriptional activator of virulence genes in other enterohemorrhagic and enteropathogenic Escherichia coli serotypes. Our work significantly expands the understanding of bacterial virulence control and provides new evidence suggesting that horizontally transferred regulator genes mediate LEE gene expression.
Collapse
Affiliation(s)
- Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Pan Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Ting Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Zhanhe Chang
- School of Biomedical Engineering, Tianjin Medical University , Tianjin , P. R. China
| | - Junyue Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Wendi Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Jialin Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA , Tianjin , P. R. China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education , Tianjin , P. R. China
| |
Collapse
|
20
|
The Autotransporter IcsA Promotes Shigella flexneri Biofilm Formation in the Presence of Bile Salts. Infect Immun 2019; 87:IAI.00861-18. [PMID: 30988059 DOI: 10.1128/iai.00861-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 12/25/2022] Open
Abstract
Shigella flexneri is an intracellular bacterial pathogen that invades epithelial cells in the colonic mucosa, leading to bloody diarrhea. A previous study showed that S. flexneri forms biofilms in the presence of bile salts, through an unknown mechanism. Here, we investigated the potential role of adhesin-like autotransporter proteins in S. flexneri biofilm formation. BLAST search analysis revealed that the S. flexneri 2457T genome harbors 4 genes, S1242, S1289, S2406, and icsA, encoding adhesin-like autotransporter proteins. Deletion mutants of the S1242, S1289, S2406 and icsA genes were generated and tested for biofilm formation. Phenotypic analysis of the mutant strains revealed that disruption of icsA abolished bile salt-induced biofilm formation. IcsA is an outer membrane protein secreted at the bacterial pole that is required for S. flexneri actin-based motility during intracellular infection. In extracellular biofilms, IcsA was also secreted at the bacterial pole and mediated bacterial cell-cell contacts and aggregative growth in the presence of bile salts. Dissecting individual roles of bile salts showed that deoxycholate is a robust biofilm inducer compared to cholate. The release of the extracellular domain of IcsA through IcsP-mediated cleavage was greater in the presence of cholate, suggesting that the robustness of biofilm formation was inversely correlated with IcsA processing. Accordingly, deletion of icsP abrogated IcsA processing in biofilms and enhanced biofilm formation.
Collapse
|
21
|
Tamadonfar KO, Omattage NS, Spaulding CN, Hultgren SJ. Reaching the End of the Line: Urinary Tract Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0014-2019. [PMID: 31172909 PMCID: PMC11314827 DOI: 10.1128/microbiolspec.bai-0014-2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 12/26/2022] Open
Abstract
Urinary tract infections (UTIs) cause a substantial health care burden. UTIs (i) are most often caused by uropathogenic Escherichia coli (UPEC), (ii) primarily affect otherwise healthy females (50% of women will have a UTI), (iii) are associated with significant morbidity and economic impact, (iv) can become chronic, and (v) are highly recurrent. A history of UTI is a significant risk factor for a recurrent UTI (rUTI). In otherwise healthy women, an acute UTI leads to a 25 to 50% chance of rUTI within months of the initial infection. Interestingly, rUTIs are commonly caused by the same strain of E. coli that led to the initial infection, arguing that there exist host-associated reservoirs, like the gastrointestinal tract and underlying bladder tissue, that can seed rUTIs. Additionally, catheter-associated UTIs (CAUTI), caused by Enterococcus and Staphylococcus as well as UPEC, represent a major health care concern. The host's response of depositing fibrinogen at the site of infection has been found to be critical to establishing CAUTI. The Drug Resistance Index, an evaluation of antibiotic resistance, indicates that UTIs have become increasingly difficult to treat since the mid-2000s. Thus, UTIs are a "canary in the coal mine," warning of the possibility of a return to the preantibiotic era, where some common infections are untreatable with available antibiotics. Numerous alternative strategies for both the prevention and treatment of UTIs are being pursued, with a focus on the development of vaccines and small-molecule inhibitors targeting virulence factors, in the hopes of reducing the burden of urogenital tract infections in an antibiotic-sparing manner.
Collapse
Affiliation(s)
- Kevin O Tamadonfar
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Natalie S Omattage
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Caitlin N Spaulding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- Harvard University School of Public Health, Boston, MA 02115
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- Center for Women's Infectious Disease Research, Washington University, School of Medicine, St. Louis, MO 63110
| |
Collapse
|
22
|
Uropathogenic Escherichia coli and the related virulence factors. GINECOLOGIA.RO 2019. [DOI: 10.26416/gine.26.4.2019.2713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
23
|
McDonald ND, DeMeester KE, Lewis AL, Grimes CL, Boyd EF. Structural and functional characterization of a modified legionaminic acid involved in glycosylation of a bacterial lipopolysaccharide. J Biol Chem 2018; 293:19113-19126. [PMID: 30315110 PMCID: PMC6295735 DOI: 10.1074/jbc.ra118.004966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/07/2018] [Indexed: 12/23/2022] Open
Abstract
Nonulosonic acids (NulOs) are a diverse family of α-keto acid carbohydrates present across all branches of life. Bacteria biosynthesize NulOs among which are several related prokaryotic-specific isomers and one of which, N-acetylneuraminic acid (sialic acid), is common among all vertebrates. Bacteria display various NulO carbohydrates on lipopolysaccharide (LPS), and the identities of these molecules tune host-pathogen recognition mechanisms. The opportunistic bacterial pathogen Vibrio vulnificus possesses the genes for NulO biosynthesis; however, the structures and functions of the V. vulnificus NulO glycan are unknown. Using genetic and chemical approaches, we show here that the major NulO produced by a clinical V. vulnificus strain CMCP6 is 5-N-acetyl-7-N-acetyl-d-alanyl-legionaminic acid (Leg5Ac7AcAla). The CMCP6 strain could catabolize modified legionaminic acid, whereas V. vulnificus strain YJ016 produced but did not catabolize a NulO without the N-acetyl-d-alanyl modification. In silico analysis suggested that Leg5Ac7AcAla biosynthesis follows a noncanonical pathway but appears to be present in several bacterial species. Leg5Ac7AcAla contributed to bacterial outer-membrane integrity, as mutant strains unable to produce or incorporate Leg5Ac7AcAla into the LPS have increased membrane permeability, sensitivity to bile salts and antimicrobial peptides, and defects in biofilm formation. Using the crustacean model, Artemia franciscana, we demonstrate that Leg5Ac7AcAla-deficient bacteria have decreased virulence potential compared with WT. Our data indicate that different V. vulnificus strains produce multiple NulOs and that the modified legionaminic acid Leg5Ac7AcAla plays a critical role in the physiology, survivability, and pathogenicity of V. vulnificus CMCP6.
Collapse
Affiliation(s)
| | - Kristen E DeMeester
- Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 and
| | - Amanda L Lewis
- the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Catherine Leimkuhler Grimes
- From the Departments of Biological Sciences and
- Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 and
| | | |
Collapse
|
24
|
Nhu NTK, Phan MD, Peters KM, Lo AW, Forde BM, Min Chong T, Yin WF, Chan KG, Chromek M, Brauner A, Chapman MR, Beatson SA, Schembri MA. Discovery of New Genes Involved in Curli Production by a Uropathogenic Escherichia coli Strain from the Highly Virulent O45:K1:H7 Lineage. mBio 2018; 9:e01462-18. [PMID: 30131362 PMCID: PMC6106082 DOI: 10.1128/mbio.01462-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 11/20/2022] Open
Abstract
Curli are bacterial surface-associated amyloid fibers that bind to the dye Congo red (CR) and facilitate uropathogenic Escherichia coli (UPEC) biofilm formation and protection against host innate defenses. Here we sequenced the genome of the curli-producing UPEC pyelonephritis strain MS7163 and showed it belongs to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. MS7163 produced curli at human physiological temperature, and this correlated with biofilm growth, resistance of sessile cells to the human cationic peptide cathelicidin, and enhanced colonization of the mouse bladder. We devised a forward genetic screen using CR staining as a proxy for curli production and identified 41 genes that were required for optimal CR binding, of which 19 genes were essential for curli synthesis. Ten of these genes were novel or poorly characterized with respect to curli synthesis and included genes involved in purine de novo biosynthesis, a regulator that controls the Rcs phosphorelay system, and a novel repressor of curli production (referred to as rcpA). The involvement of these genes in curli production was confirmed by the construction of defined mutants and their complementation. The mutants did not express the curli major subunit CsgA and failed to produce curli based on CR binding. Mutation of purF (the first gene in the purine biosynthesis pathway) and rcpA also led to attenuated colonization of the mouse bladder. Overall, this work has provided new insight into the regulation of curli and the role of these amyloid fibers in UPEC biofilm formation and pathogenesis.IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains are the most common cause of urinary tract infection, a disease increasingly associated with escalating antibiotic resistance. UPEC strains possess multiple surface-associated factors that enable their colonization of the urinary tract, including fimbriae, curli, and autotransporters. Curli are extracellular amyloid fibers that enhance UPEC virulence and promote biofilm formation. Here we examined the function and regulation of curli in a UPEC pyelonephritis strain belonging to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. Curli expression at human physiological temperature led to increased biofilm formation, resistance of sessile cells to the human cationic peptide LL-37, and enhanced bladder colonization. Using a comprehensive genetic screen, we identified multiple genes involved in curli production, including several that were novel or poorly characterized with respect to curli synthesis. In total, this study demonstrates an important role for curli as a UPEC virulence factor that promotes biofilm formation, resistance, and pathogenesis.
Collapse
Affiliation(s)
- Nguyen Thi Khanh Nhu
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Teik Min Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Milan Chromek
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Pediatrics, CLINTEC, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Matthew R Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Zhou C, Chia GWN, Ho JCS, Seviour T, Sailov T, Liedberg B, Kjelleberg S, Hinks J, Bazan GC. Informed Molecular Design of Conjugated Oligoelectrolytes To Increase Cell Affinity and Antimicrobial Activity. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Zhou
- School of Chemical and Biomedical Engineering Singapore
| | - Geraldine W. N. Chia
- Interdisciplinary Graduate School Singapore
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE) Singapore
| | - James C. S. Ho
- Centre for Biomimetic Sensor ScienceSchool of Materials Science & EngineeringNanyang Technological University (NTU) Singapore 639798 Singapore
| | - Thomas Seviour
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE) Singapore
| | - Talgat Sailov
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE) Singapore
| | - Bo Liedberg
- Interdisciplinary Graduate School Singapore
- Centre for Biomimetic Sensor ScienceSchool of Materials Science & EngineeringNanyang Technological University (NTU) Singapore 639798 Singapore
| | - Staffan Kjelleberg
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE) Singapore
| | - Jamie Hinks
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE) Singapore
| | - Guillermo C. Bazan
- School of Chemical and Biomedical Engineering Singapore
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE) Singapore
- Center for Polymers and Organic SolidsDepartments of Chemistry & Biochemistry and MaterialsUniversity of California, Santa Barbara Santa Barbara CA 93106 USA
| |
Collapse
|
26
|
Zhou C, Chia GWN, Ho JCS, Seviour T, Sailov T, Liedberg B, Kjelleberg S, Hinks J, Bazan GC. Informed Molecular Design of Conjugated Oligoelectrolytes To Increase Cell Affinity and Antimicrobial Activity. Angew Chem Int Ed Engl 2018; 57:8069-8072. [PMID: 29707869 DOI: 10.1002/anie.201803103] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/27/2018] [Indexed: 12/21/2022]
Abstract
Membrane-intercalating conjugated oligoelectrolytes (COEs) are emerging as potential alternatives to conventional, yet increasingly ineffective, antibiotics. Three readily accessible COEs, belonging to an unreported series containing a stilbene core, namely D4, D6, and D8, were designed and synthesized so that the hydrophobicity increases with increasing side-chain length. Decreased aqueous solubility correlates with increased uptake by E. coli. The minimum inhibitory concentration (MIC) of D8 is 4 μg mL-1 against both E. coli and E. faecalis, with an effective uptake of 72 %. In contrast, the MIC value of the shortest COE, D4, is 128 μg mL-1 owing to the low cellular uptake of 3 %. These findings demonstrate the application of rational design to generate efficacious antimicrobial COEs that have potential as low-cost antimicrobial agents.
Collapse
Affiliation(s)
- Cheng Zhou
- School of Chemical and Biomedical Engineering, Singapore
| | - Geraldine W N Chia
- Interdisciplinary Graduate School, Singapore.,Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Singapore
| | - James C S Ho
- Centre for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Thomas Seviour
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Singapore
| | - Talgat Sailov
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Singapore
| | - Bo Liedberg
- Interdisciplinary Graduate School, Singapore.,Centre for Biomimetic Sensor Science, School of Materials Science & Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Staffan Kjelleberg
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Singapore
| | - Jamie Hinks
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Singapore
| | - Guillermo C Bazan
- School of Chemical and Biomedical Engineering, Singapore.,Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Singapore.,Center for Polymers and Organic Solids, Departments of Chemistry & Biochemistry and Materials, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
27
|
Purification of Intracellular Bacterial Communities during Experimental Urinary Tract Infection Reveals an Abundant and Viable Bacterial Reservoir. Infect Immun 2018; 86:IAI.00740-17. [PMID: 29378794 DOI: 10.1128/iai.00740-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/22/2018] [Indexed: 12/17/2022] Open
Abstract
Urinary tract infections (UTIs) are a major infection of humans, particularly affecting women. Recurrent UTIs can cause significant discomfort and expose patients to high levels of antibiotic use, which in turn contributes to the development of higher antibiotic resistance rates. Most UTIs are caused by uropathogenic Escherichia coli, which is able to form intracellular collections (termed intracellular bacterial communities [IBCs]) within the epithelial cells lining the bladder lumen. IBCs are seen in both infected mice and humans and are a potential cause of recurrent UTI. Genetic and molecular studies of IBCs have been hampered both by the low number of bacteria in IBCs relative to the number extracellular bacteria and by population bottlenecks that occur during IBC formation. We now report the development of a simple and rapid technique for isolating pure IBCs from experimentally infected mice. We verified the specificity and purity of the isolated IBCs via microscopy, gene expression, and culture-based methods. Our results further demonstrated that our isolation technique practically enables specific molecular studies of IBCs. In the first such direct measurement, we determined that a single epithelial cell containing an early IBC typically contains 103 viable bacteria. Our isolation technique complements recent progress in low-input, single-cell genomics to enable future genomic studies of the formation of IBCs and their activation pathways during recurrent UTI, which may lead to novel strategies to eliminate them from the bladder.
Collapse
|
28
|
Abstract
Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract and bloodstream infections and possesses an array of virulence factors for colonization, survival, and persistence. One such factor is the polysaccharide K capsule. Among the different K capsule types, the K1 serotype is strongly associated with UPEC infection. In this study, we completely sequenced the K1 UPEC urosepsis strain PA45B and employed a novel combination of a lytic K1 capsule-specific phage, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing (TraDIS) to identify the complement of genes required for capsule production. Our analysis identified known genes involved in capsule biosynthesis, as well as two additional regulatory genes (mprA and lrhA) that we characterized at the molecular level. Mutation of mprA resulted in protection against K1 phage-mediated killing, a phenotype restored by complementation. We also identified a significantly increased unidirectional Tn5 insertion frequency upstream of the lrhA gene and showed that strong expression of LrhA induced by a constitutive Pcl promoter led to loss of capsule production. Further analysis revealed loss of MprA or overexpression of LrhA affected the transcription of capsule biosynthesis genes in PA45B and increased sensitivity to killing in whole blood. Similar phenotypes were also observed in UPEC strains UTI89 (K1) and CFT073 (K2), demonstrating that the effects were neither strain nor capsule type specific. Overall, this study defined the genome of a UPEC urosepsis isolate and identified and characterized two new regulatory factors that affect UPEC capsule production.IMPORTANCE Urinary tract infections (UTIs) are among the most common bacterial infections in humans and are primarily caused by uropathogenic Escherichia coli (UPEC). Many UPEC strains express a polysaccharide K capsule that provides protection against host innate immune factors and contributes to survival and persistence during infection. The K1 serotype is one example of a polysaccharide capsule type and is strongly associated with UPEC strains that cause UTIs, bloodstream infections, and meningitis. The number of UTIs caused by antibiotic-resistant UPEC is steadily increasing, highlighting the need to better understand factors (e.g., the capsule) that contribute to UPEC pathogenesis. This study describes the original and novel application of lytic capsule-specific phage killing, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing to define the entire complement of genes required for capsule production in UPEC. Our comprehensive approach uncovered new genes involved in the regulation of this key virulence determinant.
Collapse
|
29
|
Varki A. Are humans prone to autoimmunity? Implications from evolutionary changes in hominin sialic acid biology. J Autoimmun 2017; 83:134-142. [PMID: 28755952 DOI: 10.1016/j.jaut.2017.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
Given varied intrinsic and extrinsic challenges to the immune system, it is unsurprising that each evolutionary lineage evolves distinctive features of immunoreactivity, and that tolerance mechanisms fail, allowing autoimmunity. Humans appear prone to many autoimmune diseases, with mechanisms both genetic and environmental. Another rapidly evolving biological system involves sialic acids, a family of monosaccharides that are terminal caps on cell surface and secreted molecules of vertebrates, and play multifarious roles in immunity. We have explored multiple genomic changes in sialic acid biology that occurred in human ancestors (hominins), some with implications for enhanced immunoreactivity, and hence for autoimmunity. Human ancestors lost the enzyme synthesizing the common mammalian sialic acid Neu5Gc, with an accumulation of the precursor sialic acid Neu5Ac. Resulting changes include an enhanced reactivity by some immune cells and increased ability of macrophages to kill bacteria, at the cost of increased endotoxin sensitivity. There are also multiple human-specific evolutionary changes in inhibitory and activating Siglecs, immune cell receptors that recognize sialic acids as "self-associated molecular patterns" (SAMPs) to modulate immunity, but can also be hijacked by pathogen molecular mimicry of SAMPs. Altered expression patterns and fixed or polymorphic SIGLEC pseudogenization in humans has modulated both innate and adaptive immunity, sometimes favoring over-reactivity. Meanwhile, dietary intake of Neu5Gc (derived primarily from red meats) allows metabolic incorporation of this non-human molecule into human cells--apparently the first example of "xeno-autoimmunity" involving "xeno-autoantigen" interactions with circulating "xeno-autoantibodies". Taken together, some of these factors may contribute to the apparent human propensity for autoimmunity.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular and Molecular Medicine, Glycobiology Research and Training Center (GRTC) and Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, 92093-0687, USA.
| |
Collapse
|
30
|
Abstract
Within the mammalian urinary tract uropathogenic bacteria face many challenges, including the shearing flow of urine, numerous antibacterial molecules, the bactericidal effects of phagocytes, and a scarcity of nutrients. These problems may be circumvented in part by the ability of uropathogenic Escherichia coli and several other uropathogens to invade the epithelial cells that line the urinary tract. By entering host cells, uropathogens can gain access to additional nutrients and protection from both host defenses and antibiotic treatments. Translocation through host cells can facilitate bacterial dissemination within the urinary tract, while the establishment of stable intracellular bacterial populations may create reservoirs for relapsing and chronic urinary tract infections. Here we review the mechanisms and consequences of host cell invasion by uropathogenic bacteria, with consideration of the defenses that are brought to bear against facultative intracellular pathogens within the urinary tract. The relevance of host cell invasion to the pathogenesis of urinary tract infections in human patients is also assessed, along with some of the emerging treatment options that build upon our growing understanding of the infectious life cycle of uropathogenic E. coli and other uropathogens.
Collapse
|
31
|
Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. Microbiol Spectr 2017; 4. [PMID: 27227294 DOI: 10.1128/microbiolspec.uti-0012-2012] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gram-positive bacteria are a common cause of urinary-tract infection (UTI), particularly among individuals who are elderly, pregnant, or who have other risk factors for UTI. Here we review the epidemiology, virulence mechanisms, and host response to the most frequently isolated Gram-positive uropathogens: Staphylococcus saprophyticus, Enterococcus faecalis, and Streptococcus agalactiae. We also review several emerging, rare, misclassified, and otherwise underreported Gram-positive pathogens of the urinary tract including Aerococcus, Corynebacterium, Actinobaculum, and Gardnerella. The literature strongly suggests that urologic diseases involving Gram-positive bacteria may be easily overlooked due to limited culture-based assays typically utilized for urine in hospital microbiology laboratories. Some UTIs are polymicrobial in nature, often involving one or more Gram-positive bacteria. We herein review the risk factors and recent evidence for mechanisms of bacterial synergy in experimental models of polymicrobial UTI. Recent experimental data has demonstrated that, despite being cleared quickly from the bladder, some Gram-positive bacteria can impact pathogenic outcomes of co-infecting organisms. When taken together, the available evidence argues that Gram-positive bacteria are important uropathogens in their own right, but that some can be easily overlooked because they are missed by routine diagnostic methods. Finally, a growing body of evidence demonstrates that a surprising variety of fastidious Gram-positive bacteria may either reside in or be regularly exposed to the urinary tract and further suggests that their presence is widespread among women, as well as men. Experimental studies in this area are needed; however, there is a growing appreciation that the composition of bacteria found in the bladder could be a potentially important determinant in urologic disease, including susceptibility to UTI.
Collapse
|
32
|
Abstract
Escherichia coli are a common cause of infectious disease outside of the gastrointestinal tract. Several independently evolved E. coli clades are common causes of urinary tract and bloodstream infections. There is ample epidemiological and in vitro evidence that several different protein toxins common to many, but not all, of these strains are likely to aid the colonization and immune-evasion ability of these bacteria. This review discusses our current knowledge and areas of ignorance concerning the contribution of the hemolysin; cytotoxic-necrotizing factor-1; and the autotransporters, Sat, Pic, and Vat, to extraintestinal human disease.
Collapse
|
33
|
Breland EJ, Eberly AR, Hadjifrangiskou M. An Overview of Two-Component Signal Transduction Systems Implicated in Extra-Intestinal Pathogenic E. coli Infections. Front Cell Infect Microbiol 2017; 7:162. [PMID: 28536675 PMCID: PMC5422438 DOI: 10.3389/fcimb.2017.00162] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/18/2017] [Indexed: 11/13/2022] Open
Abstract
Extra-intestinal pathogenic E. coli (ExPEC) infections are common in mammals and birds. The predominant ExPEC types are avian pathogenic E. coli (APEC), neonatal meningitis causing E. coli/meningitis associated E. coli (NMEC/MAEC), and uropathogenic E. coli (UPEC). Many reviews have described current knowledge on ExPEC infection strategies and virulence factors, especially for UPEC. However, surprisingly little has been reported on the regulatory modules that have been identified as critical in ExPEC pathogenesis. Two-component systems (TCSs) comprise the predominant method by which bacteria respond to changing environments and play significant roles in modulating bacterial fitness in diverse niches. Recent studies have highlighted the potential of manipulating signal transduction systems as a means to chemically re-wire bacterial pathogens, thereby reducing selective pressure and avoiding the emergence of antibiotic resistance. This review begins by providing a brief introduction to characterized infection strategies and common virulence factors among APEC, NMEC, and UPEC and continues with a comprehensive overview of two-component signal transduction networks that have been shown to influence ExPEC pathogenesis.
Collapse
Affiliation(s)
- Erin J Breland
- Department of Pharmacology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Allison R Eberly
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA.,Department of Urology, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|
34
|
Madelung M, Kronborg T, Doktor TK, Struve C, Krogfelt KA, Møller-Jensen J. DFI-seq identification of environment-specific gene expression in uropathogenic Escherichia coli. BMC Microbiol 2017; 17:99. [PMID: 28438119 PMCID: PMC5404293 DOI: 10.1186/s12866-017-1008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/12/2017] [Indexed: 12/23/2022] Open
Abstract
Background During infection of the urinary tract, uropathogenic Escherichia coli (UPEC) are exposed to different environments, such as human urine and the intracellular environments of bladder epithelial cells. Each environment elicits a distinct bacterial environment-specific transcriptional response. We combined differential fluorescence induction (DFI) with next-generation sequencing, collectively termed DFI-seq, to identify differentially expressed genes in UPEC strain UTI89 during growth in human urine and bladder cells. Results DFI-seq eliminates the need for iterative cell sorting of the bacterial library and yields a genome-wide view of gene expression. By analysing the gene expression of UPEC in human urine we found that genes involved in amino acid biosynthesis were upregulated. Deletion mutants lacking genes involved in arginine biosynthesis were outcompeted by the wild type during growth in human urine and inhibited in their ability to invade or proliferate in the J82 bladder epithelial cell line. Furthermore, DFI-seq was used to identify genes involved in invasion of J82 bladder epithelial cells. 56 genes were identified to be differentially expressed of which almost 60% encoded hypothetical proteins. One such gene UTI89_C5139, displayed increased adhesion and invasion of J82 cells when deleted from UPEC strain UTI89. Conclusions We demonstrate the usefulness of DFI-seq for identification of genes required for optimal growth of UPEC in human urine, as well as potential virulence genes upregulated during infection of bladder cell culture. DFI-seq holds potential for the study of bacterial gene expression in live-animal infection systems. By linking fitness genes, such as those genes involved in amino acid biosynthesis, to virulence, this study contributes to our understanding of UPEC pathophysiology. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1008-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle Madelung
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Tina Kronborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Karen Angeliki Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
35
|
Shakerimoghaddam A, Ghaemi EA, Jamalli A. Zinc oxide nanoparticle reduced biofilm formation and antigen 43 expressions in uropathogenic Escherichiacoli. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:451-456. [PMID: 28804616 PMCID: PMC5425929 DOI: 10.22038/ijbms.2017.8589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/12/2017] [Indexed: 01/28/2023]
Abstract
OBJECTIVES This study aimed to investigate the effect of zinc oxide nanoparticles (ZnO-np) on biofilm formation and expression of the flu gene in uropathogenic Escherichia coli (UPEC) strains. MATERIALS AND METHODS Minimum inhibitory concentration (MIC) of ZnO-np was determined by agar dilution method. The effect of MIC and sub-MIC concentrations of ZnO-np on biofilm formation were determined by microtiter plate assay. The expression level of the flu gene was assessed by Real-Time PCR assay. RESULTS MIC and sub-MIC ZnO-np concentrations reduced biofilm formation by 50% and 33.4%, respectively. Sub-MIC ZnO-np concentration significantly reduced the flu gene expression in the UPEC isolates (P<0.0001). CONCLUSION The sub-MIC concentration of ZnO-np reduces biofilm formation and flu gene expression in UPEC isolates. It is suggested to use nanoparticles for coating medical devices to prevent bacterial colonization.
Collapse
Affiliation(s)
- Ali Shakerimoghaddam
- Department of Microbiology, Faculty of Medical Sciences, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ezzat A Ghaemi
- Department of Microbiology, Faculty of Medical Sciences, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ailar Jamalli
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
36
|
Leccese Terraf MC, Juarez Tomás MS, Rault L, Le Loir Y, Even S, Nader-Macías MEF. In vitro effect of vaginal lactobacilli on the growth and adhesion abilities of uropathogenic Escherichia coli. Arch Microbiol 2017; 199:767-774. [PMID: 28280842 DOI: 10.1007/s00203-016-1336-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/03/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
Escherichia coli is one of the main causes of uncomplicated urinary tract infections and responsible of vaginal infections. Lactobacilli can inhibit this pathogen by the production of antimicrobial substances as organic acids, hydrogen peroxide and/or bacteriocins. The aim of this work was to study the effects of beneficial vaginal lactobacilli on E. coli through in vitro experiments. The inhibitory activity of three vaginal Lactobacillus strains against E. coli was assessed using the agar plate diffusion. Moreover, the effect of Lactobacillus reuteri CRL (Centro de Referencia para Lactobacilos Culture Collection) 1324 on the adhesion and internalization capabilities of E. coli was studied on HeLa cells. Two Lactobacillus strains inhibited the growth of the pathogens by production of organic acids. L. reuteri CRL 1324 reduced the adhesion and internalization of E. coli 275 into HeLa cells. The results obtained suggest that L. reuteri CRL 1324 can be considered as a probiotic candidate for further in vivo studies for the prevention or treatment of urinary tract infections caused by E. coli.
Collapse
Affiliation(s)
| | | | - Lucie Rault
- INRA, UMR 1253 STLO, Agrocampus Ouest, Rennes Cedex, France
| | - Yves Le Loir
- INRA, UMR 1253 STLO, Agrocampus Ouest, Rennes Cedex, France
| | - Sergine Even
- INRA, UMR 1253 STLO, Agrocampus Ouest, Rennes Cedex, France
| | | |
Collapse
|
37
|
Hufnagel DA, Evans ML, Greene SE, Pinkner JS, Hultgren SJ, Chapman MR. The Catabolite Repressor Protein-Cyclic AMP Complex Regulates csgD and Biofilm Formation in Uropathogenic Escherichia coli. J Bacteriol 2016; 198:3329-3334. [PMID: 27698083 PMCID: PMC5116936 DOI: 10.1128/jb.00652-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/27/2016] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix protects Escherichia coli from immune cells, oxidative stress, predation, and other environmental stresses. Production of the E. coli extracellular matrix is regulated by transcription factors that are tuned to environmental conditions. The biofilm master regulator protein CsgD upregulates curli and cellulose, the two major polymers in the extracellular matrix of uropathogenic E. coli (UPEC) biofilms. We found that cyclic AMP (cAMP) regulates curli, cellulose, and UPEC biofilms through csgD The alarmone cAMP is produced by adenylate cyclase (CyaA), and deletion of cyaA resulted in reduced extracellular matrix production and biofilm formation. The catabolite repressor protein (CRP) positively regulated csgD transcription, leading to curli and cellulose production in the UPEC isolate, UTI89. Glucose, a known inhibitor of CyaA activity, blocked extracellular matrix formation when added to the growth medium. The mutant strains ΔcyaA and Δcrp did not produce rugose biofilms, pellicles, curli, cellulose, or CsgD. Three putative CRP binding sites were identified within the csgD-csgB intergenic region, and purified CRP could gel shift the csgD-csgB intergenic region. Additionally, we found that CRP binded upstream of kpsMT, which encodes machinery for K1 capsule production. Together our work shows that cAMP and CRP influence E. coli biofilms through transcriptional regulation of csgD IMPORTANCE The catabolite repressor protein (CRP)-cyclic AMP (cAMP) complex influences the transcription of ∼7% of genes on the Escherichia coli chromosome (D. Zheng, C. Constantinidou, J. L. Hobman, and S. D. Minchin, Nucleic Acids Res 32:5874-5893, 2004, https://dx.doi.org/10.1093/nar/gkh908). Glucose inhibits E. coli biofilm formation, and ΔcyaA and Δcrp mutants show impaired biofilm formation (D. W. Jackson, J.W. Simecka, and T. Romeo, J Bacteriol 184:3406-3410, 2002, https://dx.doi.org/10.1128/JB.184.12.3406-3410.2002). We determined that the cAMP-CRP complex regulates curli and cellulose production and the formation of rugose and pellicle biofilms through csgD Additionally, we propose that cAMP may work as a signaling compound for uropathogenic E. coli (UPEC) to transition from the bladder lumen to inside epithelial cells for intracellular bacterial community formation through K1 capsule regulation.
Collapse
Affiliation(s)
- David A Hufnagel
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Margery L Evans
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah E Greene
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jerome S Pinkner
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Matthew R Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
38
|
Abstract
Urinary tract infections (UTI) are among the most common bacterial infections in humans, affecting millions of people every year. UTI cause significant morbidity in women throughout their lifespan, in infant boys, in older men, in individuals with underlying urinary tract abnormalities, and in those that require long-term urethral catheterization, such as patients with spinal cord injuries or incapacitated individuals living in nursing homes. Serious sequelae include frequent recurrences, pyelonephritis with sepsis, renal damage in young children, pre-term birth, and complications of frequent antimicrobial use including high-level antibiotic resistance and Clostridium difficile colitis. Uropathogenic E. coli (UPEC) cause the vast majority of UTI, but less common pathogens such as Enterococcus faecalis and other enterococci frequently take advantage of an abnormal or catheterized urinary tract to cause opportunistic infections. While antibiotic therapy has historically been very successful in controlling UTI, the high rate of recurrence remains a major problem, and many individuals suffer from chronically recurring UTI, requiring long-term prophylactic antibiotic regimens to prevent recurrent UTI. Furthermore, the global emergence of multi-drug resistant UPEC in the past ten years spotlights the need for alternative therapeutic and preventative strategies to combat UTI, including anti-infective drug therapies and vaccines. In this chapter, we review recent advances in the field of UTI pathogenesis, with an emphasis on the identification of promising drug and vaccine targets. We then discuss the development of new UTI drugs and vaccines, highlighting the challenges these approaches face and the need for a greater understanding of urinary tract mucosal immunity.
Collapse
|
39
|
Guzman-Hernandez R, Contreras-Rodriguez A, Hernandez-Velez R, Perez-Martinez I, Lopez-Merino A, Zaidi MB, Estrada-Garcia T. Mexican unpasteurised fresh cheeses are contaminated with Salmonella spp., non-O157 Shiga toxin producing Escherichia coli and potential uropathogenic E. coli strains: A public health risk. Int J Food Microbiol 2016; 237:10-16. [DOI: 10.1016/j.ijfoodmicro.2016.08.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/01/2022]
|
40
|
Mastrodonato M, Mentino D, Lopedota A, Cutrignelli A, Scillitani G. A histochemical approach to glycan diversity in the urothelium of pig urinary bladder. Microsc Res Tech 2016; 80:239-249. [DOI: 10.1002/jemt.22794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/14/2016] [Accepted: 09/30/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Maria Mastrodonato
- Department of Biology, Laboratory of Histology and Comparative Anatomy; University of Bari Aldo Moro; via Orabona 4/a Bari I-70125 Italy
| | - Donatella Mentino
- Department of Biology, Laboratory of Histology and Comparative Anatomy; University of Bari Aldo Moro; via Orabona 4/a Bari I-70125 Italy
| | - Angela Lopedota
- Department of Pharmacy - Drug Sciences; University of Bari Aldo Moro; via Orabona 4/a Bari I-70125 Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy - Drug Sciences; University of Bari Aldo Moro; via Orabona 4/a Bari I-70125 Italy
| | - Giovanni Scillitani
- Department of Biology, Laboratory of Histology and Comparative Anatomy; University of Bari Aldo Moro; via Orabona 4/a Bari I-70125 Italy
| |
Collapse
|
41
|
Lipopolysaccharide Domains Modulate Urovirulence. Infect Immun 2016; 84:3131-3140. [PMID: 27528276 DOI: 10.1128/iai.00315-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/08/2016] [Indexed: 11/20/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) accounts for 80 to 90% of urinary tract infections (UTI), and the increasing rate of antibiotic resistance among UPEC isolates reinforces the need for vaccines to prevent UTIs and recurrent infections. Previous studies have shown that UPEC isolate NU14 suppresses proinflammatory NF-κB-dependent cytokines (D. J. Klumpp, A. C. Weiser, S. Sengupta, S. G. Forrestal, R. A. Batler, and A. J. Schaeffer, Infect Immun 69:6689-6695, 2001, http://dx.doi.org/10.1128/IAI.69.11.6689-6695.2001; B. K. Billips, A. J. Schaeffer, and D. J. Klumpp, Infect Immun 76:3891-3900, 2008, http://dx.doi.org/10.1128/IAI.00069-08). However, modification of lipopolysaccharide (LPS) structure by deleting the O-antigen ligase gene (waaL) enhanced proinflammatory cytokine secretion. Vaccination with the ΔwaaL mutant diminished NU14 reservoirs and protected against subsequent infections. Therefore, we hypothesized that LPS structural determinants shape immune responses. We evaluated the contribution of LPS domains to urovirulence corresponding to the inner core (waaP, waaY, and rfaQ), outer core (rfaG), and O-antigen (waaL, wzzE, and wzyE). Deletion of waaP, waaY, and rfaG attenuated adherence to urothelial cells in vitro In a murine UTI model, the ΔrfaG mutant had the most severe defect in colonization. The mutation of rfaG, waaL, wzzE, and wzyE resulted in an inability to form reservoirs in mouse bladders. Infection with the LPS mutant panel resulted in various levels of urinary myeloperoxidase. Since the ΔwaaL mutant promoted Th1-associated adaptive responses in previous studies (B. K. Billips, R. E. Yaggie, J. P. Cashy, A. J. Schaeffer, and D. J. Klumpp, J Infect Dis 200:263-272, 2009, http://dx.doi.org/10.1086/599839), we assessed NU14 for Th2-associated cytokines. We found NU14 infection stimulated TLR4-dependent bladder interleukin-33 (IL-33) production. Inoculation with rfaG, waaL, wzzE, and wzyE mutants showed decreased IL-33 production. We quantified antigen-specific antibodies after infection and found significantly increased IgE and IgG1 in ΔwaaP mutant-infected mice. Our studies show LPS structural constituents mediate multiple aspects of the UPEC life cycle, including the ability to acutely colonize bladders, form reservoirs, and evoke innate and adaptive immune responses.
Collapse
|
42
|
Lewis AL, Robinson LS, Agarwal K, Lewis WG. Discovery and characterization of de novo sialic acid biosynthesis in the phylum Fusobacterium. Glycobiology 2016; 26:1107-1119. [PMID: 27613803 DOI: 10.1093/glycob/cww068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/15/2022] Open
Abstract
Sialic acids are nine-carbon backbone carbohydrates found in prominent outermost positions of glycosylated molecules in mammals. Mimicry of sialic acid (N-acetylneuraminic acid, Neu5Ac) enables some pathogenic bacteria to evade host defenses. Fusobacterium nucleatum is a ubiquitous oral bacterium also linked with invasive infections throughout the body. We employed multidisciplinary approaches to test predictions that F. nucleatum engages in de novo synthesis of sialic acids. Here we show that F. nucleatum sbsp. polymorphum ATCC10953 NeuB (putative Neu5Ac synthase) restores Neu5Ac synthesis to an Escherichia coli neuB mutant. Moreover, purified F. nucleatum NeuB participated in synthesis of Neu5Ac from N-acetylmannosamine and phosphoenolpyruvate in vitro Further studies support the interpretation that F. nucleatum ATCC10953 NeuA encodes a functional CMP-sialic acid synthetase and suggest that it may also contain a C-terminal sialic acid O-acetylesterase. We also performed BLAST queries of F. nucleatum genomes, revealing that only 4/31 strains encode a complete pathway for de novo Neu5Ac synthesis. Biochemical studies including mass spectrometry were consistent with the bioinformatic predictions, showing that F. nucleatum ATCC10953 synthesizes high levels of Neu5Ac, whereas ATCC23726 and ATCC25586 do not express detectable levels above background. While there are a number of examples of sialic acid mimicry in other phyla, these experiments provide the first biochemical and genetic evidence that a member of the phylum Fusobacterium can engage in de novo Neu5Ac synthesis.
Collapse
Affiliation(s)
- Amanda L Lewis
- Department of Molecular Microbiology .,Department of Obstetrics and Gynecology
| | | | | | - Warren G Lewis
- Department of Medicine, Center for Women's Infectious Disease Research, 660 South Euclid Ave, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
43
|
Molecular Characterization of the Vacuolating Autotransporter Toxin in Uropathogenic Escherichia coli. J Bacteriol 2016; 198:1487-98. [PMID: 26858103 DOI: 10.1128/jb.00791-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/04/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The vacuolating autotransporter toxin (Vat) contributes to uropathogenic Escherichia coli (UPEC) fitness during systemic infection. Here, we characterized Vat and investigated its regulation in UPEC. We assessed the prevalence of vat in a collection of 45 UPEC urosepsis strains and showed that it was present in 31 (68%) of the isolates. The isolates containing the vat gene corresponded to three major E. coli sequence types (ST12, ST73, and ST95), and these strains secreted the Vat protein. Further analysis of the vat genomic locus identified a conserved gene located directly downstream of vat that encodes a putative MarR-like transcriptional regulator; we termed this gene vatX The vat-vatX genes were present in the UPEC reference strain CFT073, and reverse transcriptase PCR (RT-PCR) revealed that the two genes are cotranscribed. Overexpression of vatX in CFT073 led to a 3-fold increase in vat gene transcription. The vat promoter region contained three putative nucleation sites for the global transcriptional regulator histone-like nucleoid structuring protein (H-NS); thus, the hns gene was mutated in CFT073 (to generate CFT073 hns). Western blot analysis using a Vat-specific antibody revealed a significant increase in Vat expression in CFT073 hns compared to that in wild-type CFT073. Direct H-NS binding to the vat promoter region was demonstrated using purified H-NS in combination with electrophoresis mobility shift assays. Finally, Vat-specific antibodies were detected in plasma samples from urosepsis patients infected by vat-containing UPEC strains, demonstrating that Vat is expressed during infection. Overall, this study has demonstrated that Vat is a highly prevalent and tightly regulated immunogenic serine protease autotransporter protein of Enterobacteriaceae (SPATE) secreted by UPEC during infection. IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the major cause of hospital- and community-acquired urinary tract infections. The vacuolating autotransporter toxin (Vat) is a cytotoxin known to contribute to UPEC fitness during murine sepsis infection. In this study, Vat was found to be highly conserved and prevalent among a collection of urosepsis clinical isolates and was expressed at human core body temperature. Regulation of vat was demonstrated to be directly repressed by the global transcriptional regulator H-NS and upregulated by the downstream gene vatX (encoding a new MarR-type transcriptional regulator). Additionally, increased Vat-specific IgG titers were detected in plasma from corresponding urosepsis patients infected with vat-positive isolates. Hence, Vat is a highly conserved and tightly regulated urosepsis-associated virulence factor.
Collapse
|
44
|
Zhuge X, Tang F, Zhu H, Mao X, Wang S, Wu Z, Lu C, Dai J, Fan H. AutA and AutR, Two Novel Global Transcriptional Regulators, Facilitate Avian Pathogenic Escherichia coli Infection. Sci Rep 2016; 6:25085. [PMID: 27113849 PMCID: PMC4844996 DOI: 10.1038/srep25085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/11/2016] [Indexed: 12/18/2022] Open
Abstract
Bacteria can change its lifestyle during inhabiting in host niches where they survive and replicate by rapidly altering gene expression pattern to accommodate the new environment. In this study, two novel regulators in avian pathogenic Escherichia coli (APEC) were identified and designated as AutA and AutR. RT-PCR and β-galactosidase assay results showed that AutA and AutR co-regulated the expression of adhesin UpaB in APEC strain DE205B. Electrophoretic mobility shift assay showed that AutA and AutR could directly bind the upaB promoter DNA. In vitro transcription assay indicated that AutA could activate the upaB transcription, while AutR inhibited the upaB transcription due to directly suppressing the activating effect of AutA on UpaB expression. Transcriptome analysis showed that AutA and AutR coherently affected the expression of hundreds of genes. Our study confirmed that AutA and AutR co-regulated the expression of DE205B K1 capsule and acid resistance systems in E. coli acid fitness island (AFI). Moreover, phenotypic heterogeneity in expression of K1 capsule and acid resistance systems in AFI during host–pathogen interaction was associated with the regulation of AutA and AutR. Collectively speaking, our studies presented that AutA and AutR are involved in APEC adaptive lifestyle change to facilitate its infection.
Collapse
Affiliation(s)
- Xiangkai Zhuge
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Tang
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongfei Zhu
- Beijing Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiang Mao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zongfu Wu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengping Lu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjun Dai
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongjie Fan
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
45
|
Abstract
Escherichia coli is one of the world's best-characterized organisms, because it has been extensively studied for over a century. However, most of this work has focused on E. coli grown under laboratory conditions that do not faithfully simulate its natural environments. Therefore, the historical perspectives on E. coli physiology and life cycle are somewhat skewed toward experimental systems that feature E. coli growing logarithmically in a test tube. Typically a commensal bacterium, E. coli resides in the lower intestines of a slew of animals. Outside of the lower intestine, E. coli can adapt and survive in a very different set of environmental conditions. Biofilm formation allows E. coli to survive, and even thrive, in environments that do not support the growth of planktonic populations. E. coli can form biofilms virtually everywhere: in the bladder during a urinary tract infection, on in-dwelling medical devices, and outside of the host on plants and in the soil. The E. coli extracellular matrix (ECM), primarily composed of the protein polymer named curli and the polysaccharide cellulose, promotes adherence to organic and inorganic surfaces and resistance to desiccation, the host immune system, and other antimicrobials. The pathways that govern E. coli biofilm formation, cellulose production, and curli biogenesis will be discussed in this article, which concludes with insights into the future of E. coli biofilm research and potential therapies.
Collapse
|
46
|
Metabolic Requirements of Escherichia coli in Intracellular Bacterial Communities during Urinary Tract Infection Pathogenesis. mBio 2016; 7:e00104-16. [PMID: 27073089 PMCID: PMC4959519 DOI: 10.1128/mbio.00104-16] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the primary etiological agent of over 85% of community-acquired urinary tract infections (UTIs). Mouse models of infection have shown that UPEC can invade bladder epithelial cells in a type 1 pilus-dependent mechanism, avoid a TLR4-mediated exocytic process, and escape into the host cell cytoplasm. The internalized UPEC can clonally replicate into biofilm-like intracellular bacterial communities (IBCs) of thousands of bacteria while avoiding many host clearance mechanisms. Importantly, IBCs have been documented in urine from women and children suffering acute UTI. To understand this protected bacterial niche, we elucidated the transcriptional profile of bacteria within IBCs using microarrays. We delineated the upregulation within the IBC of genes involved in iron acquisition, metabolism, and transport. Interestingly, lacZ was highly upregulated, suggesting that bacteria were sensing and/or utilizing a galactoside for metabolism in the IBC. A ΔlacZ strain displayed significantly smaller IBCs than the wild-type strain and was attenuated during competitive infection with a wild-type strain. Similarly, a galK mutant resulted in smaller IBCs and attenuated infection. Further, analysis of the highly upregulated gene yeaR revealed that this gene contributes to oxidative stress resistance and type 1 pilus production. These results suggest that bacteria within the IBC are under oxidative stress and, consistent with previous reports, utilize nonglucose carbon metabolites. Better understanding of the bacterial mechanisms used for IBC development and establishment of infection may give insights into development of novel anti-virulence strategies. Urinary tract infections (UTIs) are one of the most common bacterial infections, impacting mostly women. Every year, millions of UTIs occur in the U.S. with most being caused by uropathogenic E. coli (UPEC). During a UTI, UPEC invade bladder cells and form an intracellular bacterial community (IBC) that allows for the bacteria to replicate protected from the host immune response. In this study, we investigated genes that are expressed by UPEC within the IBC and determined how they contribute to the formation of this specialized community. Our findings suggest that galactose is important for UPEC growth in the IBC. Additionally, we found that a gene involved in oxidative stress is also important in the regulation of a key factor needed for UPEC invasion of bladder cells. These results may open the door for the development of treatments to diminish UTI frequency and/or severity.
Collapse
|
47
|
Spaulding CN, Hultgren SJ. Adhesive Pili in UTI Pathogenesis and Drug Development. Pathogens 2016; 5:E30. [PMID: 26999218 PMCID: PMC4810151 DOI: 10.3390/pathogens5010030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/15/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
Urinary tract infections (UTIs) are one of the most common bacterial infections, affecting 150 million people each year worldwide. High recurrence rates and increasing antimicrobial resistance among uropathogens are making it imperative to develop alternative strategies for the treatment and prevention of this common infection. In this Review, we discuss how understanding the: (i) molecular and biophysical basis of host-pathogen interactions; (ii) consequences of the molecular cross-talk at the host pathogen interface in terms of disease progression; and (iii) pathophysiology of UTIs is leading to efforts to translate this knowledge into novel therapeutics to treat and prevent these infections.
Collapse
Affiliation(s)
- Caitlin N Spaulding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
48
|
King JE, Roberts IS. Bacterial Surfaces: Front Lines in Host-Pathogen Interaction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 915:129-56. [PMID: 27193542 DOI: 10.1007/978-3-319-32189-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All bacteria are bound by at least one membrane that acts as a barrier between the cell's interior and the outside environment. Surface components within and attached to the cell membrane are essential for ensuring that the overall homeostasis of the cell is maintained. However, many surface components of the bacterial cell also have an indispensable role mediating interactions of the bacteria with their immediate environment and as such are essential to the pathogenesis of infectious disease. During the course of an infection, bacterial pathogens will encounter many different ecological niches where environmental conditions such as salinity, temperature, pH, and the availability of nutrients fluctuate. It is the bacterial cell surface that is at the front-line of these host-pathogen interactions often protecting the bacterium from hostile surroundings but at the same time playing a critical role in the adherence to host tissues promoting colonization and subsequent infection. To deal effectively with the changing environments that pathogens may encounter in different ecological niches within the host many of the surface components of the bacterial cell are subject to phenotypic variation resulting in heterogeneous subpopulations of bacteria within the clonal population. This dynamic phenotypic heterogeneity ensures that at least a small fraction of the population will be adapted for a particular circumstance should it arise. Diversity within the clonal population has often been masked by studies on entire bacterial populations where it was often assumed genes were expressed in a uniform manner. This chapter, therefore, aims to highlight the non-uniformity in certain cell surface structures and will discuss the implication of this heterogeneity in bacterial-host interaction. Some of the recent advances in studying bacterial surface structures at the single cell level will also be reviewed.
Collapse
Affiliation(s)
- Jane E King
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Ian S Roberts
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
49
|
Arshad M, Goller CC, Pilla D, Schoenen FJ, Seed PC. Threading the Needle: Small-Molecule Targeting of a Xenobiotic Receptor to Ablate Escherichia coli Polysaccharide Capsule Expression Without Altering Antibiotic Resistance. J Infect Dis 2015; 213:1330-9. [PMID: 26671885 DOI: 10.1093/infdis/jiv584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/19/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC), a leading cause of urinary tract and invasive infections worldwide, is rapidly acquiring multidrug resistance, hastening the need for selective new anti-infective agents. Here we demonstrate the molecular target of DU011, our previously discovered potent, nontoxic, small-molecule inhibitor of UPEC polysaccharide capsule biogenesis and virulence. METHODS Real-time polymerase chain reaction analysis and a target-overexpression drug-suppressor screen were used to localize the putative inhibitor target. A thermal shift assay quantified interactions between the target protein and the inhibitor, and a novel DNase protection assay measured chemical inhibition of protein-DNA interactions. Virulence of a regulatory target mutant was assessed in a murine sepsis model. RESULTS MprA, a MarR family transcriptional repressor, was identified as the putative target of the DU011 inhibitor. Thermal shift measurements indicated the formation of a stable DU011-MprA complex, and DU011 abrogated MprA binding to its DNA promoter site. Knockout of mprA had effects similar to that of DU011 treatment of wild-type bacteria: a loss of encapsulation and complete attenuation in a murine sepsis model, without any negative change in antibiotic resistance. CONCLUSIONS MprA regulates UPEC polysaccharide encapsulation, is essential for UPEC virulence, and can be targeted without inducing antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | | | - Patrick C Seed
- Department of Pediatrics Department of Molecular Genetics and Microbiology Center for Microbial Pathogenesis, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
50
|
Abstract
Urinary tract infections (UTIs), including pyelonephritis, are among the most common and serious infections encountered in nephrology practice. UTI risk is increased in selected patient populations with renal and urinary tract disorders. As the prevalence of antibiotic-resistant uropathogens increases, novel and alternative treatment options will be needed to reduce UTI-associated morbidity. Discoveries over the past decade demonstrate a fundamental role for the innate immune system in protecting the urothelium from bacterial challenge. Antimicrobial peptides, an integral component of this urothelial innate immune system, demonstrate potent bactericidal activity toward uropathogens and might represent a novel class of UTI therapeutics. The urothelium of the bladder and the renal epithelium secrete antimicrobial peptides into the urinary stream. In the kidney, intercalated cells--a cell-type involved in acid-base homeostasis--have been shown to be an important source of antimicrobial peptides. Intercalated cells have therefore become the focus of new investigations to explore their function during pyelonephritis and their role in maintaining urinary tract sterility. This Review provides an overview of UTI pathogenesis in the upper and lower urinary tract. We describe the role of intercalated cells and the innate immune response in preventing UTI, specifically highlighting the role of antimicrobial peptides in maintaining urinary tract sterility.
Collapse
|