1
|
Pucci Molineris M, Schibert F, Lima M, Accialini P, Cané L, Pelinsky P, Farina M, Herlax V. Induction of human-fetal-membrane remodeling in-vitro by the alpha hemolysin of Escherichia coli. Placenta 2024; 148:59-68. [PMID: 38401207 DOI: 10.1016/j.placenta.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/31/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
INTRODUCTION Almost 80% of urinary tract infections during pregnancy are caused by uropathogenic strains of Escherichia coli. Alpha-hemolysin, toxin secreted by them, has a fundamental role in this pathology development. Considering that urinary tract infections are related with premature rupture of fetal membranes, we proposed to evaluate the effects that alpha-hemolysin induces on human-fetal-membranes. METHODS Thirteen fetal membranes obtained from elective cesarean sections (>37 weeks) were mounted in a transwell-device generating two independent chambers. To mimic an ascendant-urinary-tract infection, membranes were incubated with different concentrations of pure alpha-hemolysin from the choriodecidual side during 24h. Extensive histological analyses were performed and transepithelial electrical-resistance were determined. Cell viability, metalloproteinase activity and cyclooxygenase-2- gene expression was estimated by lactate-dehydrogenase-release assay, zymography and RT-qPCR, respectively. Finally, four fetal membranes were treated with hemolysin preincubated with polyclonal anti-hemolysin antibodies. Cell viability and metalloproteinase activity were monitored. RESULTS After 24 h of treatment, fetal membranes evidenced a structural damage and a decrease in membrane resistance that progressed as the concentration of alpha hemolysin increased. While the amniotic-epithelial-layer remained practically unaffected, the chorion cells manifested an increase in vacuolization and necrosis. In addition, the extracellular matrix exhibited collagen-fiber disorganization, a marked decrease in fiber content, and became thicker in presence of the toxin. Cyclooxigenase-2 expression and metalloproteinase activity were also higher in the treated groups than in untreated ones. Finally, a preincubation of hemolysin with specific antibodies prevented the cytotoxicity on the chorion cells and the increase in metalloproteinase activity. DISCUSSION Hemolysin induces structural and molecular changes associated with the remodeling of human-fetal-membranes in-vitro.
Collapse
Affiliation(s)
- Melisa Pucci Molineris
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Av. 60 &120, La Plata, Buenos Aires, Argentina.
| | - Florencia Schibert
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Av. 60 &120, La Plata, Buenos Aires, Argentina
| | - María Lima
- Cátedra B de Patología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Av. 60 &120, La Plata, Buenos Aires, Argentina
| | - Paula Accialini
- Laboratorio de Fisiopatología Placentaria, CEFyBO -Facultad de Medicina, Universidad de Buenos Aires, Paraguay N° 2155, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía Cané
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Av. 60 &120, La Plata, Buenos Aires, Argentina
| | - Pablo Pelinsky
- Servicio de Ginecología y Obstetricia, Hospital Español de La Plata, 9 N° 175, La Plata, Buenos Aires, Argentina
| | - Mariana Farina
- Laboratorio de Fisiopatología Placentaria, CEFyBO -Facultad de Medicina, Universidad de Buenos Aires, Paraguay N° 2155, Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanesa Herlax
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Av. 60 &120, La Plata, Buenos Aires, Argentina
| |
Collapse
|
2
|
Caetano BDL, Domingos MDO, da Silva MA, da Silva JCA, Polatto JM, Montoni F, Iwai LK, Pimenta DC, Vigerelli H, Vieira PCG, Ruiz RDC, Patané JS, Piazza RMF. In Silico Prediction and Design of Uropathogenic Escherichia coli Alpha-Hemolysin Generate a Soluble and Hemolytic Recombinant Toxin. Microorganisms 2022; 10:microorganisms10010172. [PMID: 35056621 PMCID: PMC8778037 DOI: 10.3390/microorganisms10010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/08/2022] [Indexed: 01/27/2023] Open
Abstract
The secretion of α-hemolysin by uropathogenic Escherichia coli (UPEC) is commonly associated with the severity of urinary tract infections, which makes it a predictor of poor prognosis among patients. Accordingly, this toxin has become a target for diagnostic tests and therapeutic interventions. However, there are several obstacles associated with the process of α-hemolysin purification, therefore limiting its utilization in scientific investigations. In order to overcome the problems associated with α-hemolysin expression, after in silico prediction, a 20.48 kDa soluble α-hemolysin recombinant denoted rHlyA was constructed. This recombinant is composed by a 182 amino acid sequence localized in the aa542–723 region of the toxin molecule. The antigenic determinants of the rHlyA were estimated by bioinformatics analysis taking into consideration the tertiary form of the toxin, epitope analysis tools, and solubility inference. The results indicated that rHlyA has three antigenic domains localized in the aa555–565, aa600–610, and aa674–717 regions. Functional investigation of rHlyA demonstrated that it has hemolytic activity against sheep red cells, but no cytotoxic effect against epithelial bladder cells. In summary, the results obtained in this study indicate that rHlyA is a soluble recombinant protein that can be used as a tool in studies that aim to understand the mechanisms involved in the hemolytic and cytotoxic activities of α-hemolysin produced by UPEC. In addition, rHlyA can be applied to generate monoclonal and/or polyclonal antibodies that can be utilized in the development of diagnostic tests and therapeutic interventions.
Collapse
Affiliation(s)
- Bruna De Lucca Caetano
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Marta de Oliveira Domingos
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Miriam Aparecida da Silva
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Jessika Cristina Alves da Silva
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Juliana Moutinho Polatto
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Fabio Montoni
- Laboratório de Toxinologia Aplicada, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (F.M.); (L.K.I.)
| | - Leo Kei Iwai
- Laboratório de Toxinologia Aplicada, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (F.M.); (L.K.I.)
| | - Daniel Carvalho Pimenta
- Laboratório de Biofísica e Bioquímica, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (D.C.P.); (H.V.)
| | - Hugo Vigerelli
- Laboratório de Biofísica e Bioquímica, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (D.C.P.); (H.V.)
| | - Paulo Cesar Gomes Vieira
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Rita de Cassia Ruiz
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - José Salvatore Patané
- Laboratório de Ciclo Celular, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil
- Correspondence: (J.S.P.); (R.M.F.P.)
| | - Roxane Maria Fontes Piazza
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
- Correspondence: (J.S.P.); (R.M.F.P.)
| |
Collapse
|
3
|
Verma V, Gupta S, Kumar P, Rawat A, Singh Dhanda R, Yadav M. Efficient production of endotoxin depleted bioactive α-hemolysin of uropathogenicEscherichia coli. Prep Biochem Biotechnol 2019; 49:616-622. [DOI: 10.1080/10826068.2019.1591993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Surbhi Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Parveen Kumar
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Ankita Rawat
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | | | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
4
|
Chen S, Yang D, Wen Y, Jiang Z, Zhang L, Jiang J, Chen Y, Hu T, Wang Q, Zhang Y, Liu Q. Dysregulated hemolysin liberates bacterial outer membrane vesicles for cytosolic lipopolysaccharide sensing. PLoS Pathog 2018; 14:e1007240. [PMID: 30138458 PMCID: PMC6124777 DOI: 10.1371/journal.ppat.1007240] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/05/2018] [Accepted: 07/25/2018] [Indexed: 01/22/2023] Open
Abstract
Inflammatory caspase-11/4/5 recognize cytosolic LPS from invading Gram-negative bacteria and induce pyroptosis and cytokine release, forming rapid innate antibacterial defenses. Since extracellular or vacuole-constrained bacteria are thought to rarely access the cytoplasm, how their LPS are exposed to the cytosolic sensors is a critical event for pathogen recognition. Hemolysin is a pore-forming bacterial toxin, which was generally accepted to rupture cell membrane, leading to cell lysis. Whether and how hemolysin participates in non-canonical inflammasome signaling remains undiscovered. Here, we show that hemolysin-overexpressed enterobacteria triggered significantly increased caspase-4 activation in human intestinal epithelial cell lines. Hemolysin promoted LPS cytosolic delivery from extracellular bacteria through dynamin-dependent endocytosis. Further, we revealed that hemolysin was largely associated with bacterial outer membrane vesicles (OMVs) and induced rupture of OMV-containing vacuoles, subsequently increasing LPS exposure to the cytosolic sensor. Accordingly, overexpression of hemolysin promoted caspase-11 dependent IL-18 secretion and gut inflammation in mice, which was associated with restricting bacterial colonization in vivo. Together, our work reveals a concept that hemolysin promotes noncanonical inflammasome activation via liberating OMVs for cytosolic LPS sensing, which offers insights into innate immune surveillance of dysregulated hemolysin via caspase-11/4 in intestinal antibacterial defenses. Sensing of lipopolysaccharide (LPS) in the cytosol triggers non-canonical inflammasome-mediated innate responses. Recent work revealed that bacterial outer membrane vesicles (OMVs) enables LPS to access the cytosol for extracellular bacteria. However, since intracellular OMVs are generally constrained in endosomes, how OMV-derived LPS gain access to the cytosol remains unknown. Here, we reported that hemolysin largely bound with OMVs and entered cells through dynamin-dependent endocytosis. Intracellular hemolysin significantly impaired OMVs-constrained vacuole integrity and increased OMV-derived LPS exposure to the cytosolic sensor, which promoted non-canonical inflammasome activation and restricted bacterial gut infections. This work reveals that dysregulated hemolysin promotes non-canonical inflammasome activation and alerts host immune recognition, providing insights into the more sophisticated biological functions of hemolysin upon infection.
Collapse
Affiliation(s)
- Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Ying Wen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhiwei Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lingzhi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Pathology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jiatiao Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yaozhen Chen
- Department of Transfusion Medicine, Xijing hospital, Xi’an, China
| | - Tianjian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
5
|
Razaghi M, Tajeddin E, Ganji L, Alebouyeh M, Alizadeh AHM, Sadeghi A, Zali MR. Colonization, resistance to bile, and virulence properties of Escherichia coli strains: Unusual characteristics associated with biliary tract diseases. Microb Pathog 2017; 111:262-268. [PMID: 28867623 DOI: 10.1016/j.micpath.2017.08.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/23/2017] [Accepted: 08/30/2017] [Indexed: 12/18/2022]
Abstract
Escherichia coli is the species that is most frequently isolated from bile of patients with biliary tract diseases. This study was aimed to investigate any association between resistance and virulence properties of these isolates with occurrence of the diseases. A total of 102 bile samples were obtained from patients subjected to endoscopic retrograde cholangiopancreatography for different biliary diseases. Clinical data were collected and culture of the bile samples was done on selective media. Resistance of characterized Escherichia coli isolates to deoxycholate sodium (0-7%) and nineteen antibiotics was determined and PCR using 16 pairs of primers targeting stx1, stx2, exhA, eae, bfp, agg, pcvd432, lt, st, ipaH, pic, pet, ast, set, sen, and cdtB genes was done. Our results showed a statistically significant association between E. coli colonization and existence of common bile duct and gallbladder stones (p value 0.028). Out of the 22 E. coli strains (22/102) multidrug resistance phenotype was present in 95.45%. None of the strains belonged to common E. coli pathotypes. However, bfp + EhxA-hly, bfp + astA, bfp + EhxA-hly + pic, and EhxA-hly + pic + astA, bfp, and astA genotypes were detected in these strains. bfp (7/22, 31.8%) and astA (5/22, 22.7%) were among most frequent virulence factors in these strains. Results of this study showed significant association between colonization of E. coli and choledocholithiasis. Unusual existence of virulence gene combinations in these strains and their resistance to DOC and multiple classes of antibiotics could be considered as possible causes of their persistence in this harsh microenvironment.
Collapse
Affiliation(s)
- Maryam Razaghi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Tajeddin
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Ganji
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Alebouyeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Amir Houshang Mohammad Alizadeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohammad Reza Zali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
6
|
Abstract
Escherichia coli are a common cause of infectious disease outside of the gastrointestinal tract. Several independently evolved E. coli clades are common causes of urinary tract and bloodstream infections. There is ample epidemiological and in vitro evidence that several different protein toxins common to many, but not all, of these strains are likely to aid the colonization and immune-evasion ability of these bacteria. This review discusses our current knowledge and areas of ignorance concerning the contribution of the hemolysin; cytotoxic-necrotizing factor-1; and the autotransporters, Sat, Pic, and Vat, to extraintestinal human disease.
Collapse
|
7
|
Differences in leukocyte differentiation molecule abundances on domestic sheep (Ovis aries) and bighorn sheep (Ovis canadensis) neutrophils identified by flow cytometry. Comp Immunol Microbiol Infect Dis 2016; 46:40-6. [DOI: 10.1016/j.cimid.2016.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/12/2016] [Indexed: 01/02/2023]
|
8
|
Hemolytic E. coli Promotes Colonic Tumorigenesis in Females. Cancer Res 2016; 76:2891-900. [DOI: 10.1158/0008-5472.can-15-2083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/18/2016] [Indexed: 11/16/2022]
|
9
|
The role of the galU gene of uropathogenic Escherichia coli in modulating macrophage TNF-α response. Int J Med Microbiol 2015; 305:893-901. [DOI: 10.1016/j.ijmm.2015.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/04/2015] [Accepted: 09/10/2015] [Indexed: 11/24/2022] Open
|
10
|
Ristow LC, Welch RA. Hemolysin of uropathogenic Escherichia coli: A cloak or a dagger? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:538-45. [PMID: 26299820 DOI: 10.1016/j.bbamem.2015.08.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/05/2015] [Accepted: 08/18/2015] [Indexed: 01/27/2023]
Abstract
Hemolysin from uropathogenic Escherichia coli (UPEC) is a hemolytic and cytotoxic protein active against a broad range of species and cell types. Expression of hemolysin correlates with severity of infection, as up to 78% of UPEC isolates from pyelonephritis cases express hemolysin. Despite decades of research on hemolysin activity, the mechanism of intoxication and the function of hemolysin in UPEC infection remain elusive. Early in vitro research established the role of hemolysin as a lytic protein at high doses. It is hypothesized that hemolysin is secreted at sublytic doses in vivo and recent research has focused on understanding the more subtle effects of hemolysin both in vitro and in elegant infection models in vivo, including inoculation by micropuncture of individual kidney nephrons. As the field continues to evolve, comparisons of hemolysin function in isolates from a range of UTI infections will be important for delineating the role of this toxin. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Laura C Ristow
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Rodney A Welch
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
11
|
Aulik NA, Atapattu DN, Czuprynski CJ, McCaslin DR. Brief heat treatment causes a structural change and enhances cytotoxicity of theEscherichia coliα-hemolysin. Immunopharmacol Immunotoxicol 2012; 35:15-27. [DOI: 10.3109/08923973.2012.723009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Role of Uropathogenic Escherichia coli Virulence Factors in Development of Urinary Tract Infection and Kidney Damage. Int J Nephrol 2012; 2012:681473. [PMID: 22506110 PMCID: PMC3312279 DOI: 10.1155/2012/681473] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/02/2011] [Accepted: 12/01/2011] [Indexed: 01/17/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is a causative agent in the vast majority of urinary tract infections (UTIs), including cystitis and pyelonephritis, and infectious complications, which may result in acute renal failure in healthy individuals as well as in renal transplant patients. UPEC expresses a multitude of virulence factors to break the inertia of the mucosal barrier. In response to the breach by UPEC into the normally sterile urinary tract, host inflammatory responses are triggered leading to cytokine production, neutrophil influx, and the exfoliation of infected bladder epithelial cells. Several signaling pathways activated during UPEC infection, including the pathways known to activate the innate immune response, interact with calcium-dependent signaling pathways. Some UPEC isolates, however, might possess strategies to delay or suppress the activation of components of the innate host response in the urinary tract. Studies published in the recent past provide new information regarding how virulence factors of uropathogenic E. coli are involved in activation of the innate host response. Despite numerous host defense mechanisms, UPEC can persist within the urinary tract and may serve as a reservoir for recurrent infections and serious complications. Presentation of the molecular details of these events is essential for development of successful strategies for prevention of human UTIs and urological complications associated with UTIs.
Collapse
|
13
|
Abstract
The urinary tract is among the most common sites of bacterial infection, and Escherichia coli is by far the most common species infecting this site. Individuals at high risk for symptomatic urinary tract infection (UTI) include neonates, preschool girls, sexually active women, and elderly women and men. E. coli that cause the majority of UTIs are thought to represent only a subset of the strains that colonize the colon. E. coli strains that cause UTIs are termed uropathogenic E. coli (UPEC). In general, UPEC strains differ from commensal E. coli strains in that the former possess extragenetic material, often on pathogenicity-associated islands (PAIs), which code for gene products that may contribute to bacterial pathogenesis. Some of these genes allow UPEC to express determinants that are proposed to play roles in disease. These factors include hemolysins, secreted proteins, specific lipopolysaccharide and capsule types, iron acquisition systems, and fimbrial adhesions. The current dogma of bacterial pathogenesis identifies adherence, colonization, avoidance of host defenses, and damage to host tissues as events vital for achieving bacterial virulence. These considerations, along with analysis of the E. coli CFT073, UTI89, and 536 genomes and efforts to identify novel virulence genes should advance the field significantly and allow for the development of a comprehensive model of pathogenesis for uropathogenic E. coli.Further study of the adaptive immune response to UTI will be especially critical to refine our understanding and treatment of recurrent infections and to develop vaccines.
Collapse
|
14
|
Kloft N, Busch T, Neukirch C, Weis S, Boukhallouk F, Bobkiewicz W, Cibis I, Bhakdi S, Husmann M. Pore-forming toxins activate MAPK p38 by causing loss of cellular potassium. Biochem Biophys Res Commun 2009; 385:503-6. [PMID: 19497299 DOI: 10.1016/j.bbrc.2009.05.121] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 01/15/2023]
Abstract
Mitogen activated protein kinase (MAPK) p38 has emerged as a survival protein in cells that are attacked by bacterial toxins forming small membrane pores. Activation of p38 by pore forming toxins (PFT) has been attributed to osmotic stress, but here we show that loss of K+ is likely to be the critical parameter. Several lines of evidence support this conclusion: first, osmoprotection did not prevent p38-phosphorylation in alpha-toxin-loaded cells. Second, treatment of cells with a K+ ionophore, or simple incubation in K+-free medium sufficed to cause robust p38-phosphorylation. Third, media containing high [K+] prevented p38-activation by Staphylococcus aureus alpha-toxin, Vibrio cholerae cytolysin (VCC), Streptolysin O (SLO), or Escherichia coli hemolysin (HlyA), but did not impair activation by H2O2. Fourth, potential roles of LPS, TLR4, or calcium-influx were ruled out. Therefore, we propose that PFT trigger the p38 MAPK-pathway by causing loss of cellular K+.
Collapse
Affiliation(s)
- Nicole Kloft
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsmedizin, Johannes Gutenberg-Universität, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp Mol Pathol 2008; 85:11-9. [PMID: 18482721 DOI: 10.1016/j.yexmp.2008.03.007] [Citation(s) in RCA: 384] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 03/02/2008] [Indexed: 11/23/2022]
Abstract
Strains of uropathogenic E. coli (UPEC) are the primary cause of urinary tract infections, including both cystitis and pyelonephritis. These bacteria have evolved a multitude of virulence factors and strategies that facilitate bacterial growth and persistence within the adverse settings of the host urinary tract. Expression of adhesive organelles like type 1 and P pili allow UPEC to bind and invade host cells and tissues within the urinary tract while expression of iron-chelating factors (siderophores) enable UPEC to pilfer host iron stores. Deployment of an array of toxins, including hemolysin and cytotoxic necrotizing factor 1, provide UPEC with the means to inflict extensive tissue damage, facilitating bacterial dissemination as well as releasing host nutrients and disabling immune effector cells. These toxins also have the capacity to modulate, in more subtle ways, host signaling pathways affecting myriad processes, including inflammatory responses, host cell survival, and cytoskeletal dynamics. Here, we discuss the mechanisms by which these and other virulence factors promote UPEC survival and growth within the urinary tract. Comparisons are also made between UPEC and other strains of extraintestinal pathogenic E. coli that, although closely related to UPEC, are distinct in their abilities to colonize the host and cause disease.
Collapse
|
16
|
Wiles TJ, Dhakal BK, Eto DS, Mulvey MA. Inactivation of host Akt/protein kinase B signaling by bacterial pore-forming toxins. Mol Biol Cell 2008; 19:1427-38. [PMID: 18234841 PMCID: PMC2291440 DOI: 10.1091/mbc.e07-07-0638] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 11/01/2007] [Accepted: 01/23/2008] [Indexed: 01/13/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections (UTIs), and they have the capacity to induce the death and exfoliation of target uroepithelial cells. This process can be facilitated by the pore-forming toxin alpha-hemolysin (HlyA), which is expressed and secreted by many UPEC isolates. Here, we demonstrate that HlyA can potently inhibit activation of Akt (protein kinase B), a key regulator of host cell survival, inflammatory responses, proliferation, and metabolism. HlyA ablates Akt activation via an extracellular calcium-dependent, potassium-independent process requiring HlyA insertion into the host plasma membrane and subsequent pore formation. Inhibitor studies indicate that Akt inactivation by HlyA involves aberrant stimulation of host protein phosphatases. We found that two other bacterial pore-forming toxins (aerolysin from Aeromonas species and alpha-toxin from Staphylococcus aureus) can also markedly attenuate Akt activation in a dose-dependent manner. These data suggest a novel mechanism by which sublytic concentrations of HlyA and other pore-forming toxins can modulate host cell survival and inflammatory pathways during the course of a bacterial infection.
Collapse
Affiliation(s)
- Travis J. Wiles
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112-0565
| | - Bijaya K. Dhakal
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112-0565
| | - Danelle S. Eto
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112-0565
| | - Matthew A. Mulvey
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112-0565
| |
Collapse
|
17
|
Kiss T, Morgan E, Nagy G. Contribution of SPI-4 genes to the virulence of Salmonella enterica. FEMS Microbiol Lett 2007; 275:153-9. [PMID: 17711458 DOI: 10.1111/j.1574-6968.2007.00871.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Salmonella pathogenicity island-4 (SPI-4) is a 27-kb region that carries six genes designated siiABCDEF. SiiC, SiiD, and SiiF form a type I secretion apparatus for the secretion of SiiE, a huge (approximately 600 kDa) protein contributing to the colonization of the bovine intestines. Here it is shown that loss of SPI-4 attenuates the oral virulence of Salmonella enterica serovars Typhimurium and Enteritidis in mice. Fifty percent lethal doses were elevated in both serovars upon the loss of SPI-4. Moreover, delta SPI-4 mutants were outcompeted in systemic organs by their wild-type strains in a cochallenge model. Contribution of SPI-4 to virulence appeared less pronounced in the S. Enteritidis strain, which was justified by lower levels of the secreted protein SiiE in this strain in comparison with S. Typhimurium. Competition assays with isogenic mutants lacking individual genes of the island showed that all six genes were required for full virulence of S. Typhimurium. Delta siiA and delta siiB mutants were, nevertheless, able to secrete SiiE to culture supernatants. The amount of secreted SiiE was, however, reduced in these two mutants compared with the wild-type strain. Furthermore, a down-regulation of SiiE levels is shown in structural and regulatory lipopolysaccharide mutants exhibiting the deep-rough phenotype.
Collapse
Affiliation(s)
- Tünde Kiss
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | | | | |
Collapse
|