1
|
Zhao H, Huang M, Jiang L. Potential Roles and Future Perspectives of Chitinase 3-like 1 in Macrophage Polarization and the Development of Diseases. Int J Mol Sci 2023; 24:16149. [PMID: 38003338 PMCID: PMC10671302 DOI: 10.3390/ijms242216149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1), a chitinase-like protein family member, is a secreted glycoprotein that mediates macrophage polarization, inflammation, apoptosis, angiogenesis, and carcinogenesis. Abnormal CHI3L1 expression has been associated with multiple metabolic and neurological disorders, including diabetes, atherosclerosis, and Alzheimer's disease. Aberrant CHI3L1 expression is also reportedly associated with tumor migration and metastasis, as well as contributions to immune escape, playing important roles in tumor progression. However, the physiological and pathophysiological roles of CHI3L1 in the development of metabolic and neurodegenerative diseases and cancer remain unclear. Understanding the polarization relationship between CHI3L1 and macrophages is crucial for disease progression. Recent research has uncovered the complex mechanisms of CHI3L1 in different diseases, highlighting its close association with macrophage functional polarization. In this article, we review recent findings regarding the various disease types and summarize the relationship between macrophages and CHI3L1. Furthermore, this article also provides a brief overview of the various mechanisms and inhibitors employed to inhibit CHI3L1 and disrupt its interaction with receptors. These endeavors highlight the pivotal roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of metabolic diseases, neurodegenerative diseases, and cancers.
Collapse
Affiliation(s)
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China;
| |
Collapse
|
2
|
Tan JK, Xiao Y, Liu G, Huang LX, Ma WH, Xia Y, Wang XZ, Zhu XJ, Cai SP, Wu XB, Wang Y, Liu XY. Evaluation of trabecular meshwork-specific promoters in vitro and in vivo using scAAV2 vectors expressing C3 transferase. Int J Ophthalmol 2023; 16:1196-1209. [PMID: 37602341 PMCID: PMC10398517 DOI: 10.18240/ijo.2023.08.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/14/2023] [Indexed: 08/22/2023] Open
Abstract
AIM To evaluate the potential of two trabecular meshwork (TM)-specific promoters, Chitinase 3-like 1 (Ch3L1) and matrix gla protein (MGP), for improving specificity and safety in glaucoma gene therapy based on self-complementary AAV2 (scAAV2) vector technologies. METHODS An scAAV2 vector with C3 transferase (C3) as the reporter gene (scAAV2-C3) was selected. The scAAV2-C3 vectors were driven by Ch3L1 (scAAV2-Ch3L1-C3), MGP (scAAV2-MGP-C3), enhanced MGP (scAAV2-eMGP-C3) and cytomegalovirus (scAAV2-CMV-C3), respectively. The cultured primary human TM cells were treated with each vector at different multiplicities of infections. Changes in cell morphology were observed by phase contrast microscopy. Actin stress fibers and Rho GTPases/Rho-associated protein kinase pathway-related molecules were assessed by immunofluorescence staining, real-time quantitative polymerase chain reaction and Western blot. Each vector was injected intracamerally into the one eye of each rat at low and high doses respectively. In vivo green fluorescence was visualized by a Micron III Retinal Imaging Microscope. Intraocular pressure (IOP) was monitored using a rebound tonometer. Ocular responses were evaluated by slit-lamp microscopy. Ocular histopathology analysis was examined by hematoxylin and eosin staining. RESULTS In TM cell culture studies, the vector-mediated C3 expression induced morphologic changes, disruption of actin cytoskeleton and reduction of fibronectin expression in TM cells by inhibiting the Rho GTPases/Rho-associated protein kinase signaling pathway. At the same dose, these changes were significant in TM cells treated with scAAV2-CMV-C3 or scAAV2-Ch3L1-C3, but not in cells treated with scAAV2-eMGP-C3 or scAAV2-MGP-C3. At low-injected dose, the IOP was significantly decreased in the scAAV2-Ch3L1-C3-injected eyes but not in scAAV2-MGP-C3-injected and scAAV2-eMGP-C3-injected eyes. At high-injected dose, significant IOP reduction was observed in the scAAV2-eMGP-C3-injected eyes but not in scAAV2-MGP-C3-injected eyes. Similar to scAAV2-CMV-C3, scAAV2-Ch3L1-C3 vector showed efficient transduction both in the TM and corneal endothelium. In anterior segment tissues of scAAV2-eMGP-C3-injected eyes, no obvious morphological changes were found except for the TM. Inflammation was absent. CONCLUSION In scAAV2-transduced TM cells, the promoter-driven efficiency of Ch3L1 is close to that of cytomegalovirus, but obviously higher than that of MGP. In the anterior chamber of rat eye, the transgene expression pattern of scAAV2 vector is presumably affected by MGP promoter, but not by Ch3L1 promoter. These findings would provide a useful reference for improvement of specificity and safety in glaucoma gene therapy using scAAV2 vector.
Collapse
Affiliation(s)
- Jun-Kai Tan
- Xiamen Eye Center, Xiamen University, Xiamen 361004, Fujian Province, China
| | - Ying Xiao
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, Sichuan Province, China
| | - Guo Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Long-Xiang Huang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Wen-Hao Ma
- Beijing FivePlus Molecular Medicine Institute Co., Ltd., Beijing 102600, China
| | - Yan Xia
- Beijing FivePlus Molecular Medicine Institute Co., Ltd., Beijing 102600, China
| | - Xi-Zhen Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Jinan University, Shenzhen 518040, Guangdong Province, China
| | - Xian-Jun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan Province, China
| | - Su-Ping Cai
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Jinan University, Shenzhen 518040, Guangdong Province, China
| | - Xiao-Bing Wu
- Beijing FivePlus Molecular Medicine Institute Co., Ltd., Beijing 102600, China
| | - Yun Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Jinan University, Shenzhen 518040, Guangdong Province, China
| | - Xu-Yang Liu
- Xiamen Eye Center, Xiamen University, Xiamen 361004, Fujian Province, China
- Department of Ophthalmology, Shenzhen People's Hospital, the 2 Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| |
Collapse
|
3
|
Shannon AH, Adelman SA, Hisey EA, Potnis SS, Rozo V, Yung MW, Li JY, Murphy CJ, Thomasy SM, Leonard BC. Antimicrobial Peptide Expression at the Ocular Surface and Their Therapeutic Use in the Treatment of Microbial Keratitis. Front Microbiol 2022; 13:857735. [PMID: 35722307 PMCID: PMC9201425 DOI: 10.3389/fmicb.2022.857735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Microbial keratitis is a common cause of ocular pain and visual impairment worldwide. The ocular surface has a relatively paucicellular microbial community, mostly found in the conjunctiva, while the cornea would be considered relatively sterile. However, in patients with microbial keratitis, the cornea can be infected with multiple pathogens including Staphylococcus aureus, Pseudomonas aeruginosa, and Fusarium sp. Treatment with topical antimicrobials serves as the standard of care for microbial keratitis, however, due to high rates of pathogen resistance to current antimicrobial medications, alternative therapeutic strategies must be developed. Multiple studies have characterized the expression and activity of antimicrobial peptides (AMPs), endogenous peptides with key antimicrobial and wound healing properties, on the ocular surface. Recent studies and clinical trials provide promise for the use of AMPs as therapeutic agents. This article reviews the repertoire of AMPs expressed at the ocular surface, how expression of these AMPs can be modulated, and the potential for harnessing the AMPs as potential therapeutics for patients with microbial keratitis.
Collapse
Affiliation(s)
- Allison H. Shannon
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sara A. Adelman
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Erin A. Hisey
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sanskruti S. Potnis
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Vanessa Rozo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Madeline W. Yung
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Jennifer Y. Li
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
4
|
de Jesús-Gil C, Sans-de San Nicolàs L, Ruiz-Romeu E, Ferran M, Soria-Martínez L, García-Jiménez I, Chiriac A, Casanova-Seuma JM, Fernández-Armenteros JM, Owens S, Celada A, Howell MD, Pujol RM, Santamaria-Babí LF. Interplay between Humoral and CLA + T Cell Response against Candida albicans in Psoriasis. Int J Mol Sci 2021; 22:ijms22041519. [PMID: 33546306 PMCID: PMC7913574 DOI: 10.3390/ijms22041519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Candida albicans (CA) infections have been associated with psoriasis onset or disease flares. However, the integrated immune response against this fungus is still poorly characterized in psoriasis. We studied specific immunoglobulins in plasma and the CA response in cocultures of circulating memory CD45RA- cutaneous lymphocyte antigen (CLA)+/- T cell with autologous epidermal cells from plaque and guttate psoriasis patients (cohort 1, n = 52), and also healthy individuals (n = 17). A complete proteomic profile was also evaluated in plaque psoriasis patients (cohort 2, n = 114) regarding their anti-CA IgA levels. Increased anti-CA IgA and IgG levels are present in the plasma from plaque but not guttate psoriasis compared to healthy controls. CA cellular response is confined to CLA+ T cells and is primarily Th17. The levels of anti-CA IgA are directly associated with CLA+ Th17 response in plaque psoriasis. Proteomic analysis revealed distinct profiles in psoriasis patients with high anti-CA IgA. C-C motif chemokine ligand 18, chitinase-3-like protein 1 and azurocidin were significantly elevated in the plasma from plaque psoriasis patients with high anti-CA levels and severe disease. Our results indicate a mechanism by which Candida albicans exposure can trigger a clinically relevant IL-17 response in psoriasis. Assessing anti-CA IgA levels may be useful in order to evaluate chronic psoriasis patients.
Collapse
Affiliation(s)
- Carmen de Jesús-Gil
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; (C.d.J.-G.); (L.S.-d.S.N.); (E.R.-R.); (L.S.-M.); (I.G.-J.)
| | - Lídia Sans-de San Nicolàs
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; (C.d.J.-G.); (L.S.-d.S.N.); (E.R.-R.); (L.S.-M.); (I.G.-J.)
| | - Ester Ruiz-Romeu
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; (C.d.J.-G.); (L.S.-d.S.N.); (E.R.-R.); (L.S.-M.); (I.G.-J.)
| | - Marta Ferran
- Department of Dermatology, Hospital del Mar, 08003 Barcelona, Spain; (M.F.); (R.M.P.)
| | - Laura Soria-Martínez
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; (C.d.J.-G.); (L.S.-d.S.N.); (E.R.-R.); (L.S.-M.); (I.G.-J.)
| | - Irene García-Jiménez
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; (C.d.J.-G.); (L.S.-d.S.N.); (E.R.-R.); (L.S.-M.); (I.G.-J.)
| | - Anca Chiriac
- Department of Dermatophysiology, Apollonia University, 700613 Iasi, Romania;
| | - Josep Manel Casanova-Seuma
- Department of Dermatology, Hospital Universitari Arnau de Vilanova, 25198 Lleida, Spain; (J.M.C.-S.); (J.M.F.-A.)
| | | | - Sherry Owens
- Translational Sciences, Incyte Corporation, Wilmington, DE 19803, USA; (S.O.); (M.D.H.)
| | - Antonio Celada
- Macrophage Biology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
| | - Michael D. Howell
- Translational Sciences, Incyte Corporation, Wilmington, DE 19803, USA; (S.O.); (M.D.H.)
| | - Ramòn María Pujol
- Department of Dermatology, Hospital del Mar, 08003 Barcelona, Spain; (M.F.); (R.M.P.)
| | - Luis Francisco Santamaria-Babí
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; (C.d.J.-G.); (L.S.-d.S.N.); (E.R.-R.); (L.S.-M.); (I.G.-J.)
- Correspondence: ; Tel.: +34-677375160
| |
Collapse
|
5
|
Karwelat D, Schmeck B, Ringel M, Benedikter BJ, Hübner K, Beinborn I, Maisner A, Schulte LN, Vollmeister E. Influenza virus-mediated suppression of bronchial Chitinase-3-like 1 secretion promotes secondary pneumococcal infection. FASEB J 2020; 34:16432-16448. [PMID: 33095949 DOI: 10.1096/fj.201902988rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
Infections of the lung are among the leading causes of death worldwide. Despite the preactivation of innate defense programs during viral infection, secondary bacterial infection substantially elevates morbidity and mortality rates. Particularly problematic are co-infections with influenza A virus (IAV) and the major bacterial pathogen Streptococcus pneumoniae. However, the molecular processes underlying the severe course of such co-infections are not fully understood. Previously, the absence of secreted glycoprotein Chitinase-3-like 1 (CHI3L1) was shown to increase pneumococcal replication in mice. We therefore hypothesized that an IAV preinfection decreases CHI3L1 levels to promote pneumococcal infection. Indeed, in an air-liquid interface model of primary human bronchial epithelial cells (hBECs), IAV preinfection interfered with apical but not basolateral CHI3L1 release. Confocal time-lapse microscopy revealed that the gradual loss of apical CHI3L1 localization during co-infection with influenza and S. pneumoniae coincided with the disappearance of goblet as well as ciliated cells and increased S. pneumoniae replication. Importantly, extracellular restoration of CHI3L1 levels using recombinant protein significantly reduced bacterial load in influenza preinfected bronchial models. Thus, recombinant CHI3L1 may provide a novel therapeutic means to lower morbidity and mortality associated with post-influenza pneumococcal infections.
Collapse
Affiliation(s)
- Diana Karwelat
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany.,Department of Pulmonary and Critical Care Medicine, University Medical Center Marburg, Universities of Giessen and Marburg Lung Center, Philipps University Marburg, Hesse, Germany.,German Center for Lung Research (DZL), Marburg, Hesse, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Hesse, Germany
| | - Marc Ringel
- Institute of Virology, Philipps University Marburg, Marburg, Hesse, Germany
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany
| | - Kathleen Hübner
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Marburg, Hesse, Germany
| | - Leon N Schulte
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany.,German Center for Lung Research (DZL), Marburg, Hesse, Germany
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Philipps University Marburg, Hesse, Germany
| |
Collapse
|
6
|
Experimental Models for Fungal Keratitis: An Overview of Principles and Protocols. Cells 2020; 9:cells9071713. [PMID: 32708830 PMCID: PMC7408389 DOI: 10.3390/cells9071713] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Fungal keratitis is a potentially blinding infection of the cornea that afflicts diverse patient populations worldwide. The development of better treatment options requires a more thorough understanding of both microbial and host determinants of pathology, and a spectrum of experimental models have been developed toward this end. In vivo (animal) models most accurately capture complex pathological outcomes, but protocols may be challenging to implement and vary widely across research groups. In vitro models allow for the molecular dissection of specific host cell–fungal interactions, but they do so without the appropriate environmental/structural context; ex vivo (corneal explant) models provide the benefits of intact corneal tissue, but they do not provide certain pathological features, such as inflammation. In this review, we endeavor to outline the key features of these experimental models as well as describe key technical variations that could impact study design and outcomes.
Collapse
|
7
|
Tandem Mass Tag (TMT)-based quantitative proteomics reveals potential targets associated with onset of Sub-clinical Mastitis in cows. Sci Rep 2020; 10:9321. [PMID: 32518370 PMCID: PMC7283279 DOI: 10.1038/s41598-020-66211-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Bovine milk is vital for infant nutrition and is a major component of the human diet. Bovine mastitis is a common inflammatory disease of mammary gland in cattle. It alters the immune profile of the animal and lowers the quality and yield of milk causing huge economic losses to dairy industry. The incidence of sub-clinical mastitis (SCM) is higher (25-65% worldwide) than clinical mastitis (CM) (>5%), and frequently progresses to clinical stage due to lack of sensitive and specific detection method. We used quantitative proteomics to identify changes in milk during sub-clinical mastitis, which may be potential biomarkers for developing rapid, non-invasive, sensitive detection methods. We performed comparative proteome analysis of the bovine milk, collected from the Indian hybrid cow Karan Fries. The differential proteome in the milk of Indian crossbred cows during sub-acute and clinical intramammary gland infection has not been investigated to date. Using high-resolution mass spectrometry-based quantitative proteomics of the bovine whey proteins, we identified a total of 1459 and 1358 proteins in biological replicates, out of which 220 and 157 proteins were differentially expressed between normal and infected samples. A total of 82 proteins were up-regulated and 27 proteins were down-regulated, having fold changes of ≥2 and ≤0.8 respectively. Among these proteins, overexpression of CHI3L1, LBP, GSN, GCLC, C4 and PIGR proteins was positively correlated with the events that elicit host defence system, triggering production of cytokines and inflammatory molecules. The appearance of these potential biomarkers in milk may be used to segregate affected cattle from the normal herd and may support mitigation measures for prevention of SCM and CM.
Collapse
|
8
|
Chang D, Sharma L, Dela Cruz CS. Chitotriosidase: a marker and modulator of lung disease. Eur Respir Rev 2020; 29:29/156/190143. [PMID: 32350087 PMCID: PMC9488994 DOI: 10.1183/16000617.0143-2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
Chitotriosidase (CHIT1) is a highly conserved and regulated chitinase secreted by activated macrophages; it is a member of the 18-glycosylase family (GH18). CHIT1 is the most prominent chitinase in humans, can cleave chitin and participates in the body's immune response and is associated with inflammation, infection, tissue damage and remodelling processes. Recently, CHIT1 has been reported to be involved in the molecular pathogenesis of pulmonary fibrosis, bronchial asthma, COPD and pulmonary infections, shedding new light on the role of these proteins in lung pathophysiology. The potential roles of CHIT1 in lung diseases are reviewed in this article. This is the first review of chitotriosidase in lung diseasehttp://bit.ly/2LpZUQI
Collapse
Affiliation(s)
- De Chang
- The 3rd Medical Center of Chinese PLA General Hospital, Beijing, China.,Section of Pulmonary and Critical Care and Sleep Medicine, Dept of Medicine, Yale University School of Medicine, New Haven, CT, USA.,Both authors contributed equally
| | - Lokesh Sharma
- Section of Pulmonary and Critical Care and Sleep Medicine, Dept of Medicine, Yale University School of Medicine, New Haven, CT, USA.,Both authors contributed equally
| | - Charles S Dela Cruz
- Section of Pulmonary and Critical Care and Sleep Medicine, Dept of Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Niu L, Liu X, Ma Z, Yin Y, Sun L, Yang L, Zheng Y. Fungal keratitis: Pathogenesis, diagnosis and prevention. Microb Pathog 2020; 138:103802. [PMID: 31626916 DOI: 10.1016/j.micpath.2019.103802] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 02/08/2023]
Abstract
As a kind of serious, potentially sight-threatening corneal infections with poor prognosis, fungal keratitis can bring a heavy economic burden to patients and seriously affect the quality of life, especially those in developing countries where fungal keratitis is more prevalent. Typical clinical features include immune rings, satellite lesions, pseudopods, hypha moss, hypopyon and endothelial plaques. The ideal therapeutic effects could not be achieved by current treatments for many reasons. Therefore, under the current status, understanding the pathogenesis, early diagnosis and prevention strategies might be of great importance. Here, in this review, we discuss the recent progresses that may advance our understanding of pathogenesis, early diagnosis and prevention of fungal keratitis.
Collapse
Affiliation(s)
- Lingzhi Niu
- Eye Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yuan Yin
- Eye Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lixia Sun
- Department of Ophthalmology, Yanbian University Affiliated Hospital, Yanbian University, Yanji, 133000, China
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Yajuan Zheng
- Eye Center, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
10
|
Hübner K, Karwelat D, Pietsch E, Beinborn I, Winterberg S, Bedenbender K, Benedikter BJ, Schmeck B, Vollmeister E. NF-κB-mediated inhibition of microRNA-149-5p regulates Chitinase-3-like 1 expression in human airway epithelial cells. Cell Signal 2019; 67:109498. [PMID: 31837465 DOI: 10.1016/j.cellsig.2019.109498] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022]
Abstract
Lower respiratory tract infections are among the most common causes of death worldwide. Main pathogens leading to these severe infections are viruses and gram-positive bacteria that activate toll-like receptor (TLR)-mediated immune responses via pathogen-associated molecular patterns. One protective factor induced during infection is Chitinase-3-like 1 (CHI3L1), which exerts various functions, e.g. in host cell proliferation and bacterial counteraction, and has been proposed as a biomarker in several acute and chronic inflammatory conditions. MicroRNAs (miR) have become important regulators of inflammation and infection and are considered therapeutic targets in recent years. However, it is not known whether microRNAs play a role in the regulation of CHI3L1 expression in TLR-mediated respiratory epithelial cell inflammation. In this study, we analysed the pre- and post-transcriptional regulation of CHI3L1 by TLRs in bronchial epithelial cells. Therefore, we stimulated BEAS-2B cells with the bacterial TLR2-ligand lipoteichoic acid or the viral dsRNA analogue poly(I:C). We observed an increase in the expression of CHI3L1, which was dependent on TNF-α-mediated NF-κB activation in TLR2- and TLR3-activated cells. Moreover, TLR2 and - 3 stimulation caused downregulation of the microRNA miR-149-5p, an effect that could be suppressed by inhibiting NF-κB translocation into the nucleus. Luciferase reporter assays identified a direct interaction of miR-149-5p with the CHI3L1 3´untranslated region. This interaction was confirmed by inhibition and overexpression of miR-149-5p in BEAS-2B cells, which altered the expression levels of CHI3L1 mRNA. In summary, miR-149-5p directly regulates CHI3L1 in context of TLR-mediated airway epithelial cell inflammation and may be a potential therapeutic target in inflammation and other diseases.
Collapse
Affiliation(s)
- Kathleen Hübner
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Diana Karwelat
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Emma Pietsch
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Isabell Beinborn
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Sarah Winterberg
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Katrin Bedenbender
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany; Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, PO box 5800, 6202AZ Maastricht, the Netherlands
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany; Department of Pulmonary and Critical Care Medicine, University Medical Center Marburg, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany.
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Hans-Meerwein Straße 2, 35043 Marburg, Hesse, Germany.
| |
Collapse
|
11
|
Candida albicans Elicits Pro-Inflammatory Differential Gene Expression in Intestinal Peyer's Patches. Mycopathologia 2019; 184:461-478. [PMID: 31230200 DOI: 10.1007/s11046-019-00349-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/05/2019] [Indexed: 12/17/2022]
Abstract
The details of how gut-associated lymphoid tissues such as Peyer's patches (PPs) in the small intestine play a role in immune surveillance, microbial differentiation and the mucosal barrier protection in response to fungal organisms such as Candida albicans are still unclear. We particularly focus on PPs as they are the immune sensors and inductive sites of the gut that influence inflammation and tolerance. We have previously demonstrated that CD11c+ phagocytes that include dendritic cells and macrophages are located in the sub-epithelial dome within PPs sample C. albicans. To gain insight on how specific cells within PPs sense and respond to the sampling of fungi, we gavaged naïve mice with C. albicans strains ATCC 18804 and SC5314 as well as Saccharomyces cerevisiae. We measured the differential gene expression of sorted CD45+ B220+ B-cells, CD3+ T-cells and CD11c+ DCs within the first 24 h post-gavage using nanostring nCounter® technology. The results reveal that at 24 h, PP phagocytes were the cell type that displayed differential gene expression. These phagocytes were able to sample C. albicans and discriminate between strains. In particular, strain ATCC 18804 upregulated fungal-specific pro-inflammatory genes pertaining to innate and adaptive immune responses. Interestingly, PP CD11c+ phagocytes also differentially expressed genes in response to C. albicans that were important in the protection of the mucosal barrier. These results highlight that the mucosal barrier not only responds to C. albicans, but also aids in the protection of the host.
Collapse
|
12
|
Zhao G, Hu M, Li C, Lee J, Yuan K, Zhu G, Che C. Osteopontin contributes to effective neutrophil recruitment, IL-1β production and apoptosis in Aspergillus fumigatus keratitis. Immunol Cell Biol 2018; 96:401-412. [PMID: 29359350 DOI: 10.1111/imcb.12010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/14/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
Fungal keratitis is a major cause of corneal ulcers, resulting in significant visual impairment and blindness. A phosphorylated glycoprotein secreted by immunocompetent cells, osteopontin (OPN) mediates cluster formation of the host fungal receptors and enhances the phagocytosis and clearance of pathogenic fungi. However, whether OPN production and function occurs in fungal keratitis is unknown. OPN expression in Aspergillus fumigatus keratitis patient corneas was assessed by quantitative polymerase chain reaction (qRT-PCR) and immunofluorescence. Human neutrophils, THP-1 macrophages and corneal epithelial cells (HCECs) stimulated with A. fumigatus were utilized for in vitro experiments. Mouse models of A. fumigatus keratitis were developed by intrastromal injection for in vivo experiments. Using siRNAs, neutralizing antibodies, recombinant proteins and inhibitors, the production and role of OPN in A. fumigatus infection was assessed by clinical evaluation, qRT-PCR, immunofluorescence, western blotting and bioluminescence image acquisition. We observed increased corneal OPN expression in A. fumigatus keratitis patients and mouse models compared to controls. OPN production in response to A. fumigatus infection was dependent on LOX-1 and Erk1/2. Compared to controls, OPN knockdown impaired proinflammatory cytokine IL-1β production, which was dependent on 4E-BP1. OPN knockdown decreased myeloperoxidase levels, and resulted in decreased neutrophil recruitment, higher fungal load and increased apoptosis in mouse A. fumigatus keratitis. Our results indicate that OPN is a critical component of the antifungal immune response and is essential for effective neutrophil recruitment, inflammatory cytokine production and apoptosis in A. fumigatus keratitis.
Collapse
Affiliation(s)
- Guiqiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ming Hu
- Department of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Cui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jieun Lee
- Department of Ophthalmology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Kelan Yuan
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoqiang Zhu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Breyne K, Steenbrugge J, Demeyere K, Vanden Berghe T, Meyer E. Preconditioning with Lipopolysaccharide or Lipoteichoic Acid Protects against Staphylococcus aureus Mammary Infection in Mice. Front Immunol 2017; 8:833. [PMID: 28791009 PMCID: PMC5522847 DOI: 10.3389/fimmu.2017.00833] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is one of the most causative agents of mastitis and is associated with chronic udder infections. The persistency of the pathogen is believed to be the result of an insufficient triggering of local inflammatory signaling. In this study, the preclinical mastitis model was used, aiming to evaluate if lipopolysaccharide (LPS) or lipoteichoic acid (LTA) preconditioning could aid the host in more effectively clearing or at least limiting a subsequent S. aureus infection. A prototypic Gram-negative virulence factor, i.e., LPS and Gram-positive virulence factor, i.e., LTA were screened whether they were able to boost the local immune compartment. Compared to S. aureus-induced inflammation, both toxins had a remarkable high potency to efficiently induce two novel selected innate immunity biomarkers i.e., lipocalin 2 (LCN2) and chitinase 3-like 1 (CHI3L1). When combining mammary inoculation of LPS or LTA prior to a local S. aureus infection, we were able to modulate the innate immune response, reduce local bacterial loads, and induce either LCN2 or CHI3L1 at 24 h post-infection. Clodronate depletion of mammary macrophages also identified that macrophages contribute only to a limited extend to the LPS/LTA-induced immunomodulation upon S. aureus infection. Based on histological neutrophil influx evaluation, concomitant local cytokine profiles and LCN2/CHI3L1 patterns, the macrophage-independent signaling plays a major role in the LPS- or LTA-pretreated S. aureus-infected mouse mammary gland. Our results highlight the importance of a vigilant microenvironment during the innate immune response of the mammary gland and offer novel insights for new approaches concerning effective immunomodulation against a local bacterial infection.
Collapse
Affiliation(s)
- Koen Breyne
- Biochemistry, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | - Jonas Steenbrugge
- Biochemistry, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | - Kristel Demeyere
- Biochemistry, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | - Tom Vanden Berghe
- Peter Vandenabeele Lab, Inflammation Research Center, Department of Biomedical Molecular Biology, VIB, Ghent University, Zwijnaarde, Belgium
| | - Evelyne Meyer
- Biochemistry, Faculty of Veterinary Medicine, Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| |
Collapse
|
14
|
Wu J, Zhang WS, Zhao J, Zhou HY. Review of clinical and basic approaches of fungal keratitis. Int J Ophthalmol 2016; 9:1676-1683. [PMID: 27990375 DOI: 10.18240/ijo.2016.11.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023] Open
Abstract
Fungal keratitis (FK) is a serious disease which can cause blindness. This review has current information about the pathogenesis, limitations of traditional diagnosis and therapeutic strategies, immune recognition and the diagnosis and therapy of FK. The information of this summary was reviewed regularly and updated as what we need in the diagnosis and therapy of FK nowadays.
Collapse
Affiliation(s)
- Jie Wu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Wen-Song Zhang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jing Zhao
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Hong-Yan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
15
|
|
16
|
Yan C, Gao N, Sun H, Yin J, Lee P, Zhou L, Fan X, Yu FS. Targeting Imbalance between IL-1β and IL-1 Receptor Antagonist Ameliorates Delayed Epithelium Wound Healing in Diabetic Mouse Corneas. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1466-80. [PMID: 27109611 DOI: 10.1016/j.ajpath.2016.01.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/15/2022]
Abstract
Patients with diabetes mellitus often develop corneal complications and delayed wound healing. How diabetes might alter acute inflammatory responses to tissue injury, leading to delayed wound healing, remains mostly elusive. Using a streptozotocin-induced type I diabetes mellitus mice and corneal epithelium-debridement wound model, we discovered that although wounding induced marked expression of IL-1β and the secreted form of IL-1 receptor antagonist (sIL-1Ra), diabetes suppressed the expressions of sIL-1Ra but not IL-1β in healing epithelia and both in whole cornea. In normoglycemic mice, IL-1β or sIL-1Ra blockade delayed wound healing and influenced each other's expression. In diabetic mice, in addition to delayed reepithelization, diabetes weakened phosphatidylinositol 3-kinase-Akt signaling, caused cell apoptosis, diminished cell proliferation, suppressed neutrophil and natural killer cell infiltrations, and impaired sensory nerve reinnervation in healing mouse corneas. Local administration of recombinant IL-1Ra partially, but significantly, reversed these pathological changes in the diabetic corneas. CXCL10 was a downstream chemokine of IL-1β-IL-1Ra, and exogenous CXCL10 alleviated delayed wound healing in the diabetic, but attenuated it in the normal corneas. In conclusion, the suppressed early innate/inflammatory responses instigated by the imbalance between IL-1β and IL-1Ra is an underlying cause for delayed wound healing in the diabetic corneas. Local application of IL-1Ra accelerates reepithelialization and may be used to treat chronic corneal and potential skin wounds of diabetic patients.
Collapse
Affiliation(s)
- Chenxi Yan
- Department of Ophthalmology, Graduate Program, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Nan Gao
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Haijing Sun
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jia Yin
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Patrick Lee
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Li Zhou
- Department of Dermatology, Henry Ford Immunology Program, Henry Ford Health System, Detroit, Michigan
| | - Xianqun Fan
- Department of Ophthalmology, Graduate Program, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fu-Shin Yu
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|