1
|
Hu X, Li Y, Cao Y, Shi F, Shang L. The role of nitric oxide synthase/ nitric oxide in infection-related cancers: Beyond antimicrobial activity. Biochim Biophys Acta Rev Cancer 2024; 1879:189156. [PMID: 39032540 DOI: 10.1016/j.bbcan.2024.189156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
As a free radical and endogenous effector molecule, mammalian endogenous nitric oxide (NO) is mainly derived from nitric oxide synthase (NOS) via L-arginine. NO participates in normal physiological reactions and provides immune responses to prevent the invasion of foreign bacteria. However, NO also has complex and contradictory biological effects. Abnormal NO signaling is involved in the progression of many diseases, such as cancer. In the past decades, cancer research has been closely linked with NOS/ NO, and many tumors with poor prognosis are associated with high expression of NOS. In this review, we give a overview of the biological effects of NOS/ NO. Then we focus on the oncogenic role of iNOS/ NO in HPV, HBV, EBV and H. pylori related tumors. In fact, there is growing evidence that iNOS could be used as a potential therapeutic target in cancer therapy. We emphasize that the pro-tumor effect of NOS/ NO is greater than the anti-tumor effect.
Collapse
Affiliation(s)
- Xudong Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China; Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; Department of Pathology, National Clinical Research Center for Geriatric Disorders/ XiangYa Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
2
|
Dore MP, Pes GM. Trained Immunity and Trained Tolerance: The Case of Helicobacter pylori Infection. Int J Mol Sci 2024; 25:5856. [PMID: 38892046 PMCID: PMC11172748 DOI: 10.3390/ijms25115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Trained immunity is a concept in immunology in which innate immune cells, such as monocytes and macrophages, exhibit enhanced responsiveness and memory-like characteristics following initial contact with a pathogenic stimulus that may promote a more effective immune defense following subsequent contact with the same pathogen. Helicobacter pylori, a bacterium that colonizes the stomach lining, is etiologically associated with various gastrointestinal diseases, including gastritis, peptic ulcer, gastric adenocarcinoma, MALT lymphoma, and extra gastric disorders. It has been demonstrated that repeated exposure to H. pylori can induce trained immunity in the innate immune cells of the gastric mucosa, which become more responsive and better able to respond to subsequent H. pylori infections. However, interactions between H. pylori and trained immunity are intricate and produce both beneficial and detrimental effects. H. pylori infection is characterized histologically as the presence of both an acute and chronic inflammatory response called acute-on-chronic inflammation, or gastritis. The clinical outcomes of ongoing inflammation include intestinal metaplasia, gastric atrophy, and dysplasia. These same mechanisms may also reduce immunotolerance and trigger autoimmune pathologies in the host. This review focuses on the relationship between trained immunity and H. pylori and underscores the dynamic interplay between the immune system and the pathogen in the context of gastric colonization and inflammation.
Collapse
Affiliation(s)
- Maria Pina Dore
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Clinica Medica, Viale San Pietro 8, 07100 Sassari, Italy;
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza Blvd, Houston, TX 77030, USA
| | - Giovanni Mario Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Clinica Medica, Viale San Pietro 8, 07100 Sassari, Italy;
| |
Collapse
|
3
|
Vitallé J, Pérez-Gómez A, Ostos FJ, Gasca-Capote C, Jiménez-Leon MR, Bachiller S, Rivas-Jeremías I, Silva-Sánchez MDM, Ruiz-Mateos AM, Martín-Sánchez MÁ, López-Cortes LF, Rafii El Idrissi Benhnia M, Ruiz-Mateos E. Immune defects associated with lower SARS-CoV-2 BNT162b2 mRNA vaccine response in elderly people. JCI Insight 2022; 7:161045. [PMID: 35943812 PMCID: PMC9536264 DOI: 10.1172/jci.insight.161045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
The immune factors associated with impaired SARS-CoV-2 vaccine response in the elderly are mostly unknown. We studied >60 and <60 years old people vaccinated with SARS-CoV-2 BNT162b2 mRNA before and after the first and second dose. Aging was associated with a lower anti-RBD IgG levels and a decreased magnitude and polyfunctionality of SARS-CoV-2 specific T cell response. The dramatic decrease in thymic function in aged people with >60 years of age, which fueled alteration in T cell homeostasis, and lower CD161+ T cell levels were associated with decreased T cell response two months after vaccination. Additionally, a deficient dendritic cell (DC) homing, activation and Toll like receptor (TLR)-mediated function, along with a proinflammatory functional profile in monocytes, were observed in the >60 years old group, which was also related to lower specific T cell response after vaccination. These findings might be relevant for the improvement of the current vaccination strategies and for the development of new vaccine prototypes.
Collapse
Affiliation(s)
- Joana Vitallé
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Alberto Pérez-Gómez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Francisco José Ostos
- Department of Medical Biochemistry, Molecular Biology, and Immunology, University of Seville School of Medicine, Seville, Spain
| | - Carmen Gasca-Capote
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Maria Reyes Jiménez-Leon
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Sara Bachiller
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Inmaculada Rivas-Jeremías
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Maria Del Mar Silva-Sánchez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Anabel M Ruiz-Mateos
- Centro de Salud Pinillo Chico, Centro de Salud Pinillo Chico, El Puerto de Santa María, Seville, Spain
| | - María Ángeles Martín-Sánchez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Luis Fernando López-Cortes
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Mohammed Rafii El Idrissi Benhnia
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| |
Collapse
|
4
|
Vaillant L, Oster P, McMillan B, Orozco Fernandez E, Velin D. GM-CSF is key in the efficacy of vaccine-induced reduction of Helicobacter pylori infection. Helicobacter 2022; 27:e12875. [PMID: 35092634 PMCID: PMC9285700 DOI: 10.1111/hel.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/22/2021] [Accepted: 01/16/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) colonizes the human gastric mucosa with a high worldwide prevalence. Currently, H. pylori is eradicated by the use of antibiotics. However, elevated antibiotic resistance suggests new therapeutic strategies need to be envisioned: one approach being prophylactic vaccination. Pre-clinical and clinical data show that a urease-based vaccine is efficient in decreasing H. pylori infection through the mobilization of T helper (Th) cells, especially Th17 cells. Th17 cells produce interleukins such as IL-22 and IL-17, among others, and are key players in vaccine efficacy. Recently, granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing Th17 cells have been identified. AIM This study explores the possibility that GM-CSF plays a role in the reduction of H. pylori infection following vaccination. RESULTS We demonstrate that GM-CSF+ IL-17+ Th17 cells accumulate in the stomach mucosa of H. pylori infected mice during the vaccine-induced reduction of H. pylori infection. Secondly, we provide evidence that vaccinated GM-CSF deficient mice only modestly reduce H. pylori infection. Conversely, we observe that an increase in GM-CSF availability reduces H. pylori burden in chronically infected mice. Thirdly, we show that GM-CSF, by acting on gastric epithelial cells, promotes the production of βdefensin3, which exhibits H. pylori bactericidal activities. CONCLUSION Taken together, we demonstrate a key role of GM-CSF, most probably originating from Th17 cells, in the vaccine-induced reduction of H. pylori infection.
Collapse
Affiliation(s)
- Laurie Vaillant
- Service of Gastroenterology and HepatologyCentre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| | - Paul Oster
- Service of Gastroenterology and HepatologyCentre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| | - Brynn McMillan
- Service of Gastroenterology and HepatologyCentre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| | - Eulalia Orozco Fernandez
- Service of Gastroenterology and HepatologyCentre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| | - Dominique Velin
- Service of Gastroenterology and HepatologyCentre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
5
|
Vaillant L, Oster P, McMillan B, Velin D. Gastric eosinophils are detrimental for Helicobacter pylori vaccine efficacy. Vaccine 2021; 39:3590-3601. [PMID: 34049736 DOI: 10.1016/j.vaccine.2021.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori (Hp) colonizes the human gastric mucosa with a high worldwide prevalence. Currently, Hp can be eradicated by the use of antibiotics. Due to the increase of antibiotic resistance, new therapeutic strategies need to be devised: one such approach being prophylactic vaccination. Pre-clinical and clinical data showed that a urease-based vaccine is efficient in decreasing Hp infection through the mobilization of T helper (Th)-dependent immune effectors, including eosinophils. Preliminary data have shown that upon vaccination and subsequent Hp infection, eosinophils accumulate in the gastric mucosa, suggesting a possible implication of this granulocyte subset in the vaccine-induced reduction of Hp infection. In our study, we confirm that activated eosinophils, expressing CD63, CD40, MHCII and PD-L1 at their cell surface, infiltrate the gastric mucosa during vaccine-induced reduction of Hp infection. Strikingly, we provide evidence that bone marrow derived eosinophils efficiently kill Hp in vitro, suggesting that eosinophils may participate to the vaccine-induced reduction of Hp infection. However, conversely to our expectations, the absence of eosinophils does not decrease the efficacy of this Hp vaccine in vivo. Indeed, vaccinated mice that have been genetically ablated of the eosinophil lineage or that have received anti-Sialic acid-binding immunoglobulin-like lectin F eosinophil-depleting antibodies, display a lower Hp colonization when compared to their eosinophil sufficient counterparts. Although the vaccine induces similar urease-specific humoral and Th responses in both eosinophil sufficient and deficient mice, a decreased production of anti-inflammatory cytokines, such as IL-10, TGFβ, and calgranulin B, was specifically observed in eosinophil depleted mice. Taken together, our results suggest that gastric eosinophils maintain an anti-inflammatory environment, thus sustaining chronic Hp infection. Because eosinophils are one of the main immune effectors mobilized by Th2 responses, our study strongly suggests that the formulation of an Hp vaccine needs to include an adjuvant that preferentially primes Hp-specific Th1/Th17 responses.
Collapse
Affiliation(s)
- Laurie Vaillant
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Paul Oster
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Brynn McMillan
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Hu C, Liu W, Xu N, Huang A, Zhang Z, Fan M, Ruan G, Wang Y, Xi T, Xing Y. Silk fibroin hydrogel as mucosal vaccine carrier: induction of gastric CD4+TRM cells mediated by inflammatory response induces optimal immune protection against Helicobacter felis. Emerg Microbes Infect 2020; 9:2289-2302. [PMID: 33000989 PMCID: PMC7594714 DOI: 10.1080/22221751.2020.1830719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tissue-resident memory T (TRM) cells, located in the epithelium of most peripheral tissues, constitute the first-line defense against pathogen infections. Our previous study reported that gastric subserous layer (GSL) vaccination induced a “pool” of protective tissue-resident memory CD4+T (CD4+TRM) cells in the gastric epithelium. However, the mechanistic details how CD4+TRM cells form in the gastric epithelium are unknown. Here, our results suggested that the vaccine containing CCF in combination with Silk fibroin hydrogel (SF) broadened the distribution of gastric intraepithelial CD4+TRM cells. It was revealed that the gastric intraepithelial TRM cells were even more important than circulating memory T cells against infection by Helicobacter felis. It was also shown that gastric-infiltrating neutrophils were involved as indispensable mediators which secreted CXCL10 to chemoattract CXCR3+CD4+T cells into the gastric epithelium. Blocking of CXCR3 or neutrophils significantly decreased the number of gastric intraepithelial CD4+TRM cells due to reduced recruitment of CD4+T cells. This study demonstrated the protective efficacy of gastric CD4+TRM cells against H. felis infection, and highlighted the influence of neutrophils on gastric intraepithelial CD4+TRM cells formation.
Collapse
Affiliation(s)
- Chupeng Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ningyin Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - An Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhenxing Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Menghui Fan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Guojing Ruan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yue Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
7
|
Akter S, Jeverstam F, Lundgren A, Magnusson MK, Walduck A, Qadri F, Bhuiyan TR, Raghavan S. The frequency of circulating integrin α4β7 + cells correlates with protection against Helicobacter pylori infection in immunized mice. Helicobacter 2019; 24:e12658. [PMID: 31502365 PMCID: PMC6900148 DOI: 10.1111/hel.12658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Chronic Helicobacter pylori infection is the cause of peptic ulcers in a subpopulation of individuals and a risk factor for the development of gastric cancer. A vaccine against H pylori infection can prevent the acquisition of the infection and protect against reinfections. Clinical trials to date evaluating the efficacy of H pylori vaccines in human challenge models have shown moderate to poor protection with difficulties in predicting efficacy. Thus, while further studies are needed to design an effective vaccine, we also need to find relevant correlates for vaccine efficacy. OBJECTIVE To find immune correlates to vaccine efficacy, the frequencies of neutrophils, eosinophils and inflammatory monocytes and CD4+ T-cell memory and mucosa homing integrin α4β7+ cells were assessed by flow cytometry in the blood of mice after vaccination. MATERIALS AND METHODS H pylori antigens and cholera toxin or the multiple mutant CT (mmCT) were administered via the sublingual (SL) and intragastric route (IG). The vaccinated mice were infected with H pylori strain SS1 bacteria, and colonization in the stomach and immune responses were evaluated. RESULTS The H pylori vaccine was effective in reducing bacterial load in the stomach of mice and enhancing immune responses compared to unvaccinated infection controls. In the blood of mice after SL or IG route of vaccination, we observed changes in frequencies of innate and adaptive immune cell subsets compared to infection controls. Remarkably, the frequency of circulating mucosal homing α4β7+ CD4+ T cells after vaccination correlated with low bacterial load in the stomach of individual mice irrespective of the immunization route. CONCLUSIONS Our study shows that the innate and adaptive immune cell subsets can be measured in the blood after vaccination and that increased frequency of α4β7+ CD4+ in the blood after immunization could be used as a predictive marker for the efficacy of vaccine against H pylori infection.
Collapse
Affiliation(s)
- Sarmin Akter
- International Centre for Diarrhoeal Disease Research, BangladeshDhakaBangladesh
| | - Frida Jeverstam
- Department of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Anna Lundgren
- Department of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Maria K. Magnusson
- Department of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Anna Walduck
- School of ScienceRMIT UniversityBundooraVic.Australia
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, BangladeshDhakaBangladesh
| | | | - Sukanya Raghavan
- Department of Microbiology and ImmunologyInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
8
|
Hou J, Wang X, Zhang M, Wang M, Gao P, Jiang Y. Circulating CD14+CD163+CD209+ M2-like monocytes are associated with the severity of infection in Helicobacter pylori-positive patients. Mol Immunol 2019; 108:13-22. [PMID: 30771733 DOI: 10.1016/j.molimm.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
|
9
|
Patel B, Bansal SS, Ismahil MA, Hamid T, Rokosh G, Mack M, Prabhu SD. CCR2 + Monocyte-Derived Infiltrating Macrophages Are Required for Adverse Cardiac Remodeling During Pressure Overload. ACTA ACUST UNITED AC 2018; 3:230-244. [PMID: 30062209 PMCID: PMC6059350 DOI: 10.1016/j.jacbts.2017.12.006] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/11/2017] [Accepted: 12/19/2017] [Indexed: 12/24/2022]
Abstract
Hypothesis: CCR2+ monocyte-derived cardiac macrophages are required for adverse LV remodeling, cardiac T-cell expansion, and the transition to HF following pressure overload. The imposition of pressure overload via TAC resulted in the early up-regulation of CCL2, CCL7, and CCL12 chemokines in the LV, increased Ly6ChiCCR2+ monocytes in the blood, and augmented CCR2+ infiltrating macrophages in the heart. Specific and circumscribed inhibition of CCR2+ monocytes and macrophages early during pressure overload reduced pathological hypertrophy, fibrosis, and systolic dysfunction during the late phase of pressure overload. The early expansion of CCR2+ macrophages after pressure overload was required for long-term cardiac T-cell expansion. CCR2+ monocytes/macrophages may represent key targets for immunomodulation to delay or prevent HF in pressure-overload states.
Although chronic inflammation is a central feature of heart failure (HF), the immune cell profiles differ with different underlying causes. This suggests that for immunomodulatory therapy in HF to be successful, it needs to be tailored to the specific etiology. Here, the authors demonstrate that monocyte-derived C-C chemokine receptor 2 (CCR2)+ macrophages infiltrate the heart early during pressure overload in mice, and that blocking this response either pharmacologically or with antibody-mediated CCR2+ monocyte depletion alleviates late pathological left ventricular remodeling and dysfunction, T-cell expansion, and cardiac fibrosis. Hence, suppression of CCR2+ monocytes/macrophages may be an important immunomodulatory therapeutic target to ameliorate pressure-overload HF.
Collapse
Key Words
- APC, antigen presenting cell
- BNP, B-type natriuretic peptide
- CCL, C-C motif chemokine ligand
- CCR2, C-C chemokine receptor 2
- DC, dendritic cell
- EDTA, ethylenediaminetetraacetic acid
- EF, ejection fraction
- HF, heart failure
- ICAM, intercellular adhesion molecule
- IFN, interferon
- IL, interleukin
- LN, lymph node
- LV, left ventricular
- MerTK, c-mer proto-oncogene tyrosine kinase
- PBS, phosphate-buffered saline
- T cells
- TAC, transverse aortic constriction
- TGF, transforming growth factor
- TNF, tumor necrosis factor
- VCAM, vascular cell adhesion molecule
- cardiac remodeling
- heart failure
- i.p., intraperitoneally
- inflammation
- macrophages
Collapse
Affiliation(s)
- Bindiya Patel
- Department of Medicine, Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shyam S Bansal
- Department of Medicine, Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohamed Ameen Ismahil
- Department of Medicine, Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tariq Hamid
- Department of Medicine, Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gregg Rokosh
- Department of Medicine, Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Sumanth D Prabhu
- Department of Medicine, Division of Cardiovascular Disease and Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama.,Medical Service, Birmingham VAMC, Birmingham, Alabama
| |
Collapse
|
10
|
Romano A, Carneiro MBH, Doria NA, Roma EH, Ribeiro-Gomes FL, Inbar E, Lee SH, Mendez J, Paun A, Sacks DL, Peters NC. Divergent roles for Ly6C+CCR2+CX3CR1+ inflammatory monocytes during primary or secondary infection of the skin with the intra-phagosomal pathogen Leishmania major. PLoS Pathog 2017; 13:e1006479. [PMID: 28666021 PMCID: PMC5509374 DOI: 10.1371/journal.ppat.1006479] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/13/2017] [Accepted: 06/18/2017] [Indexed: 01/13/2023] Open
Abstract
Inflammatory monocytes can be manipulated by environmental cues to perform multiple functions. To define the role of monocytes during primary or secondary infection with an intra-phagosomal pathogen we employed Leishmania major-red fluorescent protein (RFP) parasites and multi-color flow cytometry to define and enumerate infected and uninfected inflammatory cells in the skin. During primary infection, infected monocytes had altered maturation and were the initial mononuclear host cell for parasite replication. In contrast, at a distal site of secondary infection in mice with a healed but persistent primary infection, this same population rapidly produced inducible nitric oxide synthase (iNOS) in an IFN-γ dependent manner and was critical for parasite killing. Maturation to a dendritic cell-like phenotype was not required for monocyte iNOS-production, and enhanced monocyte recruitment correlated with IFN-γ dependent cxcl10 expression. In contrast, neutrophils appeared to be a safe haven for parasites in both primary and secondary sites. Thus, inflammatory monocytes play divergent roles during primary versus secondary infection with an intra-phagosomal pathogen. Many infectious diseases are initiated in the context of inflammation. This inflammatory response may be initiated by the pathogen itself or by damage to barrier sites associated with the infectious process. In the case of the vector-transmitted intra-phagosomal pathogen Leishmania, the parasite must contend with the robust inflammatory response initiated by the bite of an infected sand fly. Traditionally, rapid infection of macrophages in the skin and manipulation of these cells was seen as the mechanism by which the parasite avoided elimination by inflammatory cells. In the present study, we find that this is not the case following primary infection. After transient residence in neutrophils, Leishmania parasites transitioned into immature inflammatory monocytes, where they underwent proliferation and suppressed the maturation of these cells. In stark contrast, in a setting of pre-existing immunity, inoculation of parasites at a secondary site of infection resulted in parasite killing by monocytes in an IFN-γ dependent manner. Therefore, the role of monocytes is dependent upon the primary or secondary nature of the infection site into which they are recruited, emphasizing both the plasticity of this cell population and the central role these cells play during Leishmaniasis.
Collapse
Affiliation(s)
- Audrey Romano
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Matheus B. H. Carneiro
- Snyder Institute for Chronic Diseases, Departments of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole A. Doria
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Eric H. Roma
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Flavia L. Ribeiro-Gomes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Ehud Inbar
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Jonatan Mendez
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Andrea Paun
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - David L. Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Nathan C. Peters
- Snyder Institute for Chronic Diseases, Departments of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine, and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- * E-mail:
| |
Collapse
|
11
|
Glennie ND, Volk SW, Scott P. Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes. PLoS Pathog 2017; 13:e1006349. [PMID: 28419151 PMCID: PMC5409171 DOI: 10.1371/journal.ppat.1006349] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/28/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
Tissue-resident memory T cells are required for establishing protective immunity against a variety of different pathogens, although the mechanisms mediating protection by CD4+ resident memory T cells are still being defined. In this study we addressed this issue with a population of protective skin-resident, IFNγ-producing CD4+ memory T cells generated following Leishmania major infection. We previously found that resident memory T cells recruit circulating effector T cells to enhance immunity. Here we show that resident memory CD4+ T cells mediate the delayed-hypersensitivity response observed in immune mice and provide protection without circulating T cells. This protection occurs rapidly after challenge, and requires the recruitment and activation of inflammatory monocytes, which limit parasites by production of both reactive oxygen species and nitric oxide. Overall, these data highlight a novel role for tissue-resident memory cells in recruiting and activating inflammatory monocytes, and underscore the central role that skin-resident T cells play in immunity to cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Nelson D. Glennie
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Susan W. Volk
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
12
|
Moyat M, Bouzourene H, Ouyang W, Iovanna J, Renauld JC, Velin D. IL-22-induced antimicrobial peptides are key determinants of mucosal vaccine-induced protection against H. pylori in mice. Mucosal Immunol 2017; 10:271-281. [PMID: 27143303 DOI: 10.1038/mi.2016.38] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/16/2016] [Indexed: 02/06/2023]
Abstract
Despite the recent description of the mucosal vaccine-induced reduction of Helicobacter pylori natural infection in a phase 3 clinical trial, the absence of immune correlates of protection slows the final development of the vaccine. In this study, we evaluated the role of interleukin (IL)-22 in mucosal vaccine-induced protection. Gastric IL-22 levels were increased in mice intranasally immunized with urease+cholera toxin and challenged with H. felis, as compared with controls. Flow cytometry analysis showed that a peak of CD4+IL-22+IL-17+ T cells infiltrating the gastric mucosa occurred in immunized mice in contrast to control mice. The inhibition of the IL-22 biological activity prevented the vaccine-induced reduction of H. pylori infection. Remarkably, anti-microbial peptides (AMPs) extracted from the stomachs of vaccinated mice, but not from the stomachs of non-immunized or immunized mice, injected with anti-IL-22 antibodies efficiently killed H. pylori in vitro. Finally, H. pylori infection in vaccinated RegIIIβ-deficient mice was not reduced as efficiently as in wild-type mice. These results demonstrate that IL-22 has a critical role in vaccine-induced protection, by promoting the expression of AMPs, such as RegIIIβ, capable of killing Helicobacter. Therefore, it can be concluded that urease-specific memory Th17/Th22 cells could constitute immune correlates of vaccine protection in humans.
Collapse
Affiliation(s)
- M Moyat
- Service of Gastroenterology and Hepatology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - H Bouzourene
- UNISciences, University of Lausanne, UniLabs, Lausanne, Switzerland
| | - W Ouyang
- Department of Immunology, Genentech, South San Francisco, California, USA
| | - J Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - J-C Renauld
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
| | - D Velin
- Service of Gastroenterology and Hepatology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
13
|
De Witte C, Schulz C, Smet A, Malfertheiner P, Haesebrouck F. Other Helicobacters and gastric microbiota. Helicobacter 2016; 21 Suppl 1:62-8. [PMID: 27531542 DOI: 10.1111/hel.12343] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This article aimed to review the literature from 2015 dealing with gastric and enterohepatic non-Helicobacter pylori Helicobacter species (NHPH). A summary of the gastric microbiota interactions with H. pylori is also presented. An extensive number of studies were published during the last year and have led to a better understanding of the pathogenesis of infections with NHPH. These infections are increasingly reported in human patients, including infections with H. cinaedi, mainly characterized by severe bacteremia. Whole-genome sequencing appears to be the most reliable technique for identification of NHPH at species level. Presence of NHPH in laboratory animals may influence the outcome of experiments, making screening and eradication desirable. Vaccination based on UreB proteins or bacterial lysate with CCR4 antagonists as well as oral glutathione supplementation may be promising strategies to dampen the pathogenic effects associated with gastric NHPH infections. Several virulent factors such as outer membrane proteins, phospholipase C-gamma 2, Bak protein, and nickel-binding proteins are associated with colonization of the gastric mucosae and development of gastritis. The development of high-throughput sequencing has led to new insights in the gastric microbiota composition and its interaction with H. pylori. Alterations in the gastric microbiota caused by the pH-increasing effect of a H. pylori infection may increase the risk for gastric cancer.
Collapse
Affiliation(s)
- Chloë De Witte
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Christian Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, otto-von-Guericke University, Magdeburg, Germany
| | - Annemieke Smet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, otto-von-Guericke University, Magdeburg, Germany
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Use of VacA as a Vaccine Antigen. Toxins (Basel) 2016; 8:toxins8060181. [PMID: 27338474 PMCID: PMC4926147 DOI: 10.3390/toxins8060181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 12/31/2022] Open
Abstract
One of the major toxins secreted by H. pylori is the Vacuolating cytotoxin A (VacA) named after its ability to induce the formation of “vacuole”-like membrane vesicles in the cytoplasm of gastric cells. VacA has been associated with the disruption of mitochondrial functions, stimulation of apoptosis, blockade of T cell proliferation and promotion of regulatory T cells, thereby making it a promising vaccine target. Immunity to bacterial virulence factors is well known to protect humans against bacterial infections; hence, detoxified VacA has been evaluated as a vaccine antigen. Our short review summarizes the pre-clinical and clinical data that have been published on the use of VacA in the development of the H. pylori vaccine.
Collapse
|
15
|
Gobert AP, Wilson KT. The Immune Battle against Helicobacter pylori Infection: NO Offense. Trends Microbiol 2016; 24:366-376. [PMID: 26916789 DOI: 10.1016/j.tim.2016.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 01/07/2023]
Abstract
Helicobacter pylori is a successful pathogen of the human stomach. Despite a vigorous immune response by the gastric mucosa, the bacterium survives in its ecological niche, thus favoring diseases ranging from chronic gastritis to adenocarcinoma. The current literature demonstrates that high-output of nitric oxide (NO) production by the inducible enzyme NO synthase-2 (NOS2) plays major functions in host defense against bacterial infections. However, pathogens have elaborated several strategies to counteract the deleterious effects of NO; this includes inhibition of host NO synthesis and transcriptional regulation in response to reactive nitrogen species, allowing the bacteria to face the nitrosative stress. Moreover, NO is also a critical mediator of inflammation and carcinogenesis. In this context, we review the recent findings on the expression of NOS2 in H. pylori-infected gastric tissues and epithelial cells, the role of NO in H. pylori-related diseases and H. pylori gene expression, and the mechanisms whereby H. pylori regulates NO synthesis by host cells.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|