1
|
Quintero-Yanes A, Léger L, Collignon M, Mignon J, Mayard A, Michaux C, Hallez R. Regulation of potassium uptake in Caulobacter crescentus. J Bacteriol 2024; 206:e0010724. [PMID: 39133005 PMCID: PMC11411941 DOI: 10.1128/jb.00107-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/13/2024] [Indexed: 08/13/2024] Open
Abstract
Potassium (K+) is an essential physiological element determining membrane potential, intracellular pH, osmotic/turgor pressure, and protein synthesis in cells. Here, we describe the regulation of potassium uptake systems in the oligotrophic α-proteobacterium Caulobacter crescentus known as a model for asymmetric cell division. We show that C. crescentus can grow in concentrations from the micromolar to the millimolar range by mainly using two K+ transporters to maintain potassium homeostasis, the low-affinity Kup and the high-affinity Kdp uptake systems. When K+ is not limiting, we found that the kup gene is essential while kdp inactivation does not impact the growth. In contrast, kdp becomes critical but not essential and kup dispensable for growth in K+-limited environments. However, in the absence of kdp, mutations in kup were selected to improve growth in K+-depleted conditions, likely by increasing the affinity of Kup for K+. In addition, mutations in the KdpDE two-component system, which regulates kdpABCDE expression, suggest that the inner membrane sensor regulatory component KdpD mainly works as a phosphatase to limit the growth when cells reach late exponential phase. Our data therefore suggest that KdpE is phosphorylated by another non-cognate histidine kinase. On top of this, we determined the KdpE-dependent and independent K+ transcriptome. Together, our work illustrates how an oligotrophic bacterium responds to fluctuation in K+ availability.IMPORTANCEPotassium (K+) is a key metal ion involved in many essential cellular processes. Here, we show that the oligotroph Caulobacter crescentus can support growth at micromolar concentrations of K+ by mainly using two K+ uptake systems, the low-affinity Kup and the high-affinity Kdp. Using genome-wide approaches, we also determined the entire set of genes required for C. crescentus to survive at low K+ concentration as well as the full K+-dependent regulon. Finally, we found that the transcriptional regulation mediated by the KdpDE two-component system is unconventional since unlike Escherichia coli, the inner membrane sensor regulatory component KdpD seems to work rather as a phosphatase on the phosphorylated response regulator KdpE~P.
Collapse
Affiliation(s)
- Alex Quintero-Yanes
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Loïc Léger
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Madeline Collignon
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Julien Mignon
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), Universite de Namur, Namur, Belgium
| | - Aurélie Mayard
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
| | - Catherine Michaux
- Laboratoire de Chimie Physique des Biomolécules, UCPTS, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), Universite de Namur, Namur, Belgium
| | - Régis Hallez
- Bacterial Cell cycle & Development (BCcD), Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Science (NARILIS), Universite de Namur, Namur, Belgium
- WEL Research Institute, University of Namur, Namur, Belgium
| |
Collapse
|
2
|
Hu J, Yao J, Lei C, Sun X. c-di-AMP accumulation impairs toxin expression of Bacillus anthracis by down-regulating potassium importers. Microbiol Spectr 2024; 12:e0378623. [PMID: 38899864 PMCID: PMC11302148 DOI: 10.1128/spectrum.03786-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/20/2024] [Indexed: 06/21/2024] Open
Abstract
The Gram-positive bacterium Bacillus anthracis is the causative agent of anthrax and a bioterrorism threat worldwide. As a crucial second messenger in many bacterial species, cyclic di-AMP (c-di-AMP) modulates various key processes for bacterial homeostasis and pathogenesis. Overaccumulation of c-di-AMP alters cellular growth and reduces anthrax toxin expression as well as virulence in Bacillus anthracis by unresolved underlying mechanisms. In this report, we discovered that c-di-AMP binds to a series of receptors involved in potassium uptake in B. anthracis. By analyzing Kdp and Ktr mutants for osmotic stress, gene expression, and anthrax toxin expression, we also showed that c-di-AMP inhibits Kdp operon expression through binding to the KdpD and ydaO riboswitch; up-regulating intracellular potassium promotes anthrax toxin expression in c-di-AMP accumulated B. anthracis. Decreased anthrax toxin expression at high c-di-AMP occurs through the inhibition of potassium uptake. Understanding the molecular basis of how potassium uptake affects anthrax toxin has the potential to provide new insight into the control of B. anthracis.IMPORTANCEThe bacterial second messenger cyclic di-AMP (c-di-AMP) is a conserved global regulator of potassium homeostasis. How c-di-AMP regulates bacterial virulence is unknown. With this study, we provide a link between potassium uptake and anthrax toxin expression in Bacillus anthracis. c-di-AMP accumulation might inhibit anthrax toxin expression by suppressing potassium uptake.
Collapse
Affiliation(s)
- Jia Hu
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Junmin Yao
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengfeng Lei
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiulian Sun
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
3
|
de Melo AG, Morency C, Moineau S. Virulence-associated factors as targets for phage infection. Curr Opin Microbiol 2024; 79:102471. [PMID: 38569419 DOI: 10.1016/j.mib.2024.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Bacterial pathogens can infect a wide range of hosts and pose a threat to public and animal health as well as to agriculture. The emergence of antibiotic-resistant strains has increased this risk by making the treatment of bacterial infections even more challenging. Pathogenic bacteria thrive in various ecological niches, but they can also be specifically targeted and killed by bacteriophages (phages). Lytic phages are now investigated and even used, in some cases, as alternatives or complements to antibiotics for preventing or treating bacterial infections (phage therapy). As such, it is key to identify factors responsible for phage specificity and efficiency. Here, we review recent advances in virulence-associated factors that are targeted by phages. We highlight components of the bacterial cell surface, effector systems, and motility structures exploited by phages and the effects of phages on cell aggregation and communication. We also look at the fitness trade-off of phage resistance.
Collapse
Affiliation(s)
- Alessandra G de Melo
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Québec City, QC G1V 0A6, Canada
| | - Carlee Morency
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Québec City, QC G1V 0A6, Canada
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Québec City, QC G1V 0A6, Canada; Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
4
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
5
|
Bagchi S, Sharma AK, Ghosh A, Saha S, Basu J, Kundu M. RegX3-dependent transcriptional activation of kdpDE and repression of rv0500A are linked to potassium homeostasis in Mycobacterium tuberculosis. FEBS J 2024; 291:2242-2259. [PMID: 38414198 DOI: 10.1111/febs.17100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Ionic homeostasis is essential for the survival and replication of Mycobacterium tuberculosis within its host. Low potassium ion concentrations trigger a transition of M. tuberculosis into dormancy. Our current knowledge of the transcriptional regulation mechanisms governing genes involved in potassium homeostasis remains limited. Potassium transport is regulated by the constitutive Trk system and the inducible Kdp system in M. tuberculosis. The two-component system KdpDE (also known as KdpD/KdpE) activates expression of the kdpFABC operon, encoding the four protein subunits of the Kdp potassium uptake system (KdpFABC). We show that, under potassium deficiency, expression of the two-component system senX3/regX3 is upregulated, and bacterial survival is compromised in a regX3-inactivated mutant, ΔregX3. Electrophoretic mobility shift assays (EMSAs), promoter reporter assays and chromatin immunoprecipitation (ChIP) show that RegX3 binds to the kdpDE promoter and activates it under potassium deficiency, whereas RegX3 (K204A), a DNA binding-deficient mutant, fails to bind to the promoter. Mutation of the RegX3 binding motifs on the kdpDE promoter abrogates RegX3 binding. In addition, EMSAs and ChIP assays show that RegX3 represses Rv0500A, a repressor of kdpFABC, by binding to consensus RegX3 binding motifs on the rv0500A promoter. Our findings provide important insight into two converging pathways regulated by RegX3; one in which it activates an activator of kdpFABC, and the other in which it represses a repressor of kdpFABC, during potassium insufficiency. This culminates in increased expression of the potassium uptake system encoded by kdpFABC, enabling bacterial survival. These results further expand the growing transcriptional network in which RegX3 serves as a central node to enable bacterial survival under stress.
Collapse
Affiliation(s)
- Shreya Bagchi
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | | | - Abhirupa Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Sudipto Saha
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Joyoti Basu
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | | |
Collapse
|
6
|
Wan J, Dai L, Xiao H, Zhang W, Zhang R, Xie T, Jia Y, Gao X, Huang J, Liu F. Biological characteristics of mechanosensitive channels MscS and MscL in Actinobacillus pleuropneumoniae. J Bacteriol 2024; 206:e0042923. [PMID: 38391161 PMCID: PMC10955882 DOI: 10.1128/jb.00429-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Actinobacillus pleuropneumoniae is an important respiratory pathogen that can cause porcine contagious pleuropneumonia (PCP), resulting in significant economic losses in swine industry. Microorganisms are subjected to drastic changes in environmental osmolarity. In order to alleviate the drastic rise or fall of osmolarity, cells activate mechanosensitive channels MscL and MscS through tension changes. MscL not only regulates osmotic pressure but also has been reported to secrete protein and uptake aminoglycoside antibiotic. However, MscL and MscS, as the most common mechanosensitive channels, have not been characterized in A. pleuropneumoniae. In this study, the osmotic shock assay showed that MscL increased sodium adaptation by regulating cell length. The results of MIC showed that deletion of mscL decreased the sensitivity of A. pleuropneumoniae to multiple antibiotics, while deletion of mscS rendered A. pleuropneumoniae hypersensitive to penicillin. Biofilm assay demonstrated that MscL contributed the biofilm formation but MscS did not. The results of animal assay showed that MscL and MscS did not affect virulence in vivo. In conclusion, MscL is essential for sodium hyperosmotic tolerance, biofilm formation, and resistance to chloramphenicol, erythromycin, penicillin, and oxacillin. On the other hand, MscS is only involved in oxacillin resistance.IMPORTANCEBacterial resistance to the external environment is a critical function that ensures the normal growth of bacteria. MscL and MscS play crucial roles in responding to changes in both external and internal environments. However, the function of MscL and MscS in Actinobacillus pleuropneumoniae has not yet been reported. Our study shows that MscL plays a significant role in osmotic adaptation, antibiotic resistance, and biofilm formation of A. pleuropneumoniae, while MscS only plays a role in antibiotic resistance. Our findings provide new insights into the functional characteristics of MscL and MscS in A. pleuropneumoniae. MscL and MscS play a role in antibiotic resistance and contribute to the development of antibiotics for A. pleuropneumoniae.
Collapse
Affiliation(s)
- Jiajia Wan
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Lu Dai
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Huasong Xiao
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Wendie Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Rui Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Tingting Xie
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Yizhen Jia
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Xuejun Gao
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| | - Jing Huang
- College of Arts and Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Feng Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
7
|
Bhowmik BK, Kumar A, Gangaiah D. Transcriptome Analyses of Chicken Primary Macrophages Infected With Attenuated Salmonella Typhimurium Mutants. Front Microbiol 2022; 13:857378. [PMID: 35591991 PMCID: PMC9111174 DOI: 10.3389/fmicb.2022.857378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica is one of the most common foodborne illnesses in the United States and worldwide, with nearly one-third of the cases attributed to contaminated eggs and poultry products. Vaccination has proven to be an effective strategy to reduce Salmonella load in poultry. The Salmonella Typhimurium Δcrp-cya (MeganVac1) strain is the most commonly used vaccine in the United States; however, the mechanisms of virulence attenuation and host response to this vaccine strain are poorly understood. Here, we profiled the invasion and intracellular survival phenotypes of Δcrp-cya and its derivatives (lacking key genes required for intra-macrophage survival) in HD11 macrophages and the transcriptome response in primary chicken macrophages using RNA-seq. Compared to the parent strain UK1, all the mutant strains were highly defective in metabolizing carbon sources related to the TCA cycle and had greater doubling times in macrophage-simulating conditions. Compared to UK1, the majority of the mutants were attenuated for invasion and intra-macrophage survival. Compared to Δcrp-cya, while derivatives lacking phoPQ, ompR-envZ, feoABC and sifA were highly attenuated for invasion and intracellular survival within macrophages, derivatives lacking ssrAB, SPI13, SPI2, mgtRBC, sitABCD, sopF, sseJ and sspH2 showed increased ability to invade and survive within macrophages. Transcriptome analyses of macrophages infected with UK1, Δcrp-cya and its derivatives lacking phoPQ, sifA and sopF demonstrated that, compared to uninfected macrophages, 138, 148, 153, 155 and 142 genes were differentially expressed in these strains, respectively. Similar changes in gene expression were observed in macrophages infected with these strains; the upregulated genes belonged to innate immune response and host defense and the downregulated genes belonged to various metabolic pathways. Together, these data provide novel insights on the relative phenotypes and early response of macrophages to the vaccine strain and its derivatives. The Δcrp-cya derivatives could facilitate development of next-generation vaccines with improved safety.
Collapse
Affiliation(s)
| | - Arvind Kumar
- Discovery Bacteriology and Microbiome, Elanco Animal Health Inc., Greenfield, IN, United States
| | - Dharanesh Gangaiah
- Discovery Bacteriology and Microbiome, Elanco Animal Health Inc., Greenfield, IN, United States
| |
Collapse
|
8
|
González-Rosales C, Vergara E, Dopson M, Valdés JH, Holmes DS. Integrative Genomics Sheds Light on Evolutionary Forces Shaping the Acidithiobacillia Class Acidophilic Lifestyle. Front Microbiol 2022; 12:822229. [PMID: 35242113 PMCID: PMC8886135 DOI: 10.3389/fmicb.2021.822229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023] Open
Abstract
Extreme acidophiles thrive in environments rich in protons (pH values <3) and often high levels of dissolved heavy metals. They are distributed across the three domains of the Tree of Life including members of the Proteobacteria. The Acidithiobacillia class is formed by the neutrophilic genus Thermithiobacillus along with the extremely acidophilic genera Fervidacidithiobacillus, Igneacidithiobacillus, Ambacidithiobacillus, and Acidithiobacillus. Phylogenomic reconstruction revealed a division in the Acidithiobacillia class correlating with the different pH optima that suggested that the acidophilic genera evolved from an ancestral neutrophile within the Acidithiobacillia. Genes and mechanisms denominated as "first line of defense" were key to explaining the Acidithiobacillia acidophilic lifestyle including preventing proton influx that allows the cell to maintain a near-neutral cytoplasmic pH and differ from the neutrophilic Acidithiobacillia ancestors that lacked these systems. Additional differences between the neutrophilic and acidophilic Acidithiobacillia included the higher number of gene copies in the acidophilic genera coding for "second line of defense" systems that neutralize and/or expel protons from cell. Gain of genes such as hopanoid biosynthesis involved in membrane stabilization at low pH and the functional redundancy for generating an internal positive membrane potential revealed the transition from neutrophilic properties to a new acidophilic lifestyle by shaping the Acidithiobacillaceae genomic structure. The presence of a pool of accessory genes with functional redundancy provides the opportunity to "hedge bet" in rapidly changing acidic environments. Although a core of mechanisms for acid resistance was inherited vertically from an inferred neutrophilic ancestor, the majority of mechanisms, especially those potentially involved in resistance to extremely low pH, were obtained from other extreme acidophiles by horizontal gene transfer (HGT) events.
Collapse
Affiliation(s)
- Carolina González-Rosales
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jorge H. Valdés
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
9
|
Adler BA, Kazakov AE, Zhong C, Liu H, Kutter E, Lui LM, Nielsen TN, Carion H, Deutschbauer AM, Mutalik VK, Arkin AP. The genetic basis of phage susceptibility, cross-resistance and host-range in Salmonella. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34910616 PMCID: PMC8744999 DOI: 10.1099/mic.0.001126] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Though bacteriophages (phages) are known to play a crucial role in bacterial fitness and virulence, our knowledge about the genetic basis of their interaction, cross-resistance and host-range is sparse. Here, we employed genome-wide screens in Salmonella enterica serovar Typhimurium to discover host determinants involved in resistance to eleven diverse lytic phages including four new phages isolated from a therapeutic phage cocktail. We uncovered 301 diverse host factors essential in phage infection, many of which are shared between multiple phages demonstrating potential cross-resistance mechanisms. We validate many of these novel findings and uncover the intricate interplay between RpoS, the virulence-associated general stress response sigma factor and RpoN, the nitrogen starvation sigma factor in phage cross-resistance. Finally, the infectivity pattern of eleven phages across a panel of 23 genome sequenced Salmonella strains indicates that additional constraints and interactions beyond the host factors uncovered here define the phage host range.
Collapse
Affiliation(s)
- Benjamin A Adler
- The UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, California, USA.,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Alexey E Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Crystal Zhong
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Hualan Liu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Heloise Carion
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Vivek K Mutalik
- Innovative Genomics Institute, University of California, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Innovative Genomics Institute, University of California, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
10
|
Abstract
Potassium is an essential mineral nutrient required by all living cells for normal physiological function. Therefore, maintaining intracellular potassium homeostasis during bacterial infection is a requirement for the survival of both host and pathogen. However, pathogenic bacteria require potassium transport to fulfill nutritional and chemiosmotic requirements, and potassium has been shown to directly modulate virulence gene expression, antimicrobial resistance, and biofilm formation. Host cells also require potassium to maintain fundamental biological processes, such as renal function, muscle contraction, and neuronal transmission; however, potassium flux also contributes to critical immunological and antimicrobial processes, such as cytokine production and inflammasome activation. Here, we review the role and regulation of potassium transport and signaling during infection in both mammalian and bacterial cells and highlight the importance of potassium to the success and survival of each organism.
Collapse
|
11
|
König P, Averhoff B, Müller V. K + and its role in virulence of Acinetobacter baumannii. Int J Med Microbiol 2021; 311:151516. [PMID: 34144496 DOI: 10.1016/j.ijmm.2021.151516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/21/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic human pathogen that has become a global threat to healthcare institutions worldwide. The success of A. baumannii is based on the rise of multiple antibiotic resistances and its outstanding potential to persist in the human host and under conditions of low water activity in hospital environments. Combating low water activities involves osmoprotective measures such as uptake of compatible solutes and K+. To address the role of K+ uptake in the physiology of A. baumannii we have identified K+ transporter encoding genes in the genome of A. baumannii ATCC 19606. The corresponding genes (kup, trk, kdp) were deleted and the phenotype of the mutants was studied. The triple mutant was defective in K+ uptake which resulted in a pronounced growth defect at high osmolarities (300 mM NaCl). Additionally, mannitol and glutamate synthesis were strongly reduced in the mutant. To mimic host conditions and to study its role as an uropathogen, we performed growth studies with the K+ transporter deletion mutants in human urine. Both, the double (ΔkupΔtrk) and the triple mutant were significantly impaired in growth. This could be explained by the inability of ΔkupΔtrkΔkdp to metabolize various amino acids properly. Moreover, the reactive oxygen species resistance of the triple mutant was significantly reduced in comparison to the wild type, making it susceptible to one essential part of the innate immune response. Finally, the triple and the double mutant were strongly impaired in Galleria mellonella killing giving first insights in the importance of K+ uptake in virulence.
Collapse
Affiliation(s)
- Patricia König
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Beate Averhoff
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Stautz J, Hellmich Y, Fuss MF, Silberberg JM, Devlin JR, Stockbridge RB, Hänelt I. Molecular Mechanisms for Bacterial Potassium Homeostasis. J Mol Biol 2021; 433:166968. [PMID: 33798529 DOI: 10.1016/j.jmb.2021.166968] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Potassium ion homeostasis is essential for bacterial survival, playing roles in osmoregulation, pH homeostasis, regulation of protein synthesis, enzyme activation, membrane potential adjustment and electrical signaling. To accomplish such diverse physiological tasks, it is not surprising that a single bacterium typically encodes several potassium uptake and release systems. To understand the role each individual protein fulfills and how these proteins work in concert, it is important to identify the molecular details of their function. One needs to understand whether the systems transport ions actively or passively, and what mechanisms or ligands lead to the activation or inactivation of individual systems. Combining mechanistic information with knowledge about the physiology under different stress situations, such as osmostress, pH stress or nutrient limitation, one can identify the task of each system and deduce how they are coordinated with each other. By reviewing the general principles of bacterial membrane physiology and describing the molecular architecture and function of several bacterial K+-transporting systems, we aim to provide a framework for microbiologists studying bacterial potassium homeostasis and the many K+-translocating systems that are still poorly understood.
Collapse
Affiliation(s)
- Janina Stautz
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yvonne Hellmich
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael F Fuss
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jakob M Silberberg
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jason R Devlin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Röder J, Felgner P, Hensel M. Comprehensive Single Cell Analyses of the Nutritional Environment of Intracellular Salmonella enterica. Front Cell Infect Microbiol 2021; 11:624650. [PMID: 33834004 PMCID: PMC8021861 DOI: 10.3389/fcimb.2021.624650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
The facultative intracellular pathogen Salmonella enterica Typhimurium (STM) resides in a specific membrane-bound compartment termed the Salmonella-containing vacuole (SCV). STM is able to obtain all nutrients required for rapid proliferation, although being separated from direct access to host cell metabolites. The formation of specific tubular membrane compartments, called Salmonella-induced filaments (SIFs) are known to provides bacterial nutrition by giving STM access to endocytosed material and enabling proliferation. Additionally, STM expresses a range of nutrient uptake system for growth in nutrient limited environments to overcome the nutrition depletion inside the host. By utilizing dual fluorescence reporters, we shed light on the nutritional environment of intracellular STM in various host cells and distinct intracellular niches. We showed that STM uses nutrients of the host cell and adapts uniquely to the different nutrient conditions. In addition, we provide further evidence for improved nutrient supply by SIF formation or presence in the cytosol of epithelial cells, and the correlation of nutrient supply to bacterial proliferation.
Collapse
Affiliation(s)
- Jennifer Röder
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Pascal Felgner
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs – Center of Cellular Nanoanalytics, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
14
|
Abundant Monovalent Ions as Environmental Signposts for Pathogens during Host Colonization. Infect Immun 2021; 89:IAI.00641-20. [PMID: 33526568 DOI: 10.1128/iai.00641-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Host colonization by a pathogen requires proper sensing and response to local environmental cues, to ensure adaptation and continued survival within the host. The ionic milieu represents a critical potential source of environmental cues, and indeed, there has been extensive study of the interplay between host and pathogen in the context of metals such as iron, zinc, and manganese, vital ions that are actively sequestered by the host. The inherent non-uniformity of the ionic milieu also extends, however, to "abundant" ions such as chloride and potassium, whose concentrations vary greatly between tissue and cellular locations, and with the immune response. Despite this, the concept of abundant ions as environmental cues and key players in host-pathogen interactions is only just emerging. Focusing on chloride and potassium, this review brings together studies across multiple bacterial and parasitic species that have begun to define both how these abundant ions are exploited as cues during host infection, and how they can be actively manipulated by pathogens during host colonization. The close links between ion homeostasis and sensing/response to different ionic signals, and the importance of studying pathogen response to cues in combination, are also discussed, while considering the fundamental insight still to be uncovered from further studies in this nascent area of inquiry.
Collapse
|
15
|
Chlamydia Uses K + Electrical Signalling to Orchestrate Host Sensing, Inter-Bacterial Communication and Differentiation. Microorganisms 2021; 9:microorganisms9010173. [PMID: 33467438 PMCID: PMC7830353 DOI: 10.3390/microorganisms9010173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Prokaryotic communities coordinate quorum behaviour in response to external stimuli to control fundamental processes including inter-bacterial communication. The obligate intracellular bacterial pathogen Chlamydia adopts two developmental forms, invasive elementary bodies (EBs) and replicative reticulate bodies (RBs), which reside within a specialised membrane-bound compartment within the host cell termed an inclusion. The mechanisms by which this bacterial community orchestrates different stages of development from within the inclusion in coordination with the host remain elusive. Both prokaryotic and eukaryotic kingdoms exploit ion-based electrical signalling for fast intercellular communication. Here we demonstrate that RBs specifically accumulate potassium (K+) ions, generating a gradient. Disruption of this gradient using ionophores or an ion-channel inhibitor stalls the Chlamydia lifecycle, inducing persistence. Using photobleaching approaches, we establish that the RB is the master regulator of this [K+] differential and observe a fast K+ exchange between RBs revealing a role for this ion in inter-bacterial communication. Finally, we demonstrate spatio-temporal regulation of bacterial membrane potential during RB to EB differentiation within the inclusion. Together, our data reveal that Chlamydia harnesses K+ to orchestrate host sensing, inter-bacteria communication and pathogen differentiation.
Collapse
|
16
|
Abstract
Although the composition of the oral human microbiome is now well studied, regulation of genes within oral microbial communities remains mostly uncharacterized. Current concepts of periodontal disease and caries highlight the importance of oral biofilms and their role as etiological agents of those diseases. Currently, there is increased interest in exploring and characterizing changes in the composition and gene-expression profiles of oral microbial communities. These efforts aim to identify changes in functional activities that could explain the transition from health to disease and the reason for the chronicity of those infections. It is now clear that the functions of distinct species within the subgingival microbiota are intimately intertwined with the rest of the microbial community. This point highlights the relevance of examining the expression profile of specific species within the subgingival microbiota in the case of periodontal disease or caries lesions, in the context of the other members of the biofilm in vivo. Metatranscriptomic analysis of the oral community is the starting point for identifying environmental signals that modulate the shift in metabolism of the community from commensal to dysbiotic. These studies give a snapshot of the expression patterns of microbial communities and also allow us to determine triggers to diseases. For example, in the case of caries, studies have unveiled a potential new pathway of sugar metabolism, namely the use of sorbitol as an additional source of carbon by Streptococcus mutans; and in the case of periodontal disease, high levels of extracellular potassium could be a signal of disease. Longitudinal studies are needed to identify the real markers of the initial stages of caries and periodontal disease. More information on the gene-expression profiles of the host, along with the patterns from the microbiome, will lead to a clearer understanding of the modulation of health and disease. This review presents a summary of these initial studies, which have opened the door to a new understanding of the dynamics of the oral community during the dysbiotic process in the oral cavity.
Collapse
Affiliation(s)
- Ana E Duran-Pinedo
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Sweet ME, Zhang X, Erdjument-Bromage H, Dubey V, Khandelia H, Neubert TA, Pedersen BP, Stokes DL. Serine phosphorylation regulates the P-type potassium pump KdpFABC. eLife 2020; 9:55480. [PMID: 32955430 PMCID: PMC7535926 DOI: 10.7554/elife.55480] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 09/19/2020] [Indexed: 12/22/2022] Open
Abstract
KdpFABC is an ATP-dependent K+ pump that ensures bacterial survival in K+-deficient environments. Whereas transcriptional activation of kdpFABC expression is well studied, a mechanism for down-regulation when K+ levels are restored has not been described. Here, we show that KdpFABC is inhibited when cells return to a K+-rich environment. The mechanism of inhibition involves phosphorylation of Ser162 on KdpB, which can be reversed in vitro by treatment with serine phosphatase. Mutating Ser162 to Alanine produces constitutive activity, whereas the phosphomimetic Ser162Asp mutation inactivates the pump. Analyses of the transport cycle show that serine phosphorylation abolishes the K+-dependence of ATP hydrolysis and blocks the catalytic cycle after formation of the aspartyl phosphate intermediate (E1~P). This regulatory mechanism is unique amongst P-type pumps and this study furthers our understanding of how bacteria control potassium homeostasis to maintain cell volume and osmotic potential.
Collapse
Affiliation(s)
- Marie E Sweet
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, United States
| | - Xihui Zhang
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, United States
| | - Hediye Erdjument-Bromage
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, United States
| | - Vikas Dubey
- PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Himanshu Khandelia
- PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Thomas A Neubert
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, United States
| | - Bjørn P Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - David L Stokes
- Skirball Institute, Dept. of Cell Biology, New York University School of Medicine, New York, United States
| |
Collapse
|
18
|
König P, Averhoff B, Müller V. A first response to osmostress in Acinetobacter baumannii: transient accumulation of K + and its replacement by compatible solutes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:419-423. [PMID: 32419284 DOI: 10.1111/1758-2229.12857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
The extraordinary desiccation resistance of the opportunistic human pathogen Acinetobacter baumannii is a key to its survival and spread in medical care units. The accumulation of compatible solute such as glutamate, mannitol and trehalose contributes to the desiccation resistance. Here, we have used osmolarity as a tool to study the response of cells to low water activities and studied the role of a potential inorganic osmolyte, K+ , in osmostress response. Growth of A. baumannii was K+ -dependent and the K+ -dependence increased with the osmolarity of the medium. After an osmotic upshock, cells accumulated K+ and K+ accumulation increased with the salinity of the medium. K+ uptake was reduced in the presence of glycine betaine. The intracellular pools of compatible solutes were dependent on the K+ concentration: mannitol and glutamate concentrations increased with increasing K+ concentrations whereas trehalose was highest at low K+ . After osmotic upshock, cells first accumulated K+ followed by synthesis of glutamate; later, mannitol and trehalose synthesis started, accompanied with a decrease of intracellular K+ and glutamate. These experiments demonstrate K+ uptake as a first response to osmostress in A. baumannii and demonstrate a hierarchy in the time-dependent accumulation of K+ and different organic solutes.
Collapse
Affiliation(s)
- Patricia König
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe-University, Frankfurt am Main, Germany
| | - Beate Averhoff
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe-University, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
19
|
|
20
|
Quintero-Yanes A, Monson RE, Salmond GPC. Environmental potassium regulates bacterial flotation, antibiotic production and turgor pressure in Serratia through the TrkH transporter. Environ Microbiol 2019; 21:2499-2510. [PMID: 31012245 PMCID: PMC6617781 DOI: 10.1111/1462-2920.14637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/16/2019] [Accepted: 04/21/2019] [Indexed: 11/28/2022]
Abstract
Serratia sp. strain ATCC 39006 (S39006) can float in aqueous environments due to natural production of gas vesicles (GVs). Expression of genes for GV morphogenesis is stimulated in low oxygen conditions, thereby enabling migration to the air–liquid interface. Quorum sensing (via SmaI and SmaR) and transcriptional and post‐transcriptional regulators, including RbsR and RsmA, respectively, connect the control of cell buoyancy, motility and secondary metabolism. Here, we define a new pleiotropic regulator found in screens of GV mutants. A mutation in the gene trkH, encoding a potassium transporter, caused upregulation of GV formation, flotation, and the prodigiosin antibiotic, and downregulation of flagellar motility. Pressure nephelometry revealed that the mutation in trkH affected cell turgor pressure. Our results show that osmotic change is an important physiological parameter modulating cell buoyancy and antimicrobial production in S39006, in response to environmental potassium levels.
Collapse
Affiliation(s)
- Alex Quintero-Yanes
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site. Cambridge, CB2 1QW, UK
| | - Rita E Monson
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site. Cambridge, CB2 1QW, UK
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site. Cambridge, CB2 1QW, UK
| |
Collapse
|
21
|
Genome-Wide Analysis of Mycoplasma dispar Provides Insights into Putative Virulence Factors and Phylogenetic Relationships. G3-GENES GENOMES GENETICS 2019; 9:317-325. [PMID: 30573467 PMCID: PMC6385981 DOI: 10.1534/g3.118.200941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mycoplasma dispar is an important pathogen involved in bovine respiratory disease, which causes huge economic losses worldwide. Our knowledge regarding the genomics, pathogenic mechanisms, and genetics of M. dispar is rather limited. In this study, the complete genome of M. dispar GS01 strain was sequenced using PacBio SMRT technology and first genome-wide analyzed. M. dispar GS01 has a single circular chromosome of 1,065,810 bp encoding 825 predicted proteins. Twenty-three potential virulence genes and two pathogenicity islands were identified in M. dispar This pathogen was cytopathogenic, could form prolific biofilms, and could produce a large amount of H2O2 Methylation analysis revealed adenine and cytosine methylation across the genome and 13 distinct nucleotide motifs. Comparative analysis showed a high collinearity relationship between M. dispar GS01 and type strain ATCC 27140. Phylogenetic analysis demonstrated that M. dispar is genetically close to M. flocculare and M. hyopneumoniae The data presented in this study will aid further study on the pathogenic mechanisms and evolution of M. dispar.
Collapse
|
22
|
MacGilvary NJ, Kevorkian YL, Tan S. Potassium response and homeostasis in Mycobacterium tuberculosis modulates environmental adaptation and is important for host colonization. PLoS Pathog 2019; 15:e1007591. [PMID: 30716121 PMCID: PMC6375644 DOI: 10.1371/journal.ppat.1007591] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/14/2019] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
Successful host colonization by bacteria requires sensing and response to the local ionic milieu, and coordination of responses with the maintenance of ionic homeostasis in the face of changing conditions. We previously discovered that Mycobacterium tuberculosis (Mtb) responds synergistically to chloride (Cl-) and pH, as cues to the immune status of its host. This raised the intriguing concept of abundant ions as important environmental signals, and we have now uncovered potassium (K+) as an ion that can significantly impact colonization by Mtb. The bacterium has a unique transcriptional response to changes in environmental K+ levels, with both distinct and shared regulatory mechanisms controlling Mtb response to the ionic signals of K+, Cl-, and pH. We demonstrate that intraphagosomal K+ levels increase during macrophage phagosome maturation, and find using a novel fluorescent K+-responsive reporter Mtb strain that K+ is not limiting during macrophage infection. Disruption of Mtb K+ homeostasis by deletion of the Trk K+ uptake system results in dampening of the bacterial response to pH and Cl-, and attenuation in host colonization, both in primary murine bone marrow-derived macrophages and in vivo in a murine model of Mtb infection. Our study reveals how bacterial ionic homeostasis can impact environmental ionic responses, and highlights the important role that abundant ions can play during host colonization by Mtb.
Collapse
Affiliation(s)
- Nathan J. MacGilvary
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Yuzo L. Kevorkian
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Osman D, Martini MA, Foster AW, Chen J, Scott AJP, Morton RJ, Steed JW, Lurie-Luke E, Huggins TG, Lawrence AD, Deery E, Warren MJ, Chivers PT, Robinson NJ. Bacterial sensors define intracellular free energies for correct enzyme metalation. Nat Chem Biol 2019; 15:241-249. [PMID: 30692683 PMCID: PMC6420079 DOI: 10.1038/s41589-018-0211-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/04/2018] [Indexed: 01/06/2023]
Abstract
There is a challenge for metalloenzymes to acquire their correct metals because some inorganic elements form more stable complexes with proteins than do others. These preferences can be overcome provided some metals are more available than others. However, while the total amount of cellular metal can be readily measured, the available levels of each metal have been more difficult to define. Metal-sensing transcriptional regulators are tuned to the intracellular availabilities of their cognate ions. Here we have determined the standard free energy for metal complex formation to which each sensor, in a set of bacterial metal sensors, is attuned: The less competitive the metal, the less favorable the free energy and hence greater availability to which the cognate allosteric mechanism is tuned. Comparing these free energies with values derived from the metal affinities of a metalloprotein reveals the mechanism of correct metalation exemplified here by a cobalt-chelatase for vitamin B12.
Collapse
Affiliation(s)
- Deenah Osman
- Department of Biosciences, Durham University, Durham, UK.,Department of Chemistry, Durham University, Durham, UK
| | | | - Andrew W Foster
- Department of Biosciences, Durham University, Durham, UK.,Department of Chemistry, Durham University, Durham, UK
| | - Junjun Chen
- Procter and Gamble, Mason Business Center, Cincinnati, OH, USA
| | | | - Richard J Morton
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle-upon-Tyne, UK
| | | | | | | | | | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Peter T Chivers
- Department of Biosciences, Durham University, Durham, UK. .,Department of Chemistry, Durham University, Durham, UK.
| | - Nigel J Robinson
- Department of Biosciences, Durham University, Durham, UK. .,Department of Chemistry, Durham University, Durham, UK.
| |
Collapse
|
24
|
Jiang B, You B, Tan L, Yu S, Li H, Bai G, Li S, Rao X, Xie Z, Shi X, Peng Y, Hu X. Clinical Staphylococcus argenteus Develops to Small Colony Variants to Promote Persistent Infection. Front Microbiol 2018; 9:1347. [PMID: 30013523 PMCID: PMC6036243 DOI: 10.3389/fmicb.2018.01347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/01/2018] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus argenteus is a novel staphylococcal species (also considered as a part of Staphylococcus aureus complex) that is infrequently reported on, and clinical S. argenteus infections are largely unstudied. Here, we report a persistent and recurrent hip joint infection case in which a S. argenteus strain and its small colony variants (SCVs) strain were successively isolated. We present features of the two S. argenteus strains and case details of their pathogenicity, explore factors that induce S. argenteus SCVs formation in the course of anti-infection therapy, and reveal potential genetic mechanisms for S. argenteus SCVs formation. S. argenteus strains were identified using phenotypic and genotypic methods. The S. argenteus strain XNO62 and SCV strain XNO106 were characterized using different models. S. argenteus SCVs were induced by the administration of amikacin and by chronic infection course based on the clinical case details. The genomes of both strains were sequenced and aligned in a pair-wise fashion using Mauve. The case details gave us important insights on the characteristics and therapeutic strategies for infections caused by S. argenteus and its SCVs. We found that strain XNO62 and SCV strain XNO106 are genetically-related sequential clones, the SCV strain exhibits reduced virulence but enhanced intracellular persistence compared to strain XNO62, thus promoting persistent infection. The induction experiments for S. argenteus SCVs demonstrated that high concentrations of amikacin greatly induce S. argenteus XNO62 to form SCVs, while a chronic infection of S. argenteus XNO62 slightly induces SCVs formation. Potential genetic mechanisms for S. argenteus SCVs formation were revealed and discussed based on genomic alignments. In conclusion, we report the first case of infection caused by S. argenteus and its SCVs strain. More attention should be paid to infections caused by S. argenteus and its SCVs, as they constitute a challenge to current therapeutic strategies. The problem of S. argenteus SCVs should be noticed, in particular when amikacin is used or in the case of a chronic S. argenteus infection.
Collapse
Affiliation(s)
- Bei Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Bo You
- Department of Cardiothoracic Surgery, No. 324 Hospital of People's Liberation Army, Chongqing, China
| | - Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shengpeng Yu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Han Li
- Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guoqing Bai
- Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shu Li
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhao Xie
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yizhi Peng
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
25
|
Genome-Wide Analysis of Mycoplasma bovirhinis GS01 Reveals Potential Virulence Factors and Phylogenetic Relationships. G3-GENES GENOMES GENETICS 2018; 8:1417-1424. [PMID: 29602809 PMCID: PMC5940136 DOI: 10.1534/g3.118.200018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mycoplasma bovirhinis is a significant etiology in bovine pneumonia and mastitis, but our knowledge about the genetic and pathogenic mechanisms of M. bovirhinis is very limited. In this study, we sequenced the complete genome of M. bovirhinis strain GS01 isolated from the nasal swab of pneumonic calves in Gansu, China, and we found that its genome forms a 847,985 bp single circular chromosome with a GC content of 27.57% and with 707 protein-coding genes. The putative virulence determinants of M. bovirhinis were then analyzed. Results showed that three genomic islands and 16 putative virulence genes, including one adhesion gene enolase, seven surface lipoproteins, proteins involved in glycerol metabolism, and cation transporters, might be potential virulence factors. Glycerol and pyruvate metabolic pathways were defective. Comparative analysis revealed remarkable genome variations between GS01 and a recently reported HAZ141_2 strain, and extremely low homology with others mycoplasma species. Phylogenetic analysis demonstrated that M. bovirhinis was most genetically close to M. canis, distant from other bovine Mycoplasma species. Genomic dissection may provide useful information on the pathogenic mechanisms and genetics of M. bovirhinis.
Collapse
|
26
|
Dani P, Ujaoney AK, Apte SK, Basu B. Regulation of potassium dependent ATPase (kdp) operon of Deinococcus radiodurans. PLoS One 2017; 12:e0188998. [PMID: 29206865 PMCID: PMC5716572 DOI: 10.1371/journal.pone.0188998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022] Open
Abstract
The genome of D. radiodurans harbors genes for structural and regulatory proteins of Kdp ATPase, in an operon pattern, on Mega plasmid 1. Organization of its two-component regulatory genes is unique. Here we demonstrate that both, the structural as well as regulatory components of the kdp operon of D. radiodurans are expressed quickly as the cells experience potassium limitation but are not expressed upon increase in osmolarity. The cognate DNA binding response regulator (RR) effects the expression of kdp operon during potassium deficiency through specific interaction with the kdp promoter. Deletion of the gene encoding RR protein renders the mutant D. radiodurans (ΔRR) unable to express kdp operon under potassium limitation. The ΔRR D. radiodurans displays no growth defect when grown on rich media or when exposed to oxidative or heat stress but shows reduced growth following gamma irradiation. The study elucidates the functional and regulatory aspects of the novel kdp operon of this extremophile, for the first time.
Collapse
Affiliation(s)
- Pratiksha Dani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Shree Kumar Apte
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
- * E-mail:
| |
Collapse
|
27
|
Genome-Wide Analysis of the First Sequenced Mycoplasma capricolum subsp. capripneumoniae Strain M1601. G3-GENES GENOMES GENETICS 2017; 7:2899-2906. [PMID: 28754725 PMCID: PMC5592918 DOI: 10.1534/g3.117.300085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycoplasma capricolum subsp. capripneumoniae (Mccp) is a common pathogen of goats that causes contagious caprine pleuropneumonia. We closed the gap and corrected rRNA operons in the draft genome of Mccp M1601: a strain isolated from an infected goat in a farm in Gansu, China. The genome size of M1601 is 1,016,707 bp with a GC content of 23.67%. We identified 915 genes (occupying 90.27% of the genome), of which 713 are protein-coding genes (excluding 163 pseudogenes). No genomic islands and complete insertion sequences were found in the genome. Putative determinants associated with the organism’s virulence were analyzed, and 26 genes (including one adhesion protein gene, two capsule synthesis gene clusters, two lipoproteins, hemolysin A, ClpB, and proteins involved in pyruvate metabolism and cation transport) were potential virulence factors. In addition, two transporter systems (ATP-binding cassette [ABC] transporters and phosphotransferase) and two secretion systems (Sec and signal recognition particle [SRP] pathways) were observed in the Mccp genome. Genome synteny analysis reveals a good collinear relationship between M1601 and Mccp type strain F38. Phylogenetic analysis based on 11 single-copy core genes of 31 Mycoplasma strains revealed good collinearity between M1601 and Mycoplasma capricolum subsp. capricolum (Mcc) and close relationship among Mycoplasma mycoides cluster strains. Our genome-wide analysis of Mccp M1601 provides helpful information on the pathogenic mechanisms and genetics of Mccp.
Collapse
|
28
|
Senior NJ, Sasidharan K, Saint RJ, Scott AE, Sarkar-Tyson M, Ireland PM, Bullifent HL, Rong Yang Z, Moore K, Oyston PCF, Atkins TP, Atkins HS, Soyer OS, Titball RW. An integrated computational-experimental approach reveals Yersinia pestis genes essential across a narrow or a broad range of environmental conditions. BMC Microbiol 2017; 17:163. [PMID: 28732479 PMCID: PMC5521123 DOI: 10.1186/s12866-017-1073-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/17/2017] [Indexed: 01/07/2023] Open
Abstract
Background The World Health Organization has categorized plague as a re-emerging disease and the potential for Yersinia pestis to also be used as a bioweapon makes the identification of new drug targets against this pathogen a priority. Environmental temperature is a key signal which regulates virulence of the bacterium. The bacterium normally grows outside the human host at 28 °C. Therefore, understanding the mechanisms that the bacterium used to adapt to a mammalian host at 37 °C is central to the development of vaccines or drugs for the prevention or treatment of human disease. Results Using a library of over 1 million Y. pestis CO92 random mutants and transposon-directed insertion site sequencing, we identified 530 essential genes when the bacteria were cultured at 28 °C. When the library of mutants was subsequently cultured at 37 °C we identified 19 genes that were essential at 37 °C but not at 28 °C, including genes which encode proteins that play a role in enabling functioning of the type III secretion and in DNA replication and maintenance. Using genome-scale metabolic network reconstruction we showed that growth conditions profoundly influence the physiology of the bacterium, and by combining computational and experimental approaches we were able to identify 54 genes that are essential under a broad range of conditions. Conclusions Using an integrated computational-experimental approach we identify genes which are required for growth at 37 °C and under a broad range of environments may be the best targets for the development of new interventions to prevent or treat plague in humans. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1073-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicola J Senior
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK
| | - Kalesh Sasidharan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard J Saint
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Andrew E Scott
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Mitali Sarkar-Tyson
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK.,Marshall Centre for Infectious Disease Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, 6009, Australia
| | - Philip M Ireland
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Helen L Bullifent
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Z Rong Yang
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK
| | - Karen Moore
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK
| | - Petra C F Oyston
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Timothy P Atkins
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK.,Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Helen S Atkins
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK.,Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard W Titball
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK.
| |
Collapse
|
29
|
Diskowski M, Mehdipour AR, Wunnicke D, Mills DJ, Mikusevic V, Bärland N, Hoffmann J, Morgner N, Steinhoff HJ, Hummer G, Vonck J, Hänelt I. Helical jackknives control the gates of the double-pore K + uptake system KtrAB. eLife 2017; 6. [PMID: 28504641 PMCID: PMC5449183 DOI: 10.7554/elife.24303] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/14/2017] [Indexed: 12/27/2022] Open
Abstract
Ion channel gating is essential for cellular homeostasis and is tightly controlled. In some eukaryotic and most bacterial ligand-gated K+ channels, RCK domains regulate ion fluxes. Until now, a single regulatory mechanism has been proposed for all RCK-regulated channels, involving signal transduction from the RCK domain to the gating area. Here, we present an inactive ADP-bound structure of KtrAB from Vibrio alginolyticus, determined by cryo-electron microscopy, which, combined with EPR spectroscopy and molecular dynamics simulations, uncovers a novel regulatory mechanism for ligand-induced action at a distance. Exchange of activating ATP to inactivating ADP triggers short helical segments in the K+-translocating KtrB dimer to organize into two long helices that penetrate deeply into the regulatory RCK domains, thus connecting nucleotide-binding sites and ion gates. As KtrAB and its homolog TrkAH have been implicated as bacterial pathogenicity factors, the discovery of this functionally relevant inactive conformation may advance structure-guided drug development. DOI:http://dx.doi.org/10.7554/eLife.24303.001
Collapse
Affiliation(s)
- Marina Diskowski
- Institute of Biochemistry, Goethe-University, Frankfurt, Germany
| | - Ahmad Reza Mehdipour
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Dorith Wunnicke
- Institute of Biochemistry, Goethe-University, Frankfurt, Germany
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | | | - Natalie Bärland
- Institute of Biochemistry, Goethe-University, Frankfurt, Germany.,Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Jan Hoffmann
- Institute for Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
| | - Nina Morgner
- Institute for Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
| | | | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany.,Institute of Biophysics, Goethe-University, Frankfurt, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Inga Hänelt
- Institute of Biochemistry, Goethe-University, Frankfurt, Germany
| |
Collapse
|
30
|
Thornbrough JM, Gopinath A, Hundley T, Worley MJ. Human Genome-Wide RNAi Screen for Host Factors That Facilitate Salmonella Invasion Reveals a Role for Potassium Secretion in Promoting Internalization. PLoS One 2016; 11:e0166916. [PMID: 27880807 PMCID: PMC5120809 DOI: 10.1371/journal.pone.0166916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
Salmonella enterica can actively invade the gastro-intestinal epithelium. This frequently leads to diarrheal disease, and also gives the pathogen access to phagocytes that can serve as vehicles for dissemination into deeper tissue. The ability to invade host cells is also important in maintaining the carrier state. While much is known about the bacterial factors that promote invasion, relatively little is known about the host factors involved. To gain insight into how Salmonella enterica serovar Typhimurium is able to invade normally non-phagocytic cells, we undertook a global RNAi screen with S. Typhimurium-infected human epithelial cells. In all, we identified 633 genes as contributing to bacterial internalization. These genes fall into a diverse group of functional categories revealing that cytoskeletal regulators are not the only factors that modulate invasion. In fact, potassium ion transport was the most enriched molecular function category in our screen, reinforcing a link between potassium and internalization. In addition to providing new insights into the molecular mechanisms underlying the ability of pathogens to invade host cells, all 633 host factors identified are candidates for new anti-microbial targets for treating Salmonella infections, and may be useful in curtailing infections with other pathogens as well.
Collapse
Affiliation(s)
- Joshua M. Thornbrough
- Department of Biology, University of Louisville, Louisville, KY, 40292, United States of America
| | - Adarsh Gopinath
- Department of Biology, University of Louisville, Louisville, KY, 40292, United States of America
| | - Tom Hundley
- Department of Biology, University of Louisville, Louisville, KY, 40292, United States of America
| | - Micah J. Worley
- Department of Biology, University of Louisville, Louisville, KY, 40292, United States of America
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, 40202, United States of America
- * E-mail:
| |
Collapse
|
31
|
Binepal G, Gill K, Crowley P, Cordova M, Brady LJ, Senadheera DB, Cvitkovitch DG. Trk2 Potassium Transport System in Streptococcus mutans and Its Role in Potassium Homeostasis, Biofilm Formation, and Stress Tolerance. J Bacteriol 2016; 198:1087-100. [PMID: 26811321 PMCID: PMC4800877 DOI: 10.1128/jb.00813-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/13/2016] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Potassium (K(+)) is the most abundant cation in the fluids of dental biofilm. The biochemical and biophysical functions of K(+) and a variety of K(+) transport systems have been studied for most pathogenic bacteria but not for oral pathogens. In this study, we establish the modes of K(+) acquisition in Streptococcus mutans and the importance of K(+) homeostasis for its virulence attributes. The S. mutans genome harbors four putative K(+) transport systems that included two Trk-like transporters (designated Trk1 and Trk2), one glutamate/K(+) cotransporter (GlnQHMP), and a channel-like K(+) transport system (Kch). Mutants lacking Trk2 had significantly impaired growth, acidogenicity, aciduricity, and biofilm formation. [K(+)] less than 5 mM eliminated biofilm formation in S. mutans. The functionality of the Trk2 system was confirmed by complementing an Escherichia coli TK2420 mutant strain, which resulted in significant K(+) accumulation, improved growth, and survival under stress. Taken together, these results suggest that Trk2 is the main facet of the K(+)-dependent cellular response of S. mutans to environment stresses. IMPORTANCE Biofilm formation and stress tolerance are important virulence properties of caries-causing Streptococcus mutans. To limit these properties of this bacterium, it is imperative to understand its survival mechanisms. Potassium is the most abundant cation in dental plaque, the natural environment of S. mutans. K(+) is known to function in stress tolerance, and bacteria have specialized mechanisms for its uptake. However, there are no reports to identify or characterize specific K(+) transporters in S. mutans. We identified the most important system for K(+) homeostasis and its role in the biofilm formation, stress tolerance, and growth. We also show the requirement of environmental K(+) for the activity of biofilm-forming enzymes, which explains why such high levels of K(+) would favor biofilm formation.
Collapse
Affiliation(s)
- Gursonika Binepal
- Department of Microbiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Kamal Gill
- Department of Microbiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Paula Crowley
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Martha Cordova
- Department of Microbiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - L Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, Florida, USA
| | - Dilani B Senadheera
- Department of Microbiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Dennis G Cvitkovitch
- Department of Microbiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
The Trk Potassium Transporter Is Required for RsmB-Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiae. J Bacteriol 2015; 198:248-55. [PMID: 26483524 DOI: 10.1128/jb.00569-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/14/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify regulators of RsmB revealed that mutants defective in components of a putative Trk potassium transporter (trkH and trkA) had decreased rsmB expression. Further analysis of these mutants showed that changes in potassium concentration influenced rsmB expression and consequent tissue damage in potato tubers and that this regulation required an intact Trk system. Regulation of rsmB expression by potassium via the Trk system occurred even in the absence of the GacS/GacA system, demonstrating that these systems act independently and are both required for full activation of RsmB and for the downstream induction of virulence in potato infection assays. Overall, our results identified potassium as an essential environmental factor regulating the Rsm system, and the consequent induction of virulence, in the plant pathogen P. wasabiae. IMPORTANCE Crop losses from bacterial diseases caused by pectolytic bacteria are a major problem in agriculture. By studying the regulatory pathways involved in controlling the expression of plant cell wall-degrading enzymes in Pectobacterium wasabiae, we showed that the Trk potassium transport system plays an important role in the regulation of these pathways. The data presented further identify potassium as an important environmental factor in the regulation of virulence in this plant pathogen. We showed that a reduction in virulence can be achieved by increasing the extracellular concentration of potassium. Therefore, this work highlights how elucidation of the mechanisms involved in regulating virulence can lead to the identification of environmental factors that can influence the outcome of infection.
Collapse
|
33
|
Affiliation(s)
- Máire Begley
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland;
| | - Colin Hill
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland;
| |
Collapse
|
34
|
Adaptation, ecology, and evolution of the halophilic stromatolite archaeon Halococcus hamelinensis inferred through genome analyses. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:241608. [PMID: 25709556 PMCID: PMC4325475 DOI: 10.1155/2015/241608] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 01/26/2023]
Abstract
Halococcus hamelinensis was the first archaeon isolated from stromatolites. These geomicrobial ecosystems are thought to be some of the earliest known on Earth, yet, despite their evolutionary significance, the role of Archaea in these systems is still not well understood. Detailed here is the genome sequencing and analysis of an archaeon isolated from stromatolites. The genome of H. hamelinensis consisted of 3,133,046 base pairs with an average G+C content of 60.08% and contained 3,150 predicted coding sequences or ORFs, 2,196 (68.67%) of which were protein-coding genes with functional assignments and 954 (29.83%) of which were of unknown function. Codon usage of the H. hamelinensis genome was consistent with a highly acidic proteome, a major adaptive mechanism towards high salinity. Amino acid transport and metabolism, inorganic ion transport and metabolism, energy production and conversion, ribosomal structure, and unknown function COG genes were overrepresented. The genome of H. hamelinensis also revealed characteristics reflecting its survival in its extreme environment, including putative genes/pathways involved in osmoprotection, oxidative stress response, and UV damage repair. Finally, genome analyses indicated the presence of putative transposases as well as positive matches of genes of H. hamelinensis against various genomes of Bacteria, Archaea, and viruses, suggesting the potential for horizontal gene transfer.
Collapse
|
35
|
Ser/Thr/Tyr phosphoproteome characterization of Acinetobacter baumannii: Comparison between a reference strain and a highly invasive multidrug-resistant clinical isolate. J Proteomics 2014; 102:113-24. [DOI: 10.1016/j.jprot.2014.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 02/18/2014] [Accepted: 03/09/2014] [Indexed: 11/22/2022]
|
36
|
Zhang T, Yu J, Zhang Y, Li L, Chen Y, Li D, Liu F, Zhang CY, Gu H, Zen K. Salmonella enterica serovar enteritidis modulates intestinal epithelial miR-128 levels to decrease macrophage recruitment via macrophage colony-stimulating factor. J Infect Dis 2014; 209:2000-11. [PMID: 24415783 DOI: 10.1093/infdis/jiu006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The mechanism underlying the ability of virulent Salmonella organisms to escape clearance by macrophages is incompletely understood. Here, we report a novel mechanism by which Salmonella escapes macrophages. METHODS Microarray and quantitative real-time polymerase chain reaction analyses were used to screen key microRNAs regulating Salmonella-host cell interactions. Target gene was tested using luciferase reporter and Western blot assays. The role of microRNA 128 (miR-128) was assayed using intestinal epithelial cells and a mouse infection model. RESULTS The miR-128 level in human intestinal epithelial HT29 cells was strongly increased by infection with strain SE2472, and the elevation in miR-128 levels in mouse intestine and colon tissues correlated with the level of Salmonella infection in mice. Macrophage colony-stimulating factor (M-CSF) was identified as a target of miR-128, and increased miR-128 levels in epithelial cells due to infection with strain SE2472 significantly decreased the level of cell-secreted M-CSF, leading to impaired M-CSF-mediated macrophage recruitment. The secreted proteins from Salmonella were identified as possible effectors to induce miR-128 expression via the p53 signaling pathway. Moreover, intragastric delivery of anti-miR-128 antagomir into mice significantly increased M-CSF-mediated macrophage recruitment and suppressed Salmonella infection. CONCLUSIONS Salmonella can upregulate intestinal epithelial miR-128 expression, which, in turn, decreases levels of epithelial cell-secreted M-CSF and M-CSF-induced macrophage recruitment.
Collapse
Affiliation(s)
- Tianfu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Jianxiong Yu
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Yaqin Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Limin Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Yuanyuan Chen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Donghai Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Fenyong Liu
- Department of Virology, University of California School of Public Health, Berkeley
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Hongwei Gu
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, China
| |
Collapse
|
37
|
Gries CM, Bose JL, Nuxoll AS, Fey PD, Bayles KW. The Ktr potassium transport system in Staphylococcus aureus and its role in cell physiology, antimicrobial resistance and pathogenesis. Mol Microbiol 2013; 89:760-73. [PMID: 23815639 DOI: 10.1111/mmi.12312] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2013] [Indexed: 02/05/2023]
Abstract
Potassium (K(+) ) plays a vital role in bacterial physiology, including regulation of cytoplasmic pH, turgor pressure and transmembrane electrical potential. Here, we examine the Staphylococcus aureus Ktr system uniquely comprised of two ion-conducting proteins (KtrB and KtrD) and only one regulator (KtrA). Growth of Ktr system mutants was severely inhibited under K(+) limitation, yet detectable after an extended lag phase, indicating the presence of a secondary K(+) transporter. Disruption of both ktrA and the Kdp-ATPase system, important for K(+) uptake in other organisms, eliminated regrowth in 0.1 mM K(+) , demonstrating a compensatory role for Kdp to the Ktr system. Consistent with K(+) transport mutations, S. aureus devoid of the Ktr system became sensitive to hyperosmotic conditions, exhibited a hyperpolarized plasma membrane, and increased susceptibility to aminoglycoside antibiotics and cationic antimicrobials. In contrast to other organisms, the S. aureus Ktr system was shown to be important for low-K(+) growth under alkaline conditions, but played only a minor role in neutral and acidic conditions. In a mouse competitive index model of bacteraemia, the ktrA mutant was significantly outcompeted by the parental strain. Combined, these results demonstrate a primary mechanism of K(+) uptake in S. aureus and a role for this system in pathogenesis.
Collapse
Affiliation(s)
- Casey M Gries
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | | | | | | |
Collapse
|
38
|
Identification of Salmonella enterica serovar Pullorum antigenic determinants expressed in vivo. Infect Immun 2013; 81:3119-27. [PMID: 23774596 DOI: 10.1128/iai.00145-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica serovar Pullorum affecting poultry causes pullorum disease and results in severe economic loss in the poultry industry. Currently, it remains a major threat in countries with poor poultry surveillance and no efficient control measures. As S. Pullorum could induce strong humoral immune responses, we applied an immunoscreening technique, the in vivo-induced antigen technology (IVIAT), to identify immunogenic bacterial proteins expressed or upregulated during S. Pullorum infection. Convalescent-phase sera from chickens infected with S. Pullorum were pooled, adsorbed against antigens expressed in vitro, and used to screen an S. Pullorum genomic expression library. Forty-five proteins were screened out, and their functions were implicated in molecular biosynthesis and degradation, transport, metabolism, regulation, cell wall synthesis and antibiotic resistance, environmental adaptation, or putative functions. In addition, 11 of these 45 genes were assessed for their differential expression by quantitative real-time reverse transcription-PCR (RT-PCR), revealing that 9 of 11 genes were upregulated to different degrees under in vivo conditions, especially the regulator of virulence determinants, phoQ. Then, four in vivo-induced proteins (ShdA, PhoQ, Cse3, and PbpC) were tested for their immunoreactivity in 28 clinical serum samples from chickens infected with S. Pullorum. The rate of detection of antibodies against ShdA reached 82% and was the highest among these proteins. ShdA is a host colonization factor known to be upregulated in vivo and related to the persistence of S. Typhimurium in the intestine. Furthermore, these antigens identified by IVIAT warrant further evaluation for their contributions to pathogenesis, and more potential roles, such as diagnostic, therapeutic, and preventive uses, need to be developed in future studies.
Collapse
|
39
|
Zhang Z, Vu GP, Gong H, Xia C, Chen YC, Liu F, Wu J, Lu S. Engineered external guide sequences are highly effective in inhibiting gene expression and replication of hepatitis B virus in cultured cells. PLoS One 2013; 8:e65268. [PMID: 23776459 PMCID: PMC3680410 DOI: 10.1371/journal.pone.0065268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/23/2013] [Indexed: 01/12/2023] Open
Abstract
External guide sequences (EGSs) are RNA molecules that consist of a sequence complementary to a target mRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, for specific degradation of the target mRNA. We have previously used an in vitro selection procedure to generate EGS variants that efficiently induce human RNase P to cleave a target mRNA in vitro. In this study, we constructed EGSs from a variant to target the overlapping region of the S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA) of hepatitis B virus (HBV), which are essential for viral replication and infection. The EGS variant was about 50-fold more efficient in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Following Salmonella-mediated gene delivery, the EGSs were expressed in cultured HBV-carrying cells. A reduction of about 97% and 75% in the level of HBV RNAs and proteins and an inhibition of about 6,000- and 130-fold in the levels of capsid-associated HBV DNA were observed in cells treated with Salmonella vectors carrying the expression cassette for the variant and the tRNA-derived EGS, respectively. Our study provides direct evidence that the EGS variant is more effective in blocking HBV gene expression and DNA replication than the tRNA-derived EGS. Furthermore, these results demonstrate the feasibility of developing Salmonella-mediated gene delivery of highly active EGS RNA variants as a novel approach for gene-targeting applications such as anti-HBV therapy.
Collapse
Affiliation(s)
- Zhigang Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Gia-Phong Vu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Hao Gong
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Chuan Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Fenyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Sangwei Lu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
| |
Collapse
|
40
|
Liu Y, Ho KK, Su J, Gong H, Chang AC, Lu S. Potassium transport of Salmonella is important for type III secretion and pathogenesis. MICROBIOLOGY-SGM 2013; 159:1705-1719. [PMID: 23728623 DOI: 10.1099/mic.0.068700-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Intracellular cations are essential for the physiology of all living organisms including bacteria. Cations such as potassium ion (K(+)), sodium ion (Na(+)) and proton (H(+)) are involved in nearly all aspects of bacterial growth and survival. K(+) is the most abundant cation and its homeostasis in Escherichia coli and Salmonella is regulated by three major K(+) transporters: high affinity transporter Kdp and low affinity transporters Kup and Trk. Previous studies have demonstrated the roles of cations and cation transport in the physiology of Escherichia coli; their roles in the virulence and physiology of pathogenic bacteria are not well characterized. We have previously reported that the Salmonella K(+) transporter Trk is important for the secretion of effector proteins of the type III secretion system (TTSS) of Salmonella pathogenicity island 1 (SPI-1). Here we further explore the role of Salmonella cation transport in virulence in vitro and pathogenesis in animal models. Impairment of K(+) transport through deletion of K(+) transporters or exposure to the chemical modulators of cation transport, gramicidin and valinomycin, results in a severe defect in the TTSS of SPI-1, and this defect in the TTSS was not due to a failure to regulate intrabacterial pH or ATP. Our results also show that K(+) transporters are critical to the pathogenesis of Salmonella in mice and chicks and are involved in multiple growth and virulence characteristics in vitro, including protein secretion, motility and invasion of epithelial cells. These results suggest that cation transport of the pathogenic bacterium Salmonella, especially K(+) transport, contributes to its virulence in addition to previously characterized roles in maintaining homeostasis of bacteria.
Collapse
Affiliation(s)
- Yehao Liu
- Department of Bioscience and Technology, School of Life Science, Nanjing University, Nanjing, Jiangsu, PR China
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Katharina Kim Ho
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Jing Su
- Department of Bioscience and Technology, School of Life Science, Nanjing University, Nanjing, Jiangsu, PR China
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Hao Gong
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Alexander C Chang
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Sangwei Lu
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
41
|
Abstract
The two-component system (TCS) KdpD/KdpE, extensively studied for its regulatory role in potassium (K+) transport, has more recently been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria, including Staphylococcus aureus, entero-haemorrhagic Escherichia coli, Salmonella typhimurium, Yersinia pestis, Francisella species, Photorhabdus asymbiotica, and mycobacteria. Key homeostasis requirements monitored by KdpD/KdpE and other TCSs such as PhoP/PhoQ are critical to survival in the stressful conditions encountered by pathogens during host interactions. It follows these TCSs may therefore acquire adaptive roles in response to selective pressures associated with adopting a pathogenic lifestyle. Given the central role of K+ in virulence, we propose that KdpD/KdpE, as a regulator of a high-affinity K+ pump, has evolved virulence-related regulatory functions. In support of this hypothesis, we review the role of KdpD/KdpE in bacterial infection and summarize evidence that (i) KdpD/KdpE production is correlated with enhanced virulence and survival, (ii) KdpE regulates a range of virulence loci through direct promoter binding, and (iii) KdpD/KdpE regulation responds to virulence-related conditions including phagocytosis, exposure to microbicides, quorum sensing signals, and host hormones. Furthermore, antimicrobial stress, osmotic stress, and oxidative stress are associated with KdpD/KdpE activity, and the system's accessory components (which allow TCS fine-tuning or crosstalk) provide links to stress response pathways. KdpD/KdpE therefore appears to be an important adaptive TCS employed during host infection, promoting bacterial virulence and survival through mechanisms both related to and distinct from its conserved role in K+ regulation.
Collapse
Affiliation(s)
- Zoë N. Freeman
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Steve Dorus
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Nicholas R. Waterfield
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Pathogenicity of dodecyltrimethylammonium chloride-resistant Salmonella enterica. Appl Environ Microbiol 2013; 79:2371-6. [PMID: 23377943 DOI: 10.1128/aem.03228-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella infection causes a self-limiting gastroenteritis in humans but can also result in a life-threatening invasive disease, especially in old, young, and/or immunocompromised patients. The prevalence of antimicrobial and multidrug-resistant Salmonella has increased worldwide since the 1980s. However, the impact of antimicrobial resistance on the pathogenicity of Salmonella strains is not well described. In our study, a microarray was used to screen for differences in gene expression between a parental strain and a strain of Salmonella enterica serovar Enteritidis with reduced susceptibility (SRS) to the widely used antimicrobial sanitizer dodecyltrimethylammonium chloride (DTAC). Three of the genes, associated with adhesion, invasion, and intracellular growth (fimA, csgG, and spvR), that showed differences in gene expression of 2-fold or greater were chosen for further study. Real-time reverse transcriptase PCR (real-time RT-PCR) was used to confirm the microarray data and to compare the expression levels of these genes in the parental strain and four independently derived SRS strains. All SRS strains showed lower levels of gene expression of fimA and csgG than those of the parental strain. Three of the four SRS strains showed lower levels of spvR gene expression while one SRS strain showed higher levels of spvR gene expression than those of the parental strain. Transmission electron microscopy determined that fimbriae were absent in the four SRS strains but copiously present in the parental strain. All four SRS strains demonstrated a significantly reduced ability to invade tissue culture cells compared to the parental strains, suggesting reduced pathogenicity of the SRS strains.
Collapse
|
43
|
Mappley LJ, Black ML, AbuOun M, Darby AC, Woodward MJ, Parkhill J, Turner AK, Bellgard MI, La T, Phillips ND, La Ragione RM, Hampson DJ. Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity. BMC Genomics 2012; 13:454. [PMID: 22947175 PMCID: PMC3532143 DOI: 10.1186/1471-2164-13-454] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/22/2012] [Indexed: 11/12/2022] Open
Abstract
Background The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, porcine and human hosts, amongst others. To date, the only available genome sequence of B. pilosicoli is that of strain 95/1000, a porcine isolate. In the first intra-species genome comparison within the Brachyspira genus, we report the whole genome sequence of B. pilosicoli B2904, an avian isolate, the incomplete genome sequence of B. pilosicoli WesB, a human isolate, and the comparisons with B. pilosicoli 95/1000. We also draw on incomplete genome sequences from three other Brachyspira species. Finally we report the first application of the high-throughput Biolog phenotype screening tool on the B. pilosicoli strains for detailed comparisons between genotype and phenotype. Results Feature and sequence genome comparisons revealed a high degree of similarity between the three B. pilosicoli strains, although the genomes of B2904 and WesB were larger than that of 95/1000 (~2,765, 2.890 and 2.596 Mb, respectively). Genome rearrangements were observed which correlated largely with the positions of mobile genetic elements. Through comparison of the B2904 and WesB genomes with the 95/1000 genome, features that we propose are non-essential due to their absence from 95/1000 include a peptidase, glycine reductase complex components and transposases. Novel bacteriophages were detected in the newly-sequenced genomes, which appeared to have involvement in intra- and inter-species horizontal gene transfer. Phenotypic differences predicted from genome analysis, such as the lack of genes for glucuronate catabolism in 95/1000, were confirmed by phenotyping. Conclusions The availability of multiple B. pilosicoli genome sequences has allowed us to demonstrate the substantial genomic variation that exists between these strains, and provides an insight into genetic events that are shaping the species. In addition, phenotype screening allowed determination of how genotypic differences translated to phenotype. Further application of such comparisons will improve understanding of the metabolic capabilities of Brachyspira species.
Collapse
Affiliation(s)
- Luke J Mappley
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Reading University, Addlestone, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pilizota T, Shaevitz JW. Fast, multiphase volume adaptation to hyperosmotic shock by Escherichia coli. PLoS One 2012; 7:e35205. [PMID: 22514721 PMCID: PMC3325977 DOI: 10.1371/journal.pone.0035205] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 03/10/2012] [Indexed: 11/25/2022] Open
Abstract
All living cells employ an array of different mechanisms to help them survive changes in extra cellular osmotic pressure. The difference in the concentration of chemicals in a bacterium's cytoplasm and the external environment generates an osmotic pressure that inflates the cell. It is thought that the bacterium Escherichia coli use a number of interconnected systems to adapt to changes in external pressure, allowing them to maintain turgor and live in surroundings that range more than two-hundred-fold in external osmolality. Here, we use fluorescence imaging to make the first measurements of cell volume changes over time during hyperosmotic shock and subsequent adaptation on a single cell level in vivo with a time resolution on the order of seconds. We directly observe two previously unseen phases of the cytoplasmic water efflux upon hyperosmotic shock. Furthermore, we monitor cell volume changes during the post-shock recovery and observe a two-phase response that depends on the shock magnitude. The initial phase of recovery is fast, on the order of 15–20 min and shows little cell-to-cell variation. For large sucrose shocks, a secondary phase that lasts several hours adds to the recovery. We find that cells are able to recover fully from shocks as high as 1 Osmol/kg using existing systems, but that for larger shocks, protein synthesis is required for full recovery.
Collapse
Affiliation(s)
- Teuta Pilizota
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Joshua W. Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
45
|
Haznedaroglu BZ, Yates MV, Maduro MF, Walker SL. Effects of residual antibiotics in groundwater on Salmonella typhimurium: changes in antibiotic resistance, in vivo and in vitro pathogenicity. ACTA ACUST UNITED AC 2011; 14:41-7. [PMID: 22051852 DOI: 10.1039/c1em10723b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An outbreak-causing strain of Salmonella enterica serovar Typhimurium was exposed to groundwater with residual antibiotics for up to four weeks. Representative concentrations (0.05, 1, and 100 μg L(-1)) of amoxicillin, tetracycline, and a mixture of several other antibiotics (1 μg L(-1) each) were spiked into artificially prepared groundwater (AGW). Antibiotic susceptibility analysis and the virulence response of stressed Salmonella were determined on a weekly basis by using human epithelial cells (HEp2) and soil nematodes (C. elegans). Results have shown that Salmonella typhimurium remains viable for long periods of exposure to antibiotic-supplemented groundwater; however, they failed to cultivate as an indication of a viable but nonculturable state. Prolonged antibiotics exposure did not induce any changes in the antibiotic susceptibility profile of the S. typhimurium strain used in this study. S. typhimurium exposed to 0.05 and 1 μg L(-1) amoxicillin, and 1 μg L(-1) tetracycline showed hyper-virulent profiles in both in vitro and in vivo virulence assays with the HEp2 cells and C. elegans respectively, most evident following 2nd and 3rd weeks of exposure.
Collapse
Affiliation(s)
- Berat Z Haznedaroglu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
46
|
Álvarez-Ordóñez A, Begley M, Prieto M, Messens W, López M, Bernardo A, Hill C. Salmonella spp. survival strategies within the host gastrointestinal tract. MICROBIOLOGY-SGM 2011; 157:3268-3281. [PMID: 22016569 DOI: 10.1099/mic.0.050351-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human salmonellosis infections are usually acquired via the food chain as a result of the ability of Salmonella serovars to colonize and persist within the gastrointestinal tract of their hosts. In addition, after food ingestion and in order to cause foodborne disease in humans, Salmonella must be able to resist several deleterious stress conditions which are part of the host defence against infections. This review gives an overview of the main defensive mechanisms involved in the Salmonella response to the extreme acid conditions of the stomach, and the elevated concentrations of bile salts, osmolytes and commensal bacterial metabolites, and the low oxygen tension conditions of the mammalian and avian gastrointestinal tracts.
Collapse
Affiliation(s)
- Avelino Álvarez-Ordóñez
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - Máire Begley
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Miguel Prieto
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Winy Messens
- Biological Hazards (BIOHAZ) Unit, European Food Safety Authority (EFSA), Largo N. Palli 5/A, I-43121 Parma, Italy
| | - Mercedes López
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Ana Bernardo
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, León, Spain
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
47
|
Alegado RA, Chin CY, Monack DM, Tan MW. The two-component sensor kinase KdpD is required for Salmonella typhimurium colonization of Caenorhabditis elegans and survival in macrophages. Cell Microbiol 2011; 13:1618-37. [PMID: 21790938 DOI: 10.1111/j.1462-5822.2011.01645.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability of enteric pathogens to perceive and adapt to distinct environments within the metazoan intestinal tract is critical for pathogenesis; however, the preponderance of interactions between microbe- and host-derived factors remain to be fully understood. Salmonella enterica serovar Typhimurium is a medically important enteric bacterium that colonizes, proliferates and persists in the intestinal lumen of the nematode Caenorhabditis elegans. Several Salmonella virulence factors important in murine and tissue culture models also contribute to worm mortality and intestinal persistence. For example, PhoP and the virulence plasmid pSLT are virulence factors required for resistance to the C. elegans antimicrobial peptide SPP-1. To uncover additional determinants required for Salmonella typhimurium pathogenesis in vivo, we devised a genetic screen to identify bacterial mutants defective in establishing a persistent infection in the intestine of C. elegans. Here we report on identification of 14 loci required for persistence in the C. elegans intestine and characterization of KdpD, a sensor kinase of a two-component system in S. typhimurium pathogenesis. We show that kdpD mutants are profoundly attenuated in intestinal persistence in the nematode and in macrophage survival. These findings may be attributed to the essential role KdpD plays in promoting resistance to osmotic, oxidative and antimicrobial stresses.
Collapse
Affiliation(s)
- Rosanna A Alegado
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
48
|
Gong H, Vu GP, Bai Y, Chan E, Wu R, Yang E, Liu F, Lu S. A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLoS Pathog 2011; 7:e1002120. [PMID: 21949647 PMCID: PMC3174252 DOI: 10.1371/journal.ppat.1002120] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 04/29/2011] [Indexed: 12/17/2022] Open
Abstract
Small non-coding RNAs (sRNAs) that act as regulators of gene expression have been identified in all kingdoms of life, including microRNA (miRNA) and small interfering RNA (siRNA) in eukaryotic cells. Numerous sRNAs identified in Salmonella are encoded by genes located at Salmonella pathogenicity islands (SPIs) that are commonly found in pathogenic strains. Whether these sRNAs are important for Salmonella pathogenesis and virulence in animals has not been reported. In this study, we provide the first direct evidence that a pathogenicity island-encoded sRNA, IsrM, is important for Salmonella invasion of epithelial cells, intracellular replication inside macrophages, and virulence and colonization in mice. IsrM RNA is expressed in vitro under conditions resembling those during infection in the gastrointestinal tract. Furthermore, IsrM is found to be differentially expressed in vivo, with higher expression in the ileum than in the spleen. IsrM targets the mRNAs coding for SopA, a SPI-1 effector, and HilE, a global regulator of the expression of SPI-1 proteins, which are major virulence factors essential for bacterial invasion. Mutations in IsrM result in disregulation of expression of HilE and SopA, as well as other SPI-1 genes whose expression is regulated by HilE. Salmonella with deletion of isrM is defective in bacteria invasion of epithelial cells and intracellular replication/survival in macrophages. Moreover, Salmonella with mutations in isrM is attenuated in killing animals and defective in growth in the ileum and spleen in mice. Our study has shown that IsrM sRNA functions as a pathogenicity island-encoded sRNA directly involved in Salmonella pathogenesis in animals. Our results also suggest that sRNAs may represent a distinct class of virulence factors that are important for bacterial infection in vivo. Regulated expression of virulence factors is essential for infection by human pathogens such as Salmonella. Small non-coding RNAs (sRNAs) that act as regulators of gene expression have been identified in all kingdoms of life, and many sRNAs in Salmonella are encoded by genes located at Salmonella pathogenicity islands commonly found in pathogenic strains. In this study, we demonstrated that a pathogenicity island-encoded sRNA directly targets the expression of both a global regulator of virulence genes as well as a specific virulence factor critical for Salmonella pathogenesis. The sRNA is important for Salmonella invasion of epithelial cells, replication inside macrophages, and virulence/colonization in mice, representing the first example of a pathogenicity island-encoded sRNA that is directly involved in Salmonella pathogenesis in vivo. Our study suggests that sRNA may function as a distinct class of virulence factors that significantly contribute to bacterial infection in vivo. Furthermore, our results raise the possibility of developing new strategies against bacterial infection by preventing the expression of regulatory sRNAs.
Collapse
MESH Headings
- 5' Untranslated Regions
- Animals
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Epithelial Cells/microbiology
- Epithelial Cells/pathology
- Female
- Gastrointestinal Tract/cytology
- Gastrointestinal Tract/microbiology
- Gene Expression Regulation, Bacterial
- Genomic Islands
- Ileum/cytology
- Macrophages/microbiology
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Promoter Regions, Genetic
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Salmonella Infections, Animal/microbiology
- Salmonella Infections, Animal/pathology
- Salmonella typhimurium/genetics
- Salmonella typhimurium/growth & development
- Salmonella typhimurium/metabolism
- Salmonella typhimurium/pathogenicity
- Sequence Alignment
- Sequence Analysis
- Spleen/cytology
- Virulence Factors/biosynthesis
- Virulence Factors/genetics
Collapse
Affiliation(s)
- Hao Gong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Gia-Phong Vu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Yong Bai
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Elton Chan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Ruobin Wu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
| | - Edward Yang
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Fenyong Liu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- * E-mail: (FL); (SL)
| | - Sangwei Lu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, United States of America
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- * E-mail: (FL); (SL)
| |
Collapse
|
49
|
Milillo SR, Martin E, Muthaiyan A, Ricke SC. Immediate reduction of Salmonella enterica serotype typhimurium viability via membrane destabilization following exposure to multiple-hurdle treatments with heated, acidified organic acid salt solutions. Appl Environ Microbiol 2011; 77:3765-72. [PMID: 21478311 PMCID: PMC3127599 DOI: 10.1128/aem.02839-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/29/2011] [Indexed: 01/06/2023] Open
Abstract
The antimicrobial activity of organic acids in combination with nonchemical treatments was evaluated for inactivation of Salmonella enterica serotype Typhimurium within 1 min. It was observed that the effectiveness of the multiple-hurdle treatments was temperature (P ≤ 0.05) and pH (P ≤ 0.05) dependent and corresponded to the degree of organic acid lipophilicity (sodium acetate being least effective and sodium propionate being the most effective). This led to the hypothesis that the loss in viability was due at least in part to cell membrane disruption. Evaluation of osmotic response, potassium ion leakage, and transmission electron micrographs confirmed treatment effects on the cell membrane. Interestingly, all treatments, even those with no effect on viability, such as with sodium acetate, resulted in measurable cellular stress. Microarray experiments explored the specific response of S. Typhimurium to sodium acetate and sodium propionate, the most similar of the tested treatments in terms of pK(a) and ionic strength, and found little difference in the changes in gene expression following exposure to either, despite their very different effects on viability. Taken together, the results reported support our hypothesis that treatment with heated, acidified, organic acid salt solutions for 1 min causes loss of S. Typhimurium viability at least in part by membrane damage and that the degree of effectiveness can be correlated with lipophilicity of the organic acid. Overall, the data presented here indicate that a combined thermal, acidified sodium propionate treatment can provide an effective antimicrobial treatment against Salmonella.
Collapse
Affiliation(s)
- S R Milillo
- 2435 N. Hatch Ave., Food Science Department, University of Arkansas, Fayetteville, AR 72704, USA.
| | | | | | | |
Collapse
|
50
|
Castaneda-Garcia A, Do TT, Blazquez J. The K+ uptake regulator TrkA controls membrane potential, pH homeostasis and multidrug susceptibility in Mycobacterium smegmatis. J Antimicrob Chemother 2011; 66:1489-98. [DOI: 10.1093/jac/dkr165] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|