1
|
Anchidin-Norocel L, Iatcu OC, Lobiuc A, Covasa M. Heavy Metal-Gut Microbiota Interactions: Probiotics Modulation and Biosensors Detection. BIOSENSORS 2025; 15:188. [PMID: 40136985 PMCID: PMC11940129 DOI: 10.3390/bios15030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
This study provides a comprehensive analysis of the complex interaction between heavy metals (HMs) and the gut microbiota, adopting a bidirectional approach that explores both the influence of HMs on the gut microbiota populations and the potential role of probiotics in modulating these changes. By examining these interconnected aspects, the study aims to offer a deeper understanding of how HMs disrupt microbial balance and how probiotic interventions may mitigate or reverse these effects, promoting detoxification processes and overall gut health. In addition, the review highlights innovative tools, such as biosensors, for the rapid, precise, and non-invasive detection of HMs in urine. These advanced technologies enable the real-time monitoring of the effectiveness of probiotic-based interventions, offering critical insights into their role in promoting the elimination of HMs from the body and improving detoxification.
Collapse
Affiliation(s)
| | - Oana C. Iatcu
- College of Medicine and Biological Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (L.A.-N.); (A.L.); (M.C.)
| | | | | |
Collapse
|
2
|
Ahmed Amin S, Dawood MEA, Mahmoud M, Bassiouny DM, Moustafa MMA, Abd El Ghany K. Innovative synthesis and molecular modeling of actinomycetes-derived silver nanoparticles for biomedical applications. Microb Pathog 2024; 196:106990. [PMID: 39362288 DOI: 10.1016/j.micpath.2024.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The rising demand for innovative antimicrobial solutions has shifted focus towards silver nanoparticles (AgNPs), especially those produced through eco-friendly methods. This study introduces a novel approach utilizing actinomycetes strains-Streptomyces albus, Micromonospora maris, and Arthrobacter crystallopoietes-to biosynthesize AgNPs with remarkable antibacterial properties. Through molecular characterization, we identified unique features of these nanoparticles, and computational modeling suggested significant ion-ligand interactions with proteins 6REV and 3K07. Our research highlights the promise of these biogenically synthesized nanoparticles in advancing biomedical applications. Actinomycetes were sourced and screened for their ability to produce metallic nanoparticles, revealing that among 35 samples, only six showed this capability. Notably, Streptomyces albus strain smmdk14 (OR685674), Micromonospora maris strain smmdk13 (OR685672), and Arthrobacter crystallopoietes strain smmdk12 (OR685674) were identified as effective silver nanoparticle producers. The synthesized nanoparticles demonstrated potent antibacterial activity against common pathogens including E. coli, Pseudomonas aeruginosa, Klebsiella spp., Enterococcus faecalis, Staphylococcus aureus, and Acinetobacter spp. The data obtained from color change observation, UV-visible spectrophotometry, Zeta potential, FTIR spectroscopy, and transmission electron microscopy (TEM) characterized AgNPs potentiality. The nanoparticles were spherical, with sizes ranging from 6.46 nm to 24.7 nm. Optimization of production conditions, comparison of antimicrobial effects with antibiotics, evaluation of potential toxicity, and assessment of wound-healing capabilities were also conducted. The biosynthesized AgNPs exhibited superior antibacterial properties compared to traditional antibiotics and significantly accelerated wound healing by approximately 66.4 % in fibroblast cell cultures. Additionally, computational analysis predicted interactions between various metal ions and specific amino acid residues in proteins 6REV and 3K07. Overall, this study demonstrates the successful creation of AgNPs with notable antibacterial and wound-healing properties, underscoring their potential for medical applications.
Collapse
Affiliation(s)
- Safia Ahmed Amin
- Botany and Microbiology Department, Faculty of Science, Cairo University, Egypt.
| | - Mohamed E A Dawood
- Botany and Microbiology Department, Faculty of Science, Cairo University, Egypt.
| | - Mohamed Mahmoud
- Biophysics Department, Faculty of Science, Cairo University, Egypt.
| | - Dina M Bassiouny
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Egypt.
| | - Mahmoud M A Moustafa
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Moshtohor, Benha University, 13736, Egypt.
| | | |
Collapse
|
3
|
Chorro L, Ciolino T, Torres CL, Illenberger A, Aglione J, Corts P, Lypowy J, Ponce C, La Porte A, Burt D, Volberg GL, Ramaiah L, McGovern K, Hu J, Anderson AS, Silmon de Monerri NC, Kanevsky I, Donald RGK. A cynomolgus monkey E. coli urinary tract infection model confirms efficacy of new FimH vaccine candidates. Infect Immun 2024; 92:e0016924. [PMID: 39297649 PMCID: PMC11475676 DOI: 10.1128/iai.00169-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 10/16/2024] Open
Abstract
The increase in urinary tract infections (UTI) caused by antibiotic-resistant Escherichia coli requires the development of new therapeutic agents and prophylactic vaccines. To evaluate the efficacy of new lead candidates, we implemented a cynomolgus macaque UTI challenge model that mimics human uncomplicated cystitis in response to transurethral challenge with a multidrug-resistant (MDR) E. coli serotype O25b ST131 isolate. E. coli fimbrial adhesin FimH and O-antigens are separately under clinical evaluation by others as vaccine candidates to prevent UTI and invasive urosepsis disease, respectively. Accordingly, we assessed the protective efficacy of three 50-µg intramuscular doses of a novel recombinant FimH antigen adjuvanted with liposomal QS21/MPLA compared with saline placebo in groups of nine animals. A third group was vaccinated with this FimH formulation in combination with 1 µg each of a four-valent mixture of serotype O1a, O2, O6, and O25b O-antigen CRM197 lattice glycoconjugates. Both vaccines elicited high levels of serum FimH IgG and adhesin blocking antibodies at the time of bacterial challenge and, for the combination group, O-antigen-specific antibodies. Following bacterial challenge, both vaccinated groups showed >200- and >700-fold reduction in bacteriuria at day 2 and day 7 post-infection compared with placebo, respectively. In parallel, both vaccines significantly reduced levels of inflammatory biomarkers IL-8 and myeloperoxidase in the urine at day 2 post-infection relative to placebo. Results provide preclinical proof-of-concept for the prevention of an MDR UTI infection by these new vaccine formulations.
Collapse
Affiliation(s)
- Laurent Chorro
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Tara Ciolino
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | | | | | - JohnPaul Aglione
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Paula Corts
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | | | | | | | - Deborah Burt
- Pfizer Drug Safety Research and Development, Groton, Connecticut, USA
| | | | - Lila Ramaiah
- Pfizer Drug Safety Research and Development, Pearl River, New York, USA
| | - Kathryn McGovern
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Jianfang Hu
- Pfizer Research Biostatistics, Collegeville, Pennsylvania, USA
| | | | | | - Isis Kanevsky
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | | |
Collapse
|
4
|
Hadwan MH, Rahi AK, Abass ER, Hadwan AM, Mohammed RM, Alta'ee AH, Alsalman AR, Hadwan MM, Al-Talebi ZA. A new spectrophotometric method for measuring ceruloplasmin ferroxidase activity: an innovative approach. Biometals 2024:10.1007/s10534-024-00635-9. [PMID: 39400640 DOI: 10.1007/s10534-024-00635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024]
Abstract
Ferroxidases are enzymes that participate in the iron metabolism of different organisms. They catalyze the oxidation of ferrous iron, Fe2⁺, into ferric iron, Fe3⁺, which is essential in iron homeostasis and physiological functioning. The present study describes a novel spectrophotometric method of serum ceruloplasmin ferroxidase activity. This method is easy to perform; it is also sensitive, specific, and rapid. In this method, ferrous ions are used as a substrate for the enzyme, with either salicylic acid or sulfosalicylic acid being taken as a chromogenic compound. These chromogens easily form a colored complex with ferric ions but are not formed with ferrous ions. In the enzymatic reaction, the ceruloplasmin ferroxidase enzyme catalyzes the oxidation of ferrous to ferric ions. The resulting increase in ferric ion concentration is then measured spectrophotometrically, following the formation of the colored complex. The complex formed has maximum absorbance at 540 nm in the case of salicylic acid and 490 nm in the case of sulfosalicylic acid. Comparatively, it was tested against the standard method to ascertain the new method's effectuality and reliability for assaying ferroxidase activity. The determined correlation coefficient amounted to 0.99, showing a strong correlation between the results obtained by the two methods. This new spectrophotometric technique offers a simplified, sensitive, specific, and fast means of estimating ferroxidase activity. It avoids using concentrated strong acids in the procedure and correlates excellently with the standard technique. This sets up a potential alternative for accurately determining ferroxidase activity in biological samples.
Collapse
Affiliation(s)
- Mahmoud Hussein Hadwan
- Chemistry Department, College of Science, University of Babylon, Hillah, Babylon Governorate, 51002, Iraq.
| | - Ahed Kamil Rahi
- Pharmaceutical Chemistry Department, College of Pharmacy, University of Babylon, Hillah, Babylon Governorate, Iraq
| | - Esraa Rafied Abass
- Pharmaceutical Chemistry Department, College of Pharmacy, University of Babylon, Hillah, Babylon Governorate, Iraq
| | - Asad M Hadwan
- Al-Manara College for Medical Sciences, Al-Amarah, Iraq
| | - Rawa M Mohammed
- Department of Medical Physics, University of Al-Mustaqbal, Hillah, Babylon Governorate, 51001, Iraq
| | | | - Abdul Razzaq Alsalman
- College of Medicine, University of Babylon, Hillah, Babylon Governorate, 51002, Iraq
| | - Muntadher M Hadwan
- College of Medicine, University of Babylon, Hillah, Babylon Governorate, 51002, Iraq
| | - Zainab Abbas Al-Talebi
- Chemistry Department, College of Science, University of Babylon, Hillah, Babylon Governorate, 51002, Iraq
| |
Collapse
|
5
|
Ali AA, Darwish WS. Acute phase proteins patterns as biomarkers in bacterial infection: Recent insights. Open Vet J 2024; 14:2539-2550. [PMID: 39545194 PMCID: PMC11560262 DOI: 10.5455/ovj.2024.v14.i10.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/07/2024] [Indexed: 11/17/2024] Open
Abstract
Escherichia coli is a bacterium with command and pathogenic variants. It has been implicated in the induction of several inflammatory conditions. Finding a biomarker for infection began many years ago. The challenge of using acute phase proteins (APPs) as biomarkers for infection is a promising target for many researchers in this field. Many APPs have been studied for their roles as biomarkers of E. coli infection. The following review aims to highlight recent trials that have approved the use of adiponectin, amyloid A, ceruloplasmin, C-reactive protein, Haptoglobin, and Pentraxin 3 as biomarkers for E. coli infection and assess the obtained results. In conclusion, despite the existing approaches for the use of APPs as biomarkers in E. coli infection, we recommend more precise studies to enable these markers to be more specific and applicable in clinical fields. APPs could be markers for systemic inflammatory conditions, regardless of the causative agent.
Collapse
Affiliation(s)
- Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Wageh Sobhy Darwish
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Egypt
| |
Collapse
|
6
|
Hanson BS, Hailemariam A, Yang Y, Mohamed F, Donati GL, Baker D, Sacchettini J, Cai JJ, Subashchandrabose S. Identification of a copper-responsive small molecule inhibitor of uropathogenic Escherichia coli. J Bacteriol 2024; 206:e0011224. [PMID: 38856220 PMCID: PMC11270900 DOI: 10.1128/jb.00112-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Urinary tract infections (UTIs) are a major global health problem and are caused predominantly by uropathogenic Escherichia coli (UPEC). UTIs are a leading cause of prescription antimicrobial use. Incessant increase in antimicrobial resistance in UPEC and other uropathogens poses a serious threat to the current treatment practices. Copper is an effector of nutritional immunity that impedes the growth of pathogens during infection. We hypothesized that copper would augment the toxicity of select small molecules against bacterial pathogens. We conducted a small molecule screening campaign with a library of 51,098 molecules to detect hits that inhibit a UPEC ΔtolC mutant in a copper-dependent manner. A molecule, denoted as E. coli inhibitor or ECIN, was identified as a copper-responsive inhibitor of wild-type UPEC strains. Our gene expression and metal content analysis results demonstrate that ECIN works in concert with copper to exacerbate Cu toxicity in UPEC. ECIN has a broad spectrum of activity against pathogens of medical and veterinary significance including Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. Subinhibitory levels of ECIN eliminate UPEC biofilm formation. Transcriptome analysis of UPEC treated with ECIN reveals induction of multiple stress response systems. Furthermore, we demonstrate that L-cysteine rescues the growth of UPEC exposed to ECIN. In summary, we report the identification and characterization of a novel copper-responsive small molecule inhibitor of UPEC.IMPORTANCEUrinary tract infection (UTI) is a ubiquitous infectious condition affecting millions of people annually. Uropathogenic Escherichia coli (UPEC) is the predominant etiological agent of UTI. However, UTIs are becoming increasingly difficult to resolve with antimicrobials due to increased antimicrobial resistance in UPEC and other uropathogens. Here, we report the identification and characterization of a novel copper-responsive small molecule inhibitor of UPEC. In addition to E. coli, this small molecule also inhibits pathogens of medical and veterinary significance including Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Braden S Hanson
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Amanuel Hailemariam
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Yongjian Yang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Faras Mohamed
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Dwight Baker
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - James Sacchettini
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Huang Z, Cao L, Yan D. Inflammatory immunity and bacteriological perspectives: A new direction for copper treatment of sepsis. J Trace Elem Med Biol 2024; 84:127456. [PMID: 38692229 DOI: 10.1016/j.jtemb.2024.127456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Copper is an essential trace element for all aerobic organisms because of its unique biological functions. In recent years, researchers have discovered that copper can induce cell death through various regulatory mechanisms, thereby inducing inflammation. Efforts have also been made to alter the chemical structure of copper to achieve either anticancer or anti-inflammatory effects. The copper ion can exhibit bactericidal effects by interfering with the integrity of the cell membrane and promoting oxidative stress. Sepsis is a systemic inflammatory response caused by infection. Some studies have revealed that copper is involved in the pathophysiological process of sepsis and is closely related to its prognosis. During the infection of sepsis, the body may enhance the antimicrobial effect by increasing the release of copper. However, to avoid copper poisoning, all organisms have evolved copper resistance genes. Therefore, further analysis of the complex relationship between copper and bacteria may provide new ideas and research directions for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Huang
- Department of Emergency Medicine,Zhoukou Central Hospital, No.26 Renmin Road, Chuanhui District, Zhoukou, Henan Province 466000, China
| | - Lunfei Cao
- Department of Emergency Medicine,Zhoukou Central Hospital, No.26 Renmin Road, Chuanhui District, Zhoukou, Henan Province 466000, China
| | - Dengfeng Yan
- Department of Emergency Medicine,Zhoukou Central Hospital, No.26 Renmin Road, Chuanhui District, Zhoukou, Henan Province 466000, China..
| |
Collapse
|
8
|
Saenkham-Huntsinger P, Ritter M, Donati GL, Mitchell AM, Subashchandrabose S. The inner membrane protein YhiM links copper and CpxAR envelope stress responses in uropathogenic E. coli. mBio 2024; 15:e0352223. [PMID: 38470052 PMCID: PMC11005409 DOI: 10.1128/mbio.03522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Urinary tract infection (UTI) is a ubiquitous infectious condition, and uropathogenic Escherichia coli (UPEC) is the predominant causative agent of UTI. Copper (Cu) is implicated in innate immunity, including against UPEC. Cu is a trace element utilized as a co-factor, but excess Cu is toxic due to mismetalation of non-cognate proteins. E. coli precisely regulates Cu homeostasis via efflux systems. However, Cu import mechanisms into the bacterial cell are not clear. We hypothesized that Cu import defective mutants would exhibit increased resistance to Cu. This hypothesis was tested in a forward genetic screen with transposon (Tn5) insertion mutants in UPEC strain CFT073, and we identified 32 unique Cu-resistant mutants. Transposon and defined mutants lacking yhiM, which encodes a hypothetical inner membrane protein, were more resistant to Cu than parental strain. Loss of YhiM led to decreased cellular Cu content and increased expression of copA, encoding a Cu efflux pump. The CpxAR envelope stress response system was activated in the ΔyhiM mutant as indicated by increased expression of cpxP. Transcription of yhiM was regulated by CueR and CpxR, and the CpxAR system was essential for increased Cu resistance in the ΔyhiM mutant. Importantly, activation of CpxAR system in the ΔyhiM mutant was independent of NlpE, a known activator of this system. YhiM was required for optimal fitness of UPEC in a mouse model of UTI. Our findings demonstrate that YhiM is a critical mediator of Cu homeostasis and links bacterial adaptation to Cu stress with the CpxAR-dependent envelope stress response in UPEC.IMPORTANCEUPEC is a common bacterial infection. Bacterial pathogens are exposed to host-derived Cu during infection, including UTI. Here, we describe detection of genes involved in Cu homeostasis in UPEC. A UPEC mutant lacking YhiM, a membrane protein, exhibited dramatic increase in resistance to Cu. Our study demonstrates YhiM as a nexus between Cu stress and the CpxAR-dependent envelope stress response system. Importantly, our findings establish NlpE-independent activation of CpxAR system during Cu stress in UPEC. Collectively, YhiM emerges as a critical mediator of Cu homeostasis in UPEC and highlights the interlinked nature of bacterial adaptation to survival during Cu and envelope stress.
Collapse
Affiliation(s)
- Panatda Saenkham-Huntsinger
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Matthew Ritter
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - George L. Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Angela M. Mitchell
- Department of Biology, College of Science, Texas A&M University, College Station, Texas, USA
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
9
|
Westcott MM, Morse AE, Troy G, Blevins M, Wierzba T, Sanders JW. Photochemical inactivation as an alternative method to produce a whole-cell vaccine for uropathogenic Escherichia coli (UPEC). Microbiol Spectr 2024; 12:e0366123. [PMID: 38315025 PMCID: PMC10913755 DOI: 10.1128/spectrum.03661-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the primary causative agent of lower urinary tract infection (UTI). UTI presents a serious health risk and has considerable secondary implications including economic burden, recurring episodes, and overuse of antibiotics. A safe and effective vaccine would address this widespread health problem and emerging antibiotic resistance. Killed, whole-cell vaccines have shown limited efficacy to prevent recurrent UTI in human trials. We explored photochemical inactivation with psoralen drugs and UVA light (PUVA), which crosslinks nucleic acid, as an alternative to protein-damaging methods of inactivation to improve whole-cell UTI vaccines. Exposure of UPEC to the psoralen drug AMT and UVA light resulted in a killed but metabolically active (KBMA) state, as reported previously for other PUVA-inactivated bacteria. The immunogenicity of PUVA-UPEC as compared to formalin-inactivated UPEC was compared in mice. Both generated high UPEC-specific serum IgG titers after intramuscular delivery. However, using functional adherence as a measure of surface protein integrity, we found differences in the properties of PUVA- and formalin-inactivated UPEC. Adhesion mediated by Type-1 and P-fimbriae was severely compromised by formalin but was unaffected by PUVA, indicating that PUVA preserved the functional conformation of fimbrial proteins, which are targets of protective immune responses. In vitro assays indicated that although they retained metabolic activity, PUVA-UPEC lost virulence properties that could negatively impact vaccine safety. Our results imply the potential for PUVA to improve killed, whole-cell UTI vaccines by generating bacteria that more closely resemble their live, infectious counterparts relative to vaccines generated with protein-damaging methods. IMPORTANCE Lower urinary tract infection (UTI), caused primarily by uropathogenic Escherichia coli, represents a significant health burden, accounting for 7 million primary care and 1 million emergency room visits annually in the United States. Women and the elderly are especially susceptible and recurrent infection (rUTI) is common in those populations. Lower UTI can lead to life-threatening systemic infection. UTI burden is manifested by healthcare dollars spent (1.5 billion annually), quality of life impact, and resistant strains emerging from antibiotic overuse. A safe and effective vaccine to prevent rUTI would address a substantial healthcare issue. Vaccines comprised of inactivated uropathogenic bacteria have yielded encouraging results in clinical trials but improvements that enhance vaccine performance are needed. To that end, we focused on inactivation methodology and provided data to support photochemical inactivation, which targets nucleic acid, as a promising alternative to conventional protein-damaging inactivation methods to improve whole-cell UTI vaccines.
Collapse
Affiliation(s)
- Marlena M. Westcott
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Alexis E. Morse
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Gavin Troy
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Maria Blevins
- Department of Internal Medicine, Infectious Diseases Section, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Thomas Wierzba
- Department of Internal Medicine, Infectious Diseases Section, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - John W. Sanders
- Department of Internal Medicine, Infectious Diseases Section, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
10
|
Méndez AAE, Argüello JM, Soncini FC, Checa SK. Scs system links copper and redox homeostasis in bacterial pathogens. J Biol Chem 2024; 300:105710. [PMID: 38309504 PMCID: PMC10907172 DOI: 10.1016/j.jbc.2024.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
The bacterial envelope is an essential compartment involved in metabolism and metabolites transport, virulence, and stress defense. Its roles become more evident when homeostasis is challenged during host-pathogen interactions. In particular, the presence of free radical groups and excess copper in the periplasm causes noxious reactions, such as sulfhydryl group oxidation leading to enzymatic inactivation and protein denaturation. In response to this, canonical and accessory oxidoreductase systems are induced, performing quality control of thiol groups, and therefore contributing to restoring homeostasis and preserving survival under these conditions. Here, we examine recent advances in the characterization of the Dsb-like, Salmonella-specific Scs system. This system includes the ScsC/ScsB pair of Cu+-binding proteins with thiol-oxidoreductase activity, an alternative ScsB-partner, the membrane-linked ScsD, and a likely associated protein, ScsA, with a role in peroxide resistance. We discuss the acquisition of the scsABCD locus and its integration into a global regulatory pathway directing envelope response to Cu stress during the evolution of pathogens that also harbor the canonical Dsb systems. The evidence suggests that the canonical Dsb systems cannot satisfy the extra demands that the host-pathogen interface imposes to preserve functional thiol groups. This resulted in the acquisition of the Scs system by Salmonella. We propose that the ScsABCD complex evolved to connect Cu and redox stress responses in this pathogen as well as in other bacterial pathogens.
Collapse
Affiliation(s)
- Andrea A E Méndez
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Fernando C Soncini
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Susana K Checa
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina.
| |
Collapse
|
11
|
Huang WS, Lee YJ, Wang L, Chen HH, Chao YJ, Cheng V, Liaw SJ. Copper affects virulence and diverse phenotypes of uropathogenic Proteus mirabilis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00044-6. [PMID: 38453541 DOI: 10.1016/j.jmii.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Copper plays a role in urinary tract infection (UTI) and urinary copper content is increased during Proteus mirabilis UTI. We therefore investigated the effect of copper on uropathogenic P. mirabilis and the underlying mechanisms, focusing on the virulence associated aspects. METHODS Mouse colonization, swarming/swimming assays, measurement of cell length, flagellin level and urease activity, adhesion/invasion assay, biofilm formation, killing by macrophages, oxidative stress susceptibility, OMPs analysis, determination of MICs and persister cell formation, RT-PCR and transcriptional reporter assay were performed. RESULTS We found that copper-supplemented mice were more resistant to be colonized in the urinary tract, together with decreased swarming/swimming, ureases activity, expression of type VI secretion system and adhesion/invasion to urothelial cells and increased killing by macrophages of P. mirabilis at a sublethal copper level. However, bacterial biofilm formation and resistance to oxidative stress were enhanced under the same copper level. Of note, the presence of copper led to increased ciprofloxacin MIC and more persister cell formation against ampicillin. In addition, the presence of copper altered the outer membrane protein profile and triggered expression of RcsB response regulator. For the first time, we unveiled the pleiotropic effects of copper on uropathogenic P. mirabilis, especially for induction of bacterial two-component signaling system regulating fitness and virulence. CONCLUSION The finding of copper-mediated virulence and fitness reinforced the importance of copper for prevention and therapeutic interventions against P. mirabilis infections. As such, this study could facilitate the copper-based strategies against UTI by P. mirabilis.
Collapse
Affiliation(s)
- Wei-Syuan Huang
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yuan-Ju Lee
- Department of Urology, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Lu Wang
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Hsuan-Hsuan Chen
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yueh-Jung Chao
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Vivien Cheng
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Shwu-Jen Liaw
- Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
Reasoner SA, Flores V, Van Horn G, Morales G, Peard LM, Abelson B, Manuel C, Lee J, Baker B, Williams T, Schmitz JE, Clayton DB, Hadjifrangiskou M. Survey of the infant male urobiome and genomic analysis of Actinotignum spp. NPJ Biofilms Microbiomes 2023; 9:91. [PMID: 38040700 PMCID: PMC10692110 DOI: 10.1038/s41522-023-00457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
The urinary bladder harbors a community of microbes termed the urobiome, which remains understudied. In this study, we present the urobiome of healthy infant males from samples collected by transurethral catheterization. Using a combination of enhanced culture and amplicon sequencing, we identify several common bacterial genera that can be further investigated for their effects on urinary health across the lifespan. Many genera were shared between all samples suggesting a consistent urobiome composition among this cohort. We note that, for this cohort, early life exposures including mode of birth (vaginal vs. Cesarean section), or prior antibiotic exposure did not influence urobiome composition. In addition, we report the isolation of culturable bacteria from the bladders of these infant males, including Actinotignum spp., a bacterial genus that has been associated with urinary tract infections in older male adults. Herein, we isolate and sequence 9 distinct strains of Actinotignum spp. enhancing the genomic knowledge surrounding this genus and opening avenues for delineating the microbiology of this urobiome constituent. Furthermore, we present a framework for using the combination of culture-dependent and sequencing methodologies for uncovering mechanisms in the urobiome.
Collapse
Affiliation(s)
- Seth A Reasoner
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Viktor Flores
- Division of Pediatric Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gerald Van Horn
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Personalized Microbiology (CPMi), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Grace Morales
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Leslie M Peard
- Division of Pediatric Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benjamin Abelson
- Division of Pediatric Urology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Pediatric Urology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Carmila Manuel
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jessica Lee
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bailey Baker
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy Williams
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan E Schmitz
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Personalized Microbiology (CPMi), Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglass B Clayton
- Division of Pediatric Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria Hadjifrangiskou
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Center for Personalized Microbiology (CPMi), Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
13
|
Łanocha-Arendarczyk N, Kot K, Baranowska-Bosiacka I, Kupnicka P, Przydalska D, Łanocha A, Chlubek D, Wojciechowska-Koszko I, Kosik-Bogacka DI. Macroelement and Microelement Levels in the Urine in Experimental Acanthamoebiasis. Pathogens 2023; 12:1039. [PMID: 37623999 PMCID: PMC10458488 DOI: 10.3390/pathogens12081039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Free-living amoebas can impact the excretion of macroelements and microelements in urine. The aim of the present study was to examine the concentrations of macroelements, including calcium (Ca), phosphorus (P), sodium (Na), potassium (K), and magnesium (Mg), as well as microelements such as manganese (Mn), zinc (Zn), copper (Cu), iron (Fe), and chromium (Cr), in the urine during acanthamoebiasis while considering the host's immunological status. This is the first study to show an increase in urinary excretion of Ca, Mn, Cu, Fe, Na, and Cr, along with a decreased excretion of K, in immunocompetent mice 16 days post Acanthamoeba sp. infection. In the final phase of infection (24 dpi), there was a further decrease in urinary K excretion and a lower level of P in Acanthamoeba sp. infected immunocompetent hosts. During acanthamoebiasis in immunosuppressed hosts, increased excretion of Zn, Fe, and Cr was observed at the beginning of the infection, and increased Na excretion only at 16 days post Acanthamoeba sp. infection. Additionally, host immunosuppression affected the concentration of Fe, Cr, Zn, Cu, Mn, and Ca in urine.
Collapse
Affiliation(s)
- Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (N.Ł.-A.); (K.K.); (D.P.)
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (N.Ł.-A.); (K.K.); (D.P.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (I.B.-B.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (I.B.-B.); (P.K.); (D.C.)
| | - Dagmara Przydalska
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (N.Ł.-A.); (K.K.); (D.P.)
| | - Aleksandra Łanocha
- Department of Haematology and Transplantology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (I.B.-B.); (P.K.); (D.C.)
| | - Iwona Wojciechowska-Koszko
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Danuta Izabela Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| |
Collapse
|
14
|
Djoko KY. Control of nutrient metal availability during host-microbe interactions: beyond nutritional immunity. J Biol Inorg Chem 2023:10.1007/s00775-023-02007-z. [PMID: 37464157 PMCID: PMC10368554 DOI: 10.1007/s00775-023-02007-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
The control of nutrient availability is an essential ecological function of the host organism in host-microbe systems. Although often overshadowed by macronutrients such as carbohydrates, micronutrient metals are known as key drivers of host-microbe interactions. The ways in which host organisms control nutrient metal availability are dictated by principles in bioinorganic chemistry. Here I ponder about the actions of metal-binding molecules from the host organism in controlling nutrient metal availability to the host microbiota. I hope that these musings will encourage new explorations into the fundamental roles of metals in the ecology of diverse host-microbe systems.
Collapse
Affiliation(s)
- Karrera Y Djoko
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
15
|
Chen S, Zhou Z, Wang Y, Chen S, Jiang J. Machine learning-based identification of cuproptosis-related markers and immune infiltration in severe community-acquired pneumonia. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:618-628. [PMID: 37279744 PMCID: PMC10363779 DOI: 10.1111/crj.13633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Severe community-acquired pneumonia (SCAP) is one of the world's most common diseases and a major etiology of acute respiratory distress syndrome (ARDS). Cuproptosis is a novel form of regulated cell death that can occur in various diseases. METHODS Our study explored the degree of immune cell infiltration during the onset of severe CAP and identified potential biomarkers related to cuproptosis. Gene expression matrix was obtained from GEO database indexed GSE196399. Three machine learning algorithms were applied: The least absolute shrinkage and selection operator (LASSO), the random forest, and the support vector machine-recursive feature elimination (SVM-RFE). Immune cell infiltration was quantified by single-sample gene set enrichment analysis (ssGSEA) scoring. Nomogram was constructed to verify the applicability of using cuproptosis-related genes to predict the onset of severe CAP and its deterioration toward ARDS. RESULTS Nine cuproptosis-related genes were differentially expressed between the severe CAP group and the control group: ATP7B, DBT, DLAT, DLD, FDX1, GCSH, LIAS, LIPT1, and SLC31A1. All 13 cuproptosis-related genes were involved in immune cell infiltration. A three-gene diagnostic model was constructed to predict the onset of severe CAP: GCSH, DLD, and LIPT1. CONCLUSION Our study confirmed the involvement of the newly discovered cuproptosis-related genes in the progression of SCAP.
Collapse
Affiliation(s)
- Shuyang Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Zheng Zhou
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yajun Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Shujing Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jinjun Jiang
- Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
16
|
Hadjifrangiskou M, Reasoner S, Flores V, Van Horn G, Morales G, Peard L, Abelson B, Manuel C, Lee J, Baker B, Williams T, Schmitz J, Clayton D. Defining the Infant Male Urobiome and Moving Towards Mechanisms in Urobiome Research. RESEARCH SQUARE 2023:rs.3.rs-2618137. [PMID: 36945625 PMCID: PMC10029076 DOI: 10.21203/rs.3.rs-2618137/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The urinary bladder harbors a community of microbes termed the urobiome, which remains understudied. In this study, we present the urobiome of healthy infant males from samples collected by transurethral catheterization. Using a combination of extended culture and amplicon sequencing, we identify several common bacterial genera that can be further investigated for their effects on urinary health across the lifespan. Many genera were shared between all samples suggesting a consistent urobiome composition among this cohort. We note that, for this cohort, early life exposures including mode of birth (vaginal vs. Caesarean section), or prior antibiotic exposure did not influence urobiome composition. In addition, we report the isolation of culturable bacteria from the bladders of these infant males, including Actinotignum schaalii, a bacterial species that has been associated with urinary tract infection in older male adults. Herein, we isolate and sequence 9 distinct strains of A. schaalii enhancing the genomic knowledge surrounding this species and opening avenues for delineating the microbiology of this urobiome constituent. Furthermore, we present a framework for using the combination of culture-dependent and sequencing methodologies for uncovering mechanisms in the urobiome.
Collapse
|
17
|
Host-Mediated Copper Stress Is Not Protective against Streptococcus pneumoniae D39 Infection. Microbiol Spectr 2022; 10:e0249522. [PMID: 36413018 PMCID: PMC9769658 DOI: 10.1128/spectrum.02495-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Metal ions are required by all organisms for the chemical processes that support life. However, in excess they can also exert toxicity within biological systems. During infection, bacterial pathogens such as Streptococcus pneumoniae are exposed to host-imposed metal intoxication, where the toxic properties of metals, such as copper, are exploited to aid in microbial clearance. However, previous studies investigating the antimicrobial efficacy of copper in vivo have reported variable findings. Here, we use a highly copper-sensitive strain of S. pneumoniae, lacking both copper efflux and intracellular copper buffering by glutathione, to investigate how copper stress is managed and where it is encountered during infection. We show that this strain exhibits highly dysregulated copper homeostasis, leading to the attenuation of growth and hyperaccumulation of copper in vitro. In a murine infection model, whole-tissue copper quantitation and elemental bioimaging of the murine lung revealed that infection with S. pneumoniae resulted in increased copper abundance in specific tissues, with the formation of spatially discrete copper hot spots throughout the lung. While the increased copper was able to reduce the viability of the highly copper-sensitive strain in a pneumonia model, copper levels in professional phagocytes and in a bacteremic model were insufficient to prosecute bacterial clearance. Collectively, this study reveals that host copper is redistributed to sites of infection and can impact bacterial viability in a hypersusceptible strain. However, in wild-type S. pneumoniae, the concerted actions of the copper homeostatic mechanisms are sufficient to facilitate continued viability and virulence of the pathogen. IMPORTANCE Streptococcus pneumoniae (the pneumococcus) is one of the world's foremost bacterial pathogens. Treatment of both localized and systemic pneumococcal infection is becoming complicated by increasing rates of multidrug resistance globally. Copper is a potent antimicrobial agent used by the mammalian immune system in the defense against bacterial pathogens. However, unlike other bacterial species, this copper stress is unable to prosecute pneumococcal clearance. This study determines how the mammalian host inflicts copper stress on S. pneumoniae and the bacterial copper tolerance mechanisms that contribute to maintenance of viability and virulence in vitro and in vivo. This work has provided insight into the chemical biology of the host-pneumococcal interaction and identified a potential avenue for novel antimicrobial development.
Collapse
|
18
|
Kram W, Rebl H, de la Cruz JE, Haag A, Renner J, Epting T, Springer A, Soria F, Wienecke M, Hakenberg OW. Interactive Effects of Copper-Doped Urological Implants with Tissue in the Urinary Tract for the Inhibition of Cell Adhesion and Encrustation in the Animal Model Rat. Polymers (Basel) 2022; 14:polym14163324. [PMID: 36015581 PMCID: PMC9412396 DOI: 10.3390/polym14163324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
The insertion of a ureteral stent provides acute care by restoring urine flow and alleviating urinary retention or dysfunction. The problems of encrustation, bacterial colonization and biofilm formation become increasingly important when ureteral stents are left in place for a longer period of time. One way to reduce encrustation and bacterial adherence is to modify the stent surface with a diamond-like carbon coating, in combination with copper doping. The biocompatibilities of the Elastollan® base material and the a-C:H/Cu-mulitilayer coating were tested in synthetic urine. The copper content in bladder tissue was determined by atomic absorption spectroscopy and in blood and in urine by inductively coupled plasma mass spectrometry. Encrustations on the materials were analyzed by scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. A therapeutic window for copper ions of 0.5–1.0 mM was determined to kill bacteria without affecting human urothelial cells. In the rat animal model, it was found that copper release did not reach toxic concentrations in the affecting tissue of the urinary tract or in the blood. The encrustation behavior of the surfaces showed that the roughness of the amorphous carbon layer with the copper doping is probably the causal factor for the higher encrustation.
Collapse
Affiliation(s)
- Wolfgang Kram
- Department of Urology, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
- Correspondence:
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Julia E. de la Cruz
- Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, Km. 41.8, 10071 Cáceres, Spain
| | - Antonia Haag
- Department of Urology, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Jürgen Renner
- Institute for Polymer- and Production Technologies e. V., Alter Holzhafen 19, 23966 Wismar, Germany
| | - Thomas Epting
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetterstraße 55, 79106 Freiburg, Germany
| | - Armin Springer
- Electron Microscopy Center, Rostock University Medical Center, Strempelstraße 14, 18057 Rostock, Germany
| | - Federico Soria
- Jesús Usón Minimally Invasive Surgery Centre, Carretera N-521, Km. 41.8, 10071 Cáceres, Spain
| | | | - Oliver W. Hakenberg
- Department of Urology, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|
19
|
Branch AH, Stoudenmire JL, Seib KL, Cornelissen CN. Acclimation to Nutritional Immunity and Metal Intoxication Requires Zinc, Manganese, and Copper Homeostasis in the Pathogenic Neisseriae. Front Cell Infect Microbiol 2022; 12:909888. [PMID: 35846739 PMCID: PMC9280163 DOI: 10.3389/fcimb.2022.909888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are human-specific pathogens in the Neisseriaceae family that can cause devastating diseases. Although both species inhabit mucosal surfaces, they cause dramatically different diseases. Despite this, they have evolved similar mechanisms to survive and thrive in a metal-restricted host. The human host restricts, or overloads, the bacterial metal nutrient supply within host cell niches to limit pathogenesis and disease progression. Thus, the pathogenic Neisseria require appropriate metal homeostasis mechanisms to acclimate to such a hostile and ever-changing host environment. This review discusses the mechanisms by which the host allocates and alters zinc, manganese, and copper levels and the ability of the pathogenic Neisseria to sense and respond to such alterations. This review will also discuss integrated metal homeostasis in N. gonorrhoeae and the significance of investigating metal interplay.
Collapse
Affiliation(s)
- Alexis Hope Branch
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Julie L. Stoudenmire
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Cynthia Nau Cornelissen
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
20
|
Bian Z, Fan R, Xie L. A Novel Cuproptosis-Related Prognostic Gene Signature and Validation of Differential Expression in Clear Cell Renal Cell Carcinoma. Genes (Basel) 2022; 13:genes13050851. [PMID: 35627236 PMCID: PMC9141858 DOI: 10.3390/genes13050851] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent subtype of renal cell carcinoma, which is characterized by metabolic reprogramming. Cuproptosis, a novel form of cell death, is highly linked to mitochondrial metabolism and mediated by protein lipoylation. However, the clinical impacts of cuproptosis-related genes (CRGs) in ccRCC largely remain unclear. In the current study, we systematically evaluated the genetic alterations of cuproptosis-related genes in ccRCC. Our results revealed that CDKN2A, DLAT, DLD, FDX1, GLS, PDHA1 and PDHB exhibited differential expression between ccRCC and normal tissues (|log2(fold change)| > 2/3 and p < 0.05). Utilizing an iterative sure independence screening (SIS) method, we separately constructed the prognostic signature of CRGs for predicting the overall survival (OS) and progression-free survival (PFS) in ccRCC patients. The prognostic score of CRGs yielded an area under the curve (AUC) of 0.658 and 0.682 for the prediction of 5-year OS and PFS, respectively. In the Kaplan−Meier survival analysis of OS, a higher risk score of cuproptosis-related gene signature was significantly correlated with worse overall survival (HR = 2.72 (2.01−3.68), log-rank p = 1.76 × 10−7). Patients with a higher risk had a significantly shorter PFS (HR = 2.83 (2.08−3.85), log-rank p = 3.66 × 10−7). Two independent validation datasets (GSE40435 (N = 101), GSE53757 (N = 72)) were collected for meta-analysis, suggesting that CDKN2A (log2(fold change) = 1.46, 95%CI: 1.75−2.35) showed significantly higher expression in ccRCC tissues while DLAT (log2(fold change) = −0.54, 95%CI: −0.93−−0.15) and FDX1 (log2(fold change) = −1.01, 95%CI: −1.61−−0.42) were lowly expressed. The expression of CDKN2A and FDX1 in ccRCC was also significantly associated with immune infiltration levels and programmed cell death protein 1 (PD-1) expression (CDKN2A: r = 0.24, p = 2.14 × 10−8; FDX1: r = −0.17, p = 1.37 × 10−4). In conclusion, the cuproptosis-related gene signature could serve as a potential prognostic predictor for ccRCC patients and may offer novel insights into the cancer treatment.
Collapse
Affiliation(s)
- Zilong Bian
- Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China;
- Correspondence: (Z.B.); (L.X.)
| | - Rong Fan
- Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Lingmin Xie
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Correspondence: (Z.B.); (L.X.)
| |
Collapse
|
21
|
Hyre A, Casanova-Hampton K, Subashchandrabose S. Copper Homeostatic Mechanisms and Their Role in the Virulence of Escherichia coli and Salmonella enterica. EcoSal Plus 2021; 9:eESP00142020. [PMID: 34125582 PMCID: PMC8669021 DOI: 10.1128/ecosalplus.esp-0014-2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Copper is an essential micronutrient that also exerts toxic effects at high concentrations. This review summarizes the current state of knowledge on copper handling and homeostasis systems in Escherichia coli and Salmonella enterica. We describe the mechanisms by which transcriptional regulators, efflux pumps, detoxification enzymes, metallochaperones, and ancillary copper response systems orchestrate cellular response to copper stress. E. coli and S. enterica are important pathogens of humans and animals. We discuss the critical role of copper during killing of these pathogens by macrophages and in nutritional immunity at the bacterial-pathogen-host interface. In closing, we identify opportunities to advance our understanding of the biological roles of copper in these model enteric bacterial pathogens.
Collapse
Affiliation(s)
- Amanda Hyre
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Kaitlin Casanova-Hampton
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
22
|
Copper Resistance Promotes Fitness of Methicillin-Resistant Staphylococcus aureus during Urinary Tract Infection. mBio 2021; 12:e0203821. [PMID: 34488457 PMCID: PMC8546587 DOI: 10.1128/mbio.02038-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Urinary tract infection (UTI) is one of the most common infectious conditions affecting people in the United States and around the world. Our knowledge of the host-pathogen interaction during UTI caused by Gram-positive bacterial uropathogens is limited compared to that for Gram-negative pathogens. Here, we investigated whether copper and the primary copper-containing protein, ceruloplasmin, are mobilized to urine during naturally occurring UTI caused by Gram-positive uropathogens in patients. Next, we probed the role of copper resistance in the fitness of methicillin-resistant Staphylococcus aureus (MRSA) during experimental UTI in a murine model. Our findings demonstrate that urinary copper and ceruloplasmin content are elevated during UTI caused by Enterococcus faecalis, S. aureus, S. epidermidis, and S. saprophyticus. MRSA strains successfully colonize the urinary tract of female CBA mice with selective induction of inflammation in the kidneys but not the bladder. MRSA mutants lacking CopL, a copper-binding cell surface lipoprotein, and the ACME genomic region containing copL, exhibit decreased fitness in the mouse urinary tract compared to parental strains. Copper sensitivity assays, cell-associated copper and iron content, and bioavailability of iron during copper stress demonstrate that homeostasis of copper and iron is interlinked in S. aureus. Importantly, relative fitness of the MRSA mutant lacking the ACME region is further decreased in mice that receive supplemental copper compared to the parental strain. In summary, copper is mobilized to the urinary tract during UTI caused by Gram-positive pathogens, and copper resistance is a fitness factor for MRSA during UTI. IMPORTANCE Urinary tract infection (UTI) is an extremely common infectious condition affecting people throughout the world. Increasing antibiotic resistance in pathogens causing UTI threatens our ability to continue to treat patients in the clinics. Better understanding of the host-pathogen interface is critical for development of novel interventional strategies. Here, we sought to elucidate the role of copper in host-Staphylococcus aureus interaction during UTI. Our results reveal that copper is mobilized to the urine as a host response in patients with UTI. Our findings from the murine model of UTI demonstrate that copper resistance is involved in the fitness of methicillin-resistant S. aureus (MRSA) during interaction with the host. We also establish a critical link between adaptation to copper stress and iron homeostasis in S. aureus.
Collapse
|
23
|
Casanova-Hampton K, Carey A, Kassam S, Garner A, Donati GL, Thangamani S, Subashchandrabose S. A genome-wide screen reveals the involvement of enterobactin-mediated iron acquisition in Escherichia coli survival during copper stress. Metallomics 2021; 13:6355450. [PMID: 34415046 PMCID: PMC8419524 DOI: 10.1093/mtomcs/mfab052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022]
Abstract
Copper (Cu) is a key transition metal that is involved in many important biological processes in a cell. Cu is also utilized by the immune system to hamper pathogen growth during infection. However, genome-level knowledge on the mechanisms involved in adaptation to Cu stress is limited. Here, we report the results of a genome-wide reverse genetic screen for Cu-responsive phenotypes in Escherichia coli. Our screen has identified novel genes involved in adaptation to Cu stress in E. coli. We detected multiple genes involved in the biosynthesis and uptake of enterobactin, a siderophore utilized for high-affinity TonB-dependent acquisition of iron (Fe), as critical players in survival under Cu intoxication. We demonstrated the specificity of Cu-dependent killing by chelation of Cu and by genetic complementation of tonB. Notably, TonB is involved in protection from Cu in both laboratory and uropathogenic strains of E. coli. Cu stress leads to increased expression of the genes involved in Fe uptake, indicating that Fur regulon is derepressed during exposure to excess Cu. Trace element analyses revealed that Fe homeostasis is dysregulated during Cu stress. Taken together, our data supports a model in which lack of enterobactin-dependent Fe uptake leads to exacerbation of Cu toxicity, and elucidates the intricate connection between the homeostasis of Cu and Fe in a bacterial cell.
Collapse
Affiliation(s)
- Kaitlin Casanova-Hampton
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alexis Carey
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Sarah Kassam
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Alyssa Garner
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ, USA
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
24
|
Whole Genome Sequencing of Methicillin-Resistant Staphylococcus epidermidis Clinical Isolates Reveals Variable Composite SCC mec ACME among Different STs in a Tertiary Care Hospital in Oman. Microorganisms 2021; 9:microorganisms9091824. [PMID: 34576720 PMCID: PMC8466944 DOI: 10.3390/microorganisms9091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus epidermidis has been recently recognized as an emerging nosocomial pathogen. There are concerns over the increasing virulence potential of this commensal due to the capabilities of transferring mobile genetic elements to Staphylococcus aureus through staphylococcal chromosomal cassette (SCCmec) and the closely related arginine catabolic mobile element (ACME) and the copper and mercury resistance island (COMER). The potential pathogenicity of S. epidermidis, particularly from blood stream infections, has been poorly investigated. In this study, 24 S. epidermidis isolated from blood stream infections from Oman were investigated using whole genome sequence analysis. Core genome phylogenetic trees revealed one third of the isolates belong to the multidrug resistance ST-2. Genomic analysis unraveled a common occurrence of SCCmec type IV and ACME element predominantly type I arranged in a composite island. The genetic composition of ACME was highly variable among isolates of same or different STs. The COMER-like island was absent in all of our isolates. Reduced copper susceptibility was observed among isolates of ST-2 and ACME type I, followed by ACME type V. In conclusion, in this work, we identify a prevalent occurrence of highly variable ACME elements in different hospital STs of S. epidermidis in Oman, thus strongly suggesting the hypothesis that ACME types evolved from closely related STs.
Collapse
|
25
|
Josephs-Spaulding J, Krogh TJ, Rettig HC, Lyng M, Chkonia M, Waschina S, Graspeuntner S, Rupp J, Møller-Jensen J, Kaleta C. Recurrent Urinary Tract Infections: Unraveling the Complicated Environment of Uncomplicated rUTIs. Front Cell Infect Microbiol 2021; 11:562525. [PMID: 34368008 PMCID: PMC8340884 DOI: 10.3389/fcimb.2021.562525] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are frequent in humans, affecting the upper and lower urinary tract. Present diagnosis relies on the positive culture of uropathogenic bacteria from urine and clinical markers of inflammation of the urinary tract. The bladder is constantly challenged by adverse environmental stimuli which influence urinary tract physiology, contributing to a dysbiotic environment. Simultaneously, pathogens are primed by environmental stressors such as antibiotics, favoring recurrent UTIs (rUTIs), resulting in chronic illness. Due to different confounders for UTI onset, a greater understanding of the fundamental environmental mechanisms and microbial ecology of the human urinary tract is required. Such advancements could promote the tandem translation of bench and computational studies for precision treatments and clinical management of UTIs. Therefore, there is an urgent need to understand the ecological interactions of the human urogenital microbial communities which precede rUTIs. This review aims to outline the mechanistic aspects of rUTI ecology underlying dysbiosis between both the human microbiome and host physiology which predisposes humans to rUTIs. By assessing the applications of next generation and systems level methods, we also recommend novel approaches to elucidate the systemic consequences of rUTIs which requires an integrated approach for successful treatment. To this end, we will provide an outlook towards the so-called 'uncomplicated environment of UTIs', a holistic and systems view that applies ecological principles to define patient-specific UTIs. This perspective illustrates the need to withdraw from traditional reductionist perspectives in infection biology and instead, a move towards a systems-view revolving around patient-specific pathophysiology during UTIs.
Collapse
Affiliation(s)
- Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| | - Thøger Jensen Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hannah Clara Rettig
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Mark Lyng
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mariam Chkonia
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Silvio Waschina
- Research Group Nutriinformatics, Institute of Human Nutrition and Food Science, Christian-Albrechts-Universität, Kiel, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
26
|
Staphylococcus saprophyticus Causing Infections in Humans Is Associated with High Resistance to Heavy Metals. Antimicrob Agents Chemother 2021; 65:e0268520. [PMID: 33941519 DOI: 10.1128/aac.02685-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus saprophyticus is a common pathogen of the urinary tract, a heavy metal-rich environment, but information regarding its heavy metal resistance is unknown. We investigated 422 S. saprophyticus isolates from human infection and colonization/contamination, animals, and environmental sources for resistance to copper, zinc, arsenic, and cadmium using the agar dilution method. To identify the genes associated with metal resistance and assess possible links to pathogenicity, we accessed the whole-genome sequence of all isolates and used in silico and pangenome-wide association approaches. The MIC values for copper and zinc were uniformly high (1,600 mg/liter). Genes encoding copper efflux pumps (copA, copB, copZ, mco, and csoR) and zinc transporters (zinT, czrAB, znuBC, and zur) were abundant in the population (20 to 100%). Arsenic and cadmium showed various susceptibility levels. Genes encoding the ars operon (arsRDABC), an ABC transporter and a two-component permease, were linked to resistance to arsenic (MICs ≥ 1,600 mg/liter; 14% [58/422]; P < 0.05). At least three cad genes (cadA or cadC and cadD-cadX or czrC) and genes encoding multidrug efflux pumps and hyperosmoregulation in acidified conditions were associated with resistance to cadmium (MICs ≥ 200 mg/liter; 20% [85/422]; P < 0.05). These resistance genes were frequently carried by mobile genetic elements. Resistance to arsenic and cadmium were linked to human infection and a clonal lineage originating in animals (P < 0.05). Altogether, S. saprophyticus was highly resistant to heavy metals and accumulated multiple metal resistance determinants. The highest arsenic and cadmium resistance levels were associated with infection, suggesting resistance to these metals is relevant for S. saprophyticus pathogenicity.
Collapse
|
27
|
Gancz A, Kondratyeva K, Cohen-Eli D, Navon-Venezia S. Genomics and Virulence of Klebsiella pneumoniae Kpnu95 ST1412 Harboring a Novel Incf Plasmid Encoding Blactx-M-15 and Qnrs1 Causing Community Urinary Tract Infection. Microorganisms 2021; 9:microorganisms9051022. [PMID: 34068663 PMCID: PMC8151138 DOI: 10.3390/microorganisms9051022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
The emergence of extended-spectrum β-lactamase (ESBL)-producing multidrug resistant Klebsiella pneumoniae causing community urinary tract infections (CA-UTI) in healthy women undermines effective treatment and poses a public health concern. We performed a comprehensive genomic analysis (Illumina and MinION) and virulence studies using Caenorhabditis elegans nematodes to evaluate KpnU95, a blaCTX-M-15-producing CA-UTI K. pneumoniae strain. Whole genome sequencing identified KpnU95 as sequence type 1412 and revealed the chromosomal and plasmid-encoding resistome, virulome and persistence features. KpnU95 possess a wide virulome and caused complete C. elegans killing. The strain harbored a single novel 180.3Kb IncFIB(K) plasmid (pKpnU95), which encodes ten antibiotic resistance genes, including blaCTX-M-15 and qnrS1 alongside a wide persistome encoding heavy metal and UV resistance. Plasmid curing and reconstitution were used for loss and gain studies to evaluate its role on bacterial resistance, fitness and virulence. Plasmid curing abolished the ESBL phenotype, decreased ciprofloxacin MIC and improved bacterial fitness in artificial urine accompanied with enhanced copper tolerance, without affecting bacterial virulence. Meta-analysis supported the uniqueness of pKpnU95 and revealed plasmid-ST1412 lineage adaptation. Overall, our findings provide translational data on a CA-UTI K. pneumoniae ST1412 strain and demonstrates that ESBL-encoding plasmids play key roles in multidrug resistance and in bacterial fitness and persistence.
Collapse
Affiliation(s)
- Ayala Gancz
- Molecular Biology Department, Faculty of Life Sciences, Ariel University, Ariel 40700, Israel; (A.G.); (K.K.); (D.C.-E.)
| | - Kira Kondratyeva
- Molecular Biology Department, Faculty of Life Sciences, Ariel University, Ariel 40700, Israel; (A.G.); (K.K.); (D.C.-E.)
| | - Dorit Cohen-Eli
- Molecular Biology Department, Faculty of Life Sciences, Ariel University, Ariel 40700, Israel; (A.G.); (K.K.); (D.C.-E.)
| | - Shiri Navon-Venezia
- Molecular Biology Department, Faculty of Life Sciences, Ariel University, Ariel 40700, Israel; (A.G.); (K.K.); (D.C.-E.)
- The Miriam and Sheldon Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Correspondence:
| |
Collapse
|
28
|
Smith AD, Garcia-Santamarina S, Ralle M, Loiselle DR, Haystead TA, Thiele DJ. Transcription factor-driven alternative localization of Cryptococcus neoformans superoxide dismutase. J Biol Chem 2021; 296:100391. [PMID: 33567338 PMCID: PMC7961099 DOI: 10.1016/j.jbc.2021.100391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen whose pathogenic lifestyle is linked to its ability to cope with fluctuating levels of copper (Cu), an essential metal involved in multiple virulence mechanisms, within distinct host niches. During lethal cryptococcal meningitis in the brain, C. neoformans senses a Cu-deficient environment and is highly dependent on its ability to scavenge trace levels of Cu from its host and adapt to Cu scarcity to successfully colonize this niche. In this study, we demonstrate for this critical adaptation, the Cu-sensing transcription factor Cuf1 differentially regulates the expression of the SOD1 and SOD2 superoxide dismutases in novel ways. Genetic and transcriptional analysis reveals Cuf1 specifies 5’-truncations of the SOD1 and SOD2 mRNAs through specific binding to Cu responsive elements within their respective promoter regions. This results in Cuf1-dependent repression of the highly abundant SOD1 and simultaneously induces expression of two isoforms of SOD2, the canonical mitochondrial targeted isoform and a novel alternative cytosolic isoform, from a single alternative transcript produced specifically under Cu limitation. The generation of cytosolic Sod2 during Cu limitation is required to maintain cellular antioxidant defense against superoxide stress both in vitro and in vivo. Further, decoupling Cuf1 regulation of Sod2 localization compromises the ability of C. neoformans to colonize organs in murine models of cryptococcosis. Our results provide a link between transcription factor–mediated alteration of protein localization and cell proliferation under stress, which could impact tissue colonization by a fungal pathogen.
Collapse
Affiliation(s)
- Aaron D Smith
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | | | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Timothy A Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA; Department of Biochemistry, Duke University, Durham, North Carolina, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
29
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
30
|
Fazly Bazzaz BS, Darvishi Fork S, Ahmadi R, Khameneh B. Deep insights into urinary tract infections and effective natural remedies. AFRICAN JOURNAL OF UROLOGY 2021. [DOI: 10.1186/s12301-020-00111-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Urinary tract infection (UTI) is a common occurrence in females, during pregnancy, and in peri- and postmenopausal women.
UTIs are associated with significant morbidity and mortality, and they affect the quality of life of the affected patients. Antibiotic therapy is an effective approach and reduces the duration of symptoms. Development of resistance, adverse effects of antibiotics, and other associated problems lead to establishing the research framework to find out the alternative approaches in controlling UTIs. Natural approaches have been extensively used for the management of various diseases to improve symptoms and also improve general health.
Main body
Different databases were employed to identify studies reporting on natural options including herbal medicines, vitamins, trace elementals, sugars, and probiotics without time limitations.
Conclusion
Herbal medicines can be effective at the first sign of the infection and also for short-term prophylaxis. Using vitamins, trace elementals, and/or sugars is an effective approach in preventing UTIs, and a combination of them with other antibacterial agents shows positive results. Probiotics have great potential for the threat of antibiotic over-usage and the prevalence of antibiotic-resistant microorganisms. This study may be of use in developing the efficient formulation of treatment of UTI.
Collapse
|
31
|
Jiang C, Wu B, Xue M, Lin J, Hu Z, Nie X, Cai G. Inflammation accelerates copper-mediated cytotoxicity through induction of six-transmembrane epithelial antigens of prostate 4 expression. Immunol Cell Biol 2021; 99:392-402. [PMID: 33179273 DOI: 10.1111/imcb.12427] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/24/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
Copper is an essential trace metal, but imbalance in copper homeostasis can induce oxidative damage. Inflammation is a fundamental element of various pulmonary diseases. Although a positive relationship between copper and chronic pulmonary diseases has been reported, the underlying reasons are still not clear. The copper level in the sputum of patients with various pulmonary diseases was measured. An inflammatory model was established to evaluate the impact of inflammation on copper uptake in the lung. We found that the level of sputum copper was increased in patients with various pulmonary diseases, especially chronic obstructive pulmonary disease and asthma. Then, we confirmed that mice with pulmonary inflammation were susceptible to copper-mediated oxidative damage because of copper overload in lung tissue. Further investigation demonstrated that interleukin (IL)-17 and tumor necrosis factor (TNF)-α exerted synergistic effects in airway epithelial cells by upregulating the expression of six-transmembrane epithelial antigens of prostate 4 (STEAP4), a metalloreductase that reduces extracellular copper ions from the cupric state to the cuprous state and facilitates copper uptake. Inhibition of STEAP4 decreased the copper uptake of cells and inhibited copper-mediated oxidative damage. Moreover, we demonstrated that the upregulation of STEAP4 by IL-17 and TNF-α was largely dependent on TNF receptor-associated factor 4 (TRAF4). Traf4-/- mice were resistant to copper-mediated oxidative damage. Our data suggest a novel IL-17/TNF-α-TRAF4-STEAP4 axis that regulates copper homeostasis.
Collapse
Affiliation(s)
- Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Beiying Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Minghui Xue
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Jiafei Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Zhenli Hu
- Department of Respiratory Diseases, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xiaomeng Nie
- Department of Respiratory Diseases, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Gang Cai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| |
Collapse
|
32
|
Abstract
Copper (Cu) is an essential metal for bacterial physiology but in excess it is bacteriotoxic. To limit Cu levels in the cytoplasm, most bacteria possess a transcriptionally responsive system for Cu export. In the Gram-positive human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]), this system is encoded by the copYAZ operon. This study demonstrates that although the site of GAS infection represents a Cu-rich environment, inactivation of the copA Cu efflux gene does not reduce virulence in a mouse model of invasive disease. In vitro, Cu treatment leads to multiple observable phenotypes, including defects in growth and viability, decreased fermentation, inhibition of glyceraldehyde-3-phosphate dehydrogenase (GapA) activity, and misregulation of metal homeostasis, likely as a consequence of mismetalation of noncognate metal-binding sites by Cu. Surprisingly, the onset of these effects is delayed by ∼4 h even though expression of copZ is upregulated immediately upon exposure to Cu. Further biochemical investigations show that the onset of all phenotypes coincides with depletion of intracellular glutathione (GSH). Supplementation with extracellular GSH replenishes the intracellular pool of this thiol and suppresses all the observable effects of Cu treatment. These results indicate that GSH buffers excess intracellular Cu when the transcriptionally responsive Cu export system is overwhelmed. Thus, while the copYAZ operon is responsible for Cu homeostasis, GSH has a role in Cu tolerance and allows bacteria to maintain metabolism even in the presence of an excess of this metal ion.IMPORTANCE The control of intracellular metal availability is fundamental to bacterial physiology. In the case of copper (Cu), it has been established that rising intracellular Cu levels eventually fill the metal-sensing site of the endogenous Cu-sensing transcriptional regulator, which in turn induces transcription of a copper export pump. This response caps intracellular Cu availability below a well-defined threshold and prevents Cu toxicity. Glutathione, abundant in many bacteria, is known to bind Cu and has long been assumed to contribute to bacterial Cu handling. However, there is some ambiguity since neither its biosynthesis nor uptake is Cu-regulated. Furthermore, there is little experimental support for this physiological role of glutathione beyond measuring growth of glutathione-deficient mutants in the presence of Cu. Our work with group A Streptococcus provides new evidence that glutathione increases the threshold of intracellular Cu availability that can be tolerated by bacteria and thus advances fundamental understanding of bacterial Cu handling.
Collapse
|
33
|
Saenkham P, Ritter M, Donati GL, Subashchandrabose S. Copper primes adaptation of uropathogenic Escherichia coli to superoxide stress by activating superoxide dismutases. PLoS Pathog 2020; 16:e1008856. [PMID: 32845936 PMCID: PMC7478841 DOI: 10.1371/journal.ppat.1008856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/08/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Copper and superoxide are used by the phagocytes to kill bacteria. Copper is a host effector encountered by uropathogenic Escherichia coli (UPEC) during urinary tract infection in a non-human primate model, and in humans. UPEC is exposed to higher levels of copper in the gut prior to entering the urinary tract. Effects of pre-exposure to copper on bacterial killing by superoxide has not been reported. We hypothesized that copper-replete E. coli is more sensitive to killing by superoxide in vitro, and in activated macrophages. We utilized wild-type UPEC strain CFT073, and its isogenic mutants lacking copper efflux systems, superoxide dismutases (SODs), regulators of a superoxide dismutase, and complemented mutants to address this question. Surprisingly, our results reveal that copper protects UPEC against killing by superoxide in vitro. This copper-dependent protection was amplified in the mutants lacking copper efflux systems. Increased levels of copper and manganese were detected in UPEC exposed to sublethal concentration of copper. Copper activated the transcription of sodA in a SoxR- and SoxS-dependent manner resulting in enhanced levels of SodA activity. Importantly, pre-exposure to copper increased the survival of UPEC within RAW264.7 and bone marrow-derived murine macrophages. Loss of SodA, but not SodB or SodC, in UPEC obliterated copper-dependent protection from superoxide in vitro, and from killing within macrophages. Collectively, our results suggest a model in which sublethal levels of copper trigger the activation of SodA and SodC through independent mechanisms that converge to promote the survival of UPEC from killing by superoxide. A major implication of our findings is that bacteria colonizing copper-rich milieus are primed for efficient detoxification of superoxide.
Collapse
Affiliation(s)
- Panatda Saenkham
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Matthew Ritter
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - George L. Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Köckritz-Blickwede M, de la Fuente-Nunez C, O'Neil DA, Angeles-Boza AM. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front Cell Infect Microbiol 2020; 10:326. [PMID: 32733816 PMCID: PMC7358464 DOI: 10.3389/fcimb.2020.00326] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
During the development of antimicrobial peptides (AMP) as potential therapeutics, antimicrobial susceptibility testing (AST) stands as an essential part of the process in identification and optimisation of candidate AMP. Standard methods for AST, developed almost 60 years ago for testing conventional antibiotics, are not necessarily fit for purpose when it comes to determining the susceptibility of microorganisms to AMP. Without careful consideration of the parameters comprising AST there is a risk of failing to identify novel antimicrobials at a time when antimicrobial resistance (AMR) is leading the planet toward a post-antibiotic era. More physiologically/clinically relevant AST will allow better determination of the preclinical activity of drug candidates and allow the identification of lead compounds. An important consideration is the efficacy of AMP in biological matrices replicating sites of infection, e.g., blood/plasma/serum, lung bronchiolar lavage fluid/sputum, urine, biofilms, etc., as this will likely be more predictive of clinical efficacy. Additionally, specific AST for different target microorganisms may help to better predict efficacy of AMP in specific infections. In this manuscript, we describe what we believe are the key considerations for AST of AMP and hope that this information can better guide the preclinical development of AMP toward becoming a new generation of urgently needed antimicrobials.
Collapse
Affiliation(s)
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Searle S. Duay
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| | - Emma Lovie
- NovaBiotics Ltd, Aberdeen, United Kingdom
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Alfredo M. Angeles-Boza
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
35
|
Giachino A, Waldron KJ. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol Microbiol 2020; 114:377-390. [DOI: 10.1111/mmi.14522] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Andrea Giachino
- Biosciences Institute Faculty of Medical Sciences Newcastle University Newcastle upon Tyne UK
| | - Kevin J. Waldron
- Biosciences Institute Faculty of Medical Sciences Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
36
|
Tarrant E, P Riboldi G, McIlvin MR, Stevenson J, Barwinska-Sendra A, Stewart LJ, Saito MA, Waldron KJ. Copper stress in Staphylococcus aureus leads to adaptive changes in central carbon metabolism. Metallomics 2020; 11:183-200. [PMID: 30443649 PMCID: PMC6350627 DOI: 10.1039/c8mt00239h] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Copper toxicity has been a long-term selection pressure on bacteria due to its presence in the environment and its use as an antimicrobial agent by grazing protozoa, by phagocytic cells of the immune system, and in man-made medical and commercial products. There is recent evidence that exposure to increased copper stress may have been a key driver in the evolution and spread of methicillin-resistant Staphylococcus aureus, a globally important pathogen that causes significant mortality and morbidity worldwide. Yet it is unclear how S. aureus physiology is affected by copper stress or how it adapts in order to be able to grow in the presence of excess copper. Here, we have determined quantitatively how S. aureus alters its proteome during growth under copper stress conditions, comparing this adaptive response in two different types of growth regime. We found that the adaptive response involves induction of the conserved copper detoxification system as well as induction of enzymes of central carbon metabolism, with only limited induction of proteins involved in the oxidative stress response. Further, we identified a protein that binds copper inside S. aureus cells when stressed by copper excess. This copper-binding enzyme, a glyceraldehyde-3-phosphate dehydrogenase essential for glycolysis, is inhibited by copper in vitro and inside S. aureus cells. Together, our data demonstrate that copper stress leads to the inhibition of glycolysis in S. aureus, and that the bacterium adapts to this stress by altering its central carbon utilisation pathways.
Collapse
Affiliation(s)
- Emma Tarrant
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Nielsen TK, Petersen NA, Stærk K, Grønnemose RB, Palarasah Y, Nielsen LF, Kolmos HJ, Andersen TE, Lund L. A Porcine Model for Urinary Tract Infection. Front Microbiol 2019; 10:2564. [PMID: 31824442 PMCID: PMC6882375 DOI: 10.3389/fmicb.2019.02564] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Urinary tract infection (UTI) is the most common bacterial infectious disease with a high frequency of recurrence and the leading cause of septicemia. In vivo experimentation has contributed significantly to the present-day knowledge on UTI pathogenesis. This research has traditionally been based on murine models of UTI. Occasional conflicting results between UTI in mice and humans and increasing skepticism toward small rodent models in general warrant the need of novel large-animal infection models that better resemble the anatomy and physiology of humans, and thus better mimic the course of infection in humans. Here, we report, to our knowledge, the first large-animal model of cystitis. The model is based on pigs, and the protocol supports the establishment of persistent, non-ascending infection in this animal and is established without invasive surgical procedures, pain, and discomfort for the animal. The course of infection is monitored by cystoscopy, microscopy of bladder biopsies, and biochemical analysis of urine and blood samples. At termination, harvested whole bladders from infected pigs are analyzed for microbiological colonization using microscopy, histology, and viable bacterial counts. The model is a useful tool in future studies of UTI pathogenesis and opens up novel possibilities to bridge the current knowledge obtained from small-animal UTI models to UTI pathogenesis in humans.
Collapse
Affiliation(s)
- Thomas Kastberg Nielsen
- Research Unit of Urology, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Nicky Anúel Petersen
- Research Unit of Urology, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Kristian Stærk
- Research Unit of Clinical Microbiology, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Rasmus Birkholm Grønnemose
- Research Unit of Clinical Microbiology, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation, University of Southern Denmark, Odense, Denmark
| | | | - Hans Jørn Kolmos
- Research Unit of Clinical Microbiology, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Thomas Emil Andersen
- Research Unit of Clinical Microbiology, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Lars Lund
- Research Unit of Urology, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
38
|
Zeng HL, Liu CWB, Lu J, Wang X, Cheng L. Analysis of urinary trace element levels in general population of Wuhan in central China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27823-27831. [PMID: 31342348 DOI: 10.1007/s11356-019-05973-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Trace element distribution in the human body varies across regions and countries due to their different living environment and lifestyle. Thus, it is of great significance to investigate the reference level of trace element in a specific population. Wuhan is the largest metropolitan area in central China with highly developed heavy industries. This study aimed at determining the reference urinary distribution in general populations of Wuhan for nine trace elements (Cr, Mn, Cu, As, Se, Cd, Hg, Tl, Pb), and analyzed their associations with age, sex, and the kidney function. In total, 226 healthy adults not exposed to these trace elements were recruited, and the first-morning urine specimens were analyzed by using ICP-MS-based method. Our results showed higher urinary levels for As and Cd in Wuhan population when compared with other countries, while other element levels were almost equivalent. Sex difference existed for urinary Cu, Mn, As, Tl, and Pb. And urinary Cd, Tl, and Pb levels were associated with the glomerular filtration rate. Almost all these urinary elements showed significant inter-correlations, especially for Cu but except for Mn. This study provides systematic information regarding urinary trace element levels in residents of Wuhan in central China, and shall be of importance for future environmental and occupational biomonitoring.
Collapse
Affiliation(s)
- Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Chang-Wen-Bo Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xu Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
39
|
Agbale CM, Sarfo JK, Galyuon IK, Juliano SA, Silva GGO, Buccini DF, Cardoso MH, Torres MDT, Angeles-Boza AM, de la Fuente-Nunez C, Franco OL. Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs. Biochemistry 2019; 58:3802-3812. [PMID: 31448597 DOI: 10.1021/acs.biochem.9b00440] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antimicrobial peptides (AMPs) represent alternative strategies to combat the global health problem of antibiotic resistance. However, naturally occurring AMPs are generally not sufficiently active for use as antibiotics. Optimized synthetic versions incorporating additional design principles are needed. Here, we engineered amino-terminal Cu(II) and Ni(II) (ATCUN) binding motifs, which can enhance biological function, into the native sequence of two AMPs, CM15 and citropin1.1. The incorporation of metal-binding motifs modulated the antimicrobial activity of synthetic peptides against a panel of carbapenem-resistant enterococci (CRE) bacteria, including carbapenem-resistant Klebsiella pneumoniae (KpC+) and Escherichia coli (KpC+). Activity modulation depended on the type of ATCUN variant utilized. Membrane permeability assays revealed that the in silico selected lead template, CM15, and its ATCUN analogs increased bacterial cell death. Mass spectrometry, circular dichroism, and molecular dynamics simulations indicated that coordinating ATCUN derivatives with Cu(II) ions did not increase the helical tendencies of the AMPs. CM15 ATCUN variants, when combined with Meropenem, streptomycin, or chloramphenicol, showed synergistic effects against E. coli (KpC+ 1812446) biofilms. Motif addition also reduced the hemolytic activity of the wild-type AMP and improved the survival rate of mice in a systemic infection model. The dependence of these bioactivities on the particular amino acids of the ATCUN motif highlights the possible use of size, charge, and hydrophobicity to fine-tune AMP biological function. Our data indicate that incorporating metal-binding motifs into peptide sequences leads to synthetic variants with modified biological properties. These principles may be applied to augment the activities of other peptide sequences.
Collapse
Affiliation(s)
- Caleb M Agbale
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil.,Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana.,Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana
| | - Justice K Sarfo
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil
| | - Isaac K Galyuon
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences , University of Cape Coast , Cape Coast , Ghana
| | - Samuel A Juliano
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Gislaine G O Silva
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil
| | - Danieli F Buccini
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil
| | - Marlon H Cardoso
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil.,Centro de Análises de Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia , Universidade Católica de Brasília , Brasília , DF 70790-160 , Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina , Universidade de Brasília , Brasília , DF 70910-900 , Brazil
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, and Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States.,Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, and Department of Bioengineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Octavio L Franco
- S-INOVA Biotech, Programa de Pós-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Mato Grosso Do Sul, MS 79117-900 , Brazil.,Centro de Análises de Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia , Universidade Católica de Brasília , Brasília , DF 70790-160 , Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina , Universidade de Brasília , Brasília , DF 70910-900 , Brazil
| |
Collapse
|
40
|
Totten AH, Crawford CL, Dalecki AG, Xiao L, Wolschendorf F, Atkinson TP. Differential Susceptibility of Mycoplasma and Ureaplasma Species to Compound-Enhanced Copper Toxicity. Front Microbiol 2019; 10:1720. [PMID: 31417517 PMCID: PMC6682632 DOI: 10.3389/fmicb.2019.01720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/12/2019] [Indexed: 12/04/2022] Open
Abstract
Rationale Mycoplasmas represent important etiologic agents of many human diseases. Due to increasing antimicrobial resistance and slow rate of novel discovery, unconventional methods of drug discovery are necessary. Copper ions are utilized in host microbial killing, and bacteria must regulate intracellular Cu concentrations to avoid toxicity. We hypothesized that human mollicutes may have susceptibility to Cu-induced toxicity, and compounds that augment copper-dependent killing. Methods Mycoplasma pneumoniae (Mpn), Ureaplasma parvum (Up), Ureaplasma urealyticum (Uu), and Mycoplasma hominis (Mh) were exposed to CuSO4 to determine minimal inhibitory concentrations (MICs). Once inhibitory concentrations had been determined, bacteria were treated with an FDA-approved drug disulfiram (DSF), glyoxal bis(4-methyl-3-thiosemicarbazone) (GTSM), and 2,9-dimethyl-1,10-phenanthroline (neocuproine), with or without Cu2+, to determine compound MICs. Results Ureaplasma species and Mh were able to tolerate 30–60 μM CuSO4, while Mpn tolerated over 10-fold higher concentrations (>1 mM). GTSM inhibited growth of all four organisms, but was unaffected by Cu2+ addition. Inhibition by GTSM was reduced by addition of the cell-impermeant Cu chelator, bathocuproine disulfonate (BCS). Neocuproine exhibited Cu-dependent growth inhibition of all organisms. DSF exhibited Cu-dependent growth inhibition against Mh at low micromolar concentrations, and at intermediate concentrations for Mpn. Conclusion MICs for CuSO4 differ widely among human mollicutes, with higher MICs for Mpn compared to Mh, Uu, and Up. DSF and Neocuproine exhibit Cu-dependent inhibition of mollicutes with copper concentrations between 25 and 50 μM. GTSM has copper-dependent anti-microbial activity at low levels of copper. Drug enhanced copper toxicity is a promising avenue for novel therapeutic development research with Mycoplasma and Ureaplasma species.
Collapse
Affiliation(s)
- Arthur H Totten
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Cameron L Crawford
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alex G Dalecki
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Li Xiao
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Frank Wolschendorf
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Thomas P Atkinson
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
41
|
Uropathogenic Escherichia coli employs both evasion and resistance to subvert innate immune-mediated zinc toxicity for dissemination. Proc Natl Acad Sci U S A 2019; 116:6341-6350. [PMID: 30846555 PMCID: PMC6442554 DOI: 10.1073/pnas.1820870116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is responsible for most urinary tract infections and is also a frequent cause of sepsis, thus necessitating an understanding of UPEC-mediated subversion of innate immunity. The role of zinc in the innate immune response against UPEC infection, and whether this pathogen counters this response, has not been examined. Here we demonstrate, both in vitro and in vivo, that UPEC both evades and resists innate immune-mediated zinc toxicity to persist and disseminate within the host. Moreover, we have defined the set of UPEC genes conferring zinc resistance and have developed highly selective E. coli reporter systems to track zinc toxicity. These innovative approaches substantially enhance our understanding of immune-mediated metal ion toxicity and bacterial pathogenesis. Toll-like receptor (TLR)-inducible zinc toxicity is a recently described macrophage antimicrobial response used against bacterial pathogens. Here we investigated deployment of this pathway against uropathogenic Escherichia coli (UPEC), the major cause of urinary tract infections. Primary human macrophages subjected EC958, a representative strain of the globally disseminated multidrug-resistant UPEC ST131 clone, to zinc stress. We therefore used transposon-directed insertion site sequencing to identify the complete set of UPEC genes conferring protection against zinc toxicity. Surprisingly, zinc-susceptible EC958 mutants were not compromised for intramacrophage survival, whereas corresponding mutants in the nonpathogenic E. coli K-12 strain MG1655 displayed significantly reduced intracellular bacterial loads within human macrophages. To investigate whether the intramacrophage zinc stress response of EC958 reflected the response of only a subpopulation of bacteria, we generated and validated reporter systems as highly specific sensors of zinc stress. Using these tools we show that, in contrast to MG1655, the majority of intramacrophage EC958 evades the zinc toxicity response, enabling survival within these cells. In addition, EC958 has a higher tolerance to zinc than MG1655, with this likely being important for survival of the minor subset of UPEC cells exposed to innate immune-mediated zinc stress. Indeed, analysis of zinc stress reporter strains and zinc-sensitive mutants in an intraperitoneal challenge model in mice revealed that EC958 employs both evasion and resistance against zinc toxicity, enabling its dissemination to the liver and spleen. We thus demonstrate that a pathogen of global significance uses multiple mechanisms to effectively subvert innate immune-mediated zinc poisoning for systemic spread.
Collapse
|
42
|
Colomer-Winter C, Flores-Mireles AL, Baker SP, Frank KL, Lynch AJL, Hultgren SJ, Kitten T, Lemos JA. Manganese acquisition is essential for virulence of Enterococcus faecalis. PLoS Pathog 2018; 14:e1007102. [PMID: 30235334 PMCID: PMC6147510 DOI: 10.1371/journal.ppat.1007102] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/08/2018] [Indexed: 01/20/2023] Open
Abstract
Manganese (Mn) is an essential micronutrient that is not readily available to pathogens during infection due to an active host defense mechanism known as nutritional immunity. To overcome this nutrient restriction, bacteria utilize high-affinity transporters that allow them to compete with host metal-binding proteins. Despite the established role of Mn in bacterial pathogenesis, little is known about the relevance of Mn in the pathophysiology of E. faecalis. Here, we identified and characterized the major Mn acquisition systems of E. faecalis. We discovered that the ABC-type permease EfaCBA and two Nramp-type transporters, named MntH1 and MntH2, work collectively to promote cell growth under Mn-restricted conditions. The simultaneous inactivation of EfaCBA, MntH1 and MntH2 (ΔefaΔmntH1ΔmntH2 strain) led to drastic reductions (>95%) in cellular Mn content, severe growth defects in body fluids (serum and urine) ex vivo, significant loss of virulence in Galleria mellonella, and virtually complete loss of virulence in rabbit endocarditis and murine catheter-associated urinary tract infection (CAUTI) models. Despite the functional redundancy of EfaCBA, MntH1 and MntH2 under in vitro or ex vivo conditions and in the invertebrate model, dual inactivation of efaCBA and mntH2 (ΔefaΔmntH2 strain) was sufficient to prompt maximal sensitivity to calprotectin, a Mn- and Zn-chelating host antimicrobial protein, and for the loss of virulence in mammalian models. Interestingly, EfaCBA appears to play a prominent role during systemic infection, whereas MntH2 was more important during CAUTI. The different roles of EfaCBA and MntH2 in these sites could be attributed, at least in part, to the differential expression of efaA and mntH2 in cells isolated from hearts or from bladders. Collectively, this study demonstrates that Mn acquisition is essential for the pathogenesis of E. faecalis and validates Mn uptake systems as promising targets for the development of new antimicrobials.
Collapse
Affiliation(s)
- Cristina Colomer-Winter
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Ana L. Flores-Mireles
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shannon P. Baker
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kristi L. Frank
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aaron J. L. Lynch
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| |
Collapse
|
43
|
Robinson AE, Heffernan JR, Henderson JP. The iron hand of uropathogenic Escherichia coli: the role of transition metal control in virulence. Future Microbiol 2018; 13:745-756. [PMID: 29870278 DOI: 10.2217/fmb-2017-0295] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The role of iron as a critical nutrient in pathogenic bacteria is widely regarded as having driven selection for iron acquisition systems among uropathogenic Escherichia coli (UPEC) isolates. Carriage of multiple transition metal acquisition systems in UPEC suggests that the human urinary tract manipulates metal-ion availability in many ways to resist infection. For siderophore systems in particular, recent studies have identified new roles for siderophore copper binding as well as production of siderophore-like inhibitors of iron uptake by other, competing bacterial species. Among these is a process of nutritional passivation of metal ions, in which uropathogens access these vital nutrients while simultaneously protecting themselves from their toxic potential. Here, we review these new findings within the current understanding of UPEC transition metal acquisition.
Collapse
Affiliation(s)
- Anne E Robinson
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James R Heffernan
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey P Henderson
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
44
|
Purves J, Thomas J, Riboldi GP, Zapotoczna M, Tarrant E, Andrew PW, Londoño A, Planet PJ, Geoghegan JA, Waldron KJ, Morrissey JA. A horizontally gene transferred copper resistance locus confers hyper-resistance to antibacterial copper toxicity and enables survival of community acquired methicillin resistant Staphylococcus aureus USA300 in macrophages. Environ Microbiol 2018. [PMID: 29521441 PMCID: PMC5947656 DOI: 10.1111/1462-2920.14088] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Excess copper is highly toxic and forms part of the host innate immune system's antibacterial arsenal, accumulating at sites of infection and acting within macrophages to kill engulfed pathogens. We show for the first time that a novel, horizontally gene transferred copper resistance locus (copXL), uniquely associated with the SCCmec elements of the highly virulent, epidemic, community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) USA300, confers copper hyper-resistance. These genes are additional to existing core genome copper resistance mechanisms, and are not found in typical S. aureus lineages, but are increasingly identified in emerging pathogenic isolates. Our data show that CopX, a putative P1B-3 -ATPase efflux transporter, and CopL, a novel lipoprotein, confer copper hyper-resistance compared to typical S. aureus strains. The copXL genes form an operon that is tightly repressed in low copper environments by the copper regulator CsoR. Significantly, CopX and CopL are important for S. aureus USA300 intracellular survival within macrophages. Therefore, the emergence of new S. aureus clones with the copXL locus has significant implications for public health because these genes confer increased resistance to antibacterial copper toxicity, enhancing bacterial fitness by altering S. aureus interaction with innate immunity.
Collapse
Affiliation(s)
- Joanne Purves
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Jamie Thomas
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Gustavo P Riboldi
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Marta Zapotoczna
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Ireland
| | - Emma Tarrant
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Peter W Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester, LE1 9HN, UK
| | | | - Paul J Planet
- Department of Pediatrics, Columbia University, New York, NY, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan A Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Ireland
| | - Kevin J Waldron
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Julie A Morrissey
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
45
|
Copper Ions and Coordination Complexes as Novel Carbapenem Adjuvants. Antimicrob Agents Chemother 2018; 62:AAC.02280-17. [PMID: 29133551 DOI: 10.1128/aac.02280-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae are urgent threats to global human health. These organisms produce β-lactamases with carbapenemase activity, such as the metallo-β-lactamase NDM-1, which is notable due to its association with mobile genetic elements and the lack of a clinically useful inhibitor. Here we examined the ability of copper to inhibit the activity of NDM-1 and explored the potential of a copper coordination complex as a mechanism to efficiently deliver copper as an adjuvant in clinical therapeutics. An NDM-positive Escherichia coli isolate, MS6192, was cultured from the urine of a patient with a urinary tract infection. MS6192 was resistant to antibiotics from multiple classes, including diverse β-lactams (penicillins, cephalosporins, and carbapenems), aminoglycosides, and fluoroquinolones. In the presence of copper (range, 0 to 2 mM), however, the susceptibility of MS6192 to the carbapenems ertapenem and meropenem increased markedly. In standard checkerboard assays, copper decreased the MICs of ertapenem and meropenem against MS6192 in a dose-dependent manner, suggesting a synergistic mode of action. To examine the inhibitory effect of copper in the absence of other β-lactamases, the blaNDM-1 gene from MS6192 was cloned and expressed in a recombinant E. coli K-12 strain. Analysis of cell extracts prepared from this strain revealed that copper directly inhibited NDM-1 activity, which was confirmed using purified recombinant NDM-1. Finally, delivery of copper at a low concentration of 10 μM by using the FDA-approved coordination complex copper-pyrithione sensitized MS6192 to ertapenem and meropenem in a synergistic manner. Overall, this work demonstrates the potential use of copper coordination complexes as novel carbapenemase adjuvants.
Collapse
|
46
|
Bennett MR, Ma Q, Ying J, Devarajan P, Brunner H. Effects of age and gender on reference levels of biomarkers comprising the pediatric Renal Activity Index for Lupus Nephritis (p-RAIL). Pediatr Rheumatol Online J 2017; 15:74. [PMID: 29029629 PMCID: PMC5640910 DOI: 10.1186/s12969-017-0202-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Systemic Lupus Erythematosus (SLE) is a multisystem autoimmune disease that disproportionately effects women and children of minorities. Renal involvement (lupus nephritis, or LN) occurs in up to 80% of children with SLE and is a major determinant of poor prognosis. We have developed a non-invasive pediatric Renal Activity Index for Lupus (p-RAIL) that consists of laboratory measures that reflect histologic LN activity. These markers are neutrophil gelatinase associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), monocyte chemotactic protein (MCP-1), adiponectin (APN), ceruloplasmin (CP) and hemopexin (HPX). A major gap in the knowledge base and a barrier to clinical utility is how these markers behave in healthy children. We set out to establish a reference range for the p-RAIL markers in a population of healthy children, and to determine if levels of these markers fluctuate with age or gender. METHODS Urine was collected from 368 healthy children presenting to Cincinnati Children's primary care clinic for well child visits and assayed for NGAL, KIM-1, MCP-1, APN, CP and HPX using commercially available kits or assay materials. RESULTS Specimens were grouped by age (0-5 years (n = 94); 5-10 (n = 89); 10-15 (n = 93); 15-20 (n = 91)) and gender (M = 184, F = 184). For age and gender comparisons, values were log transformed prior to analysis. The medians (minimums, maximums) of each marker in the combined population were as follows: NGAL 6.65 (0.004, 391.52) ng/ml, KIM-1416.84 (6.22, 2512.43) pg/ml, MCP-1209.36 (9.49, 2237.06) pg/ml, APN 8.05 (0.07, 124.50) ng/ml, CP 465.15 (8.02, 7827.00) ng/ml, HPX 588.70 (6.85, 17,658.40)ng/ml. All p-RAIL biomarkers but adiponectin had weak but significant positive correlations with age, with NGAL being the strongest (r = 0.33, p < 0.001). For gender comparisons, NGAL, CP and HPX were elevated in females vs males (86%, p < 0.0001; 3%, p = 0.007, and 5%, p = 0.0005 elevation of the log transformed mean, respectively). CONCLUSIONS We have established a reference range for the p-RAIL biomarkers and have highlighted age and gender differences. This information is essential for rational interpretation of studies and clinical trials utilizing the p-RAIL algorithm.
Collapse
Affiliation(s)
- Michael R. Bennett
- 0000 0000 9025 8099grid.239573.9Division Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Qing Ma
- 0000 0000 9025 8099grid.239573.9Division Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Jun Ying
- 0000 0001 2179 9593grid.24827.3bEnvironmental Health, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Prasad Devarajan
- 0000 0000 9025 8099grid.239573.9Division Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Hermine Brunner
- 0000 0000 9025 8099grid.239573.9Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| |
Collapse
|
47
|
Host and Pathogen Copper-Transporting P-Type ATPases Function Antagonistically during Salmonella Infection. Infect Immun 2017; 85:IAI.00351-17. [PMID: 28652309 DOI: 10.1128/iai.00351-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/14/2017] [Indexed: 12/29/2022] Open
Abstract
Copper is an essential yet potentially toxic trace element that is required by all aerobic organisms. A key regulator of copper homeostasis in mammalian cells is the copper-transporting P-type ATPase ATP7A, which mediates copper transport from the cytoplasm into the secretory pathway, as well as copper export across the plasma membrane. Previous studies have shown that ATP7A-dependent copper transport is required for killing phagocytosed Escherichia coli in a cultured macrophage cell line. In this investigation, we expanded on these studies by generating Atp7aLysMcre mice, in which the Atp7a gene was specifically deleted in cells of the myeloid lineage, including macrophages. Primary macrophages isolated from Atp7aLysMcre mice exhibit decreased copper transport into phagosomal compartments and a reduced ability to kill Salmonella enterica serovar Typhimurium compared to that of macrophages isolated from wild-type mice. The Atp7aLysMcre mice were also more susceptible to systemic infection by S Typhimurium than wild-type mice. Deletion of the S Typhimurium copper exporters, CopA and GolT, was found to decrease infection in wild-type mice but not in the Atp7aLysMcre mice. These studies suggest that ATP7A-dependent copper transport into the phagosome mediates host defense against S Typhimurium, which is counteracted by copper export from the bacteria via CopA and GolT. These findings reveal unique and opposing functions for copper transporters of the host and pathogen during infection.
Collapse
|
48
|
Armbruster CE, Forsyth-DeOrnellas V, Johnson AO, Smith SN, Zhao L, Wu W, Mobley HLT. Genome-wide transposon mutagenesis of Proteus mirabilis: Essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLoS Pathog 2017; 13:e1006434. [PMID: 28614382 PMCID: PMC5484520 DOI: 10.1371/journal.ppat.1006434] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/26/2017] [Accepted: 05/25/2017] [Indexed: 12/31/2022] Open
Abstract
The Gram-negative bacterium Proteus mirabilis is a leading cause of catheter-associated urinary tract infections (CAUTIs), which are often polymicrobial. Numerous prior studies have uncovered virulence factors for P. mirabilis pathogenicity in a murine model of ascending UTI, but little is known concerning pathogenesis during CAUTI or polymicrobial infection. In this study, we utilized five pools of 10,000 transposon mutants each and transposon insertion-site sequencing (Tn-Seq) to identify the full arsenal of P. mirabilis HI4320 fitness factors for single-species versus polymicrobial CAUTI with Providencia stuartii BE2467. 436 genes in the input pools lacked transposon insertions and were therefore concluded to be essential for P. mirabilis growth in rich medium. 629 genes were identified as P. mirabilis fitness factors during single-species CAUTI. Tn-Seq from coinfection with P. stuartii revealed 217/629 (35%) of the same genes as identified by single-species Tn-Seq, and 1353 additional factors that specifically contribute to colonization during coinfection. Mutants were constructed in eight genes of interest to validate the initial screen: 7/8 (88%) mutants exhibited the expected phenotypes for single-species CAUTI, and 3/3 (100%) validated the expected phenotypes for polymicrobial CAUTI. This approach provided validation of numerous previously described P. mirabilis fitness determinants from an ascending model of UTI, the discovery of novel fitness determinants specifically for CAUTI, and a stringent assessment of how polymicrobial infection influences fitness requirements. For instance, we describe a requirement for branched-chain amino acid biosynthesis by P. mirabilis during coinfection due to high-affinity import of leucine by P. stuartii. Further investigation of genes and pathways that provide a competitive advantage during both single-species and polymicrobial CAUTI will likely provide robust targets for therapeutic intervention to reduce P. mirabilis CAUTI incidence and severity. Proteus mirabilis is a common cause of single-species and polymicrobial catheter-associated urinary tract infections (CAUTIs). Prior studies have uncovered P. mirabilis virulence factors for single-species ascending UTI, but little is known concerning pathogenesis during CAUTI or polymicrobial infection. Using transposon insertion-site sequencing (Tn-Seq), we performed a global assessment of P. mirabilis fitness factors for CAUTI while simultaneously determining how coinfection with another CAUTI pathogen, Providencia stuartii, alters P. mirabilis fitness requirements. This approach provides six important contributions to the field: 1) the first global estimation of P. mirabilis genes essential for growth, 2) validation of a role for known P. mirabilis fitness factors during CAUTI, 3) identification of novel fitness factors, 4) identification of core fitness factors for both single-species and polymicrobial CAUTI, 5) identification of single-species fitness factors that are complemented during polymicrobial infection, and 6) identification of factors that only provide a competitive advantage during polymicrobial infection. We further demonstrate that the CAUTI model can be used to examine the interplay between fitness requirements of both species during coinfection. Investigation of fitness requirements for other pathogens during single-species and polymicrobial CAUTI will elucidate complex interactions that contribute to disease severity and uncover conserved targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chelsie E. Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail: (CEA); (HLTM)
| | - Valerie Forsyth-DeOrnellas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alexandra O. Johnson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lili Zhao
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Weisheng Wu
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (CEA); (HLTM)
| |
Collapse
|