1
|
Lee Y, Jin Y, Wu W, Ha UH. Elongation factor-G1A identified as a novel effector protein translocated into cells and a key modulator of Pseudomonas aeruginosa physiology and host cellular responses. Microb Pathog 2025; 205:107720. [PMID: 40403987 DOI: 10.1016/j.micpath.2025.107720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 05/07/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Pseudomonas aeruginosa has two closely related elongation factors, EF-G1A and EF-G1B, which share 90 % sequence similarity. Despite their high sequence homology, the role of EF-G in P. aeruginosa pathogenesis remains not fully understood. In our study, we found that compared to EF-G1B, EF-G1A expression reduced bacterial growth and twitching motility, while increasing swimming motility. Notably, EF-G1A was translocated into host cells in a T6SS-dependent manner. This translocation was significantly reduced, though not completely abolished, in strains with mutations in both the T6SS spike protein VgrG1a and the tube protein Hcp1, suggesting that while EF-G1A translocation is influenced by T6SS, additional components are also involved. Moreover, EF-G1A expression reduced T3SS-mediated morphological alterations, as evidenced by the downregulation of T3SS effectors such as ExoS and ExoT. EF-G1A was also found to suppress activation of the NF-κB signaling pathway, leading to decreased production of inflammatory cytokines including IL-6, IL-8, and TNFα. These findings highlight EF-G1A as a key modulator, affecting both P. aeruginosa physiology and host cellular responses, thereby providing new insights into the complex role of EF-G1A in bacterial pathogenesis.
Collapse
Affiliation(s)
- Yeji Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin, 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin, 300071, China
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
2
|
Lukasiewicz AJ, Leistra AN, Hoefner L, Monzon E, Gode CJ, Zorn BT, Janssen KH, Yahr TL, Wolfgang MC, Contreras LM. Thermodynamic modeling of RsmA - mRNA interactions capture novel direct binding across the Pseudomonas aeruginosa transcriptome. Front Mol Biosci 2025; 12:1493891. [PMID: 40051501 PMCID: PMC11882435 DOI: 10.3389/fmolb.2025.1493891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Pseudomonas aeruginosa (PA) is a ubiquitous, Gram-negative, bacteria that can attribute its survivability to numerous sensing and signaling pathways; conferring fitness due to speed of response. Post-transcriptional regulation is an energy efficient approach to quickly shift gene expression in response to the environment. The conserved post-transcriptional regulator RsmA is involved in regulating translation of genes involved in pathways that contribute to virulence, metabolism, and antibiotic resistance. Prior high-throughput approaches to map the full regulatory landscape of RsmA have estimated a target pool of approximately 500 genes; however, these approaches have been limited to a narrow range of growth phase, strain, and media conditions. Computational modeling presents a condition-independent approach to generating predictions for binding between the RsmA protein and highest affinity mRNAs. In this study, we improve upon a two-state thermodynamic model to predict the likelihood of RsmA binding to the 5' UTR sequence of genes present in the PA genome. Our modeling approach predicts 1043 direct RsmA-mRNA binding interactions, including 457 novel mRNA targets. We then perform GO term enrichment tests on our predictions that reveal significant enrichment for DNA binding transcriptional regulators. In addition, quorum sensing, biofilm formation, and two-component signaling pathways were represented in KEGG enrichment analysis. We confirm binding predictions using in vitro binding assays, and regulatory effects using in vivo translational reporters. These reveal RsmA binding and regulation of a broader number of genes not previously reported. An important new observation of this work is the direct regulation of several novel mRNA targets encoding for factors involved in Quorum Sensing and the Type IV Secretion system, such as rsaL and mvaT. Our study demonstrates the utility of thermodynamic modeling for predicting interactions independent of complex and environmentally-sensitive systems, specifically for profiling the post-transcriptional regulator RsmA. Our experimental validation of RsmA binding to novel targets both supports our model and expands upon the pool of characterized target genes in PA. Overall, our findings demonstrate that a modeling approach can differentiate direct from indirect binding interactions and predict specific sites of binding for this global regulatory protein, thus broadening our understanding of the role of RsmA regulation in this relevant pathogen.
Collapse
Affiliation(s)
- Alexandra J. Lukasiewicz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Abigail N. Leistra
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Lily Hoefner
- Department of Biology, The University of Texas at Austin, Austin, TX, United States
| | - Erika Monzon
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Cindy J. Gode
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Bryan T. Zorn
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kayley H. Janssen
- Department of Microbiology and Immunology, University of Iowa, Iowa, IA, United States
| | - Timothy L. Yahr
- Department of Microbiology and Immunology, University of Iowa, Iowa, IA, United States
- Bellin College, Green Bay, WI, United States
| | - Matthew C. Wolfgang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
3
|
Carey CJ, Duggan N, Drabinska J, McClean S. Harnessing hypoxia: bacterial adaptation and chronic infection in cystic fibrosis. FEMS Microbiol Rev 2025; 49:fuaf018. [PMID: 40312783 PMCID: PMC12071387 DOI: 10.1093/femsre/fuaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/04/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
The exquisite ability of bacteria to adapt to their environment is essential for their capacity to colonize hostile niches. In the cystic fibrosis (CF) lung, hypoxia is among several environmental stresses that opportunistic pathogens must overcome to persist and chronically colonize. Although the role of hypoxia in the host has been widely reviewed, the impact of hypoxia on bacterial pathogens has not yet been studied extensively. This review considers the bacterial oxygen-sensing mechanisms in three species that effectively colonize the lungs of people with CF, namely Pseudomonas aeruginosa, Burkholderia cepacia complex, and Mycobacterium abscessus and draws parallels between their three proposed oxygen-sensing two-component systems: BfiSR, FixLJ, and DosRS, respectively. Moreover, each species expresses regulons that respond to hypoxia: Anr, Lxa, and DosR, and encode multiple proteins that share similar homologies and function. Many adaptations that these pathogens undergo during chronic infection, including antibiotic resistance, protease expression, or changes in motility, have parallels in the responses of the respective species to hypoxia. It is likely that exposure to hypoxia in their environmental habitats predispose these pathogens to colonization of hypoxic niches, arming them with mechanisms than enable their evasion of the immune system and establish chronic infections. Overcoming hypoxia presents a new target for therapeutic options against chronic lung infections.
Collapse
Affiliation(s)
- Ciarán J Carey
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Niamh Duggan
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Joanna Drabinska
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
4
|
Cianciulli Sesso A, Resch A, Moll I, Bläsi U, Sonnleitner E. The FinO/ProQ-like protein PA2582 impacts antimicrobial resistance in Pseudomonas aeruginosa. Front Microbiol 2024; 15:1422742. [PMID: 39011145 PMCID: PMC11247311 DOI: 10.3389/fmicb.2024.1422742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Bacteria employ small regulatory RNAs (sRNA) and/or RNA binding proteins (RBPs) to respond to environmental cues. In Enterobacteriaceae, the FinO-domain containing RBP ProQ associates with numerous sRNAs and mRNAs, impacts sRNA-mediated riboregulation or mRNA stability by binding to 5'- or 3'-untranslated regions as well as to internal stem loop structures. Global RNA-protein interaction studies and sequence comparisons identified a ProQ-like homolog (PA2582/ProQ Pae ) in Pseudomonas aeruginosa (Pae). To address the function of ProQ Pae , at first a comparative transcriptome analysis of the Pae strains PAO1 and PAO1ΔproQ was performed. This study revealed more than 100 differentially abundant transcripts, affecting a variety of cellular functions. Among these transcripts were pprA and pprB, encoding the PprA/PprB two component system, psrA, encoding a transcriptional activator of pprB, and oprI, encoding the outer membrane protein OprI. RNA co-purification experiments with Strep-tagged Pae ProQ protein corroborated an association of ProQ Pae with these transcripts. In accordance with the up-regulation of the psrA, pprA, and pprB genes in strain PAO1ΔproQ a phenotypic analysis revealed an increased susceptibility toward the aminoglycosides tobramycin and gentamicin in biofilms. Conversely, the observed down-regulation of the oprI gene in PAO1ΔproQ could be reconciled with a decreased susceptibility toward the synthetic cationic antimicrobial peptide GW-Q6. Taken together, these studies revealed that ProQ Pae is an RBP that impacts antimicrobial resistance in Pae.
Collapse
Affiliation(s)
- Anastasia Cianciulli Sesso
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Armin Resch
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Tomaś N, Myszka K, Wolko Ł. Potassium Chloride, Sodium Lactate and Sodium Citrate Impaired the Antimicrobial Resistance and Virulence of Pseudomonas aeruginosa NT06 Isolated from Fish. Molecules 2023; 28:6654. [PMID: 37764430 PMCID: PMC10536532 DOI: 10.3390/molecules28186654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Sodium chloride (NaCl) is a commonly used additive in minimally processed fish-based products. The addition of NaCl to fish products and packaging in a modified atmosphere is usually efficient with regard to limiting the occurrence of the aquatic environmental pathogen Pseudomonas aeruginosa. Given the negative effects of excess NaCl in the diet, there is a growing demand to reduce NaCl in food products with safer substituents, but the knowledge of their impact on antibiotic resistant P. aeruginosa is limited. This study aimed to evaluate the physiological and transcriptome characteristics of P. aeruginosa NT06 isolated from fish and to determine the effect of selected concentrations of alternative NaCl compounds (KCl/NaL/NaC) on the P. aeruginosa NT06 virulence phenotype and genotype. In the study, among the isolated microorganisms, P. aeruginosa NT06 showed the highest antibiotic resistance (to ampicillin, ceftriaxone, nalidixic acid, and norfloxacin) and the ability to grow at 4 °C. The Comprehensive Antibiotic Resistance Database (CARD) and the Virulence Factor Database (VFDB) revealed the presence of 24 and 134 gene products assigned to AMR and VF in the P. aeruginosa NT06 transcriptome, respectively. KCl, KCl/NaL and KCl/NaL/NaC inhibited pyocyanin biosynthesis, elastase activity, and protease activity from 40 to 77%. The above virulence phenotypic observations were confirmed via RT-qPCR analyses, which showed that all tested AMR and VF genes were the most downregulated due to KCl/NaL/NaC treatment. In conclusion, this study provides insight into the potential AMR and VF among foodborne P. aeruginosa and the possible impairment of those features by KCl, NaL, and NaC, which exert synergistic effects and can be used in minimally processed fish-based products.
Collapse
Affiliation(s)
- Natalia Tomaś
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznań, Poland
| | - Kamila Myszka
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznań, Poland
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| |
Collapse
|
6
|
Cao P, Fleming D, Moustafa DA, Dolan SK, Szymanik KH, Redman WK, Ramos A, Diggle FL, Sullivan CS, Goldberg JB, Rumbaugh KP, Whiteley M. A Pseudomonas aeruginosa small RNA regulates chronic and acute infection. Nature 2023; 618:358-364. [PMID: 37225987 PMCID: PMC10247376 DOI: 10.1038/s41586-023-06111-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
The ability to switch between different lifestyles allows bacterial pathogens to thrive in diverse ecological niches1,2. However, a molecular understanding of their lifestyle changes within the human host is lacking. Here, by directly examining bacterial gene expression in human-derived samples, we discover a gene that orchestrates the transition between chronic and acute infection in the opportunistic pathogen Pseudomonas aeruginosa. The expression level of this gene, here named sicX, is the highest of the P. aeruginosa genes expressed in human chronic wound and cystic fibrosis infections, but it is expressed at extremely low levels during standard laboratory growth. We show that sicX encodes a small RNA that is strongly induced by low-oxygen conditions and post-transcriptionally regulates anaerobic ubiquinone biosynthesis. Deletion of sicX causes P. aeruginosa to switch from a chronic to an acute lifestyle in multiple mammalian models of infection. Notably, sicX is also a biomarker for this chronic-to-acute transition, as it is the most downregulated gene when a chronic infection is dispersed to cause acute septicaemia. This work solves a decades-old question regarding the molecular basis underlying the chronic-to-acute switch in P. aeruginosa and suggests oxygen as a primary environmental driver of acute lethality.
Collapse
Affiliation(s)
- Pengbo Cao
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Derek Fleming
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dina A Moustafa
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephen K Dolan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kayla H Szymanik
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Whitni K Redman
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA
| | - Anayancy Ramos
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Frances L Diggle
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Joanna B Goldberg
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
7
|
Condinho M, Carvalho B, Cruz A, Pinto SN, Arraiano CM, Pobre V. The role of RNA regulators, quorum sensing and c-di-GMP in bacterial biofilm formation. FEBS Open Bio 2023; 13:975-991. [PMID: 35234364 PMCID: PMC10240345 DOI: 10.1002/2211-5463.13389] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Biofilms provide an ecological advantage against many environmental stressors, such as pH and temperature, making it the most common life-cycle stage for many bacteria. These protective characteristics make eradication of bacterial biofilms challenging. This is especially true in the health sector where biofilm formation on hospital or patient equipment, such as respirators, or catheters, can quickly become a source of anti-microbial resistant strains. Biofilms are complex structures encased in a self-produced polymeric matrix containing numerous components such as polysaccharides, proteins, signalling molecules, extracellular DNA and extracellular RNA. Biofilm formation is tightly controlled by several regulators, including quorum sensing (QS), cyclic diguanylate (c-di-GMP) and small non-coding RNAs (sRNAs). These three regulators in particular are fundamental in all stages of biofilm formation; in addition, their pathways overlap, and the significance of their role is strain-dependent. Currently, ribonucleases are also of interest for their potential role as biofilm regulators, and their relationships with QS, c-di-GMP and sRNAs have been investigated. This review article will focus on these four biofilm regulators (ribonucleases, QS, c-di-GMP and sRNAs) and the relationships between them.
Collapse
Affiliation(s)
- Manuel Condinho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Beatriz Carvalho
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Adriana Cruz
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Sandra N. Pinto
- iBB‐Institute for Bioengineering and Biosciences (IBB)Instituto Superior TécnicoLisboaPortugal
- i4HB‐Institute for Health and BioeconomyInstituto Superior TécnicoLisboaPortugal
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Vânia Pobre
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
8
|
Emergence of Small Colony Variants Is an Adaptive Strategy Used by Pseudomonas aeruginosa to Mitigate the Effects of Redox Imbalance. mSphere 2023; 8:e0005723. [PMID: 36853007 PMCID: PMC10117050 DOI: 10.1128/msphere.00057-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The ability to generate a subpopulation of small colony variants (SCVs) is a conserved feature of Pseudomonas aeruginosa and could represent a key adaptive strategy to colonize and persist in multiple niches. However, very little is known about the role of the SCV phenotype, the conditions that promote its emergence, and its possible involvement in an adaptive strategy. In the present work, we investigated the in vitro selective conditions promoting the emergence of SCVs from the prototypical strain PA14, which readily forms SCVs in nonagitated standing cultures. We found that O2 limitation, which causes a redox imbalance, is the main factor selecting for the SCV phenotype, which promotes survival of the population via formation of a biofilm at the air-liquid interface to access the electron acceptor. When this selective pressure is relieved by aeration or supplementation of an alternative electron acceptor, SCVs are barely detectable. We also observed that SCV emergence contributes to redox rebalancing, suggesting that it is involved in an adaptive strategy. We conclude that selection for the SCV phenotype is an adaptive solution adopted by P. aeruginosa to access poorly available O2. IMPORTANCE The bacterium Pseudomonas aeruginosa is an opportunistic pathogen that thrives in many environments. It poses a significant health concern, notably because it is a causative agent of nosocomial infections and the most prevalent pathogen found in the lungs of people with cystic fibrosis. In infected hosts, its persistence is often related to the emergence of an alternative phenotype known as small colony variant (SCV). Identification of conditions selecting for the SCV phenotype contributes to knowledge regarding adaptive mechanisms exploited by P. aeruginosa to survive in multiple niches and persist during infections. Hindering this adaptation strategy could help control persistent P. aeruginosa infections.
Collapse
|
9
|
Pseudomonas aeruginosa Strains from Both Clinical and Environmental Origins Readily Adopt a Stable Small-Colony-Variant Phenotype Resulting from Single Mutations in c-di-GMP Pathways. J Bacteriol 2022; 204:e0018522. [PMID: 36102640 PMCID: PMC9578426 DOI: 10.1128/jb.00185-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subpopulation of small-colony variants (SCVs) is a frequently observed feature of Pseudomonas aeruginosa isolates obtained from colonized cystic fibrosis lungs. Since most SCVs have until now been isolated from clinical samples, it remains unclear how widespread the ability of P. aeruginosa strains to develop this phenotype is and what the genetic mechanism(s) behind the emergence of SCVs are according to the origin of the isolate. In the present work, we investigated the ability of 22 P. aeruginosa isolates from various environmental origins to spontaneously adopt an SCV-like smaller alternative morphotype distinguishable from that of the ancestral parent strain under laboratory culture conditions. We found that all the P. aeruginosa strains tested could adopt an SCV phenotype, regardless of their origin. Whole-genome sequencing of SCVs obtained from clinical and environmental sources revealed single mutations exclusively in two distinct c-di-GMP signaling pathways, the Wsp and YfiBNR pathways. We conclude that the ability to switch to an SCV phenotype is a conserved feature of P. aeruginosa and results from the acquisition of a stable genetic mutation, regardless of the origin of the strain. IMPORTANCE P. aeruginosa is an opportunistic pathogen that thrives in many environments. It poses a significant health concern, notably because this bacterium is the most prevalent pathogen found in the lungs of people with cystic fibrosis. In infected hosts, its persistence is considered related to the emergence of an alternative small-colony-variant (SCV) phenotype. By reporting the distribution of P. aeruginosa SCVs in various nonclinical environments and the involvement of c-di-GMP in SCV emergence from both clinical and environmental strains, this work contributes to understanding a conserved adaptation mechanism used by P. aeruginosa to adapt readily in all environments. Hindering this adaptation strategy could help control persistent infection by P. aeruginosa.
Collapse
|
10
|
Direct Inhibition of RetS Synthesis by RsmA Contributes to Homeostasis of the Pseudomonas aeruginosa Gac/Rsm Signaling System. J Bacteriol 2022; 204:e0058021. [PMID: 35041497 PMCID: PMC8923221 DOI: 10.1128/jb.00580-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gac/Rsm system is a global regulator of Pseudomonas aeruginosa gene expression. The primary effectors are RsmA and RsmF. Both are RNA-binding proteins that interact with target mRNAs to modulate protein synthesis. RsmA/RsmF recognize GGA sequences presented in the loop portion of stem-loop structures. For repressed targets, the GGA sites usually overlap the ribosome binding site (RBS) and RsmA/RsmF binding inhibits translation initiation. RsmA/RsmF activity is controlled by several small non-coding RNAs (sRNA) that sequester RsmA/RsmF from target mRNAs. The most important sequestering sRNAs are RsmY and RsmZ. Transcription of rsmY/rsmZ is directly controlled by the GacSA two-component regulatory system. GacSA activity is antagonized by RetS, a hybrid sensor kinase. In the absence of retS, rsmY/rsmZ transcription is derepressed and RsmA/RsmF are sequestered by RsmY/RsmZ. Gac/Rsm system homeostasis is tightly controlled by at least two mechanisms. First, direct binding of RsmA to the rsmA and rsmF mRNAs inhibits further synthesis of both proteins. Second, RsmA stimulates rsmY/rsmZ transcription through an undefined mechanism. In this study we demonstrate that RsmA stimulates rsmY/rsmZ transcription by directly inhibiting RetS synthesis. RetS protein levels are elevated 2.5-fold in an rsmA mutant. Epistasis experiments demonstrate that the rsmA requirement for rsmY/rsmZ transcription is entirely suppressed in an rsmA, retS double mutant. RsmA directly interacts with the retS mRNA and requires two distinct GGA sites, one of which overlaps the RBS. We propose a model wherein RsmA inhibits RetS synthesis to promote rsmY/rsmZ transcription and that this acts as a checkpoint to limit RsmA/RsmF availability. IMPORTANCE The Pseudomonas aeruginosa Gac/Rsm system controls ∼500 genes and governs a critical lifestyle switch by inversely regulating factors that favor acute or chronic colonization. Control of gene expression by the Gac/Rsm system is mediated through RsmA and RsmF, small RNA-binding proteins that interact with target mRNAs to inhibit or promote protein synthesis and/or mRNA stability. RsmA/RsmF activity is governed by two small non-coding RNAs (RsmY and RsmZ) that sequester RsmA/RsmF from target mRNAs. The GacSA two-component regulatory system plays a pivotal role in the Gac/Rsm system by controlling rsmYZ transcription. This study provides insight into the control of homeostasis by demonstrating that RsmA directly targets and inhibits expression of RetS, an orphan sensor kinase critical for rsmYZ transcription.
Collapse
|
11
|
Ducret V, Perron K, Valentini M. Role of Two-Component System Networks in Pseudomonas aeruginosa Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:371-395. [PMID: 36258080 DOI: 10.1007/978-3-031-08491-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-component systems (TCS) are the largest family of signaling systems in the bacterial kingdom. They enable bacteria to cope with a wide range of environmental conditions via the sensing of stimuli and the transduction of the signal into an appropriate cellular adaptation response. Pseudomonas aeruginosa possesses one of the richest arrays of TCSs in bacteria and they have been the subject of intense investigation for more than 20 years. Most of the P. aeruginosa TCSs characterized to date affect its pathogenesis, via the regulation of virulence factors expression, modulation of the synthesis of antibiotic/antimicrobial resistance mechanisms, and/or via linking virulence to energy metabolism. Here, we give an overview of the current knowledge on P. aeruginosa TCSs, citing key examples for each of the above-mentioned regulatory actions. We then conclude by mentioning few small molecule inhibitors of P. aeruginosa TCSs that have shown an antimicrobial action in vitro.
Collapse
Affiliation(s)
- Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
12
|
Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:ijms222312892. [PMID: 34884697 PMCID: PMC8657582 DOI: 10.3390/ijms222312892] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 01/22/2023] Open
Abstract
In recent years, the effectiveness of antimicrobials in the treatment of Pseudomonas aeruginosa infections has gradually decreased. This pathogen can be observed in several clinical cases, such as pneumonia, urinary tract infections, sepsis, in immunocompromised hosts, such as neutropenic cancer, burns, and AIDS patients. Furthermore, Pseudomonas aeruginosa causes diseases in both livestock and pets. The highly flexible and versatile genome of P. aeruginosa allows it to have a high rate of pathogenicity. The numerous secreted virulence factors, resulting from its numerous secretion systems, the multi-resistance to different classes of antibiotics, and the ability to produce biofilms are pathogenicity factors that cause numerous problems in the fight against P. aeruginosa infections and that must be better understood for an effective treatment. Infections by P. aeruginosa represent, therefore, a major health problem and, as resistance genes can be disseminated between the microbiotas associated with humans, animals, and the environment, this issue needs be addressed on the basis of an One Health approach. This review intends to bring together and describe in detail the molecular and metabolic pathways in P. aeruginosa's pathogenesis, to contribute for the development of a more targeted therapy against this pathogen.
Collapse
|
13
|
Pusic P, Sonnleitner E, Bläsi U. Specific and Global RNA Regulators in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:8632. [PMID: 34445336 PMCID: PMC8395346 DOI: 10.3390/ijms22168632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa (Pae) is an opportunistic pathogen showing a high intrinsic resistance to a wide variety of antibiotics. It causes nosocomial infections that are particularly detrimental to immunocompromised individuals and to patients suffering from cystic fibrosis. We provide a snapshot on regulatory RNAs of Pae that impact on metabolism, pathogenicity and antibiotic susceptibility. Different experimental approaches such as in silico predictions, co-purification with the RNA chaperone Hfq as well as high-throughput RNA sequencing identified several hundreds of regulatory RNA candidates in Pae. Notwithstanding, using in vitro and in vivo assays, the function of only a few has been revealed. Here, we focus on well-characterized small base-pairing RNAs, regulating specific target genes as well as on larger protein-binding RNAs that sequester and thereby modulate the activity of translational repressors. As the latter impact large gene networks governing metabolism, acute or chronic infections, these protein-binding RNAs in conjunction with their cognate proteins are regarded as global post-transcriptional regulators.
Collapse
Affiliation(s)
- Petra Pusic
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Elisabeth Sonnleitner
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Udo Bläsi
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
14
|
Böhme K, Heroven AK, Lobedann S, Guo Y, Stolle AS, Dersch P. The Small Protein YmoA Controls the Csr System and Adjusts Expression of Virulence-Relevant Traits of Yersinia pseudotuberculosis. Front Microbiol 2021; 12:706934. [PMID: 34413840 PMCID: PMC8369931 DOI: 10.3389/fmicb.2021.706934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
Virulence gene expression of Yersinia pseudotuberculosis changes during the different stages of infection and this is tightly controlled by environmental cues. In this study, we show that the small protein YmoA, a member of the Hha family, is part of this process. It controls temperature- and nutrient-dependent early and later stage virulence genes in an opposing manner and co-regulates bacterial stress responses and metabolic functions. Our analysis further revealed that YmoA exerts this function by modulating the global post-transcriptional regulatory Csr system. YmoA pre-dominantly enhances the stability of the regulatory RNA CsrC. This involves a stabilizing stem-loop structure within the 5'-region of CsrC. YmoA-mediated CsrC stabilization depends on H-NS, but not on the RNA chaperone Hfq. YmoA-promoted reprogramming of the Csr system has severe consequences for the cell: we found that a mutant deficient of ymoA is strongly reduced in its ability to enter host cells and to disseminate to the Peyer's patches, mesenteric lymph nodes, liver and spleen in mice. We propose a model in which YmoA controls transition from the initial colonization phase in the intestine toward the host defense phase important for the long-term establishment of the infection in underlying tissues.
Collapse
Affiliation(s)
- Katja Böhme
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephanie Lobedann
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Yuzhu Guo
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), Medical Faculty Münster, University of Münster, Münster, Germany
| | - Anne-Sophie Stolle
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), Medical Faculty Münster, University of Münster, Münster, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), Medical Faculty Münster, University of Münster, Münster, Germany
| |
Collapse
|
15
|
Irie Y, La Mensa A, Murina V, Hauryliuk V, Tenson T, Shingler V. Hfq-Assisted RsmA Regulation Is Central to Pseudomonas aeruginosa Biofilm Polysaccharide PEL Expression. Front Microbiol 2020; 11:482585. [PMID: 33281751 PMCID: PMC7705225 DOI: 10.3389/fmicb.2020.482585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/08/2020] [Indexed: 12/05/2022] Open
Abstract
To appropriately switch between sessile and motile lifestyles, bacteria control expression of biofilm-associated genes through multiple regulatory elements. In Pseudomonas aeruginosa, the post-transcriptional regulator RsmA has been implicated in the control of various genes including those related to biofilms, but much of the evidence for these links is limited to transcriptomic and phenotypic studies. RsmA binds to target mRNAs to modulate translation by affecting ribosomal access and/or mRNA stability. Here, we trace a global regulatory role of RsmA to inhibition of the expression of Vfr—a transcription factor that inhibits transcriptional regulator FleQ. FleQ directly controls biofilm-associated genes that encode the PEL polysaccharide biosynthesis machinery. Furthermore, we show that RsmA alone cannot bind vfr mRNA but requires the assistance of RNA chaperone protein Hfq. This is the first example where a RsmA protein family member requires another protein for binding to its target RNA.
Collapse
Affiliation(s)
- Yasuhiko Irie
- Institute of Technology, University of Tartu, Tartu, Estonia.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Agnese La Mensa
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Victoriia Murina
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Vasili Hauryliuk
- Institute of Technology, University of Tartu, Tartu, Estonia.,Department of Molecular Biology, Umeå University, Umeå, Sweden.,The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | |
Collapse
|
16
|
Shao X, Xie Y, Zhang Y, Liu J, Ding Y, Wu M, Wang X, Deng X. Novel therapeutic strategies for treating Pseudomonas aeruginosa infection. Expert Opin Drug Discov 2020; 15:1403-1423. [PMID: 32880507 DOI: 10.1080/17460441.2020.1803274] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Persistent infections caused by the superbug Pseudomonas aeruginosa and its resistance to multiple antimicrobial agents are huge threats to patients with cystic fibrosis as well as those with compromised immune systems. Multidrug-resistant P. aeruginosa has posed a major challenge to conventional antibiotics and therapeutic approaches, which show limited efficacy and cause serious side effects. The public demand for new antibiotics is enormous; yet, drug development pipelines have started to run dry with limited targets available for inventing new antibacterial drugs. Consequently, it is important to uncover potential therapeutic targets. AREAS COVERED The authors review the current state of drug development strategies that are promising in terms of the development of novel and potent drugs to treat P. aeruginosa infection. EXPERT OPINION The prevention of P. aeruginosa infection is increasingly challenging. Furthermore, targeting key virulence regulators has great potential for developing novel anti-P. aeruginosa drugs. Additional promising strategies include bacteriophage therapy, immunotherapies, and antimicrobial peptides. Additionally, the authors believe that in the coming years, the overall network of molecular regulatory mechanism of P. aeruginosa virulence will be fully elucidated, which will provide more novel and promising drug targets for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Jingui Liu
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yiqing Ding
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota , Grand Forks, North Dakota, USA
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong , Shenzhen, China
| |
Collapse
|
17
|
Widespread targeting of nascent transcripts by RsmA in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2020; 117:10520-10529. [PMID: 32332166 DOI: 10.1073/pnas.1917587117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the opportunistic pathogen Pseudomonas aeruginosa, RsmA is an RNA-binding protein that plays critical roles in the control of virulence, interbacterial interactions, and biofilm formation. Although RsmA is thought to exert its regulatory effects by binding full-length transcripts, the extent to which RsmA binds nascent transcripts has not been addressed. Moreover, which transcripts are direct targets of this key posttranscriptional regulator is largely unknown. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing, with cells grown in the presence and absence of the RNA polymerase inhibitor rifampicin, we identify hundreds of nascent transcripts that RsmA associates with in P. aeruginosa We also find that the RNA chaperone Hfq targets a subset of those nascent transcripts that RsmA associates with and that the two RNA-binding proteins can exert regulatory effects on common targets. Our findings establish that RsmA associates with many transcripts as they are being synthesized in P. aeruginosa, identify the transcripts targeted by RsmA, and suggest that RsmA and Hfq may act in a combinatorial fashion on certain transcripts. The binding of posttranscriptional regulators to nascent transcripts may be commonplace in bacteria where distinct regulators can function alone or in concert to achieve control over the translation of transcripts as soon as they emerge from RNA polymerase.
Collapse
|
18
|
RhlR-Regulated Acyl-Homoserine Lactone Quorum Sensing in a Cystic Fibrosis Isolate of Pseudomonas aeruginosa. mBio 2020; 11:mBio.00532-20. [PMID: 32265330 PMCID: PMC7157775 DOI: 10.1128/mbio.00532-20] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is a prominent cystic fibrosis (CF) pathogen that uses quorum sensing (QS) to regulate virulence. In laboratory strains, the key QS regulator is LasR. Many isolates from patients with chronic CF infections appear to use an alternate QS circuitry in which another transcriptional regulator, RhlR, mediates QS. We show that a LasR-null CF clinical isolate engages in QS through RhlR and remains capable of inducing cell death in an in vivo-like lung epithelium cell model. Our findings support the notion that LasR-null clinical isolates can engage in RhlR QS and highlight the centrality of RhlR in chronic P. aeruginosa infections. The opportunistic pathogen Pseudomonas aeruginosa is a leading cause of airway infection in cystic fibrosis (CF) patients. P. aeruginosa employs several hierarchically arranged and interconnected quorum sensing (QS) regulatory circuits to produce a battery of virulence factors such as elastase, phenazines, and rhamnolipids. The QS transcription factor LasR sits atop this hierarchy and activates the transcription of dozens of genes, including that encoding the QS regulator RhlR. Paradoxically, inactivating lasR mutations are frequently observed in isolates from CF patients with chronic P. aeruginosa infections. In contrast, mutations in rhlR are rare. We have recently shown that in CF isolates, the QS circuitry is often rewired such that RhlR acts in a LasR-independent manner. To begin understanding how QS activity differs in this rewired background, we characterized QS activation and RhlR-regulated gene expression in P. aeruginosa E90, a LasR-null, RhlR-active chronic infection isolate. In this isolate, RhlR activates the expression of 53 genes in response to increasing cell density. The genes regulated by RhlR include several that encode virulence factors. Some, but not all, of these genes are present in the QS regulon described in the well-studied laboratory strain PAO1. We also demonstrate that E90 produces virulence factors at similar concentrations as PAO1, and in E90, RhlR plays a significant role in mediating cytotoxicity in a three-dimensional lung epithelium cell model. These data illuminate a rewired LasR-independent RhlR regulon in chronic infection isolates and suggest further investigation of RhlR as a possible target for therapeutic development in chronic infections.
Collapse
|
19
|
Multidrug Adaptive Resistance of Pseudomonas aeruginosa Swarming Cells. Antimicrob Agents Chemother 2020; 64:AAC.01999-19. [PMID: 31844008 DOI: 10.1128/aac.01999-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/10/2019] [Indexed: 01/25/2023] Open
Abstract
Swarming surface motility is a complex adaptation leading to multidrug antibiotic resistance and virulence factor production in Pseudomonas aeruginosa Here, we expanded previous studies to demonstrate that under swarming conditions, P. aeruginosa PA14 is more resistant to multiple antibiotics, including aminoglycosides, β-lactams, chloramphenicol, ciprofloxacin, tetracycline, trimethoprim, and macrolides, than swimming cells, but is not more resistant to polymyxin B. We investigated the mechanism(s) of swarming-mediated antibiotic resistance by examining the transcriptomes of swarming cells and swarming cells treated with tobramycin by transcriptomics (RNA-Seq) and reverse transcriptase quantitative PCR (qRT-PCR). RNA-Seq of swarming cells (versus swimming) revealed 1,581 dysregulated genes, including 104 transcriptional regulators, two-component systems, and sigma factors, numerous upregulated virulence and iron acquisition factors, and downregulated ribosomal genes. Strain PA14 mutants in resistome genes that were dysregulated under swarming conditions were tested for their ability to swarm in the presence of tobramycin. In total, 41 mutants in genes dysregulated under swarming conditions were shown to be more resistant to tobramycin under swarming conditions, indicating that swarming-mediated tobramycin resistance was multideterminant. Focusing on two genes downregulated under swarming conditions, both prtN and wbpW mutants were more resistant to tobramycin, while the prtN mutant was additionally resistant to trimethoprim under swarming conditions; complementation of these mutants restored susceptibility. RNA-Seq of swarming cells treated with subinhibitory concentrations of tobramycin revealed the upregulation of the multidrug efflux pump MexXY and downregulation of virulence factors.
Collapse
|
20
|
Elabed H, González-Tortuero E, Ibacache-Quiroga C, Bakhrouf A, Johnston P, Gaddour K, Blázquez J, Rodríguez-Rojas A. Seawater salt-trapped Pseudomonas aeruginosa survives for years and gets primed for salinity tolerance. BMC Microbiol 2019; 19:142. [PMID: 31234794 PMCID: PMC6591848 DOI: 10.1186/s12866-019-1499-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Background In nature, microorganisms have to adapt to long-term stressful conditions often with growth limitations. However, little is known about the evolution of the adaptability of new bacteria to such environments. Pseudomonas aeruginosa, an opportunistic pathogen, after natural evaporation of seawater, was shown to be trapped in laboratory-grown halite crystals and to remain viable after entrapment for years. However, how this bacterium persists and survives in such hypersaline conditions is not understood. Results In this study, we aimed to understand the basis of survival, and to characterise the physiological changes required to develop salt tolerance using P. aeruginosa as a model. Several clones of P. aeruginosa were rescued after 14 years in naturally evaporated marine salt crystals. Incubation of samples in nutrient-rich broth allowed re-growth and subsequent plating yielded observable colonies. Whole genome sequencing of the P. aeruginosa isolates confirmed the recovery of the original strain. The re-grown strains, however, showed a new phenotype consisting of an enhanced growth in growing salt concentration compared to the ancestor strain. The intracellular accumulation of K+ was elicited by high concentration of Na+ in the external medium to maintain the homeostasis. Whole transcriptomic analysis by microarray indicated that 78 genes had differential expression between the parental strain and its derivative clones. Sixty-one transcripts were up-regulated, while 17 were down-regulated. Based on a collection of single-gene knockout mutants and gene ontology analysis, we suggest that the adaptive response in P. aeruginosa to hyper-salinity relies on multiple gene product interactions. Conclusions The individual gene contributions build up the observed phenotype, but do not ease the identification of salinity-related metabolic pathways. The long-term inclusion of P. aeruginosa in salt crystals primes the bacteria, mediating a readjustment of the bacterial physiology to growth in higher salt concentrations. Our findings provide a starting point to understand how P. aeruginosa, a relevant environmental and pathogenic bacterium, survives to long-term salt stress. Electronic supplementary material The online version of this article (10.1186/s12866-019-1499-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hamouda Elabed
- Laboratory of Contagious Diseases and Biologically Active Substances LR99-ES27 Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.,Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain
| | - Enrique González-Tortuero
- Department of Veterinary and Animal Sciences, Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Ibacache-Quiroga
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain.,Centro de Micro-Bioinnovación, Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Amina Bakhrouf
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Paul Johnston
- Institute of Biology, FreieUniversität Berlin, Berlin, Germany
| | - Kamel Gaddour
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Jesús Blázquez
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain
| | | |
Collapse
|
21
|
Fitting Pieces into the Puzzle of Pseudomonas aeruginosa Type III Secretion System Gene Expression. J Bacteriol 2019; 201:JB.00209-19. [PMID: 31010903 DOI: 10.1128/jb.00209-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type III secretion systems (T3SS) are widely distributed in Gram-negative microorganisms and critical for host-pathogen and host-symbiont interactions with plants and animals. Central features of the T3SS are a highly conserved set of secretion and translocation genes and contact dependence wherein host-pathogen interactions trigger effector protein delivery and serve as an inducing signal for T3SS gene expression. In addition to these conserved features, there are pathogen-specific properties that include a unique repertoire of effector genes and mechanisms to control T3SS gene expression. The Pseudomonas aeruginosa T3SS serves as a model system to understand transcriptional and posttranscriptional mechanisms involved in the control of T3SS gene expression. The central regulatory feature is a partner-switching system that controls the DNA-binding activity of ExsA, the primary regulator of T3SS gene expression. Superimposed upon the partner-switching mechanism are cyclic AMP and cyclic di-GMP signaling systems, two-component systems, global regulators, and RNA-binding proteins that have positive and negative effects on ExsA transcription and/or synthesis. In the present review, we discuss advances in our understanding of how these regulatory systems orchestrate the activation of T3SS gene expression in the context of acute infections and repression of the T3SS as P. aeruginosa adapts to and colonizes the cystic fibrosis airways.
Collapse
|
22
|
Two Regulators, PA3898 and PA2100, Modulate the Pseudomonas aeruginosa Multidrug Resistance MexAB-OprM and EmrAB Efflux Pumps and Biofilm Formation. Antimicrob Agents Chemother 2018; 62:AAC.01459-18. [PMID: 30297364 DOI: 10.1128/aac.01459-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/29/2018] [Indexed: 11/20/2022] Open
Abstract
It is generally believed that the Pseudomonas aeruginosa biofilm matrix itself acts as a molecular sieve or sink that contributes to significant levels of drug resistance, but it is becoming more apparent that multidrug efflux pumps induced during biofilm growth significantly enhance resistance levels. We present here a novel transcriptional regulator, PA3898, which controls biofilm formation and multidrug efflux pumps in P. aeruginosa A mutant of this regulator significantly reduced the ability of P. aeruginosa to produce biofilm in vitro and affected its in vivo fitness and pathogenesis in Drosophila melanogaster and BALB/c mouse lung infection models. Transcriptome analysis revealed that PA3898 modulates essential virulence genes/pathways, including multidrug efflux pumps and phenazine biosynthesis. Chromatin immunoprecipitation sequencing (ChIP-seq) identified its DNA binding sequences and confirmed that PA3898 directly interacts with promoter regions of four genes/operons, two of which are mexAB-oprM and phz2 Coimmunoprecipitation revealed a regulatory partner of PA3898 as PA2100, and both are required for binding to DNA in electrophoretic mobility shift assays. PA3898 and PA2100 were given the names MdrR1 and MdrR2, respectively, as novel repressors of the mexAB-oprM multidrug efflux operon and activators for another multidrug efflux pump, EmrAB. The interaction between MdrR1 and MdrR2 at the promoter regions of their regulons was further characterized via localized surface plasmon resonance and DNA footprinting. These regulators directly repress the mexAB-oprM operon, independent of its well-established MexR regulator. Mutants of mdrR1 and mdrR2 caused increased resistance to multiple antibiotics in P. aeruginosa, validating the significance of these newly discovered regulators.
Collapse
|
23
|
Mechanisms of Bacterial Tolerance and Persistence in the Gastrointestinal and Respiratory Environments. Clin Microbiol Rev 2018; 31:31/4/e00023-18. [PMID: 30068737 DOI: 10.1128/cmr.00023-18] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pathogens that infect the gastrointestinal and respiratory tracts are subjected to intense pressure due to the environmental conditions of the surroundings. This pressure has led to the development of mechanisms of bacterial tolerance or persistence which enable microorganisms to survive in these locations. In this review, we analyze the general stress response (RpoS mediated), reactive oxygen species (ROS) tolerance, energy metabolism, drug efflux pumps, SOS response, quorum sensing (QS) bacterial communication, (p)ppGpp signaling, and toxin-antitoxin (TA) systems of pathogens, such as Escherichia coli, Salmonella spp., Vibrio spp., Helicobacter spp., Campylobacter jejuni, Enterococcus spp., Shigella spp., Yersinia spp., and Clostridium difficile, all of which inhabit the gastrointestinal tract. The following respiratory tract pathogens are also considered: Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Burkholderia cenocepacia, and Mycobacterium tuberculosis Knowledge of the molecular mechanisms regulating the bacterial tolerance and persistence phenotypes is essential in the fight against multiresistant pathogens, as it will enable the identification of new targets for developing innovative anti-infective treatments.
Collapse
|
24
|
Westermann AJ. Regulatory RNAs in Virulence and Host-Microbe Interactions. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0002-2017. [PMID: 30003867 PMCID: PMC11633609 DOI: 10.1128/microbiolspec.rwr-0002-2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial regulatory RNAs are key players in adaptation to changing environmental conditions and response to diverse cellular stresses. However, while regulatory RNAs of bacterial pathogens have been intensely studied under defined conditions in vitro, characterization of their role during the infection of eukaryotic host organisms is lagging behind. This review summarizes our current understanding of the contribution of the different classes of regulatory RNAs and RNA-binding proteins to bacterial virulence and illustrates their role in infection by reviewing the mechanisms of some prominent representatives of each class. Emerging technologies are described that bear great potential for global, unbiased studies of virulence-related RNAs in bacterial model and nonmodel pathogens in the future. The review concludes by deducing common principles of RNA-mediated gene expression control of virulence programs in different pathogens, and by defining important open questions for upcoming research in the field.
Collapse
Affiliation(s)
- Alexander J Westermann
- Institute of Molecular Infection Biology, University of Würzburg
- Helmholtz Institute for RNA-Based Infection Research, D-97080 Würzburg, Germany
| |
Collapse
|
25
|
Functional Analyses of the RsmY and RsmZ Small Noncoding Regulatory RNAs in Pseudomonas aeruginosa. J Bacteriol 2018; 200:JB.00736-17. [PMID: 29463606 DOI: 10.1128/jb.00736-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/14/2018] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen with distinct acute and chronic virulence phenotypes. Whereas acute virulence is typically associated with expression of a type III secretion system (T3SS), chronic virulence is characterized by biofilm formation. Many of the phenotypes associated with acute and chronic virulence are inversely regulated by RsmA and RsmF. RsmA and RsmF are both members of the CsrA family of RNA-binding proteins and regulate protein synthesis at the posttranscriptional level. RsmA activity is controlled by two small noncoding regulatory RNAs (RsmY and RsmZ). Bioinformatic analyses suggest that RsmY and RsmZ each have 3 or 4 putative RsmA binding sites. Each predicted binding site contains a GGA sequence presented in the loop portion of a stem-loop structure. RsmY and RsmZ regulate RsmA, and possibly RsmF, by sequestering these proteins from target mRNAs. In this study, we used selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) chemistry to determine the secondary structures of RsmY and RsmZ and functional assays to characterize the contribution of each GGA site to RsmY/RsmZ activity. Our data indicate that RsmA has two preferential binding sites on RsmY and RsmZ, while RsmF has one preferential binding site on RsmY and two sites on RsmZ. Despite RsmF and RsmA sharing a common consensus site, RsmF binding properties are more restrictive than those of RsmA.IMPORTANCE CsrA homologs are present in many bacteria. The opportunistic pathogen Pseudomonas aeruginosa uses RsmA and RsmF to inversely regulate factors associated with acute and chronic virulence phenotypes. RsmA has an affinity for RsmY and RsmZ higher than that of RsmF. The goal of this study was to understand the differential binding properties of RsmA and RsmF by using the RsmY and RsmZ regulatory small RNAs (sRNAs) as a model. Mutagenesis of the predicted RsmA/RsmF binding sites on RsmY and RsmZ revealed similarities in the sites required to control RsmA and RsmF activity in vivo Whereas binding by RsmA was relatively tolerant of binding site mutations, RsmF was sensitive to disruption to all but two of the sites, further demonstrating that the requirements for RsmF binding activity in vivo and in vitro are more stringent than those for RsmA.
Collapse
|
26
|
Grenga L, Little RH, Malone JG. Quick change: post-transcriptional regulation in Pseudomonas. FEMS Microbiol Lett 2018; 364:3866594. [PMID: 28605536 PMCID: PMC5812540 DOI: 10.1093/femsle/fnx125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas species have evolved dynamic and intricate regulatory networks to fine-tune gene expression, with complex regulation occurring at every stage in the processing of genetic information. This approach enables Pseudomonas to generate precise individual responses to the environment in order to improve their fitness and resource economy. The weak correlations we observe between RNA and protein abundance highlight the significant regulatory contribution of a series of intersecting post-transcriptional pathways, influencing mRNA stability, translational activity and ribosome function, to Pseudomonas environmental responses. This review examines our current understanding of three major post-transcriptional regulatory systems in Pseudomonas spp.; Gac/Rsm, Hfq and RimK, and presents an overview of new research frontiers, emerging genome-wide methodologies, and their potential for the study of global regulatory responses in Pseudomonas.
Collapse
Affiliation(s)
- Lucia Grenga
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Richard H Little
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Jacob G Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
27
|
Pestrak MJ, Chaney SB, Eggleston HC, Dellos-Nolan S, Dixit S, Mathew-Steiner SS, Roy S, Parsek MR, Sen CK, Wozniak DJ. Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments. PLoS Pathog 2018; 14:e1006842. [PMID: 29394295 PMCID: PMC5812653 DOI: 10.1371/journal.ppat.1006842] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/14/2018] [Accepted: 12/22/2017] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa causes devastating infections in immunocompromised individuals. Once established, P. aeruginosa infections become incredibly difficult to treat due to the development of antibiotic tolerant, aggregated communities known as biofilms. A hyper-biofilm forming clinical variant of P. aeruginosa, known as a rugose small-colony variant (RSCV), is frequently isolated from chronic infections and is correlated with poor clinical outcome. The development of these mutants during infection suggests a selective advantage for this phenotype, but it remains unclear how this phenotype promotes persistence. While prior studies suggest RSCVs could survive by evading the host immune response, our study reveals infection with the RSCV, PAO1ΔwspF, stimulated an extensive inflammatory response that caused significant damage to the surrounding host tissue. In both a chronic wound model and acute pulmonary model of infection, we observed increased bacterial burden, host tissue damage, and a robust neutrophil response during RSCV infection. Given the essential role of neutrophils in P. aeruginosa-mediated disease, we investigated the impact of the RSCV phenotype on neutrophil function. The RSCV phenotype promoted phagocytic evasion and stimulated neutrophil reactive oxygen species (ROS) production. We also demonstrate that bacterial aggregation and TLR-mediated pro-inflammatory cytokine production contribute to the immune response to RSCVs. Additionally, RSCVs exhibited enhanced tolerance to neutrophil-produced antimicrobials including H2O2 and the antimicrobial peptide LL-37. Collectively, these data indicate RSCVs elicit a robust but ineffective neutrophil response that causes significant host tissue damage. This study provides new insight on RSCV persistence, and indicates this variant may have a critical role in the recurring tissue damage often associated with chronic infections.
Collapse
Affiliation(s)
- Matthew J. Pestrak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Sarah B. Chaney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Heather C. Eggleston
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Sheri Dellos-Nolan
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Sriteja Dixit
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | | | - Sashwati Roy
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Chandan K. Sen
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
28
|
Francis VI, Stevenson EC, Porter SL. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett 2018; 364:3828290. [PMID: 28510688 PMCID: PMC5812489 DOI: 10.1093/femsle/fnx104] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen capable of infecting a broad range of hosts, in addition to thriving in a broad range of environmental conditions outside of hosts. With this versatility comes the need to tightly regulate its genome to optimise its gene expression and behaviour to the prevailing conditions. Two-component systems (TCSs) comprising sensor kinases and response regulators play a major role in this regulation. This minireview discusses the growing number of TCSs that have been implicated in the virulence of P. aeruginosa, with a special focus on the emerging theme of multikinase networks, which are networks comprising multiple sensor kinases working together, sensing and integrating multiple signals to decide upon the best response. The networks covered in depth regulate processes such as the switch between acute and chronic virulence (GacS network), the Cup fimbriae (Roc network and Rcs/Pvr network), the aminoarabinose modification of lipopolysaccharide (a network involving the PhoQP and PmrBA TCSs), twitching motility and virulence (a network formed from the Chp chemosensory pathway and the FimS/AlgR TCS), and biofilm formation (Wsp chemosensory pathway). In addition, we highlight the important interfaces between these systems and secondary messenger signals such as cAMP and c-di-GMP.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Emma C Stevenson
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Steven L Porter
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| |
Collapse
|
29
|
Ren X, Zeng R, Tortorella M, Wang J, Wang C. Structural Insight into Inhibition of CsrA-RNA Interaction Revealed by Docking, Molecular Dynamics and Free Energy Calculations. Sci Rep 2017; 7:14934. [PMID: 29097778 PMCID: PMC5668361 DOI: 10.1038/s41598-017-14916-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
The carbon storage regulator A (CsrA) and its homologs play an important role in coordinating the expression of bacterial virulence factors required for successful host infection. In addition, bacterial pathogens with deficiency of CsrA are typically attenuated for virulence. In 2016, the first series of small-molecule inhibitors of CsrA-RNA interaction were identified, which were found to achieve the CsrA-RNA inhibition by binding to the CsrA, without interfering with the RNA. However, the binding mechanism of these inhibitors of CsrA is not known. Herein, we applied molecular docking, molecular dynamics and binding free energy calculations to investigate the binding mode of inhibitors to CsrA. We found that the G11(RNA)-binding site is the most important binding site for CsrA inhibitors. An inhibitor with the proper size range can bind to that site and form a stable complex. We also found that inhibitors with larger size ranges bind to the entire CsrA-RNA interface, but have loose binding. However, this loose binding still resulted in inhibitory activity. The calculated binding free energy from MM/GBSA has a good correlation with the derived experimental binding energy, which might be used as a tool to further select CsrA inhibitors after a first-round of high-throughput virtual screening.
Collapse
Affiliation(s)
- Xiaodong Ren
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, P.R. China
| | - Rui Zeng
- College of Pharmacy, Southwest University for Nationalities, Chengdu, 610041, P.R. China
| | - Micky Tortorella
- Guangzhou Institute of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, 510530, P.R. China
| | - Jinming Wang
- Guangzhou Institute of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, 510530, P.R. China
| | - Changwei Wang
- Guangzhou Institute of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, 510530, P.R. China.
| |
Collapse
|
30
|
Ghosh P, Sowdhamini R. Bioinformatics comparisons of RNA-binding proteins of pathogenic and non-pathogenic Escherichia coli strains reveal novel virulence factors. BMC Genomics 2017; 18:658. [PMID: 28836963 PMCID: PMC5571608 DOI: 10.1186/s12864-017-4045-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/09/2017] [Indexed: 12/03/2022] Open
Abstract
Background Pathogenic bacteria have evolved various strategies to counteract host defences. They are also exposed to environments that are undergoing constant changes. Hence, in order to survive, bacteria must adapt themselves to the changing environmental conditions by performing regulations at the transcriptional and/or post-transcriptional levels. Roles of RNA-binding proteins (RBPs) as virulence factors have been very well studied. Here, we have used a sequence search-based method to compare and contrast the proteomes of 16 pathogenic and three non-pathogenic E. coli strains as well as to obtain a global picture of the RBP landscape (RBPome) in E. coli. Results Our results show that there are no significant differences in the percentage of RBPs encoded by the pathogenic and the non-pathogenic E. coli strains. The differences in the types of Pfam domains as well as Pfam RNA-binding domains, encoded by these two classes of E. coli strains, are also insignificant. The complete and distinct RBPome of E. coli has been established by studying all known E. coli strains till date. We have also identified RBPs that are exclusive to pathogenic strains, and most of them can be exploited as drug targets since they appear to be non-homologous to their human host proteins. Many of these pathogen-specific proteins were uncharacterised and their identities could be resolved on the basis of sequence homology searches with known proteins. Detailed structural modelling, molecular dynamics simulations and sequence comparisons have been pursued for selected examples to understand differences in stability and RNA-binding. Conclusions The approach used in this paper to cross-compare proteomes of pathogenic and non-pathogenic strains may also be extended to other bacterial or even eukaryotic proteomes to understand interesting differences in their RBPomes. The pathogen-specific RBPs reported in this study, may also be taken up further for clinical trials and/or experimental validations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4045-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pritha Ghosh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, Karnataka, 560 065, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, Karnataka, 560 065, India.
| |
Collapse
|
31
|
Viducic D, Murakami K, Amoh T, Ono T, Miyake Y. RpoN Promotes Pseudomonas aeruginosa Survival in the Presence of Tobramycin. Front Microbiol 2017; 8:839. [PMID: 28553272 PMCID: PMC5427110 DOI: 10.3389/fmicb.2017.00839] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 04/24/2017] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa has developed diverse strategies to respond and adapt to antibiotic stress. Among the factors that modulate survival in the presence of antibiotics, alternative sigma factors play an important role. Here, we demonstrate that the alternative sigma factor RpoN (σ54) promotes survival in the presence of tobramycin. The tobramycin-sensitive phenotype of logarithmic phase ΔrpoN mutant cells is suppressed by the loss of the alternative sigma factor RpoS. Transcriptional analysis indicated that RpoN positively regulates the expression of RsmA, an RNA-binding protein, in the P. aeruginosa stationary growth phase in a nutrient-rich medium. The loss of RpoS led to the upregulation of gacA expression in the nutrient-limited medium-grown stationary phase cells. Conversely, in the logarithmic growth phase, the ΔrpoS mutant demonstrated lower expression of gacA, underscoring a regulatory role of RpoS for GacA. Supplementation of tobramycin to stationary phase ΔrpoN mutant cells grown in nutrient-rich medium resulted in decreased expression of gacA, relA, and rpoS without altering the expression of rsmA relative to wild-type PAO1. The observed downregulation of gacA and relA in the ΔrpoN mutant in the presence of tobramycin could be reversed through the mutation of rpoS in the ΔrpoN mutant background. The tobramycin-tolerant phenotype of the ΔrpoNΔrpoS mutant logarithmic phase cells may be associated with the expression of relA, which remained unresponsive upon addition of tobramycin. The logarithmic phase ΔrpoS and ΔrpoNΔrpoS mutant cells demonstrated increased expression of gacA in response to tobramycin. Together, these results suggest that a complex regulatory interaction between RpoN, RpoS, the Gac/Rsm pathway, and RelA modulates the P. aeruginosa response to tobramycin.
Collapse
Affiliation(s)
- Darija Viducic
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate SchoolTokushima, Japan.,Department of Molecular Microbiology, Institute of Health Biosciences, Tokushima University Graduate SchoolTokushima, Japan
| | - Keiji Murakami
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate SchoolTokushima, Japan
| | - Takashi Amoh
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate SchoolTokushima, Japan
| | - Tsuneko Ono
- Department of Molecular Microbiology, Institute of Health Biosciences, Tokushima University Graduate SchoolTokushima, Japan
| | - Yoichiro Miyake
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate SchoolTokushima, Japan
| |
Collapse
|
32
|
Lu W, Xin Z, Shida W, Jiyao L, Xin X. [Role of small noncoding RNA in the regulation of bacterial virulence]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 34:433-438. [PMID: 28317367 DOI: 10.7518/hxkq.2016.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the long-term interaction between pathogens and host, the pathogens regulate the expression of related viru-lence genes to fit the host environment in response to the changes in the host microenvironment. Gene expression was believed to be controlled mainly at the level of transcription initiation by repressors or activators. Recent studies have revealed that small noncoding RNAs (sRNAs) are key regulators in bacterial pathogenesis. sRNA in bacteria is a noncoding RNA with length ranging from 50 to 500 nucleotides. Pathogens can sense the changes in the host environment and consequently regulate the expression of virulence genes by sRNAs. This condition promotes the ability of pathogens to survive within the host, which is beneficial to the invasion and pathogenicity of pathogens. In contrast to transcriptional factors, sRNA-mediated gene regu-lation makes rapid and sensitive responses to environmental cues. Many sRNAs involved in bacterial virulence and pathogenesis have been identified. These sRNAs are key components of coordinated regulation networks, playing important roles in regulating the expression of virulence genes at post-transcriptional level. This review aims to provide an overview on the molecular mechanisms and roles of sRNAs in the regulation of bacterial virulence.
Collapse
Affiliation(s)
- Wang Lu
- State Key Laboratory of Oral Diseases, Dept. of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Xin
- State Key Laboratory of Oral Diseases, Dept. of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wang Shida
- State Key Laboratory of Oral Diseases, Dept. of General Clinic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Jiyao
- State Key Laboratory of Oral Diseases, Dept. of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Xin
- State Key Laboratory of Oral Diseases, Dept. of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Cyclic-di-GMP regulates lipopolysaccharide modification and contributes to Pseudomonas aeruginosa immune evasion. Nat Microbiol 2017; 2:17027. [PMID: 28263305 PMCID: PMC5341770 DOI: 10.1038/nmicrobiol.2017.27] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 01/31/2017] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterial pathogen associated with acute and chronic infections. The universal c-di-GMP second messenger is instrumental in the switch from a motile lifestyle to resilient biofilm as in the cystic fibrosis lung. The SadC diguanylate cyclase is associated with this patho-adaptive transition. Here we identified an unrecognized SadC partner, WarA, which we show is a methyltransferase in complex with a putative kinase WarB. We established that WarA binds to c-di-GMP, which potentiates its methyltransferase activity. Together, WarA and WarB have structural similarities with the bi-functional Escherichia coli LPS O antigen regulator WbdD. Strikingly, WarA influences P. aeruginosa O antigen modal distribution and interacts with the LPS biogenesis machinery. LPS is known to modulate the immune response in the host, and by using a zebrafish infection model, we implicate WarA in the ability of P. aeruginosa to evade detection by the host.
Collapse
|
34
|
Pseudomonas aeruginosa AlgU Contributes to Posttranscriptional Activity by Increasing rsmA Expression in a mucA22 Strain. J Bacteriol 2016; 198:1812-1826. [PMID: 27091153 DOI: 10.1128/jb.00133-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/12/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa thrives in multiple environments and is capable of causing life-threatening infections in immunocompromised patients. RsmA is a posttranscriptional regulator that controls virulence factor production and biofilm formation. In this study, we investigated the expression and activity of rsmA and the protein that it encodes, RsmA, in P. aeruginosa mucA mutant strains, which are common in chronic infections. We determined that AlgU regulates a previously unknown rsmA promoter in P. aeruginosa Western blot analysis confirmed that AlgU controls rsmA expression in both a laboratory strain and a clinical isolate. RNase protection assays confirmed the presence of two rsmA transcripts and suggest that RpoS and AlgU regulate rsmA expression. Due to the increased amounts of RsmA in mucA mutant strains, a translational leader fusion of the RsmA target, tssA1, was constructed and tested in mucA, algU, retS, gacA, and rsmA mutant backgrounds to examine posttranscriptional activity. From these studies, we determined that RsmA is active in mucA22 mutants, suggesting a role for RsmA in mucA mutant strains. Taken together, we have demonstrated that AlgU controls rsmA transcription and is responsible for RsmA activity in mucA mutant strains. We propose that RsmA is active in P. aeruginosa mucA mutant strains and that RsmA also plays a role in chronic infections. IMPORTANCE P. aeruginosa causes severe infections in immunocompromised patients. The posttranscriptional regulator RsmA is known to control virulence and biofilm formation. We identify a new rsmA promoter and determine that AlgU is important in the control of rsmA expression. Mutant mucA strains that are considered mucoid were used to confirm increased rsmA expression from the AlgU promoter. We demonstrate, for the first time, that there is RsmA activity in mucoid P. aeruginosa strains. Our work suggests that RsmA may play a role during chronic infections as well as acute infections.
Collapse
|
35
|
Discovery of the first small-molecule CsrA-RNA interaction inhibitors using biophysical screening technologies. Future Med Chem 2016; 8:931-47. [PMID: 27253623 DOI: 10.4155/fmc-2016-0033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM CsrA is a global post-transcriptional regulator protein affecting mRNA translation and/or stability. Widespread among bacteria, it is essential for their full virulence and thus represents a promising anti-infective drug target. Therefore, we aimed at the discovery of CsrA-RNA interaction inhibitors. Results & methodology: We followed two strategies: a screening of small molecules (A) and an RNA ligand-based approach (B). Using surface plasmon resonance-based binding and fluorescence polarization-based competition assays, (A) yielded seven small-molecule inhibitors, among them MM14 (IC50 of 4 µM). (B) resulted in RNA-based inhibitor GGARNA (IC50 of 113 µM). CONCLUSION The first small-molecule inhibitors of the CsrA-RNA interaction were discovered exhibiting micromolar affinities. These hits represent tools to investigate the effects of CsrA-RNA interaction inhibition on bacterial virulence.
Collapse
|
36
|
Winstanley C, O'Brien S, Brockhurst MA. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. Trends Microbiol 2016; 24:327-337. [PMID: 26946977 PMCID: PMC4854172 DOI: 10.1016/j.tim.2016.01.008] [Citation(s) in RCA: 477] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/06/2016] [Accepted: 01/25/2016] [Indexed: 12/02/2022]
Abstract
Pseudomonas aeruginosa populations undergo a characteristic evolutionary adaptation during chronic infection of the cystic fibrosis (CF) lung, including reduced production of virulence factors, transition to a biofilm-associated lifestyle, and evolution of high-level antibiotic resistance. Populations of P. aeruginosa in chronic CF lung infections typically exhibit high phenotypic diversity, including for clinically important traits such as antibiotic resistance and toxin production, and this diversity is dynamic over time, making accurate diagnosis and treatment challenging. Population genomics studies reveal extensive genetic diversity within patients, including for transmissible strains the coexistence of highly divergent lineages acquired by patient-to-patient transmission. The inherent spatial structure and spatial heterogeneity of selection in the CF lung appears to play a key role in driving P. aeruginosa diversification. During chronic lung infections of CF patients common genetic adaptations occur in P. aeruginosa, such as conversion to mucoidy, loss of virulence factors, and resistance to antibiotics. Although pathoadaptive mutations in regulatory proteins are common, the actual regulators affected vary between populations. P. aeruginosa populations in CF lungs exhibit high levels of phenotypic diversity. Fine-scale population genomics approaches reveal that divergent sublineages can coexist, with evidence for regional isolation in the spatially structured and heterogeneous lung environment. Experimental evolution is beginning to provide insights into the selective drivers of evolution in P. aeruginosa infection, including the role of social interactions.
Collapse
Affiliation(s)
- Craig Winstanley
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, Ronald Ross Building, University of Liverpool, 8 West Derby Street, Liverpool, L69 7BE, UK.
| | - Siobhan O'Brien
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | |
Collapse
|
37
|
Chen R, Weng Y, Zhu F, Jin Y, Liu C, Pan X, Xia B, Cheng Z, Jin S, Wu W. Polynucleotide Phosphorylase Regulates Multiple Virulence Factors and the Stabilities of Small RNAs RsmY/Z in Pseudomonas aeruginosa. Front Microbiol 2016; 7:247. [PMID: 26973625 PMCID: PMC4773659 DOI: 10.3389/fmicb.2016.00247] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional regulation enables bacteria to quickly response to environmental stresses. Polynucleotide phosphorylase (PNPase), which contains an N-terminal catalytic core and C-terminal RNA binding KH-S1 domains, is involved in RNA processing. Here we demonstrate that in Pseudomonas aeruginosa the KH-S1 domains of PNPase are required for the type III secretion system (T3SS) and bacterial virulence. Transcriptome analysis revealed a pleiotropic role of PNPase in gene regulation. Particularly, the RNA level of exsA was decreased in the ΔKH-S1 mutant, which was responsible for the reduced T3SS expression. Meanwhile, the pilus biosynthesis genes were down regulated and the type VI secretion system (T6SS) genes were up regulated in the ΔKH-S1 mutant, which were caused by increased levels of small RNAs, RsmY, and RsmZ. Further studies revealed that deletion of the KH-S1 domains did not affect the transcription of RsmY/Z, but increased their stabilities. An in vivo pull-down and in vitro electrophoretic mobility shift assay (EMSA) demonstrated a direct interaction between RsmY/Z and the KH-S1 fragment. Overall, this study reveals the roles of PNPase in the regulation of virulence factors and stabilities of small RNAs in P. aeruginosa.
Collapse
Affiliation(s)
- Ronghao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Yuding Weng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Feng Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Bin Xia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China; Department of Molecular Genetics and Microbiology, College of Medicine, University of FloridaGainesville, FL, USA
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| |
Collapse
|
38
|
Guo Q, Wei Y, Xia B, Jin Y, Liu C, Pan X, Shi J, Zhu F, Li J, Qian L, Liu X, Cheng Z, Jin S, Lin J, Wu W. Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa. Sci Rep 2016; 6:19141. [PMID: 26751736 PMCID: PMC4707474 DOI: 10.1038/srep19141] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
The rising antibiotic resistance of bacteria imposes a severe threat on human health. Inhibition of bacterial virulence is an alternative approach to develop new antimicrobials. Molecules targeting antibiotic resistant enzymes have been used in combination with cognate antibiotics. It might be ideal that a molecule can simultaneously suppress virulence factors and antibiotic resistance. Here we combined genetic and computer-aided inhibitor screening to search for such molecules against the bacterial pathogen Pseudomonas aeruginosa. To identify target proteins that control both virulence and antibiotic resistance, we screened for mutants with defective cytotoxicity and biofilm formation from 93 transposon insertion mutants previously reported with increased antibiotic susceptibility. A pyrD mutant displayed defects in cytotoxicity, biofilm formation, quorum sensing and virulence in an acute mouse pneumonia model. Next, we employed a computer-aided screening to identify potential inhibitors of the PyrD protein, a dihydroorotate dehydrogenase (DHODase) involved in pyrimidine biosynthesis. One of the predicted inhibitors was able to suppress the enzymatic activity of PyrD as well as bacterial cytotoxicity, biofilm formation and antibiotic resistance. A single administration of the compound reduced the bacterial colonization in the acute mouse pneumonia model. Therefore, we have developed a strategy to identify novel treatment targets and antimicrobial molecules.
Collapse
Affiliation(s)
- Qiaoyun Guo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Wei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Bin Xia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Feng Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jinlong Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Lei Qian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
39
|
Brown NA, Urban M, Hammond-Kosack KE. The trans-kingdom identification of negative regulators of pathogen hypervirulence. FEMS Microbiol Rev 2016; 40:19-40. [PMID: 26468211 PMCID: PMC4703069 DOI: 10.1093/femsre/fuv042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/30/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023] Open
Abstract
Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen-host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed.
Collapse
Affiliation(s)
- Neil A Brown
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Martin Urban
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Kim E Hammond-Kosack
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| |
Collapse
|
40
|
Malone JG. Role of small colony variants in persistence of Pseudomonas aeruginosa infections in cystic fibrosis lungs. Infect Drug Resist 2015; 8:237-47. [PMID: 26251621 PMCID: PMC4524453 DOI: 10.2147/idr.s68214] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that predominates during the later stages of cystic fibrosis (CF) lung infections. Over many years of chronic lung colonization, P. aeruginosa undergoes extensive adaptation to the lung environment, evolving both toward a persistent, low virulence state and simultaneously diversifying to produce a number of phenotypically distinct morphs. These lung-adapted P. aeruginosa strains include the small colony variants (SCVs), small, autoaggregative isolates that show enhanced biofilm formation, strong attachment to surfaces, and increased production of exopolysaccharides. Their appearance in the sputum of CF patients correlates with increased resistance to antibiotics, poor lung function, and prolonged persistence of infection, increasing their relevance as a subject for clinical investigation. The evolution of SCVs in the CF lung is associated with overproduction of the ubiquitous bacterial signaling molecule cyclic-di-GMP, with increased cyclic-di-GMP levels shown to be responsible for the SCV phenotype in a number of different CF lung isolates. Here, we review the current state of research in clinical P. aeruginosa SCVs. We will discuss the phenotypic characteristics underpinning the SCV morphotype, the clinical implications of lung colonization with SCVs, and the molecular basis and clinical evolution of the SCV phenotype in the CF lung environment.
Collapse
Affiliation(s)
- Jacob G Malone
- John Innes Centre, Norwich, UK ; School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
41
|
Vakulskas CA, Potts AH, Babitzke P, Ahmer BMM, Romeo T. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol Mol Biol Rev 2015; 79:193-224. [PMID: 25833324 PMCID: PMC4394879 DOI: 10.1128/mmbr.00052-14] [Citation(s) in RCA: 248] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most bacterial pathogens have the remarkable ability to flourish in the external environment and in specialized host niches. This ability requires their metabolism, physiology, and virulence factors to be responsive to changes in their surroundings. It is no surprise that the underlying genetic circuitry that supports this adaptability is multilayered and exceedingly complex. Studies over the past 2 decades have established that the CsrA/RsmA proteins, global regulators of posttranscriptional gene expression, play important roles in the expression of virulence factors of numerous proteobacterial pathogens. To accomplish these tasks, CsrA binds to the 5' untranslated and/or early coding regions of mRNAs and alters translation, mRNA turnover, and/or transcript elongation. CsrA activity is regulated by noncoding small RNAs (sRNAs) that contain multiple CsrA binding sites, which permit them to sequester multiple CsrA homodimers away from mRNA targets. Environmental cues sensed by two-component signal transduction systems and other regulatory factors govern the expression of the CsrA-binding sRNAs and, ultimately, the effects of CsrA on secretion systems, surface molecules and biofilm formation, quorum sensing, motility, pigmentation, siderophore production, and phagocytic avoidance. This review presents the workings of the Csr system, the paradigm shift that it generated for understanding posttranscriptional regulation, and its roles in virulence networks of animal and plant pathogens.
Collapse
Affiliation(s)
- Christopher A Vakulskas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Anastasia H Potts
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
42
|
Balasubramanian D, Kumari H, Mathee K. Pseudomonas aeruginosa AmpR: an acute-chronic switch regulator. Pathog Dis 2015; 73:1-14. [PMID: 25066236 DOI: 10.1111/2049-632x.12208] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most intractable human pathogens that pose serious clinical challenge due to extensive prevalence of multidrug-resistant clinical isolates. Armed with abundant virulence and antibiotic resistance mechanisms, it is a major etiologic agent in a number of acute and chronic infections. A complex and intricate network of regulators dictates the expression of pathogenicity factors in P. aeruginosa. Some proteins within the network play key roles and control multiple pathways. This review discusses the role of one such protein, AmpR, which was initially recognized for its role in antibiotic resistance by regulating AmpC β-lactamase. Recent genomic, proteomic and phenotypic analyses demonstrate that AmpR regulates expression of hundreds of genes that are involved in diverse pathways such as β-lactam and non-β-lactam resistance, quorum sensing and associated virulence phenotypes, protein phosphorylation, and physiological processes. Finally, ampR mutations in clinical isolates are reviewed to shed light on important residues required for its function in antibiotic resistance. The prevalence and evolutionary implications of AmpR in pathogenic and nonpathogenic proteobacteria are also discussed. A comprehensive understanding of proteins at nodal positions in the P. aeruginosa regulatory network is crucial in understanding, and ultimately targeting, the pathogenic stratagems of this organism.
Collapse
Affiliation(s)
| | - Hansi Kumari
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Kalai Mathee
- Department of Human & Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
43
|
Tan Y, Liu ZY, Liu Z, Zheng HJ, Li FL. Comparative transcriptome analysis between csrA-disruption Clostridium acetobutylicum and its parent strain. MOLECULAR BIOSYSTEMS 2015; 11:1434-42. [DOI: 10.1039/c4mb00600c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study represented the first attempt to investigate the global regulation of CsrA through transcriptome analysis in Gram-positive bacteria.
Collapse
Affiliation(s)
- Yang Tan
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Zi-Yong Liu
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Zhen Liu
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics
- Chinese National Human Genome Center at Shanghai
- Shanghai 201203
- China
| | - Fu-Li Li
- Key Laboratory of Biofuels
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- China
| |
Collapse
|
44
|
McClure R, Tjaden B, Genco C. Identification of sRNAs expressed by the human pathogen Neisseria gonorrhoeae under disparate growth conditions. Front Microbiol 2014; 5:456. [PMID: 25221548 PMCID: PMC4148029 DOI: 10.3389/fmicb.2014.00456] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/11/2014] [Indexed: 01/17/2023] Open
Abstract
In the last several years, bacterial gene regulation via small RNAs (sRNAs) has been recognized as an important mechanism controlling expression of essential proteins that are critical to bacterial growth and metabolism. Technologies such as RNA-seq are rapidly expanding the field of sRNAs and are enabling a global view of the “sRNAome” of several bacterial species. While numerous sRNAs have been identified in a variety of both Gram-negative and Gram-positive bacteria, only a very small number have been fully characterized in the human pathogen Neisseria gonorrhoeae, the etiological agent of the STD gonorrhea. Here we present the first analysis of N. gonorrhoeae specifically focused on the identification of sRNAs through RNA-seq analysis of the organism cultured under different in vitro growth conditions. Using a new computational program, Rockhopper, to analyze prokaryotic RNA-seq data obtained from N. gonorrhoeae we identified several putative sRNAs and confirmed their expression and size through Northern blot analysis. In addition, RNA was collected from four different growth conditions (iron replete and deplete, as well as with and without co-culture with human endocervical cells). Many of the putative sRNAs identified shoed varying expression levels relative to the different growth conditions examine or were detected only under certain conditions but not others. Comparisons of identified sRNAs with the regulatory pattern of putative mRNA targets revealed possible functional roles for these sRNAs. These studies are the first to carry out a global analysis of N. gonorrhoeae specifically focused on sRNAs and show that RNA-mediated regulation may be an important mechanism of gene control in this human pathogen.
Collapse
Affiliation(s)
- Ryan McClure
- Department of Medicine Section of Infectious Disease, Boston University School of Medicine Boston, MA, USA ; Department of Microbiology, Boston University School of Medicine Boston, MA, USA
| | - Brian Tjaden
- Department of Computer Science, Wellesley College Wellesley, MA, USA
| | - Caroline Genco
- Department of Medicine Section of Infectious Disease, Boston University School of Medicine Boston, MA, USA ; Department of Microbiology, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
45
|
Michaux C, Verneuil N, Hartke A, Giard JC. Physiological roles of small RNA molecules. MICROBIOLOGY-SGM 2014; 160:1007-1019. [PMID: 24694375 DOI: 10.1099/mic.0.076208-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Unlike proteins, RNA molecules have emerged lately as key players in regulation in bacteria. Most reviews hitherto focused on the experimental and/or in silico methods used to identify genes encoding small RNAs (sRNAs) or on the diverse mechanisms of these RNA regulators to modulate expression of their targets. However, less is known about their biological functions and their implications in various physiological responses. This review aims to compile what is known presently about the diverse roles of sRNA transcripts in the regulation of metabolic processes, in different growth conditions, in adaptation to stress and in microbial pathogenesis. Several recent studies revealed that sRNA molecules are implicated in carbon metabolism and transport, amino acid metabolism or metal sensing. Moreover, regulatory RNAs participate in cellular adaptation to environmental changes, e.g. through quorum sensing systems or development of biofilms, and analyses of several sRNAs under various physiological stresses and culture conditions have already been performed. In addition, recent experiments performed with Gram-positive and Gram-negative pathogens showed that regulatory RNAs play important roles in microbial virulence and during infection. The combined results show the diversity of regulation mechanisms and physiological processes in which sRNA molecules are key actors.
Collapse
Affiliation(s)
- Charlotte Michaux
- Unité de Recherche Risques Microbiens (U2RM), Equipe Stress Virulence, Université de Caen, 14032 Caen, France
| | - Nicolas Verneuil
- Unité de Recherche Risques Microbiens (U2RM), Equipe Stress Virulence, Université de Caen, 14032 Caen, France
| | - Axel Hartke
- Unité de Recherche Risques Microbiens (U2RM), Equipe Stress Virulence, Université de Caen, 14032 Caen, France
| | | |
Collapse
|
46
|
Catheter-associated urinary tract infection by Pseudomonas aeruginosa is mediated by exopolysaccharide-independent biofilms. Infect Immun 2014; 82:2048-58. [PMID: 24595142 DOI: 10.1128/iai.01652-14] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is especially adept at forming surface-associated biofilms. P. aeruginosa causes catheter-associated urinary tract infections (CAUTIs) through biofilm formation on the surface of indwelling catheters. P. aeruginosa encodes three extracellular polysaccharides, PEL, PSL, and alginate, and utilizes the PEL and PSL polysaccharides to form biofilms in vitro; however, the requirement of these polysaccharides during in vivo infections is not well understood. Here we show in a murine model of CAUTI that PAO1, a strain harboring pel, psl, and alg genes, and PA14, a strain harboring pel and alg genes, form biofilms on the implanted catheters. To determine the requirement of exopolysaccharide during in vivo biofilm infections, we tested isogenic mutants lacking the pel, psl, and alg operons and showed that PA14 mutants lacking these operons can successfully form biofilms on catheters in the CAUTI model. To determine the host factor(s) that induces the ΔpelD mutant to form biofilm, we tested mouse, human, and artificial urine and show that urine can induce biofilm formation by the PA14 ΔpelD mutant. By testing the major constituents of urine, we show that urea can induce a pel-, psl-, and alg-independent biofilm. These pel-, psl-, and alg-independent biofilms are mediated by the release of extracellular DNA. Treatment of biofilms formed in urea with DNase I reduced the biofilm, indicating that extracellular DNA supports biofilm formation. Our results indicate that the opportunistic pathogen P. aeruginosa utilizes a distinct program to form biofilms that are independent of exopolysaccharides during CAUTI.
Collapse
|
47
|
Negative pressure wound therapy decreases mortality in a murine model of burn-wound sepsis involving Pseudomonas aeruginosa infection. PLoS One 2014; 9:e90494. [PMID: 24587379 PMCID: PMC3938770 DOI: 10.1371/journal.pone.0090494] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/01/2014] [Indexed: 12/30/2022] Open
Abstract
Background The colonization of burn wounds by Pseudomonas aeruginosa can lead to septic shock, organ injuries, and high mortality rates. We hypothesized that negative pressure wound therapy (NPWT) would decrease invasion and proliferation of P. aeruginosa within the burn wound and reduce mortality. Methods Thermal injuries were induced in anesthetized mice, and P. aeruginosa was applied to the wound surface for 24 h. After removing the burn eschar and debridement, the animals were subjected to either NPWT or wet-to-dry (WTD) treatment protocols. The bacterial loads on the wound surface were assessed during 7 d of treatment, as were the concentrations of inflammatory cytokines in the peripheral blood samples. Survival was monitored daily for 14 d after burn induction. Finally, samples of wounded skin, lung, liver, and kidney were collected and subjected to histopathological examination. Results Applying P. aeruginosa to the burn wound surface led to sepsis. During early stages of treatment, NPWT reduced the mortality of the septic animals and levels of P. aeruginosa within the burn wound compared with WTD-treated animals. Circulating levels of cytokines and cytoarchitectural abnormalities were also significantly reduced via NPWT. Conclusions Our data indicate that NPWT inhibits the invasion and proliferation of P. aeruginosa in burn-wounded tissue and decreases early mortality in a murine model of burn-wound sepsis. These therapeutic benefits likely result from the ability of NPWT to decrease bacterial proliferation on the wound surface, reduce cytokine serum concentrations, and prevent damage to internal organs.
Collapse
|
48
|
SuhB is a regulator of multiple virulence genes and essential for pathogenesis of Pseudomonas aeruginosa. mBio 2013; 4:e00419-13. [PMID: 24169572 PMCID: PMC3809559 DOI: 10.1128/mbio.00419-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
During initial colonization and chronic infection, pathogenic bacteria encounter distinct host environments. Adjusting gene expression accordingly is essential for the pathogenesis. Pseudomonas aeruginosa has evolved complicated regulatory networks to regulate different sets of virulence factors to facilitate colonization and persistence. The type III secretion system (T3SS) and motility are associated with acute infections, while biofilm formation and the type VI secretion system (T6SS) are associated with chronic persistence. To identify novel regulatory genes required for pathogenesis, we screened a P. aeruginosa transposon (Tn) insertion library and found suhB to be an essential gene for the T3SS gene expression. The expression of suhB was upregulated in a mouse acute lung infection model, and loss of suhB resulted in avirulence. Suppression of T3SS gene expression in the suhB mutant is linked to a defective translation of the T3SS master regulator, ExsA. Further studies demonstrated that suhB mutation led to the upregulation of GacA and its downstream small RNAs, RsmY and RsmZ, triggering T6SS expression and biofilm formation while inhibiting the T3SS. Our results demonstrate that an in vivo-inducible gene, suhB, reciprocally regulates genes associated with acute and chronic infections and plays an essential role in the pathogenesis of P. aeruginosa. A variety of bacterial pathogens, such as Pseudomonas aeruginosa, cause acute and chronic infections in humans. During infections, pathogens produce different sets of virulence genes for colonization, tissue damage, and dissemination and for countering host immune responses. Complex regulatory networks control the delicate tuning of gene expression in response to host environments to enable the survival and growth of invading pathogens. Here we identified suhB as a critical gene for the regulation of virulence factors in P. aeruginosa. The expression of suhB was upregulated during acute infection in an animal model, and mutation of suhB rendered P. aeruginosa avirulent. Moreover, we demonstrate that SuhB is required for the activation of virulence factors associated with acute infections while suppressing virulence factors associated with chronic infections. Our report provides new insights into the multilayered regulatory network of virulence genes in P. aeruginosa.
Collapse
|
49
|
Frangipani E, Visaggio D, Heeb S, Kaever V, Cámara M, Visca P, Imperi F. The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Environ Microbiol 2013; 16:676-88. [PMID: 23796404 DOI: 10.1111/1462-2920.12164] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/20/2013] [Accepted: 05/25/2013] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa is a versatile bacterial pathogen capable of occupying diverse ecological niches. To cope with iron limitation, P. aeruginosa secretes two siderophores, pyoverdine and pyochelin, whose ability to deliver iron to the cell is crucial for biofilm formation and pathogenicity. In this study, we describe a link between iron uptake and the Gac/Rsm system, a conserved signal transducing pathway of P. aeruginosa that controls the production of extracellular products and virulence factors, as well as the switch from planktonic to biofilm lifestyle. We have observed that pyoverdine and pyochelin production in P. aeruginosa is strongly dependent on the activation state of the Gac/Rsm pathway, which controls siderophore regulatory and biosynthetic genes at the transcriptional level, in a manner that does not involve regulation of ferric uptake regulator (Fur) expression. Gac/Rsm-mediated regulation of iron uptake genes appears to be conserved in different P. aeruginosa strains. Further experiments led to propose that the Gac/Rsm system regulates siderophore production through modulation of the intracellular levels of the second messenger c-di-GMP, indicating that the c-di-GMP and the Gac/Rsm regulatory networks essential for biofilm formation can also coordinately control iron uptake in P. aeruginosa.
Collapse
|
50
|
Pseudomonas aeruginosa cytotoxicity is attenuated at high cell density and associated with the accumulation of phenylacetic acid. PLoS One 2013; 8:e60187. [PMID: 23555919 PMCID: PMC3612096 DOI: 10.1371/journal.pone.0060187] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/21/2013] [Indexed: 01/07/2023] Open
Abstract
Background P. aeruginosa is known to cause acute cytotoxicity against various human and animal cells and tissues. Methodology/Findings Intriguingly, however, in this study we noticed that while a low cell density inoculum of P. aeruginosa caused severe cytotoxicity against human lung tissue cell line A549, increasing the cell density of bacterial inoculum led to decreased cytotoxicity. Addition of the supernatants from high density bacterial culture to low cell density inoculum protected the human cells from bacterial cytotoxic damage, suggesting that P. aeruginosa may produce and accumulate an inhibitory molecule(s) counteracting its pathogenic infection. The inhibitor was purified from the stationary-phase culture supernatants of P. aeruginosa strain PAO1 using bioassay-guided high performance liquid chromatography (HPLC), and characterized to be phenylacetic acid (PAA) by mass spectrometry and nuclear magnetic resonance spectroscopy. Microarray analysis revealed that treatment of P. aeruginosa with PAA down-regulated the transcriptional expression of Type III secretion system (T3SS) genes and related regulatory genes including rsmA and vfr, which were confirmed by transcriptional and translational analysis. Conclusions Identification of bacterial metabolite PAA as a T3SS-specific inhibitor explains this intriguing inverse cell-density-dependent-cytotoxicity phenomenon as T3SS is known to be a key virulence factor associated with cytotoxicity and acute infection. The findings may provide useful clues for design and development of new strategies to combat this formidable bacterial pathogen.
Collapse
|