1
|
Donoso-Meneses D, Figueroa-Valdés AI, Khoury M, Alcayaga-Miranda F. Oral Administration as a Potential Alternative for the Delivery of Small Extracellular Vesicles. Pharmaceutics 2023; 15:pharmaceutics15030716. [PMID: 36986578 PMCID: PMC10053447 DOI: 10.3390/pharmaceutics15030716] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/24/2023] Open
Abstract
Small extracellular vesicles (sEVs) have burst into biomedicine as a natural therapeutic alternative for different diseases. Considered nanocarriers of biological origin, various studies have demonstrated the feasibility of their systemic administration, even with repeated doses. However, despite being the preferred route of physicians and patients, little is known about the clinical use of sEVs in oral administration. Different reports show that sEVs can resist the degradative conditions of the gastrointestinal tract after oral administration, accumulating regionally in the intestine, where they are absorbed for systemic biodistribution. Notably, observations demonstrate the efficacy of using sEVs as a nanocarrier system for a therapeutic payload to obtain a desired biological (therapeutic) effect. From another perspective, the information to date indicates that food-derived vesicles (FDVs) could be considered future nutraceutical agents since they contain or even overexpress different nutritional compounds of the foods from which they are derived, with potential effects on human health. In this review, we present and critically analyze the current information on the pharmacokinetics and safety profile of sEVs when administered orally. We also address the molecular and cellular mechanisms that promote intestinal absorption and that command the therapeutic effects that have been observed. Finally, we analyze the potential nutraceutical impact that FDVs would have on human health and how their oral use could be an emerging strategy to balance nutrition in people.
Collapse
Affiliation(s)
- Darío Donoso-Meneses
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Santiago 7620086, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620086, Chile
| | - Aliosha I. Figueroa-Valdés
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Santiago 7620086, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620086, Chile
| | - Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Santiago 7620086, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620086, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago 7550101, Chile
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago 7620086, Chile
- Cells for Cells, Santiago 7620157, Chile
| | - Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Santiago 7620086, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620086, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago 7550101, Chile
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago 7620086, Chile
- Cells for Cells, Santiago 7620157, Chile
- Correspondence:
| |
Collapse
|
2
|
Nazeam JA, Singab ANB. Immunostimulant plant proteins: Potential candidates as vaccine adjuvants. Phytother Res 2022; 36:4345-4360. [PMID: 36128599 PMCID: PMC9538006 DOI: 10.1002/ptr.7624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/20/2022] [Accepted: 09/03/2022] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is shaking up global scientific structures toward addressing antibiotic resistance threats and indicates an urgent need to develop more cost-effective vaccines. Vaccine adjuvants play a crucial role in boosting immunogenicity and improving vaccine efficacy. The toxicity and adversity of most adjuvant formulations are the major human immunization problems, especially in routine pediatric and immunocompromised patients. The present review focused on preclinical studies of immunoadjuvant plant proteins in use with antiparasitic, antifungal, and antiviral vaccines. Moreover, this report outlines the current perspective of immunostimulant plant protein candidates that can be used by researchers in developing new generations of vaccine-adjuvants. Future clinical studies are required to substantiate the plant proteins' safety and applicability as a vaccine adjuvant in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Jilan A. Nazeam
- Pharmacognosy Department, Faculty of PharmacyOctober 6 UniversityGizaEgypt
| | | |
Collapse
|
3
|
|
4
|
Kudelka MR, Stowell SR, Cummings RD, Neish AS. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat Rev Gastroenterol Hepatol 2020; 17:597-617. [PMID: 32710014 PMCID: PMC8211394 DOI: 10.1038/s41575-020-0331-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) affects 6.8 million people globally. A variety of factors have been implicated in IBD pathogenesis, including host genetics, immune dysregulation and gut microbiota alterations. Emerging evidence implicates intestinal epithelial glycosylation as an underappreciated process that interfaces with these three factors. IBD is associated with increased expression of truncated O-glycans as well as altered expression of terminal glycan structures. IBD genes, glycosyltransferase mislocalization, altered glycosyltransferase and glycosidase expression and dysbiosis drive changes in the glycome. These glycan changes disrupt the mucus layer, glycan-lectin interactions, host-microorganism interactions and mucosal immunity, and ultimately contribute to IBD pathogenesis. Epithelial glycans are especially critical in regulating the gut microbiota through providing bacterial ligands and nutrients and ultimately determining the spatial organization of the gut microbiota. In this Review, we discuss the regulation of intestinal epithelial glycosylation, altered epithelial glycosylation in IBD and mechanisms for how these alterations contribute to disease pathobiology. We hope that this Review provides a foundation for future studies on IBD glycosylation and the emergence of glycan-inspired therapies for IBD.
Collapse
Affiliation(s)
- Matthew R Kudelka
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Department of Internal Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sean R Stowell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Saraf S, Jain S, Sahoo RN, Mallick S. Present Scenario of M-Cell Targeting Ligands for Oral Mucosal Immunization. Curr Drug Targets 2020; 21:1276-1284. [DOI: 10.2174/1389450121666200609113252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
The immune system plays an important role in the prevention of infection and forms the
first line of defense against pathogen attack. Delivering of antigen through mucosal route may elicit
mucosal immune system as the mucosal surface is the most common site of pathogen entry. Mucosal
immune system will be capable to counter pathogen at mucosal surface. Oral mucosal immunization
opens the ways to deliver antigens at gut-associated lymphoid tissue. This can elicit both local and
systemic immune response. Mucosal vaccines are economical, highly accessible, non parenteral delivery
and capacity to produce mass immunization at the time of pandemics. To deliver antigens on the
mucosal surface of the gastrointestinal tract, the immune system relies on specialized epithelial cell
i.e. Microfold (M)-cell. An approach to exploit the targeting specific receptors on M-cell for entry of
antigens has made a breakthrough in vaccine development. In this review, various strategies have been
discussed for the possible entry of antigens through M-cells and an approach to increase the uptake
and efficacy of vaccines for oral mucosal immunization.
Collapse
Affiliation(s)
- Surendra Saraf
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar-751030, Orissa, India
| | - Shailesh Jain
- Dean, Faculty of Pharmacy and Pharmaceutical Sciences at Madhyanchal Professional University Bhopal (MP), India
| | - Rudra Narayan Sahoo
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar-751030, Orissa, India
| | - Subrata Mallick
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar-751030, Orissa, India
| |
Collapse
|
6
|
Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. J Control Release 2020; 322:486-508. [DOI: 10.1016/j.jconrel.2020.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
7
|
Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front Pharmacol 2020; 11:524. [PMID: 32425781 PMCID: PMC7212533 DOI: 10.3389/fphar.2020.00524] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
The oral route is by far the most common route of drug administration in the gastrointestinal tract and can be used for both systemic drug delivery and for treating local gastrointestinal diseases. It is the most preferred route by patients, due to its advantages, such as ease of use, non-invasiveness, and convenience for self-administration. Formulations can also be designed to enhance drug delivery to specific regions in the upper or lower gastrointestinal tract. Despite the clear advantages offered by the oral route, drug delivery can be challenging as the human gastrointestinal tract is complex and displays a number of physiological barriers that affect drug delivery. Among these challenges are poor drug stability, poor drug solubility, and low drug permeability across the mucosal barriers. Attempts to overcome these issues have focused on improved understanding of the physiology of the gastrointestinal tract in both healthy and diseased states. Innovative pharmaceutical approaches have also been explored to improve regional drug targeting in the gastrointestinal tract, including nanoparticulate formulations. This review will discuss the physiological, pathophysiological, and pharmaceutical considerations influencing drug delivery for the oral route of administration, as well as the conventional and novel drug delivery approaches. The translational challenges and development aspects of novel formulations will also be addressed.
Collapse
Affiliation(s)
- Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
8
|
Mishra A, Behura A, Mawatwal S, Kumar A, Naik L, Mohanty SS, Manna D, Dokania P, Mishra A, Patra SK, Dhiman R. Structure-function and application of plant lectins in disease biology and immunity. Food Chem Toxicol 2019; 134:110827. [PMID: 31542433 PMCID: PMC7115788 DOI: 10.1016/j.fct.2019.110827] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Lectins are proteins with a high degree of stereospecificity to recognize various sugar structures and form reversible linkages upon interaction with glyco-conjugate complexes. These are abundantly found in plants, animals and many other species and are known to agglutinate various blood groups of erythrocytes. Further, due to the unique carbohydrate recognition property, lectins have been extensively used in many biological functions that make use of protein-carbohydrate recognition like detection, isolation and characterization of glycoconjugates, histochemistry of cells and tissues, tumor cell recognition and many more. In this review, we have summarized the immunomodulatory effects of plant lectins and their effects against diseases, including antimicrobial action. We found that many plant lectins mediate its microbicidal activity by triggering host immune responses that result in the release of several cytokines followed by activation of effector mechanism. Moreover, certain lectins also enhance the phagocytic activity of macrophages during microbial infections. Lectins along with heat killed microbes can act as vaccine to provide long term protection from deadly microbes. Hence, lectin based therapy can be used as a better substitute to fight microbial diseases efficiently in future.
Collapse
Affiliation(s)
- Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shradha Mawatwal
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Subhashree Subhasmita Mohanty
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Puja Dokania
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342011, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
9
|
Klisuric A, Thierry B, Delon L, Prestidge CA, Gibson RJ. Identifying human and murine M cells in vitro. Exp Biol Med (Maywood) 2019; 244:554-564. [PMID: 30907132 DOI: 10.1177/1535370219838674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IMPACT STATEMENT The study of M cells, a specialized epithelial cell type found in the follicle-associated epithelium, is hampered by the lack of a universal M cell marker. As such, many studies lack reliable and universally recognized methods to identify M cells in their proposed models. As a result of this it is difficult to ascertain whether the effects observed are due to the presence of M cells or an unaccounted variable. The outcome of this review is the thorough evaluation of the many M cell markers that have been used in the literature thus far and a proposed criterion for the identification of M cells for future publications. This will hopefully lead to an improvement in the quality of future publications in this field.
Collapse
Affiliation(s)
- Ana Klisuric
- 1 Division of Health Sciences, University of South Australia, Adelaide 5000, Australia.,2 ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Frome Road, Adelaide 5000, Australia.,3 School of Pharmacy and Medical Science, University of South Australia, Adelaide 5000, Australia
| | - Benjamin Thierry
- 2 ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Frome Road, Adelaide 5000, Australia.,4 Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Ludivine Delon
- 1 Division of Health Sciences, University of South Australia, Adelaide 5000, Australia.,2 ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Frome Road, Adelaide 5000, Australia.,4 Future Industries Institute, University of South Australia, Mawson Lakes 5095, Australia
| | - Clive A Prestidge
- 1 Division of Health Sciences, University of South Australia, Adelaide 5000, Australia.,2 ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Frome Road, Adelaide 5000, Australia
| | - Rachel J Gibson
- 1 Division of Health Sciences, University of South Australia, Adelaide 5000, Australia
| |
Collapse
|
10
|
Sander VA, Corigliano MG, Clemente M. Promising Plant-Derived Adjuvants in the Development of Coccidial Vaccines. Front Vet Sci 2019; 6:20. [PMID: 30809529 PMCID: PMC6379251 DOI: 10.3389/fvets.2019.00020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 01/15/2023] Open
Abstract
Coccidial parasites cause medical and veterinary diseases worldwide, frequently leading to severe illness and important economic losses. At present, drugs, chemotherapeutics and prophylactic vaccines are still missing for most of the coccidial infections. Moreover, the development and administration of drugs and chemotherapeutics against these diseases would not be adequate in livestock, since they may generate unacceptable residues in milk and meat that would avoid their commercialization. In this scenario, prophylactic vaccines emerge as the most suitable approach. Subunit vaccines have proven to be biologically safe and economically viable, allowing researchers to choose among the best antigens against each pathogen. However, they are generally poorly immunogenic and require the addition of adjuvant compounds to the vaccine formulation. During the last decades, research involving plant immunomodulatory compounds has become an important field of study based on their potential pharmaceutical applications. Some plant molecules such as saponins, polysaccharides, lectins and heat shock proteins are being explored as candidates for adjuvant/carriers formulations. Moreover, plant-derived immune stimulatory compounds open the possibility to attain the main goal in adjuvant research: a safe and non-toxic adjuvant capable of strongly boosting and directing immune responses that could be incorporated into different vaccine formulations, including mucosal vaccines. Here, we review the immunomodulatory properties of several plant molecules and discuss their application and future perspective as adjuvants in the development of vaccines against coccidial infections.
Collapse
Affiliation(s)
- Valeria A Sander
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| | - Mariana G Corigliano
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| | - Marina Clemente
- Unidad de Biotecnología 6-UB6, Instituto Tecnológico Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de General San Martín (UNSAM), Chascomús, Argentina
| |
Collapse
|
11
|
Managuli RS, Raut SY, Reddy MS, Mutalik S. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs. Expert Opin Drug Deliv 2018; 15:787-804. [PMID: 30025212 DOI: 10.1080/17425247.2018.1503249] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The major challenge of first pass metabolism in oral drug delivery can be surmounted by directing delivery toward intestinal lymphatic system (ILS). ILS circumvents the liver and transports drug directly into systemic circulation via thoracic duct. Lipid and polymeric nanoparticles are transported into ILS through lacteal and Peyer's patches. Moreover, surface modification of nanoparticles with ligand which is specific for Peyer's patches enhances the uptake of drugs into ILS. Bioavailability enhancement by lymphatic uptake is an advantageous approach adopted by scientists today. Therefore, it is important to understand clear insight of ILS in targeted drug delivery and challenges involved in it. AREAS COVERED Current review includes an overview of ILS, factors governing lymphatic transport of nanoparticles and absorption mechanism of lipid and polymeric nanoparticles into ILS. Various ligands used to target Peyer's patch and their conjugation strategies to nanoparticles are explained in detail. In vitro and in vivo models used to assess intestinal lymphatic transport of molecules are discussed further. EXPERT OPINION Although ILS offers a versatile pathway for nanotechnology based targeted drug delivery, extensive investigations on validation of the lymphatic transport models and on the strategies for gastric protection of targeted nanocarriers have to be perceived in for excellent performance of ILS in oral drug delivery.
Collapse
Affiliation(s)
- Renuka Suresh Managuli
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| | - Sushil Yadaorao Raut
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| | - Meka Sreenivasa Reddy
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| | - Srinivas Mutalik
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| |
Collapse
|
12
|
Raghavan S, Quiding-Järbrink M. Vaccination Against Helicobacter pylori Infection. HELICOBACTER PYLORI RESEARCH 2016:575-601. [DOI: 10.1007/978-4-431-55936-8_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Protease-activated receptor 1 suppresses Helicobacter pylori gastritis via the inhibition of macrophage cytokine secretion and interferon regulatory factor 5. Mucosal Immunol 2015; 8:68-79. [PMID: 24866378 DOI: 10.1038/mi.2014.43] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 04/28/2014] [Indexed: 02/08/2023]
Abstract
Chronic gastritis from Helicobacter pylori infection is a major factor in the development of gastric adenocarcinoma. Factors that regulate gastritis severity are important in determining which individuals are susceptible to H. pylori-associated disease. Although protease-activated receptor 1 (PAR1) has been identified as one such host factor, its mechanism of action is unknown. Using chimeric mice, we demonstrated that PAR1-mediated protection against H. pylori gastritis requires bone marrow-derived cells. Analyses of the gastric mucosa revealed that PAR1 suppresses cellular infiltration and both T helper type 1 (Th1) and T helper type 17 (Th17) responses to infection. Moreover, PAR1 expression was associated with reduced vaccine-mediated protection against H. pylori. Analyses of H. pylori-stimulated macrophages revealed that PAR1 activation suppressed secretion of interleukin (IL)-12 and IL-23, key drivers of Th1 and Th17 immunity, respectively. Furthermore, PAR1 suppressed interferon regulatory factor 5 (IRF5), an important transcription factor for IL-12 and IL-23, both in the infected mucosa and following bacterial stimulation. PAR1 suppression of IRF5 and IL-12/23 secretion by macrophages provides a novel mechanism by which the host suppresses the mucosal Th1 and Th17 response to H. pylori infection. Dysregulation of this process is likely an important factor in the susceptibility of some individuals to H. pylori-associated disease.
Collapse
|
14
|
Ye T, Yue Y, Fan X, Dong C, Xu W, Xiong S. M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine. Vaccine 2014; 32:4457-4465. [PMID: 24958702 DOI: 10.1016/j.vaccine.2014.06.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/21/2014] [Accepted: 06/11/2014] [Indexed: 11/20/2022]
Abstract
Efficient delivery of antigen to mucosal associated lymphoid tissue is a first and critical step for successful induction of mucosal immunity by vaccines. Considering its potential transcytotic capability, M cell has become a more and more attractive target for mucosal vaccines. In this research, we designed an M cell-targeting strategy by which mucosal delivery system chitosan (CS) was endowed with M cell-targeting ability via conjugating with a CPE30 peptide, C terminal 30 amino acids of clostridium perfringens enterotoxin (CPE), and then evaluated its immune-enhancing ability in the context of coxsackievirus B3 (CVB3)-specific mucosal vaccine consisting of CS and a plasmid encoding CVB3 predominant antigen VP1. It had shown that similar to CS-pVP1, M cell-targeting CPE30-CS-pVP1 vaccine appeared a uniform spherical shape with about 300 nm diameter and +22 mV zeta potential, and could efficiently protect DNA from DNase I digestion. Mice were orally immunized with 4 doses of CPE30-CS-pVP1 containing 50 μg pVP1 at 2-week intervals and challenged with CVB3 4 weeks after the last immunization. Compared with CS-pVP1 vaccine, CPE30-CS-pVP1 vaccine had no obvious impact on CVB3-specific serum IgG level and splenic T cell immune responses, but significantly increased specific fecal SIgA level and augmented mucosal T cell immune responses. Consequently, much milder myocarditis and lower viral load were witnessed in CPE30-CS-pVP1 immunized group. The enhanced immunogenicity and immunoprotection were associated with the M cell-targeting ability of CPE30-CS-pVP1 which improved its mucosal uptake and transcytosis. Our findings indicated that CPE30-CS-pVP1 may represent a novel prophylactic vaccine against CVB3-induced myocarditis, and this M cell-targeting strategy indeed could be applied as a promising and universal platform for mucosal vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Oral
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- Chitosan/administration & dosage
- Coxsackievirus Infections/pathology
- Coxsackievirus Infections/prevention & control
- Disease Models, Animal
- Enterovirus B, Human/immunology
- Immunity, Mucosal
- Immunoglobulin A, Secretory/analysis
- Immunoglobulin G/blood
- Male
- Mice, Inbred BALB C
- Myocarditis/pathology
- Myocarditis/prevention & control
- T-Lymphocytes/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Load
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Ting Ye
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China
| | - Yan Yue
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China
| | - Xiangmei Fan
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China
| | - Chunsheng Dong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China
| | - Sidong Xiong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China.
| |
Collapse
|
15
|
Chionh YT, Arulmuruganar A, Venditti E, Ng GZ, Han JX, Entwisle C, Ang CS, Colaco CA, McNulty S, Sutton P. Heat shock protein complex vaccination induces protection against Helicobacter pylori without exogenous adjuvant. Vaccine 2014; 32:2350-8. [PMID: 24625340 DOI: 10.1016/j.vaccine.2014.02.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/24/2014] [Accepted: 02/12/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND The development of a vaccine against the human gastric pathogen Helicobacter pylori, the main causative agent of gastric adenocarcinoma, has been hampered by a number of issues, including the lack of a mucosal adjuvant for use in humans. Heat shock proteins (Hsp), highly conserved molecules expressed by both bacteria and mammalian species, possess a range of functions, including acting as chaperones for cellular proteins and the ability to activate innate immune receptors. Hsp complex (HspC) vaccines, containing Hsp derived from pathogenic bacteria, are immunostimulatory without addition of an exogenous adjuvant and can induce immunity against their chaperoned proteins. In this study we explored in mice the potential utility of a H. pylori HspC vaccine. RESULTS Vaccination with H. pylori HspC, by either the subcutaneous or respiratory mucosal route, induced a strong antibody response, elevated gastric cytokine levels and significant protection against subsequent live challenge with this pathogen. The level of protection induced by non-adjuvanted HspC vaccine was equivalent to that which resulted from vaccination with adjuvanted vaccines. While protection induced by immunisation with adjuvanted vaccines was associated with the development of a moderate to severe atrophic gastritis, that induced by H. pylori HspC only resulted in a mild inflammatory response, despite an increase in pro-inflammatory gastric cytokines. This reduced gastritis correlated with an increase in IL-10 and IL-13 levels in the gastric tissues of HspC vaccinated, H. pylori challenged mice. CONCLUSIONS H. pylori HspC vaccines have the potential to overcome some of the issues preventing the development of a human vaccine against this pathogen: HspC induced protective immunity against H. pylori without addition of an adjuvant and without the induction of a severe inflammatory response. However, complete protection was not obtained so further optimisation of this technology is needed if a human vaccine is to become a reality.
Collapse
Affiliation(s)
- Yok Teng Chionh
- Mucosal Immunology, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Parkville, VIC 3052, Australia; Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Arthi Arulmuruganar
- Mucosal Immunology, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Parkville, VIC 3052, Australia
| | - Elena Venditti
- ImmunoBiology Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | - Garrett Z Ng
- Mucosal Immunology, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Parkville, VIC 3052, Australia
| | - Jia-Xi Han
- Mucosal Immunology, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Parkville, VIC 3052, Australia
| | - Claire Entwisle
- ImmunoBiology Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Camilo A Colaco
- ImmunoBiology Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | - Shaun McNulty
- ImmunoBiology Ltd., Babraham Research Campus, Babraham, Cambridge, UK
| | - Philip Sutton
- Mucosal Immunology, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Parkville, VIC 3052, Australia; Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
16
|
Ng GZ, Chionh YT, Sutton P. Vaccine-mediated protection against Helicobacter pylori is not associated with increased salivary cytokine or mucin expression. Helicobacter 2014; 19:48-54. [PMID: 24165046 DOI: 10.1111/hel.12099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The development of an effective vaccine against Helicobacter pylori is impeded by the inability to reliably produce sterilizing immunity and our lack of knowledge regarding mechanisms of protective immunity against this pathogen. It has previously been described that salivary glands are essential for vaccine-mediated protection against H. pylori, but the mechanism responsible for this effect has not been identified. In this study we tested the hypothesis that vaccines reduce H. pylori colonization by inducing an immune-mediated change in salivary gland mucin secretion. MATERIALS AND METHODS Sublingual and submandibular salivary glands were removed from untreated mice, from mice infected with H. pylori and from mice vaccinated against H. pylori then challenged with live bacteria. Cytokine levels in these salivary glands were quantified by ELISA, and salivary mucins were quantified by real-time PCR. Salivary antibody responses were determined by Western blot. RESULTS Vaccine-mediated protection against H. pylori did not produce any evidence of a positive increase in either salivary cytokine or mucin levels. In fact, many cytokines were significantly reduced in the vaccinated/challenged mice, including IL-17A, IL-10, IL-1ß, as well as the mucin Muc10. These decreases were associated with an increase in total protein content within the salivary glands of vaccinated mice which appeared to be the result of increased IgA production. While this study showed that vaccination increased salivary IgA levels, previous studies have demonstrated that antibodies do not play a critical role in protection against H. pylori that is induced by current vaccine formulations and regimes. CONCLUSIONS The effector mechanism of protective immunity induced by vaccination of mice did not involve immune changes within the salivary glands, nor increased production of salivary mucins.
Collapse
Affiliation(s)
- Garrett Z Ng
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, Vic., 3010, Australia; Mucosal Immunology, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Parkville, Vic., 3052, Australia
| | | | | |
Collapse
|
17
|
Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 2013; 6:666-77. [PMID: 23695511 PMCID: PMC3686595 DOI: 10.1038/mi.2013.30] [Citation(s) in RCA: 470] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcytosis of antigens across the gut epithelium by microfold cells (M cells) is important for the induction of efficient immune responses to some mucosal antigens in Peyer's patches. Recently, substantial progress has been made in our understanding of the factors that influence the development and function of M cells. This review highlights these important advances, with particular emphasis on: the host genes which control the functional maturation of M cells; how this knowledge has led to the rapid advance in our understanding of M-cell biology in the steady state and during aging; molecules expressed on M cells which appear to be used as "immunosurveillance" receptors to sample pathogenic microorganisms in the gut; how certain pathogens appear to exploit M cells to infect the host; and finally how this knowledge has been used to specifically target antigens to M cells to attempt to improve the efficacy of mucosal vaccines.
Collapse
|
18
|
Casteleyn C, Van den Broeck W, Gebert A, Tambuyzer BR, Van Cruchten S, Van Ginneken C. M cell specific markers in man and domestic animals: Valuable tools in vaccine development. Comp Immunol Microbiol Infect Dis 2013; 36:353-64. [DOI: 10.1016/j.cimid.2013.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 03/01/2013] [Accepted: 03/21/2013] [Indexed: 12/13/2022]
|
19
|
Al-Hilal TA, Alam F, Byun Y. Oral drug delivery systems using chemical conjugates or physical complexes. Adv Drug Deliv Rev 2013; 65:845-64. [PMID: 23220326 DOI: 10.1016/j.addr.2012.11.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 02/07/2023]
Abstract
Oral delivery of therapeutics is extremely challenging. The digestive system is designed in a way that naturally allows the degradation of proteins or peptides into small molecules prior to absorption. For systemic absorption, the intact drug molecules must traverse the impending harsh gastrointestinal environment. Technologies, such as enteric coating, with oral dosage formulation strategies have successfully provided the protection of non-peptide based therapeutics against the harsh, acidic condition of the stomach. However, these technologies showed limited success on the protection of therapeutic proteins and peptides. Importantly, inherent permeability coefficient of the therapeutics is still a major problem that has remained unresolved for decades. Addressing this issue in the context, we summarize the strategies that are developed in enhancing the intestinal permeability of a drug molecule either by modifying the intestinal epithelium or by modifying the drug itself. These modifications have been pursued by using a group of molecules that can be conjugated to the drug molecule to alter the cell permeability of the drug or mixed with the drug molecule to alter the epithelial barrier function, in order to achieve the effective drug permeation. This article will address the current trends and future perspectives of the oral delivery strategies.
Collapse
Affiliation(s)
- Taslim A Al-Hilal
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | | | | |
Collapse
|
20
|
Every AL. Key host–pathogen interactions for designing novel interventions against Helicobacter pylori. Trends Microbiol 2013; 21:253-9. [DOI: 10.1016/j.tim.2013.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/17/2013] [Accepted: 02/25/2013] [Indexed: 01/08/2023]
|
21
|
Abstract
PURPOSE OF REVIEW The intestinal epithelium is a dynamic barrier protecting the body from the multitudes of luminal micro-organisms present in the gut. However, this barrier is not impermeable and mechanisms exist that allow small amounts of antigen to traverse the epithelium in controlled manner to maintain tolerance and to mount immune responses. This review will summarize our current understanding of how luminal antigens traverse the small intestine epithelium without disrupting the epithelial barrier and how these antigen delivery pathways might influence the resulting immune responses. RECENT FINDINGS Recent findings have revealed four pathways for transepithelial antigen delivery in the absence of barrier disruption. We propose that during homeostasis, antigen introduced through microfold cells induces immunoglobulin A responses, antigen delivered by goblet cell-associated antigen passages contributes to peripheral tolerance, and antigen delivered by paracellular leak initiates immune responses in the mesenteric lymph node. In contrast, dendritic cell transepithelial dendrites may play an important role in host protection during pathogen infection, but do not appear to play a role in antigen capture by lamina propria dendritic cells in the steady state. SUMMARY These observations indicate that the route by which antigen crosses the epithelium directs the outcome of the subsequent immune response.
Collapse
|
22
|
Souza MA, Carvalho FC, Ruas LP, Ricci-Azevedo R, Roque-Barreira MC. The immunomodulatory effect of plant lectins: a review with emphasis on ArtinM properties. Glycoconj J 2013; 30:641-57. [PMID: 23299509 PMCID: PMC3769584 DOI: 10.1007/s10719-012-9464-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/06/2012] [Accepted: 12/09/2012] [Indexed: 12/31/2022]
Abstract
Advances in the glycobiology and immunology fields have provided many insights into the role of carbohydrate-protein interactions in the immune system. We aim to present a comprehensive review of the effects that some plant lectins exert as immunomodulatory agents, showing that they are able to positively modify the immune response to certain pathological conditions, such as cancer and infections. The present review comprises four main themes: (1) an overview of plant lectins that exert immunomodulatory effects and the mechanisms accounting for these activities; (2) general characteristics of the immunomodulatory lectin ArtinM from the seeds of Artocarpus heterophyllus; (3) activation of innate immunity cells by ArtinM and consequent induction of Th1 immunity; (4) resistance conferred by ArtinM administration in infections with intracellular pathogens, such as Leishmania (Leishmania) major, Leishmania (Leishmania) amazonensis, and Paracoccidioides brasiliensis. We believe that this review will be a valuable resource for more studies in this relatively neglected area of research, which has the potential to reveal carbohydrate targets for novel prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Maria A Souza
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | | |
Collapse
|
23
|
Schulz O, Pabst O. Antigen sampling in the small intestine. Trends Immunol 2012; 34:155-61. [PMID: 23083727 DOI: 10.1016/j.it.2012.09.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/17/2012] [Accepted: 09/21/2012] [Indexed: 12/23/2022]
Abstract
Active sampling of intestinal antigen initiates regulated immune responses that ensure intestinal homeostasis. Several specialized mechanisms transport luminal antigen across the gut epithelium. Epithelium overlying lymphoid compartments is equipped with transcytotic microfold (M) cells that transport particulate material either directly or with the help of dendritic cells (DCs). By contrast, normal villous epithelium transports antigen by means of antigen-shuttling receptors together with phagocytes that scan the gut epithelium and potentially the gut lumen. Here, we examine recent insights into the nature of the epithelial and immune cell types involved in antigen uptake and describe how the process of antigen transport has been visualized by intravital microscopy. These new findings might help optimize antigen delivery systems for mucosal vaccination.
Collapse
Affiliation(s)
- Olga Schulz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | | |
Collapse
|
24
|
Du F, Zhou J, Gong R, Huang X, Pansuria M, Virtue A, Li X, Wang H, Yang XF. Endothelial progenitor cells in atherosclerosis. Front Biosci (Landmark Ed) 2012; 17:2327-49. [PMID: 22652782 DOI: 10.2741/4055] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endothelial progenitor cells (EPCs) are involved in the maintenance of endothelial homoeostasis and in the process of new vessel formation. Experimental and clinical studies have shown that atherosclerosis is associated with reduced numbers and dysfunction of EPCs; and that medications alone are able to partially reverse the impairment of EPCs in patients with atherosclerosis. Therefore, novel EPC-based therapies may provide enhancement in restoring EPCs' population and improvement of vascular function. Here, for a better understanding of the molecular mechanisms underlying EPC impairment in atherosclerosis, we provide a comprehensive overview on EPC characteristics, phenotypes, and the signaling pathways underlying EPC impairment in atherosclerosis.
Collapse
Affiliation(s)
- Fuyong Du
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Every AL, Selwood L, Castano-Rodriguez N, Lu W, Windsor HM, Wee JLK, Swierczak A, Marshall BJ, Kaakoush NO, Mitchell HM, Sutton P. Did transmission of Helicobacter pylori from humans cause a disease outbreak in a colony of Stripe-faced Dunnarts (Sminthopsis macroura)? Vet Res 2011; 42:26. [PMID: 21314909 PMCID: PMC3042409 DOI: 10.1186/1297-9716-42-26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 12/22/2010] [Indexed: 11/19/2022] Open
Abstract
Since the discovery that Helicobacter pylori causes a range of pathologies in the stomachs of infected humans, it has become apparent that Helicobacters are found in a diverse range of animal species where they are frequently associated with disease. In 2003 and 2004, there were two outbreaks of increased mortality associated with gastric bleeding and weight-loss in a captive colony of the Australian marsupial, the Stripe-faced Dunnart (Sminthopsis macroura). The presence of gastric pathology led to an investigation of potential Helicobacter pathogenesis in these animals. Histological examination revealed the presence of gastritis, and PCR analysis confirmed the presence of Helicobacter infection in the stomachs of these marsupials. Surprisingly, sequencing of 16S rRNA from these bacteria identified the species as H. pylori and PCR confirmed the strain to be positive for the important pathogenesis factor, cagA. We therefore describe, for the first time, an apparent reverse zoonotic infection of Stripe-faced Dunnarts with H. pylori. Already prone to pathological effects of stress (as experienced during breeding season), concomitant H. pylori infection appears to be a possible essential but not sufficient co-factor in prototypic gastric bleeding and weight loss in these marsupials. The Stripe-faced Dunnart could represent a new model for investigating Helicobacter-driven gastric pathology. Infections from their human handlers, specifically of H. pylori, may be a potential risk to captive colonies of marsupials.
Collapse
Affiliation(s)
- Alison L Every
- Centre for Animal Biotechnology, School of Veterinary Science, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Salim SY, Söderholm JD. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis 2011; 17:362-81. [PMID: 20725949 DOI: 10.1002/ibd.21403] [Citation(s) in RCA: 441] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/01/2010] [Indexed: 12/12/2022]
Abstract
The current paradigm of inflammatory bowel diseases (IBD), both Crohn's disease (CD) and ulcerative colitis (UC), involves the interaction between environmental factors in the intestinal lumen and inappropriate host immune responses in genetically predisposed individuals. The intestinal mucosal barrier has evolved to maintain a delicate balance between absorbing essential nutrients while preventing the entry and responding to harmful contents. In IBD, disruptions of essential elements of the intestinal barrier lead to permeability defects. These barrier defects exacerbate the underlying immune system, subsequently resulting in tissue damage. The epithelial phenotype in active IBD is very similar in CD and UC. It is characterized by increased secretion of chloride and water, leading to diarrhea, increased permeability via both the transcellular and paracellular routes, and increased apoptosis of epithelial cells. The main cytokine that seems to drive these changes is tumor necrosis factor alpha in CD, whereas interleukin (IL)-13 may be more important in UC. Therapeutic restoration of the mucosal barrier would provide protection and prevent antigenic overload due to intestinal "leakiness." Here we give an overview of the key players of the intestinal mucosal barrier and review the current literature from studies in humans and human systems on mechanisms underlying mucosal barrier dysfunction in IBD.
Collapse
Affiliation(s)
- Sa'ad Y Salim
- Department of Clinical and Experimental Medicine, Division of Surgery and Clinical Oncology, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | |
Collapse
|
27
|
Tiwari S, Agrawal GP, Vyas SP. Molecular basis of the mucosal immune system: from fundamental concepts to advances in liposome-based vaccines. Nanomedicine (Lond) 2010; 5:1617-40. [DOI: 10.2217/nnm.10.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mucosal immune system, the primary portal for entry of most prevalent and devastating pathogens, is guarded by the special lymphoid tissues (mucosally associated lymphoid tissues) for immunity. Mucosal immune infection results in induction of IgA-manifested humoral immunity. Cell-mediated immunity may also be generated, marked by the presence of CD4+ Th1 and CD8+ cells. Furthermore, the immunity generated at the mucosal site is transported to the distal mucosal site as well as to systemic tissues. An understanding of the molecular basis of the mucosal immune system provides a unique platform for designing a mucosal vaccine. Coadministration of immunostimulatory molecules further accelerates functioning of the immune system. Mimicking receptor-mediated binding of the pathogen may be achieved by direct conjugation of antigen with an immunostimulatory molecule or encapsulation in a carrier followed by anchoring of a ligand having affinity to the cells of the mucosal immune system. Nanotechnology has played a significant role in mucosal vaccine development and among the available options liposomes are the most promising. Liposomes are phospholipid bilayered vesicles that can encapsulate protein as well as DNA-based vaccines and offer coencapsulation of adjuvant along with the antigen. At the same, time ligand-conjugated liposomes augment interaction of antigen with the cells of the mucosal immune system and thereby serve as suitable candidates for the mucosal delivery of vaccines. This article exhaustively explores strategies involved in the generation of mucosal immunity and also provides an insight to the progress that has been made in the development of liposome-based mucosal vaccine.
Collapse
Affiliation(s)
- Shailja Tiwari
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India
| | - Govind P Agrawal
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India
| | | |
Collapse
|
28
|
Azizi A, Kumar A, Diaz-Mitoma F, Mestecky J. Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathog 2010; 6:e1001147. [PMID: 21085599 PMCID: PMC2978714 DOI: 10.1371/journal.ppat.1001147] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The immune system in the gastrointestinal tract plays a crucial role in the control of infection, as it constitutes the first line of defense against mucosal pathogens. The attractive features of oral immunization have led to the exploration of a variety of oral delivery systems. However, none of these oral delivery systems have been applied to existing commercial vaccines. To overcome this, a new generation of oral vaccine delivery systems that target antigens to gut-associated lymphoid tissue is required. One promising approach is to exploit the potential of microfold (M) cells by mimicking the entry of pathogens into these cells. Targeting specific receptors on the apical surface of M cells might enhance the entry of antigens, initiating the immune response and consequently leading to protection against mucosal pathogens. In this article, we briefly review the challenges associated with current oral vaccine delivery systems and discuss strategies that might potentially target mouse and human intestinal M cells.
Collapse
Affiliation(s)
- Ali Azizi
- Infectious Disease and Vaccine Research Center, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
29
|
Granell A, Fernández del-Carmen A, Orzáez D. In planta production of plant-derived and non-plant-derived adjuvants. Expert Rev Vaccines 2010; 9:843-58. [PMID: 20673009 DOI: 10.1586/erv.10.80] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recombinant antigen production in plants is a safe and economically sound strategy for vaccine development, particularly for oral/mucosal vaccination, but subunit vaccines usually suffer from weak immunogenicity and require adjuvants that escort the antigens, target them to relevant sites and/or activate antigen-presenting cells for elicitation of protective immunity. Genetic fusions of antigens with bacterial adjuvants as the B subunit of the cholera toxin have been successful in inducing protective immunity of plant-made vaccines. In addition, several plant compounds, mainly plant defensive molecules as lectins and saponins, have shown strong adjuvant activities. The molecular diversity of the plant kingdom offers a vast source of non-bacterial compounds with adjuvant activity, which can be assayed in emerging plant manufacturing systems for the design of new plant vaccine formulations.
Collapse
Affiliation(s)
- Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Spain
| | | | | |
Collapse
|
30
|
Pickard JM, Chervonsky AV. Sampling of the intestinal microbiota by epithelial M cells. Curr Gastroenterol Rep 2010; 12:331-339. [PMID: 20706806 DOI: 10.1007/s11894-010-0128-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Sampling of intestinal pathogens and commensals is an important aspect of the gut immune system, and is accomplished through the action of specialized epithelial M cells. Although their sampling abilities have been appreciated for decades, few molecular details of their development or function are known. This review discusses several recent advances in our understanding of these cells, including signals controlling their development, the mechanisms they use for taking up microbes, and their exploitation by certain pathogens. Future research directions are discussed, including development of oral vaccines.
Collapse
Affiliation(s)
- Joseph M Pickard
- Department of Pathology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | |
Collapse
|
31
|
Abstract
Helicobacter pylori represents the major etiologic agent of gastritis, gastric, and duodenal ulcer disease and can cause gastric cancer and mucosa-associated lymphoid tissue B-cell lymphoma. It is clear that the consequences of infection reflect diverse outcomes of the interaction of bacteria and host immune system. The hope is that by deciphering the deterministic rules--if any--of this interplay, we will eventually be able to predict, treat, and ultimately prevent disease. Over the past year, research on the immunology of this infection started to probe the role of small noncoding RNAs, a novel class of immune response regulators. Furthermore, we learned new details on how infection is detected by innate pattern recognition receptors. Induction of effective cell-mediated immunity will be key for the development of a vaccine, and new work published analyzed the relevance and contribution of CD4 T helper cell subsets to the immune reaction. Th17 cells, which are also induced during natural infection, were shown to be particularly important for vaccination. Cost-efficiency of vaccination was re-assessed and confirmed. Thus, induction and shaping of the effector roles of such protective Th populations will be a target of the newly described vaccine antigens, formulations, and modes of application that we also review here.
Collapse
|
32
|
Gupta PN, Vyas SP. Investigation of lectinized liposomes as M-cell targeted carrier-adjuvant for mucosal immunization. Colloids Surf B Biointerfaces 2010; 82:118-25. [PMID: 20843665 DOI: 10.1016/j.colsurfb.2010.08.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/16/2010] [Accepted: 08/19/2010] [Indexed: 01/20/2023]
Abstract
In the present investigation hepatitis B surface antigen (HBsAg) encapsulated liposomes were developed and coupled with Ulex europaeus agglutinin 1 (UEA-1) to increase transmucosal uptake by M-cells of the Peyer's patches. The liposomes were characterized for shape, size, polydispersity and encapsulation efficiency. Bovine submaxillary mucin (BSM) was used as a biological model for the in vitro determination of lectin activity and specificity. Dual staining technique was used to investigate targeting of lectinized liposomes to the M-cells. Anti-HBsAg IgG response in serum and anti-HBsAg sIgA level in various mucosal fluids was estimated by using ELISA, following oral immunization with lectinized and non-lectinized liposomes in Balb/c mice. Additionally, interleukin-2 (IL-2) and interferon-γ (IFN-γ) level in the spleen homogenates was determined. The results suggest that lectinized liposomes were successfully developed, exhibited increased activity with BSM as compared to non-lectinized liposomes and α-l-fucose specificity of the lectinized liposomes was also maintained. The lectinized liposomes were predominantly targeted to the M-cells. The serum anti-HBsAg IgG titre obtained after 3 consecutive days oral immunizations with HBsAg encapsulated lectinized liposomes and boosting after third week was comparable with the titre recorded after single intramuscular prime and third week boosting with alum-HBsAg. Moreover, lectinized liposomes induced higher sIgA level in mucosal secretions and cytokines level in the spleen homogenates. The results showed that the developed surface modified liposomes could be a potential module for the development of effective mucosal vaccines.
Collapse
Affiliation(s)
- Prem N Gupta
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar 470003, Madhya Pradesh, India.
| | | |
Collapse
|
33
|
Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol 2010; 50:266-72. [PMID: 20673769 DOI: 10.1016/j.yjmcc.2010.07.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 01/13/2023]
Abstract
The term endothelial progenitor cell (EPC) was coined to refer to circulating cells that displayed the ability to display cell surface antigens similar to endothelial cells in vitro, to circulate and lodge in areas of ischemia or vascular injury, and to facilitate the repair of damaged blood vessels or augment development of new vessels as needed by a tissue. More than 10 years after the first report, the term EPC is used to refer to a host of circulating cells that display some or all of the qualities indicated above, however, essentially all of the cells are now known to be members of the hematopoietic lineage. The exception is a rare viable circulating endothelial cell with clonal proliferative potential that displays the ability to spontaneously form inosculating human blood vessels upon implantation into immunodeficient murine host tissues. This paper will review the current lineage relationships among all the cells called EPC and will propose that the term EPC be retired and that each of the circulating cell subsets be referred to according to the terms already existent for each subset. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".
Collapse
|
34
|
Azizi A, Ghunaim H, Diaz-Mitoma F, Mestecky J. Mucosal HIV vaccines: A holy grail or a dud? Vaccine 2010; 28:4015-26. [DOI: 10.1016/j.vaccine.2010.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/08/2010] [Accepted: 04/05/2010] [Indexed: 12/13/2022]
|
35
|
Martinez-Argudo I, Jepson MA. Identification of adhesin–receptor interactions driving bacterial translocation through M cells. Future Microbiol 2010; 5:549-53. [DOI: 10.2217/fmb.10.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evaluation of: Hase K, Kawano K, Nochi T et al.: Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 462, 226–230 (2009). M cells are specialized epithelial cells that transport antigens into lymphoid follicles. The mechanisms by which molecules, particles and microorganisms are transported by M cells remains poorly understood. Here, Hase and colleagues move a significant step forward by performing an extensive functional characterization of the GP2 interaction with FimH adhesin of bacterial type 1 pili. They show that GP2 is selectively expressed in M cells and functions as an endocytic receptor for type I-piliated bacteria. Comparison of Salmonella infection of wild-type and GP2-deficient mice confirmed the relevance of the GP2–FimH interaction in triggering an antigen-specific immune response in mice. Although this work supports the idea that the GP2-dependent pathway might constitute a new target for oral vaccine delivery it is necessary to be cautious as the reported enhancement of immune responses associated with GP2 and FimH expression were relatively modest. Since variation in FimH has been reported to have a major impact on glycoprotein binding, it might be possible to improve the efficacy of a putative vaccine using recombinant bacteria expressing high-affinity FimH variants. Alternative adhesin/receptor interactions are also likely to play a role in bacterial sampling by M cells and might also be exploited to enhance vaccine delivery.
Collapse
Affiliation(s)
- Isabel Martinez-Argudo
- Department of Cellular & Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Mark A Jepson
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
36
|
Chionh YT, Sutton P. Targeting of whole killed bacteria to gastrointestinal M-cells induces humoral immunity in the female reproductive tract. Gut Microbes 2010; 1:42-44. [PMID: 21327115 PMCID: PMC3035140 DOI: 10.4161/gmic.1.1.10096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 09/03/2009] [Accepted: 09/16/2009] [Indexed: 02/03/2023] Open
Abstract
Recently, we demonstrated that oral delivery of whole killed bacteria, when agglutinated by an M-cell targeting lectin, resulted in an enhanced systemic and mucosal antibody response, as well as a protective immunity, against the gut pathogens Helicobacter pylori and Campylobacter jejuni. Importantly, this protection was achieved without the addition of exogenous adjuvant. Here, in this addendum, we extend this initial study by reporting on the vaginal antibody response induced by these vaccinations. These data show that the targeting of M-cells within the gastrointestinal tract also induces the secretion of antigen-specific antibodies (IgG and IgA) at a distal mucosal site, namely the vaginal mucosa. This observation raises the possibility that oral delivery of a whole, killed bacteria vaccine that target intestinal M-cells could potentially provide a strategy for inducing protective immunity against pathogenic bacteria that infect mucosal sites outside the gastrointestinal tract.
Collapse
|
37
|
Knoop KA, Kumar N, Butler BR, Sakthivel SK, Taylor RT, Nochi T, Akiba H, Yagita H, Kiyono H, Williams IR. RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. THE JOURNAL OF IMMUNOLOGY 2009; 183:5738-47. [PMID: 19828638 DOI: 10.4049/jimmunol.0901563] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microfold cells (M cells) are specialized epithelial cells situated over Peyer's patches (PP) and other organized mucosal lymphoid tissues that transport commensal bacteria and other particulate Ags into intraepithelial pockets accessed by APCs. The TNF superfamily member receptor activator of NF-kappaB ligand (RANKL) is selectively expressed by subepithelial stromal cells in PP domes. We found that RANKL null mice have <2% of wild-type levels of PP M cells and markedly diminished uptake of 200 nm diameter fluorescent beads. Ab-mediated neutralization of RANKL in adult wild-type mice also eliminated most PP M cells. The M cell deficit in RANKL null mice was corrected by systemic administration of exogenous RANKL. Treatment with RANKL also induced the differentiation of villous M cells on all small intestinal villi with the capacity for avid uptake of Salmonella and Yersinia organisms and fluorescent beads. The RANK receptor for RANKL is expressed by epithelial cells throughout the small intestine. We conclude that availability of RANKL is the critical factor controlling the differentiation of M cells from RANK-expressing intestinal epithelial precursor cells.
Collapse
Affiliation(s)
- Kathryn A Knoop
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|