1
|
Koenen MH, de Steenhuijsen Piters WAA, de Jonge MI, Langereis JD, Nierkens S, Chu MLJN, van der Woude R, de Vries RP, Sanders EAM, Bogaert D, van der Vries E, Boes M, Verhagen LM. Salivary polyreactive antibodies and Haemophilus influenzae are associated with respiratory infection severity in young children with recurrent respiratory infections. Eur Respir J 2024; 64:2400317. [PMID: 39117429 PMCID: PMC11447288 DOI: 10.1183/13993003.00317-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/04/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Recurrent respiratory tract infections (rRTIs) are a common reason for immunodiagnostic testing in children, which relies on serum antibody level measurements. However, because RTIs predominantly affect the respiratory mucosa, serum antibodies may inaccurately reflect local immune defences. We investigated antibody responses in saliva and their interplay with the respiratory microbiota in relation to RTI severity and burden in young children with rRTIs. METHODS We conducted a prospective cohort study including 100 children aged <10 years with rRTIs, their family members and healthy healthcare professionals. Total and polyreactive antibody concentrations were determined in serum and saliva (ELISA); respiratory microbiota composition (16S rRNA sequencing) and respiratory viruses (quantitative PCR) were characterised in nasopharyngeal swabs. Proteomic analysis (Olink) was performed on saliva and serum samples. RTI symptoms were monitored with a daily mobile phone application and assessed using latent class analysis and negative binomial mixed models. RESULTS Serum antibody levels were not associated with RTI severity. Strikingly, 28% of salivary antibodies and only 2% of serum antibodies displayed polyreactivity (p<0.001). Salivary polyreactive IgA was negatively associated with recurrent lower RTIs (adjusted OR 0.80, 95% CI 0.67-0.94) and detection of multiple respiratory viruses (adjusted OR 0.76, 95% CI 0.61-0.96). Haemophilus influenzae abundance was positively associated with RTI symptom burden (regression coefficient 0.05, 95% CI 0.02-0.08). CONCLUSION These results highlight the importance of mucosal immunity in RTI severity and burden, and suggest that the level of salivary polyreactive IgA and H. influenzae abundance may serve as indicators of infection severity and burden in young children with rRTIs.
Collapse
Affiliation(s)
- Mischa H Koenen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Mei Ling J N Chu
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Roosmarijn van der Woude
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elisabeth A M Sanders
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Erhard van der Vries
- Department of Research and Development, GD Animal Health, Deventer, The Netherlands
- Department of Clinical Chemistry and Haematology, UMC Utrecht, Utrecht, The Netherlands
| | - Marianne Boes
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Lilly M Verhagen
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Community for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Pediatric Infectious Diseases and Immunology, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Kadry NA, Porsch EA, Shen H, St Geme JW. Immunization with HMW1 and HMW2 adhesins protects against colonization by heterologous strains of nontypeable Haemophilus influenzae. Proc Natl Acad Sci U S A 2021; 118:e2019923118. [PMID: 34344825 PMCID: PMC8364133 DOI: 10.1073/pnas.2019923118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a common cause of localized respiratory tract disease and results in significant morbidity. The pathogenesis of NTHi disease begins with nasopharyngeal colonization, and therefore, the prevention of colonization represents a strategy to prevent disease. The NTHi HMW1 and HMW2 proteins are a family of conserved adhesins that are present in 75 to 80% of strains and have been demonstrated to play a critical role in colonization of the upper respiratory tract in rhesus macaques. In this study, we examined the vaccine potential of HMW1 and HMW2 using a mouse model of nasopharyngeal colonization. Immunization with HMW1 and HMW2 by either the subcutaneous or the intranasal route resulted in a strain-specific antibody response associated with agglutination of bacteria and restriction of bacterial adherence. Despite the specificity of the antibody response, immunization resulted in protection against colonization by both the parent NTHi strain and heterologous strains expressing distinct HMW1 and HMW2 proteins. Pretreatment with antibody against IL-17A eliminated protection against heterologous strains, indicating that heterologous protection is IL-17A dependent. This work demonstrates the vaccine potential of the HMW1 and HMW2 proteins and highlights the importance of IL-17A in protection against diverse NTHi strains.
Collapse
Affiliation(s)
- Nadia A Kadry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Eric A Porsch
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Joseph W St Geme
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104;
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
3
|
Oropharyngeal Colonization of Haemophilus influenzae Type b and Serologic Response After Administration of Third Dose of Pentavalent Vaccine to 12-Month-Old Children in Karaj, Iran, 2016. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2019. [DOI: 10.5812/apid.82238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Oropharyngeal Colonization of Haemophilus influenzae Type b and Serologic Response After Administration of Third Dose of Pentavalent Vaccine to 12-Month-Old Children in Karaj, Iran, 2016. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2019. [DOI: 10.5812/pedinfect.82238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
McKay JT, Haro MA, Daly CA, Yammani RD, Pang B, Swords WE, Haas KM. PD-L2 Regulates B-1 Cell Antibody Production against Phosphorylcholine through an IL-5-Dependent Mechanism. THE JOURNAL OF IMMUNOLOGY 2017; 199:2020-2029. [PMID: 28768724 DOI: 10.4049/jimmunol.1700555] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022]
Abstract
B-1 cells produce natural Abs which provide an integral first line of defense against pathogens while also performing important homeostatic housekeeping functions. In this study, we demonstrate that programmed cell death 1 ligand 2 (PD-L2) regulates the production of natural Abs against phosphorylcholine (PC). Naive PD-L2-deficient (PD-L2-/-) mice produced significantly more PC-reactive IgM and IgA. This afforded PD-L2-/- mice with selectively enhanced protection against PC-expressing nontypeable Haemophilus influenzae, but not PC-negative nontypeable Haemophilus influenzae, relative to wild-type mice. PD-L2-/- mice had significantly increased PC-specific CD138+ splenic plasmablasts bearing a B-1a phenotype, and produced PC-reactive Abs largely of the T15 Id. Importantly, PC-reactive B-1 cells expressed PD-L2 and irradiated chimeras demonstrated that B cell-intrinsic PD-L2 expression regulated PC-specific Ab production. In addition to increased PC-specific IgM, naive PD-L2-/- mice and irradiated chimeras reconstituted with PD-L2-/- B cells had significantly higher levels of IL-5, a potent stimulator of B-1 cell Ab production. PD-L2 mAb blockade of wild-type B-1 cells in culture significantly increased CD138 and Blimp1 expression and PC-specific IgM, but did not affect proliferation. PD-L2 mAb blockade significantly increased IL-5+ T cells in culture. Both IL-5 neutralization and STAT5 inhibition blunted the effects of PD-L2 mAb blockade on B-1 cells. Thus, B-1 cell-intrinsic PD-L2 expression inhibits IL-5 production by T cells and thereby limits natural Ab production by B-1 cells. These findings have broad implications for the development of therapeutic strategies aimed at altering natural Ab levels critical for protection against infectious disease, autoimmunity, allergy, cancer, and atherosclerosis.
Collapse
Affiliation(s)
- Jerome T McKay
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Marcela A Haro
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Christina A Daly
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Rama D Yammani
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Bing Pang
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - W Edward Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
6
|
Lichtenegger S, Bina I, Durakovic S, Glaser P, Tutz S, Schild S, Reidl J. Serum resistance and phase variation of a nasopharyngeal non-typeable Haemophilus influenzae isolate. Int J Med Microbiol 2017; 307:139-146. [PMID: 28179078 DOI: 10.1016/j.ijmm.2017.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 11/28/2022] Open
Abstract
Haemophilus influenzae harbours a complex array of factors to resist human complement attack. As non-typeable H. influenzae (NTHi) strains do not possess a capsule, their serum resistance mainly depends on other mechanisms including LOS decoration. In this report, we describe the identification of a highly serum resistant, nasopharyngeal isolate (NTHi23) by screening a collection of 77 clinical isolates. For NTHi23, we defined the MLST sequence type 1133, which matches the profile of a previously published invasive NTHi isolate. A detailed genetic analysis revealed that NTHi23 shares several complement evading mechanisms with invasive disease isolates. These mechanisms include the functional expression of a retrograde phospholipid trafficking system and the presumable decoration of the LOS structure with sialic acid. By screening the NTHi23 population for spontaneous decreased serum resistance, we identified a clone, which was about 103-fold more sensitive to complement-mediated killing. Genome-wide analysis of this isolate revealed a phase variation in the N'-terminal region of lpsA, leading to a truncated version of the glycosyltransferase (LpsA). We further showed that a NTHi23 lpsA mutant exhibits a decreased invasion rate into human alveolar basal epithelial cells. Since only a small proportion of the NTHi23 population expressed the serum sensitive phenotype, resulting from lpsA phase-off, we conclude that the nasopharyngeal environment selected for a population expressing the intact and functional glycosyltransferase.
Collapse
Affiliation(s)
- Sabine Lichtenegger
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010 Graz, Austria; Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 2, 8010 Graz, Austria.
| | - Isabelle Bina
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010 Graz, Austria
| | - Sanel Durakovic
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010 Graz, Austria
| | - Philippe Glaser
- Insitut Pasteur, 25-28 rue du docteur Roux, 75015 Paris, France
| | - Sarah Tutz
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010 Graz, Austria; BioTechMed-Graz, Austria
| | - Joachim Reidl
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010 Graz, Austria; BioTechMed-Graz, Austria.
| |
Collapse
|
7
|
Muraille E. The Unspecific Side of Acquired Immunity Against Infectious Disease: Causes and Consequences. Front Microbiol 2016; 6:1525. [PMID: 26793171 PMCID: PMC4707229 DOI: 10.3389/fmicb.2015.01525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/18/2015] [Indexed: 11/13/2022] Open
Abstract
Acquired immunity against infectious disease (AIID) has long been considered as strictly dependent on the B and T lymphocytes of the adaptive immune system. Consequently, AIID has been viewed as highly specific to the antigens expressed by pathogens. However, a growing body of data motivates revision of this central paradigm of immunology. Unrelated past infection, vaccination, and chronic infection have been found to induce cross-protection against numerous pathogens. These observations can be partially explained by the poly-specificity of antigenic T and B receptors, the Mackaness effect and trained immunity. In addition, numerous studies highlight the importance of microbiota composition on resistance to infectious disease via direct competition or modulation of the immune response. All of these data support the idea that a non-negligible part of AIID in nature can be nonspecific to the pathogens encountered and even of the antigens expressed by pathogens. As this protection may be dependent on the private T and B repertoires produced by the random rearrangement of genes, past immune history, chronic infection, and microbiota composition, it is largely unpredictable at the individual level. However, we can reasonably expect that a better understanding of the underlying mechanisms will allow us to statistically predict cross-protection at the population level. From an evolutionary perspective, selection of immune mechanisms allowing for partially nonspecific AIID would appear to be advantageous against highly polymorphic and rapidly evolving pathogens. This new emerging paradigm may have several important consequences on our understanding of individual infectious disease susceptibility and our conception of tolerance, vaccination and therapeutic strategies against infection and cancer. It also underscores the importance of viewing the microbiota and persisting infectious agents as integral parts of the immune system.
Collapse
Affiliation(s)
- Eric Muraille
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de BruxellesBruxelles, Belgium
| |
Collapse
|
8
|
Enhancement of serum and mucosal immune responses to a Haemophilus influenzae Type B vaccine by intranasal delivery. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1690-6. [PMID: 23986319 DOI: 10.1128/cvi.00215-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intranasal (i.n.) vaccination is potentially the most direct method for conveying upper respiratory and mucosal immunity to respiratory pathogens. However, for unclear reasons, vaccines introduced into the nasal sinuses often have lower efficacy than vaccines administered by the more frequently used parenteral routes. We examined i.n. vaccination in a mouse immune-response model with a commonly used Haemophilus influenzae type B vaccine (Hibv) composed of the polyribosylribitol phosphate (PRP) capsule antigen conjugated to tetanus toxoid. Intranasal vaccination with Hibv using a Toll-like receptor 4 (TLR4) agonist as an adjuvant significantly increased the levels of IgA specific for the PRP capsule antigen in blood serum, saliva, and mucosal secretion specimens. In contrast, control mice vaccinated transdermally (t.d.) with Hibv did not produce significant levels of PRP-specific IgA in the blood serum and saliva, and anti-PRP IgG was increased only in serum. The i.n. and t.d. vaccinations resulted in equivalent bactericidal antibody responses in blood serum, suggesting that vaccine-derived IgG is protective against infection. Elevated levels of IgG specific for the tetanus toxoid carrier protein were measured in nasal sinuses and vaginal secretions in mice vaccinated by either the t.d. or i.n. route. Tissue culture studies confirmed that the nasopharynx-associated lymphoid tissue (NALT) was at least one of the sources of PRP-specific IgA and carrier-specific IgG within the nasal sinuses. We conclude that i.n. vaccination aided by a TLR4 agonist results in robust immune responses to both the carrier protein and bacterial polysaccharide components of the Hibv.
Collapse
|
9
|
Clark SE, Eichelberger KR, Weiser JN. Evasion of killing by human antibody and complement through multiple variations in the surface oligosaccharide of Haemophilus influenzae. Mol Microbiol 2013; 88:603-18. [PMID: 23577840 DOI: 10.1111/mmi.12214] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 11/29/2022]
Abstract
The lipopolysaccharide (LPS) of H. influenzae is highly variable. Much of the structural diversity is derived from phase variation, or high frequency on-off switching, of molecules attached during LPS biosynthesis. In this study, we examined the dynamics of LPS phase variation following exposure to human serum as a source of antibody and complement in multiple H. influenzae isolates. We show that lic2A, lgtC and lex2A switch from phase-off to phase-on following serial passage in human serum. These genes, which control attachment of a galα1-4gal di-galactoside structure (lic2A and lgtC phase-on) or an alternative glucose extension (lex2A phase-on) from the same hexose moiety, reduce binding of bactericidal antibody to conserved inner core LPS structures. The effects of the di-galactoside and alternative glucose extension were also examined in the context of the additional LPS phase variable structures phosphorylcholine (ChoP) and sialic acid. We found that di-galactoside, the alternative glucose extension, ChoP, and sialic acid each contribute independently to bacterial survival in the presence of human complement, and have an additive effect in combination. We propose that LPS phase variable extensions serve to shield conserved inner core structures from recognition by host immune components encountered during infection.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
10
|
Su YC, Jalalvand F, Mörgelin M, Blom AM, Singh B, Riesbeck K. Haemophilus influenzae acquires vitronectin via the ubiquitous Protein F to subvert host innate immunity. Mol Microbiol 2013; 87:1245-66. [PMID: 23387957 DOI: 10.1111/mmi.12164] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2013] [Indexed: 02/06/2023]
Abstract
Acquisition of the complement inhibitor vitronectin (Vn) is important for the respiratory tract pathogen nontypeable Haemophilus influenzae (NTHi) to escape complement-mediated killing. NTHi actively recruits Vn, and we previously showed that this interaction involves Protein E (PE). Here we describe a second Vn-binding protein, a 30 kDa Yersinia YfeA homologue designated as Protein F (PF). An isogenic NTHi 3655Δhpf mutant devoid of PF displayed a reduced binding of Vn, and was consequently more sensitive to killing by human serum compared with the wild type. Surface expression of PF on Escherichia coli conferred binding of Vn that resulted in a serum resistant phenotype. Molecular analyses revealed that the N-terminal of PF (Lys23-Glu48) bound to the C-terminal of Vn (Phe352-Ser374) without disrupting the inhibitory role of Vn on the membrane attack complex. The PF-Vn complex actively delayed C9 deposition on PF-expressing bacteria. Comparative studies of binding affinity and multiple mutants demonstrated that both PE and PF contribute individually to NTHi serum survival. PF was highly conserved and ubiquitously expressed in a series of randomly selected NTHi clinical isolates (n = 18). In conclusion, the multifaceted binding of Vn is beneficial for NTHi survival in serum and may contribute to successful colonization and consequently infection.
Collapse
Affiliation(s)
- Yu-Ching Su
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
11
|
Modified lipooligosaccharide structure protects nontypeable Haemophilus influenzae from IgM-mediated complement killing in experimental otitis media. mBio 2012; 3:e00079-12. [PMID: 22761391 PMCID: PMC3398534 DOI: 10.1128/mbio.00079-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative, human-restricted pathogen. Although this bacterium typically colonizes the nasopharynx in the absence of clinical symptoms, it is also one of the major pathogens causing otitis media (OM) in children. Complement represents an important aspect of the host defense against NTHi. In general, NTHi is efficiently killed by complement-mediated killing; however, various resistance mechanisms have also evolved. We measured the complement resistance of NTHi isolates isolated from the nasopharynx and the middle ear fluids of OM patients. Furthermore, we determined the molecular mechanism of NTHi complement resistance. Complement resistance was strongly increased in isolates from the middle ear, which correlated with decreased binding of IgM. We identified a crucial role for the R2866_0112 gene in complement resistance. Deletion of this gene altered the lipooligosaccharide (LOS) composition of the bacterium, which increased IgM binding and complement-mediated lysis. In a novel mouse model of coinfection with influenza virus, we demonstrate decreased virulence for the R2866_0112 deletion mutant. These findings identify a mechanism by which NTHi modifies its LOS structure to prevent recognition by IgM and activation of complement. Importantly, this mechanism plays a crucial role in the ability of NTHi to cause OM. Nontypeable Haemophilus influenzae (NTHi) colonizes the nasopharynx of especially young children without any obvious symptoms. However, NTHi is also a major pathogen in otitis media (OM), one of the most common childhood infections. Although this pathogen is often associated with OM, the mechanism by which this bacterium is able to cause OM is largely unknown. Our study addresses a key biological question that is highly relevant for child health: what is the molecular mechanism that enables NTHi to cause OM? We show that isolates collected from the middle ear fluid exhibit increased complement resistance and that the lipooligosaccharide (LOS) structure determines IgM binding and complement activation. Modification of the LOS structure decreased NTHi virulence in a novel NTHi-influenza A virus coinfection OM mouse model. Our findings may also have important implications for other Gram-negative pathogens harboring LOS, such as Neisseria meningitidis, Moraxella catarrhalis, and Bordetella pertussis.
Collapse
|
12
|
Livraghi-Butrico A, Kelly EJ, Klem ER, Dang H, Wolfgang MC, Boucher RC, Randell SH, O'Neal WK. Mucus clearance, MyD88-dependent and MyD88-independent immunity modulate lung susceptibility to spontaneous bacterial infection and inflammation. Mucosal Immunol 2012; 5:397-408. [PMID: 22419116 PMCID: PMC3377774 DOI: 10.1038/mi.2012.17] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been postulated that mucus stasis is central to the pathogenesis of obstructive lung diseases. In Scnn1b-transgenic (Scnn1b-Tg⁺ mice, airway-targeted overexpression of the epithelial Na⁺ channel β subunit causes airway surface dehydration, which results in mucus stasis and inflammation. Bronchoalveolar lavage from neonatal Scnn1b-Tg⁺ mice, but not wild-type littermates, contained increased mucus, bacteria, and neutrophils, which declined with age. Scnn1b-Tg⁺ mice lung bacterial flora included environmental and oropharyngeal species, suggesting inhalation and/or aspiration as routes of entry. Genetic deletion of the Toll-interleukin-1 receptor adapter molecule MyD88 in Scnn1b-Tg⁺ mice did not modify airway mucus obstruction, but caused defective neutrophil recruitment and increased bacterial infection, which persisted into adulthood. Scnn1b-Tg⁺ mice derived into germ-free conditions exhibited mucus obstruction similar to conventional Scnn1b-Tg⁺ mice and sterile inflammation. Collectively, these data suggest that dehydration-induced mucus stasis promotes infection, compounds defects in other immune mechanisms, and alone is sufficient to trigger airway inflammation.
Collapse
Affiliation(s)
- A Livraghi-Butrico
- Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Human poly- and cross-reactive anti-viral antibodies and their impact on protection and pathology. Immunol Res 2012; 53:148-61. [DOI: 10.1007/s12026-012-8268-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Clark SE, Snow J, Li J, Zola TA, Weiser JN. Phosphorylcholine allows for evasion of bactericidal antibody by Haemophilus influenzae. PLoS Pathog 2012; 8:e1002521. [PMID: 22396641 PMCID: PMC3291618 DOI: 10.1371/journal.ppat.1002521] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/20/2011] [Indexed: 11/19/2022] Open
Abstract
The human pathogen Haemophilus influenzae has the ability to quickly adapt to different host environments through phase variation of multiple structures on its lipooligosaccharide (LPS), including phosphorylcholine (ChoP). During colonization with H. influenzae, there is a selection for ChoP+ phase variants. In a murine model of nasopharyngeal colonization, this selection is lost in the absence of adaptive immunity. Based on previous data highlighting the importance of natural antibody in limiting H. influenzae colonization, the effect of ChoP expression on antibody binding and its bactericidal activity was investigated. Flow cytometric analysis revealed that ChoP+ phase variants had decreased binding of antibody to LPS epitopes compared to ChoP- phase variants. This difference in antibody binding correlated with increased survival of ChoP+ phase variants in the presence of antibody-dependent, complement-mediated killing. ChoP+ phase variants were also more resistant to trypsin digestion, suggesting a general effect on the physical properties of the outer membrane. Moreover, ChoP-mediated protection against antibody binding correlated with increased resilience of outer membrane integrity. Collectively, these data suggest that ChoP expression provides a selective advantage during colonization through ChoP-mediated effects on the accessibility of bactericidal antibody to the cell surface.
Collapse
Affiliation(s)
- Sarah E. Clark
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julian Snow
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Jianjun Li
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | - Tracey A. Zola
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey N. Weiser
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Nakamura S, Shchepetov M, Dalia AB, Clark SE, Murphy TF, Sethi S, Gilsdorf JR, Smith AL, Weiser JN. Molecular basis of increased serum resistance among pulmonary isolates of non-typeable Haemophilus influenzae. PLoS Pathog 2011; 7:e1001247. [PMID: 21253576 PMCID: PMC3017122 DOI: 10.1371/journal.ppat.1001247] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 12/02/2010] [Indexed: 01/18/2023] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi), a common commensal of the human pharynx, is also an opportunistic pathogen if it becomes established in the lower respiratory tract (LRT). In comparison to colonizing isolates from the upper airway, LRT isolates, especially those associated with exacerbations of chronic obstructive pulmonary disease, have increased resistance to the complement- and antibody-dependent, bactericidal effect of serum. To define the molecular basis of this resistance, mutants constructed in a serum resistant strain using the mariner transposon were screened for loss of survival in normal human serum. The loci required for serum resistance contribute to the structure of the exposed surface of the bacterial outer membrane. These included loci involved in biosynthesis of the oligosaccharide component of lipooligosaccharide (LOS), and vacJ, which functions with an ABC transporter encoded by yrb genes in retrograde trafficking of phospholipids from the outer to inner leaflet of the cell envelope. Mutations in vacJ and yrb genes reduced the stability of the outer membrane and were associated with increased cell surface hyrophobicity and phospholipid content. Loss of serum resistance in vacJ and yrb mutants correlated with increased binding of natural immunoglobulin M in serum as well as anti-oligosaccharide mAbs. Expression of vacJ and the yrb genes was positively correlated with serum resistance among clinical isolates. Our findings suggest that NTHi adapts to inflammation encountered during infection of the LRT by modulation of its outer leaflet through increased expression of vacJ and yrb genes to minimize recognition by bactericidal anti-oligosaccharide antibodies. Haemophilus influenzae generally colonizes the human upper respiratory tract. When isolated from the lower respiratory tract, this opportunistic pathogen is associated with inflammatory conditions such as pneumonia and exacerbations of chronic obstructive pulmonary disease (COPD). Here we show that one of the adaptations made by H. influenzae isolated from the lower respiratory tract is increased resistance to the bactericidal effect of antibody and complement. To define the mechanism for increased resistance, mutants were screened to identify the complete set of genes required to inhibit killing by antibody and complement. These included multiple genes that all contribute to biosynthesis of the organism's surface oligosaccharide (lipooligosaccharide), which is targeted by bactericidal antibody. Our results also revealed a novel function for additional genes that maintain the lipid asymmetry of the surface membrane and thereby limit recognition of the pathogen by anti-oligosaccharide antibodies.
Collapse
Affiliation(s)
- Shigeki Nakamura
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mikhail Shchepetov
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ankur B. Dalia
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarah E. Clark
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Timothy F. Murphy
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Veterans Affairs Western New York Healthcare System, Buffalo, New York, United States of America
| | - Sanjay Sethi
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, United States of America
- Veterans Affairs Western New York Healthcare System, Buffalo, New York, United States of America
| | - Janet R. Gilsdorf
- Departments of Epidemiology, Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Arnold L. Smith
- Center for Childhood Infections, Seattle Children's Hospital Research Institute, Seattle, Washington, United States of America
| | - Jeffery N. Weiser
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Rahyab AS, Alam A, Kapoor A, Zhang M. Natural antibody - Biochemistry and functions. GLOBAL JOURNAL OF BIOCHEMISTRY 2011; 2:283-288. [PMID: 25309852 PMCID: PMC4189112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Natural antibodies have been common knowledge in the scientific community for more than half a century. Initially disregarded, their functions have garnered a newfound interest recently. Natural antibodies are usually polyreactive IgM antibodies and are implicated in numerous physiologic and pathologic processes. Current research demonstrates they play a role in adaptive and innate immune responses, autoimmunity, and apoptosis. Evidence exists that they are involved in the modulation of neurodegenerative disorders and malignancy. Furthermore, natural antibodies have been implicated in ischemia reperfusion injury and atherosclerosis. As such the study of natural antibodies may provide new insight into normal physiologic processes whilst concurrently paving the road for a wide-range of possible therapeutic options.
Collapse
Affiliation(s)
- Ali Seyar Rahyab
- Department of Anesthesiology, State University of NewYork Downstate Medical Center, Brooklyn, NY 11203
| | - Amit Alam
- Department of Anesthesiology, State University of NewYork Downstate Medical Center, Brooklyn, NY 11203
| | | | - Ming Zhang
- Department of Anesthesiology, State University of NewYork Downstate Medical Center, Brooklyn, NY 11203
- Department of Cell Biology, State University of NewYork Downstate Medical Center, Brooklyn, NY 11203
| |
Collapse
|
17
|
Taylor RE, Gregg CJ, Padler-Karavani V, Ghaderi D, Yu H, Huang S, Sorensen RU, Chen X, Inostroza J, Nizet V, Varki A. Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. ACTA ACUST UNITED AC 2010; 207:1637-46. [PMID: 20624889 PMCID: PMC2916132 DOI: 10.1084/jem.20100575] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc) is metabolically incorporated into human tissues from certain mammalian-derived foods, and this occurs in the face of an anti-Neu5Gc “xeno-autoantibody” response. Given evidence that this process contributes to chronic inflammation in some diseases, it is important to understand when and how these antibodies are generated in humans. We show here that human anti-Neu5Gc antibodies appear during infancy and correlate with weaning and exposure to dietary Neu5Gc. However, dietary Neu5Gc alone cannot elicit anti-Neu5Gc antibodies in mice with a humanlike Neu5Gc deficiency. Other postnatally appearing anti-carbohydrate antibodies are likely induced by bacteria expressing these epitopes; however, no microbe is known to synthesize Neu5Gc. Here, we show that trace exogenous Neu5Gc can be incorporated into cell surface lipooligosaccharides (LOS) of nontypeable Haemophilus influenzae (NTHi), a human-specific commensal/pathogen. Indeed, infant anti-Neu5Gc antibodies appear coincident with antibodies against NTHi. Furthermore, NTHi that express Neu5Gc-containing LOS induce anti-Neu5Gc antibodies in Neu5Gc-deficient mice, without added adjuvant. Finally, Neu5Gc from baby food is taken up and expressed by NTHi. As the flora residing in the nasopharynx of infants can be in contact with ingested food, we propose a novel model for how NTHi and dietary Neu5Gc cooperate to generate anti-Neu5Gc antibodies in humans.
Collapse
Affiliation(s)
- Rachel E Taylor
- Department of Medicine, Skaggs School of Pharmacy and PharmaceuticalSciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Three surface exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, promote resistance to opsonophagocytic killing by human neutrophils. Infect Immun 2010; 78:2108-16. [PMID: 20160017 DOI: 10.1128/iai.01125-09] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a major human pathogen and a leading cause of inflammatory infections such as pneumonia and otitis media. An important mechanism for host defense against S. pneumoniae is opsonophagocytic killing by neutrophils. To persist in the human host, the pneumococcus has developed strategies to evade opsonization and subsequent neutrophil-mediated killing. Utilizing a genomic approach, we identified NanA, the major pneumococcal neuraminidase, as a factor important for resistance to opsonophagocytic killing in ex vivo killing assays using human neutrophils. The effect of NanA was shown using both type 4 (TIGR4) and type 6A clinical isolates. NanA promotes this resistance by acting in conjunction with two other surface-associated exoglycosidases, BgaA, a beta-galactosidase, and StrH, an N-acetylglucosaminidase. Experiments using human serum showed that these exoglycosidases reduced deposition of complement component C3 on the pneumococcal surface, providing a mechanism for this resistance. Additionally, we have shown that antibodies in human serum do not contribute to this phenotype. These results demonstrate that deglycosylation of a human serum glycoconjugate(s) by the combined effects of NanA, BgaA, and StrH, is important for resistance to complement deposition and subsequent phagocytic killing of S. pneumoniae.
Collapse
|