1
|
Wu D, Yang Y, Duan C. Cell division cycle 42 positively correlates with T helper 2 cytokine, effusion viscosity, and hearing loss degree in otitis media with effusion patients. J Clin Lab Anal 2022; 36:e24681. [PMID: 36164754 DOI: 10.1002/jcla.24681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Cell division cycle 42 (CDC42) participates in the pathogenesis of some T-cell-mediated inflammatory diseases via regulating CD4+ T-cell differentiation and inflammation response. This study aimed to evaluate the correlation of CDC42 and T helper (Th)1/Th2 cytokines with disease risk, effusion viscosity, and hearing loss degree of otitis media with effusion (OME). METHODS CDC42, interleukin (IL)-4, and interferon-gamma (IFN-γ) in effusion and serum of 78 OME patients were determined by enzyme-linked immunosorbent assay. Besides, the effusion (irrigating fluid) and serum samples of 30 controls (adenoid hypertrophy patients without OME) were also obtained for CDC42, IL-4, and IFN-γ determination. RESULTS Effusion CDC42 and IL-4 were elevated in OME patients compared with controls (both p < 0.001). Effusion CDC42 was positively correlated with effusion IL-4 in OME patients (p = 0.004) and controls (p = 0.012) but was not related to effusion IFN-γ (both p > 0.050). Additionally, effusion CDC42 (p = 0.025) and IL-4 (p = 0.023) were increased in OME patients with mucoid effusion compared to patients with serous effusion, while effusion IFN-γ was of no difference between those patients (p = 0.215). Meanwhile, elevated effusion CDC42 (p = 0.012) and IL-4 (p = 0.033) were linked with increased hearing loss degrees, whereas effusion IFN-γ was not related to hearing loss degrees (p = 0.057). Moreover, the findings of serum CDC42, IL-4, and IFN-γ showed similar trends as effusion ones; nonetheless, their correlation with disease features was generally weaker. CONCLUSION OME patients present with elevated CDC42 and IL-4 levels; the latter factors are intercorrelated and positively associate with effusion viscosity and hearing loss degree.
Collapse
Affiliation(s)
- Dan Wu
- Department of Otolaryngology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of Otolaryngology, Xiangyang Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Xiangyang, China
| | - Chuanxin Duan
- Department of Otolaryngology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Noel J, Suzukawa K, Chavez E, Pak K, Wasserman SI, Kurabi A, Ryan AF. A kinase inhibitor screen identifies signaling pathways regulating mucosal growth during otitis media. PLoS One 2020; 15:e0235634. [PMID: 32760078 PMCID: PMC7410257 DOI: 10.1371/journal.pone.0235634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/18/2020] [Indexed: 11/19/2022] Open
Abstract
Otitis media, the most common disease of childhood, is characterized by extensive changes in the morphology of the middle ear cavity. This includes hyperplasia of the mucosa that lines the tympanic cavity, from a simple monolayer of squamous epithelium into a greatly thickened, respiratory-type mucosa. The processes that control this response, which is critical to otitis media pathogenesis and recovery, are incompletely understood. Given the central role of protein phosphorylation in most intracellular processes, including cell proliferation and differentiation, we screened a library of kinase inhibitors targeting members of all the major families in the kinome for their ability to influence the growth of middle ear mucosal explants in vitro. Of the 160 inhibitors, 30 were found to inhibit mucosal growth, while two inhibitors enhanced tissue proliferation. The results suggest that the regulation of infection-mediated tissue growth in the ME mucosa involves multiple cellular processes that span the kinome. While some of the pathways and processes identified have been previously implicated in mucosa hyperplasia others are novel. The results were used to generate a global model of growth regulation by kinase pathways. The potential for therapeutic applications of the results are discussed.
Collapse
Affiliation(s)
- Julia Noel
- Department of Surgery/Otolaryngology, UC San Diego, San Diego, CA, United States of America
| | - Keigo Suzukawa
- Department of Surgery/Otolaryngology, UC San Diego, San Diego, CA, United States of America
| | - Eduardo Chavez
- Department of Surgery/Otolaryngology, UC San Diego, San Diego, CA, United States of America
| | - Kwang Pak
- Department of Surgery/Otolaryngology, UC San Diego, San Diego, CA, United States of America
| | | | - Arwa Kurabi
- Department of Surgery/Otolaryngology, UC San Diego, San Diego, CA, United States of America
| | - Allen F. Ryan
- Department of Surgery/Otolaryngology, UC San Diego, San Diego, CA, United States of America
- San Diego VA Healthcare System, San Diego, CA, United States of America
- * E-mail:
| |
Collapse
|
3
|
Lee HH, Chin A, Pak K, Wasserman SI, Kurabi A, Ryan AF. Role of the PI3K/AKT pathway and PTEN in otitis media. Exp Cell Res 2020; 387:111758. [PMID: 31837294 PMCID: PMC7824983 DOI: 10.1016/j.yexcr.2019.111758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Mucosal hyperplasia is common sequela of otitis media (OM), leading to the secretion of mucus and the recruitment of leukocytes. However, the pathogenic mechanisms underlying hyperplasia are not well defined. Here, we investigated the role of the AKT pathway in the development of middle mucosal hyperplasia using in vitro mucosal explants cultures and an in vivo rat model. The Akt inhibitor MK2206 treatment inhibited the growth of middle ear mucosal explants in a dose-dependent manner. In vivo, MK2206 also reduced mucosal hyperplasia. Unexpectedly, while PTEN is generally thought to act in opposition to AKT, the PTEN inhibitor BPV reduced mucosal explant growth in vitro. The results indicate that both AKT and PTEN are mediators of mucosal growth during OM, and could be potential therapeutic targets.
Collapse
Affiliation(s)
- Hwan Ho Lee
- Division of Otolaryngology, Department of Surgery, University of California, San Diego and San Diego VA Healthcare System, La Jolla, CA, 92093, USA
| | - Anthony Chin
- Division of Otolaryngology, Department of Surgery, University of California, San Diego and San Diego VA Healthcare System, La Jolla, CA, 92093, USA
| | - Kwang Pak
- Division of Otolaryngology, Department of Surgery, University of California, San Diego and San Diego VA Healthcare System, La Jolla, CA, 92093, USA
| | - Stephen I Wasserman
- Division of Otolaryngology, Department of Surgery, University of California, San Diego and San Diego VA Healthcare System, La Jolla, CA, 92093, USA
| | - Arwa Kurabi
- Division of Otolaryngology, Department of Surgery, University of California, San Diego and San Diego VA Healthcare System, La Jolla, CA, 92093, USA
| | - Allen F Ryan
- Division of Otolaryngology, Department of Surgery, University of California, San Diego and San Diego VA Healthcare System, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Larson ED, Magno JPM, Steritz MJ, Llanes EGDV, Cardwell J, Pedro M, Roberts TB, Einarsdottir E, Rosanes RAQ, Greenlee C, Santos RAP, Yousaf A, Streubel SO, Santos ATR, Ruiz AG, Lagrana-Villagracia SM, Ray D, Yarza TKL, Scholes MA, Anderson CB, Acharya A, Gubbels SP, Bamshad MJ, Cass SP, Lee NR, Shaikh RS, Nickerson DA, Mohlke KL, Prager JD, Cruz TLG, Yoon PJ, Abes GT, Schwartz DA, Chan AL, Wine TM, Cutiongco-de la Paz EM, Friedman N, Kechris K, Kere J, Leal SM, Yang IV, Patel JA, Tantoco MLC, Riazuddin S, Chan KH, Mattila PS, Reyes-Quintos MRT, Ahmed ZM, Jenkins HA, Chonmaitree T, Hafrén L, Chiong CM, Santos-Cortez RLP. A2ML1 and otitis media: novel variants, differential expression, and relevant pathways. Hum Mutat 2019; 40:1156-1171. [PMID: 31009165 DOI: 10.1002/humu.23769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/26/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022]
Abstract
A genetic basis for otitis media is established, however, the role of rare variants in disease etiology is largely unknown. Previously a duplication variant within A2ML1 was identified as a significant risk factor for otitis media in an indigenous Filipino population and in US children. In this report exome and Sanger sequencing was performed using DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US probands, Finnish, and Pakistani families with otitis media. Sixteen novel, damaging A2ML1 variants identified in otitis media patients were rare or low-frequency in population-matched controls. In the indigenous population, both gingivitis and A2ML1 variants including the known duplication variant and the novel splice variant c.4061 + 1 G>C were independently associated with otitis media. Sequencing of salivary RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression according to the carriage of A2ML1 variants. Sequencing of additional salivary RNA samples from US patients with otitis media revealed differentially expressed genes that are highly correlated with A2ML1 expression levels. In particular, RND3 is upregulated in both A2ML1 variant carriers and high-A2ML1 expressors. These findings support a role for A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media pathology and the potential application of ROCK inhibition in otitis media.
Collapse
Affiliation(s)
- Eric D Larson
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jose Pedrito M Magno
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines
| | - Matthew J Steritz
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Erasmo Gonzalo D V Llanes
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Jonathan Cardwell
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Melquiadesa Pedro
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Tori Bootpetch Roberts
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Rose Anne Q Rosanes
- Department of Community Dentistry, College of Dentistry, University of the Philippines Manila, Manila, Philippines
| | - Christopher Greenlee
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | | | - Ayesha Yousaf
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sven-Olrik Streubel
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | | | - Amanda G Ruiz
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Sheryl Mae Lagrana-Villagracia
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Dylan Ray
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Talitha Karisse L Yarza
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines
| | - Melissa A Scholes
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Catherine B Anderson
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Anushree Acharya
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Samuel P Gubbels
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Stephen P Cass
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, Inc. and Department of Anthropology, Sociology and History, University of San Carlos, Cebu, Philippines
| | - Rehan S Shaikh
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Jeremy D Prager
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Teresa Luisa G Cruz
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Patricia J Yoon
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Generoso T Abes
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Abner L Chan
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Todd M Wine
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Eva Maria Cutiongco-de la Paz
- Philippine Genome Center, University of the Philippines, Quezon City, Philippines.,University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Norman Friedman
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Katerina Kechris
- Department of Biostatistics and Bioinformatics, Colorado School of Public Health, Aurora, Colorado
| | - Juha Kere
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ivana V Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Janak A Patel
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Ma Leah C Tantoco
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Saima Riazuddin
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenny H Chan
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Petri S Mattila
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Rina T Reyes-Quintos
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines.,University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Zubair M Ahmed
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Herman A Jenkins
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Tasnee Chonmaitree
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Lena Hafrén
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Charlotte M Chiong
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines
| | - Regie Lyn P Santos-Cortez
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Center for Children's Surgery, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
5
|
Hernandez M, Leichtle A, Pak K, Webster NJ, Wasserman SI, Ryan AF. The transcriptome of a complete episode of acute otitis media. BMC Genomics 2015; 16:259. [PMID: 25888408 PMCID: PMC4394589 DOI: 10.1186/s12864-015-1475-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/20/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Otitis media is the most common disease of childhood, and represents an important health challenge to the 10-15% of children who experience chronic/recurrent middle ear infections. The middle ear undergoes extensive modifications during otitis media, potentially involving changes in the expression of many genes. Expression profiling offers an opportunity to discover novel genes and pathways involved in this common childhood disease. The middle ears of 320 WBxB6 F1 hybrid mice were inoculated with non-typeable Haemophilus influenzae (NTHi) or PBS (sham control). Two independent samples were generated for each time point and condition, from initiation of infection to resolution. RNA was profiled on Affymetrix mouse 430 2.0 whole-genome microarrays. RESULTS Approximately 8% of the sampled transcripts defined the signature of acute NTHi-induced otitis media across time. Hierarchical clustering of signal intensities revealed several temporal gene clusters. Network and pathway enrichment analysis of these clusters identified sets of genes involved in activation of the innate immune response, negative regulation of immune response, changes in epithelial and stromal cell markers, and the recruitment/function of neutrophils and macrophages. We also identified key transcriptional regulators related to events in otitis media, which likely determine the expression of these gene clusters. A list of otitis media susceptibility genes, derived from genome-wide association and candidate gene studies, was significantly enriched during the early induction phase and the middle re-modeling phase of otitis but not in the resolution phase. Our results further indicate that positive versus negative regulation of inflammatory processes occur with highly similar kinetics during otitis media, underscoring the importance of anti-inflammatory responses in controlling pathogenesis. CONCLUSIONS The results characterize the global gene response during otitis media and identify key signaling and transcription factor networks that control the defense of the middle ear against infection. These networks deserve further attention, as dysregulated immune defense and inflammatory responses may contribute to recurrent or chronic otitis in children.
Collapse
Affiliation(s)
- Michelle Hernandez
- Divisions of Surgery / Otolaryngology, University of California, San Diego, La Jolla, CA, USA. .,Department of Pediatrics, Division of Allergy, Immunology, Rheumatology, and Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - Anke Leichtle
- Divisions of Surgery / Otolaryngology, University of California, San Diego, La Jolla, CA, USA. .,Department of Otolaryngology, University of Lübeck, Lübeck, Germany.
| | - Kwang Pak
- Divisions of Surgery / Otolaryngology, University of California, San Diego, La Jolla, CA, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| | - Nicholas J Webster
- Medicine / Endocrinology, University of California, San Diego, La Jolla, CA, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| | - Stephen I Wasserman
- Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA.
| | - Allen F Ryan
- Divisions of Surgery / Otolaryngology, University of California, San Diego, La Jolla, CA, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
6
|
Seo YJ, Kim SH, Moon IS, Choi JY. A melting method for RNA extraction from the mucosal membrane of the mouse middle ear. Yonsei Med J 2015; 56:497-502. [PMID: 25684001 PMCID: PMC4329364 DOI: 10.3349/ymj.2015.56.2.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE There is much confusion surrounding the methods of RNA extraction from the middle ear mucosa of mice. In this study, we worked to develop a "melting method," which is faster, purer, and more reliable than other methods in common use. MATERIALS AND METHODS Thirty-two ears were used for this study. Light microscopy with hematoxylin-eosin staining of the bullae, scanning electron microscopy (SEM), spectrophotometer analysis, and reverse transcription polymerase chain reaction were performed before and after melting the half lateral bullae, which were detached from the temporal bone by using a lateral retroauricular approach. RESULTS Each resected half bulla contained a well distributed mucosal membrane. After a TRIzol melting duration of 10-30 minutes, only mucosal marker (MUC5AC) was expressed without bony marker (total osteocalcin). The same results were determined from SEM. CONCLUSION This melting method, compared with stripping and irrigation methods, is effective and offers an easier, more robust approach to extracting RNA from the middle ear mucosal membranes of mice.
Collapse
Affiliation(s)
- Young Joon Seo
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Huhn Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - In Seok Moon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Abstract
Mucosal immune responses within the middle ear and eustachian tube generally provide an effective and efficient response to the presence of microbial pathogens, with approximately 80% of clinically recognizable middle ear infections resolved within 7 days. Particularly for young children aged less than 3 years of age, the proximity and direct connection of the middle ear, via the eustachian tube, to the nasopharynx provide increased risk of commensal bacteria and upper respiratory tract viruses infecting the middle ear. Mucosal immunological defense in the middle ear and eustachian tube utilizes a number of mechanisms, including physicochemical barriers of mucus and the mucosal epithelial cells and innate immune responses such as inflammation, cellular infiltration, effusion, and antimicrobial protein secretions, in addition to adaptive host immune responses. Recent advances in otopathogen recognition via microbial pattern recognition receptors and elucidation of complex signaling cascades have improved understanding of the coordination and regulation of the middle ear mucosal response. These advances support vaccine development aiming to reduce the risk of otitis media in children.
Collapse
|
8
|
Yao W, Frie M, Pan J, Pak K, Webster N, Wasserman SI, Ryan AF. C-Jun N-terminal kinase (JNK) isoforms play differing roles in otitis media. BMC Immunol 2014; 15:46. [PMID: 25311344 PMCID: PMC4200133 DOI: 10.1186/s12865-014-0046-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/02/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Innate immunity and tissue proliferation play important roles in otitis media (OM), the most common disease of childhood. CJUN terminal kinase (JNK) is potentially involved in both processes. RESULTS Genes involved in both innate immune and growth factor activation of JNK are upregulated during OM, while expression of both positive and negative JNK regulatory genes is altered. When compared to wildtypes (WTs), C57BL/6 mice deficient in JNK1 exhibit enhanced mucosal thickening, with delayed recovery, enhanced neutrophil recruitment early in OM, and delayed bacterial clearance. In contrast, JNK2-/- mice exhibit delayed mucosal hyperplasia that eventually exceeds that of WTs and is slow to recover, delayed recruitment of neutrophils, and failure of bacterial clearance. CONCLUSIONS The results suggest that JNK1 and JNK2 play primarily opposing roles in mucosal hyperplasia and neutrophil recruitment early in OM. However, both isoforms are required for the normal resolution of middle ear infection.
Collapse
|
9
|
Suzukawa K, Tomlin J, Pak K, Chavez E, Kurabi A, Baird A, Wasserman SI, Ryan AF. A mouse model of otitis media identifies HB-EGF as a mediator of inflammation-induced mucosal proliferation. PLoS One 2014; 9:e102739. [PMID: 25033458 PMCID: PMC4102546 DOI: 10.1371/journal.pone.0102739] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/21/2014] [Indexed: 11/19/2022] Open
Abstract
Objective Otitis media is one of the most common pediatric infections. While it is usually treated without difficulty, up to 20% of children may progress to long-term complications that include hearing loss, impaired speech and language development, academic underachievement, and irreversible disease. Hyperplasia of middle ear mucosa contributes to the sequelae of acute otitis media and is of important clinical significance. Understanding the role of growth factors in the mediation of mucosal hyperplasia could lead to the development of new therapeutic interventions for this disease and its sequelae. Methods From a whole genome gene array analysis of mRNA expression during acute otitis media, we identified growth factors with expression kinetics temporally related to hyperplasia. We then tested these factors for their ability to stimulate mucosal epithelial growth in vitro, and determined protein levels and histological distribution in vivo for active factors. Results From the gene array, we identified seven candidate growth factors with upregulation of mRNA expression kinetics related to mucosal hyperplasia. Of the seven, only HB-EGF (heparin-binding-epidermal growth factor) induced significant mucosal epithelial hyperplasia in vitro. Subsequent quantification of HB-EGF protein expression in vivo via Western blot analysis confirmed that the protein is highly expressed from 6 hours to 24 hours after bacterial inoculation, while immunohistochemistry revealed production by middle ear epithelial cells and infiltrating lymphocytes. Conclusion Our data suggest an active role for HB-EGF in the hyperplasia of the middle ear mucosal epithelium during otitis media. These results imply that therapies targeting HB-EGF could ameliorate mucosal growth during otitis media, and thereby reduce detrimental sequelae of this childhood disease.
Collapse
Affiliation(s)
- Keigo Suzukawa
- Division of Otolaryngology, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
| | - Julia Tomlin
- Division of Otolaryngology, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
| | - Kwang Pak
- Division of Otolaryngology, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
| | - Eduardo Chavez
- Division of Otolaryngology, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
| | - Arwa Kurabi
- Division of Otolaryngology, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
| | - Andrew Baird
- Division of Trauma, Department of Surgery, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
| | - Stephen I. Wasserman
- Division of Allergy-Immunology, Department of Medicine, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
| | - Allen F. Ryan
- Division of Otolaryngology, University of California, San Diego School of Medicine and VA Medical Center, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Li JD, Hermansson A, Ryan AF, Bakaletz LO, Brown SD, Cheeseman MT, Juhn SK, Jung TTK, Lim DJ, Lim JH, Lin J, Moon SK, Post JC. Panel 4: Recent advances in otitis media in molecular biology, biochemistry, genetics, and animal models. Otolaryngol Head Neck Surg 2013; 148:E52-63. [PMID: 23536532 DOI: 10.1177/0194599813479772] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. OBJECTIVE To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. DATA SOURCES AND REVIEW METHODS A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. RESULTS Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. CONCLUSIONS AND IMPLICATIONS FOR PRACTICE Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications.
Collapse
Affiliation(s)
- Jian-Dong Li
- Center for Inflammation, Immunity & Infection, and Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kurabi A, Pak K, Dang X, Coimbra R, Eliceiri BP, Ryan AF, Baird A. Ecrg4 attenuates the inflammatory proliferative response of mucosal epithelial cells to infection. PLoS One 2013; 8:e61394. [PMID: 23626679 PMCID: PMC3634077 DOI: 10.1371/journal.pone.0061394] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/08/2013] [Indexed: 02/08/2023] Open
Abstract
We report an inverse relationship between expression of the orphan candidate tumor suppressor gene esophageal cancer related gene 4 (Ecrg4), and the mucosal epithelial cell response to infection in the middle ear (ME). First, we found constitutive Ecrg4 mRNA expression in normal, quiescent ME mucosa that was confirmed by immunostainning of mucosal epithelial cells and immunoblotting of tissue lysates for the 14 kDa Ecrg4 protein. Upon experimental ME infection, Ecrg4 gene expression rapidly decreased by over 80%, between 3 to 48 hrs, post infection. When explants of this infected mucosa were placed in culture and transduced with an adenovirus (AD) encoding Ecrg4 gene (ADEcrg4), the proliferative and migratory responses of mucosal cells were significantly inhibited. ADEcrg4 transduction of control explants from uninfected MEs had no effect on basal growth and migration. Over-expression of Ecrg4 in vivo, by pre-injecting MEs with ADEcrg4 48 hrs prior to infection, prevented the natural down-regulation of Ecrg4, reduced mucosal proliferation and prevented inflammatory cell infiltration normally observed after infection. Taken together, these data support a hypothesis that Ecrg4 plays a role in coordinating the inflammatory and proliferative response to infection of mucosal epithelium suggesting a possible mechanism for its putative anti-tumor activity.
Collapse
Affiliation(s)
- Arwa Kurabi
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla, California, United States of America
- Veterans Administration Medical Center, San Diego, California, United States of America
| | - Kwang Pak
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla, California, United States of America
- Veterans Administration Medical Center, San Diego, California, United States of America
| | - Xitong Dang
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla, California, United States of America
| | - Raul Coimbra
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla, California, United States of America
| | - Brian P. Eliceiri
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla, California, United States of America
| | - Allen F. Ryan
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla, California, United States of America
- Veterans Administration Medical Center, San Diego, California, United States of America
| | - Andrew Baird
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Cayé-Thomasen P, Hermansson A, Bakaletz L, Hellstrøm S, Kanzaki S, Kerschner J, Lim D, Lin J, Mason K, Spratley J. Panel 3: Recent advances in anatomy, pathology, and cell biology in relation to otitis media pathogenesis. Otolaryngol Head Neck Surg 2013; 148:E37-51. [PMID: 23536531 DOI: 10.1177/0194599813476257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 01/08/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES The pathogenesis of otitis media (OM) involves a number of factors related to the anatomy, pathology, and cell biology of the middle ear, the mastoid, the Eustachian tube, and the nasopharynx. Although some issues of pathogenesis are fairly well established, others are only marginally indicated by current knowledge, and yet others remain undisclosed. The objective of this article is to provide a state-of-the-art review on recent scientific achievements in the pathogenesis of OM, as related to anatomy, pathology, and cell biology. DATA SOURCES PubMed, Ovid Medline, and Cochrane Library. REVIEW METHODS Articles published on the pathogenesis of OM and the anatomy, pathology, and cell biology of the middle ear, the mastoid, the Eustachian tube, and the nasopharynx between January 2007 and June 2011 were identified. Among almost 1900 abstracts, the authors selected 130 articles for full article review and inclusion in this report. RESULTS New knowledge on a number of issues emerged, including cell-specific expression and function of fluid transportation and innate immune system molecules, mucous cell metaplasia, mucin expression, bacterial adherence, and epithelial internalization, as well as the occurrence, composition, dynamics, and potential role of bacterial biofilm. In addition, the potential role of gastroesophageal reflux disease and cigarette smoke exposure has been explored further. CONCLUSIONS AND IMPLICATIONS FOR PRACTICE Over the past 4 years, considerable scientific progress has been made on the pathogenesis of OM, as related to issues of anatomy, pathology, and cell biology. Based on these new achievements and a sustained lack of essential knowledge, suggestions for future research are outlined.
Collapse
Affiliation(s)
- Per Cayé-Thomasen
- Department of Oto-rhino-laryngology, Head and Neck Surgery, University Hospital of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Han F, Yu H, Li P, Zhang J, Tian C, Li H, Zheng QY. Mutation in Phex gene predisposes BALB/c-Phex(Hyp-Duk)/Y mice to otitis media. PLoS One 2012; 7:e43010. [PMID: 23028440 PMCID: PMC3461009 DOI: 10.1371/journal.pone.0043010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/17/2012] [Indexed: 12/02/2022] Open
Abstract
Genetic susceptibility underlying otitis media (OM) remains to be understood. We show in this study that mutation in Phex gene predisposes the BALB/c-PhexHyp-Duk/Y (abbreviated Hyp-Duk/Y) mice to OM, which occurs at post-natal day 21 (P21) with an average penetrance of 73%. The OM was identified by effusion in the middle ear cavity and/or thickening of middle ear mucosae, and was characterised by increase in goblet cells, deformity of epithelial cilia and higher expression of proliferating cell nuclear antigen (PCNA) in cells of the middle ear mucosae. Moreover, the transcription levels of Tlr2, Tlr4, Nfkb1, Ccl4, Il1b and Tnfα in the ears of the Hyp-Duk/Y mice at P35 were significantly upregulated, compared to those of the controls. Higher expression levels of TLR2, TLR4, NF-κB and TNF-α in the middle ears were demonstrated by immunohistochemistry (IHC). However, the OM in the mice was not prevented by azithromycin administration from gestational day 18 to P35. Further study showed that, in contrast to the low mRNA levels of Phex gene in the ears of the Hyp-Duk/Y mice, the mRNA level of Fgf23 was significantly elevated at P9, P14, P21 and P35. Meanwhile, mRNA levels of EP2 (PGE2 receptor), which expressed in the middle ear epithelia as demonstrated by IHC, were already increased at P14 even before the occurrence of OM, indicating that PGE2, an inflammatory mediator, is involved in the OM development in the mutants. Taking together, Phex mutation primarily up-regulates gene expression levels in FGF23 mediated pathways in the middle ears, resulting in cell proliferation and defence impairment at the mucosae and subsequently bacterial infection. The Hyp-Duk/Y mouse is a new genetic mouse model of OM.
Collapse
Affiliation(s)
- Fengchan Han
- The Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Heping Yu
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ping Li
- The Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Jiangping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Cong Tian
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Hongbo Li
- The Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Qing Yin Zheng
- The Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, United States of America
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
14
|
Role of c-Jun N-terminal protein kinase 1/2 (JNK1/2) in macrophage-mediated MMP-9 production in response to Moraxella catarrhalis lipooligosaccharide (LOS). PLoS One 2012; 7:e37912. [PMID: 22655080 PMCID: PMC3360025 DOI: 10.1371/journal.pone.0037912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/30/2012] [Indexed: 01/09/2023] Open
Abstract
Moraxella catarrhalis is a Gram negative bacterium and a leading causative agent of otitis media (OM) in children. Recent reports have provided strong evidence for the presence of high levels of matrix metalloproteinase (MMPs) in effusion fluids from children suffering with OM, however, the precise mechanisms by which MMPs are generated are currently unknown. We hypothesized that MMPs are secreted from macrophages in the presence of M. catarrhalis lipooligosaccharide (LOS). In this report, we demonstrate that in vitro stimulation of murine macrophage RAW 264.7 cells with LOS leads to secretion of MMP-9 as determined by ELISA and zymogram assays. We have also shown that inhibition of ERK1/2 and p38 kinase completely blocked LOS induced MMP-9 production. In contrast, inhibition of JNK1/2 by the specific inhibitor SP600125 actually increased the level of expression and production of MMP-9 at both mRNA and protein levels, respectively by almost five fold. This latter result was confirmed by knocking down JNK1/2 using siRNA. Similar results have been observed in murine bone marrow derived macrophages in vitro. In contrast to and in parallel with the LOS-induced increased levels of MMP-9 in the presence of SP600125, we found a corresponding dose-dependent inhibition of TIMP-1 (tissue inhibitor of matrix metalloproteinase-1) secretion. Results of subsequent in vitro studies provided evidence that when JNK1/2 was inhibited prior to stimulation with LOS, it significantly increased both the extent of macrophage cell migration and invasion compared to control cells or cells treated with LOS alone. The results of these studies contribute to an increased understanding of the underlying pathophysiology of OM with effusion in children.
Collapse
|
15
|
Tian C, Yu H, Yang B, Han F, Zheng Y, Bartels CF, Schelling D, Arnold JE, Scacheri PC, Zheng QY. Otitis media in a new mouse model for CHARGE syndrome with a deletion in the Chd7 gene. PLoS One 2012; 7:e34944. [PMID: 22539951 PMCID: PMC3335168 DOI: 10.1371/journal.pone.0034944] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/11/2012] [Indexed: 11/17/2022] Open
Abstract
Otitis media is a middle ear disease common in children under three years old. Otitis media can occur in normal individuals with no other symptoms or syndromes, but it is often seen in individuals clinically diagnosed with genetic diseases such as CHARGE syndrome, a complex genetic disease caused by mutation in the Chd7 gene and characterized by multiple birth defects. Although otitis media is common in human CHARGE syndrome patients, it has not been reported in mouse models of CHARGE syndrome. In this study, we report a mouse model with a spontaneous deletion mutation in the Chd7 gene and with chronic otitis media of early onset age accompanied by hearing loss. These mice also exhibit morphological alteration in the Eustachian tubes, dysregulation of epithelial proliferation, and decreased density of middle ear cilia. Gene expression profiling revealed up-regulation of Muc5ac, Muc5b and Tgf-β1 transcripts, the products of which are involved in mucin production and TGF pathway regulation. This is the first mouse model of CHARGE syndrome reported to show otitis media with effusion and it will be valuable for studying the etiology of otitis media and other symptoms in CHARGE syndrome.
Collapse
Affiliation(s)
- Cong Tian
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Leichtle A, Hernandez M, Lee J, Pak K, Webster NJ, Wollenberg B, Wasserman SI, Ryan AF. The role of DNA sensing and innate immune receptor TLR9 in otitis media. Innate Immun 2011; 18:3-13. [PMID: 21239460 DOI: 10.1177/1753425910393539] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Otitis media (OM), a common infectious disease in children, is associated with bacterial middle ear (ME) infection. Toll-like receptors (TLRs) are important mediators of innate immune responses, and TLR9 specifically recognizes the unmethylated cytidine-phosphate-guanosine (CpG) motifs in bacterial DNA. Additional sensors of foreign DNA have recently been identified. The role of DNA sensing and TLR9 was investigated in a murine model of OM induced by non-typeable Haemophilus influenzae (NTHi). Expression of genes related to DNA-sensing pathways involved in innate immunity was assessed via DNA microarray, qPCR and immunohistochemistry. Middle ear responses to NTHi were examined in wild-type and TLR9(-/-) mice by histopathology and bacterial culture. Expression of TLR9 signaling genes was modestly up-regulated during OM, as was TLR9 protein in both ME mucosal cells and infiltrating leukocytes. However, genes known to be regulated by CpG DNA were dramatically up-regulated, as were genes involved in DNA sensing by DIA, Pol-III and AIM2. Toll-like receptor 9 deletion significantly prolonged the inflammatory response induced by NTHi in the ME and delayed bacterial clearance. The results suggest that DNA sensing via TLR9 plays a role in OM pathogenesis and recovery. Alternative forms of DNA sensing may also contribute to OM.
Collapse
Affiliation(s)
- Anke Leichtle
- Department of Surgery/Otolaryngology, University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Leichtle A, Hernandez M, Pak K, Webster NJ, Wasserman SI, Ryan AF. The toll-Like receptor adaptor TRIF contributes to otitis media pathogenesis and recovery. BMC Immunol 2009; 10:45. [PMID: 19656404 PMCID: PMC2736931 DOI: 10.1186/1471-2172-10-45] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 08/05/2009] [Indexed: 11/17/2022] Open
Abstract
Background Toll-like receptor (TLR) signalling is crucial for innate immune responses to infection. The involvement of TLRs in otitis media (OM), the most prevalent childhood disease in developed countries, has been implicated by studies in middle ear cell lines, by association studies of TLR-related gene polymorphisms, and by altered OM in mice bearing mutations in TLR genes. Activated TLRs signal via two alternative intracellular signaling molecules with differing effects; MyD88 (Myeloid differentiation primary response gene 88) inducing primarily interleukin expression and TRIF (Tir-domain-containing adaptor inducing interferon β) mediating type I interferon (IFN) expression. We tested the hypothesis that TRIF and type I IFN signaling play a role in OM, using a murine model of OM induced by non-typeable Haemophilus influenzae (NTHi). The ME inflammatory response to NTHi was examined in wild-type (WT) and TRIF-/- mice by qPCR, gene microarray, histopathology and bacterial culture. Results Expression of TRIF mRNA was only modesty enhanced during OM, but both type I IFN signalling genes and type I IFN-inducible genes were significantly up-regulated in WT mice. TRIF-deficient mice showed reduced but more persistent mucosal hyperplasia and less leukocyte infiltration into the ME in response to NTHi infection than did WT animals. Viable bacteria could be cultured from MEs of TRIF-/- mice for much longer in the course of disease than was the case for middle ears of WT mice. Conclusion Our results demonstrate that activation of TRIF/type I IFN responses is important in both the pathogenesis and resolution of NTHi-induced OM.
Collapse
Affiliation(s)
- Anke Leichtle
- Department of Surgery/Otolaryngology University of California, San Diego, 9500 Gilman Avenue, La Jolla, California 92093, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Leichtle A, Hernandez M, Pak K, Yamasaki K, Cheng CF, Webster NJ, Ryan AF, Wasserman SI. TLR4-mediated induction of TLR2 signaling is critical in the pathogenesis and resolution of otitis media. Innate Immun 2009; 15:205-15. [PMID: 19586996 DOI: 10.1177/1753425909103170] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Otitis media is the most prevalent childhood disease in developed countries. The involvement of Toll-like receptors (TLRs) in otitis media pathophysiology has been implicated by studies in cell lines and association studies of TLR gene polymorphisms. However, precise functions of TLRs in the etiology of otitis media in vivo have not been examined. We investigated the inflammatory response to nontypeable Haemophilus influenzae using a model of otitis media in wild-type, TLR2(- /-) and TLR4(-/ -) mice by gene microarray, qPCR, immunohistochemistry, Western blot analysis and histopathology. Toll-like receptor-2(- /-) and TLR4(- /-) mice exhibited a more profound, persistent inflammation with impaired bacterial clearance compared to controls. While wild-type mice induced tumor necrosis factor-a (TNF) after non-typeable H. influenzae challenge, TLR2(-/-) and TLR4(-/-) mice lack TNF induction in the early phase of otitis media. Moreover, lack of TLR2 resulted in a late increase in IL-10 expression and prolonged failure to clear bacteria. Toll-like receptor-4(-/- ) mice showed impaired early bacterial clearance and loss of TLR2 induction in early otitis media. Our results demonstrate that both TLR2 and TLR4 signalling are critical to the regulation of infection in non-typeable H. influenzae-induced otitis media. Toll-like receptor-4 signalling appears to induce TLR2 expression, and TLR2 activation is critical for bacterial clearance and timely resolution of otitis media.
Collapse
Affiliation(s)
- Anke Leichtle
- Department of Surgery/Otolaryngology, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Han SY. c-Jun N-Terminal Kinase Signaling Inhibitors Under Development. Toxicol Res 2008; 24:93-100. [PMID: 32038782 PMCID: PMC7006258 DOI: 10.5487/tr.2008.24.2.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/26/2008] [Accepted: 03/27/2008] [Indexed: 11/20/2022] Open
Abstract
Targeting protein kinases has been active area in drug discovery. The c-Jun N-terminal kinases (JNKs) have also been target for development of novel therapy in various diseases, since the roles of JNK signaling in pathological conditions were revealed in studies using jnk-deficient mice. Small molecule inhibitors and peptide inhibitors are identified for therapeutic intervention of JNK signaling pathway. SP-600125, an anthrapyrazole small molecule inhibitor for JNK with high potency and selectivity has been widely used for dissecting JNK signaling pathway. CC-401 is the first JNK inhibitor that went into clinical trial for inflammation and leukemia. Inhibitor for mixed lineage kinase (MLK), CEP-1347 also negatively regulates JNK signaling, and tried for potential use in Parkinson's disease. Cell-permeable peptide inhibitor D-JNKI-1 is being developed for the treatment of hearing loss. The current status of these JNK inhibitors and safety issue is discussed in the minireview.
Collapse
Affiliation(s)
- Sun-Young Han
- Drug Discovery Division, Korea Research Institute of Chemical Technology, 19, Sinseongno, Yuseong-gu, Daejeon, 305-343 Korea
| |
Collapse
|