1
|
Phillips-Farfán B, Gómez-Chávez F, Medina-Torres EA, Vargas-Villavicencio JA, Carvajal-Aguilera K, Camacho L. Microbiota Signals during the Neonatal Period Forge Life-Long Immune Responses. Int J Mol Sci 2021; 22:ijms22158162. [PMID: 34360926 PMCID: PMC8348731 DOI: 10.3390/ijms22158162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
The microbiota regulates immunological development during early human life, with long-term effects on health and disease. Microbial products include short-chain fatty acids (SCFAs), formyl peptides (FPs), polysaccharide A (PSA), polyamines (PAs), sphingolipids (SLPs) and aryl hydrocarbon receptor (AhR) ligands. Anti-inflammatory SCFAs are produced by Actinobacteria, Bacteroidetes, Firmicutes, Spirochaetes and Verrucomicrobia by undigested-carbohydrate fermentation. Thus, fiber amount and type determine their occurrence. FPs bind receptors from the pattern recognition family, those from commensal bacteria induce a different response than those from pathogens. PSA is a capsular polysaccharide from B. fragilis stimulating immunoregulatory protein expression, promoting IL-2, STAT1 and STAT4 gene expression, affecting cytokine production and response modulation. PAs interact with neonatal immunity, contribute to gut maturation, modulate the gut–brain axis and regulate host immunity. SLPs are composed of a sphingoid attached to a fatty acid. Prokaryotic SLPs are mostly found in anaerobes. SLPs are involved in proliferation, apoptosis and immune regulation as signaling molecules. The AhR is a transcription factor regulating development, reproduction and metabolism. AhR binds many ligands due to its promiscuous binding site. It participates in immune tolerance, involving lymphocytes and antigen-presenting cells during early development in exposed humans.
Collapse
Affiliation(s)
- Bryan Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Fernando Gómez-Chávez
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (F.G.-C.); (J.A.V.-V.)
- Cátedras CONACyT-Instituto Nacional de Pediatría, México City 04530, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | | | | | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Luz Camacho
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
- Correspondence:
| |
Collapse
|
2
|
Wagner C, Torow N, Hornef MW, Lelouard H. Spatial and temporal key steps in early-life intestinal immune system development and education. FEBS J 2021; 289:4731-4757. [PMID: 34076962 DOI: 10.1111/febs.16047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/15/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Education of our intestinal immune system early in life strongly influences adult health. This education strongly relies on series of events that must occur in well-defined time windows. From initial colonization by maternal-derived microbiota during delivery to dietary changes from mother's milk to solid foods at weaning, these early-life events have indeed long-standing consequences on our immunity, facilitating tolerance to environmental exposures or, on the contrary, increasing the risk of developing noncommunicable diseases such as allergies, asthma, obesity, and inflammatory bowel diseases. In this review, we provide an outline of the recent advances in our understanding of these events and how they are mechanistically related to intestinal immunity development and education. First, we review the susceptibility of neonates to infections and inflammatory diseases, related to their immune system and microbiota changes. Then, we highlight the maternal factors involved in protection and education of the mucosal immune system of the offspring, the role of the microbiota, and the nature of neonatal immune system until weaning. We also present how the development of some immune responses is intertwined in temporal and spatial windows of opportunity. Finally, we discuss pending questions regarding the neonate particular immune status and the activation of the intestinal immune system at weaning.
Collapse
Affiliation(s)
- Camille Wagner
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | | |
Collapse
|
3
|
Abstract
Yersiniosis is common foodborne gastrointestinal disease caused by the enteric pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis. The mouse model of oral infection serves as a useful tool to study enteropathogenic Yersinia infection in mammals. The following protocol describes two distinct oral infection methods: the commonly used oral gavage method in which the bacterial inoculum is instilled directly into the mouse stomach using a feeding needle, and an alternative method in which mice are fed bread soaked with Yersinia culture.
Collapse
Affiliation(s)
- Diana Hooker-Romero
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Leah Schwiesow
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Yahan Wei
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
4
|
The eIF2α Kinase Heme-Regulated Inhibitor Protects the Host from Infection by Regulating Intracellular Pathogen Trafficking. Infect Immun 2018; 86:IAI.00707-17. [PMID: 29311243 DOI: 10.1128/iai.00707-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
The host employs both cell-autonomous and system-level responses to limit pathogen replication in the initial stages of infection. Previously, we reported that the eukaryotic initiation factor 2α (eIF2α) kinases heme-regulated inhibitor (HRI) and protein kinase R (PKR) control distinct cellular and immune-related activities in response to diverse bacterial pathogens. Specifically for Listeria monocytogenes, there was reduced translocation of the pathogen to the cytosolic compartment in HRI-deficient cells and consequently reduced loading of pathogen-derived antigens on major histocompatibility complex class I (MHC-I) complexes. Here we show that Hri-/- mice, as well as wild-type mice treated with an HRI inhibitor, are more susceptible to listeriosis. In the first few hours of L. monocytogenes infection, there was much greater pathogen proliferation in the liver of Hri-/- mice than in the liver of Hri+/+ mice. Further, there was a rapid increase of serum interleukin-6 (IL-6) levels in Hri+/+ mice in the first few hours of infection whereas the increase in IL-6 levels in Hri-/- mice was notably delayed. Consistent with these in vivo findings, the rate of listeriolysin O (LLO)-dependent pathogen efflux from infected Hri-/- macrophages and fibroblasts was significantly higher than the rate seen with infected Hri+/+ cells. Treatment of cells with an eIF2α kinase activator enhanced both the HRI-dependent and PKR-dependent infection phenotypes, further indicating the pharmacologically malleability of this signaling pathway. Collectively, these results suggest that HRI mediates the cellular confinement and killing of virulent L. monocytogenes in addition to promoting a system-level cytokine response and that both are required to limit pathogen replication during the first few hours of infection.
Collapse
|
5
|
Specialized Proresolving Mediators Rescue Infant Mice from Lethal Citrobacter rodentium Infection and Promote Immunity against Reinfection. Infect Immun 2017; 85:IAI.00464-17. [PMID: 28694292 DOI: 10.1128/iai.00464-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
Infants are generally highly susceptible to oral pathogens. Intestinal infection and the associated diarrhea are significant global causes of morbidity and mortality in infants. Among the enteric pathogens, enteropathogenic Escherichia coli (EPEC) stands out as showing the highest risk for infection-induced death in infants ≤12 months old. We have developed an experimental model of infant infection with EPEC, using the mouse-specific pathogen Citrobacter rodentium Our murine infant model is similar to EPEC infection in human infants since infant mice are much more susceptible to C. rodentium infection than adult mice; infants infected with 50-fold fewer bacteria than the standard adult dose uniformly succumbed to the infection. Infant infection is characterized by high early and sustained bacterial titers and profound intestinal inflammation associated with extensive necrosis and systemic dissemination of the bacteria. Therefore, it seems likely that infant deaths result from sepsis secondary to intestinal damage. Recently, specialized proresolving mediators (SPM) have been found to exert profound beneficial effects in adult models of infection. Thus, we investigated the actions of two proresolving lipid mediators, resolvin D1 (RvD1) and resolvin D5 (RvD5), on the course of infection in infants. Strikingly, postinfection treatment with RvD1 and RvD5 reduced bacterial loads, mitigated inflammation, and rescued the infants from death. Furthermore, postinfection treatment with RvD1 and RvD5 led to protection from reinfection associated with C. rodentium-specific IgG responses comparable to those in adults. These results indicate that SPM may provide novel therapeutic tools for the treatment of pathological intestinal infections in infants.
Collapse
|
6
|
Kanagavelu S, Flores C, Hagiwara S, Ruiz J, Hyun J, Cho EE, Sun F, Romero L, Shih DQ, Fukata M. TIR-Domain-Containing Adapter-Inducing Interferon- β (TRIF) Regulates CXCR5+ T helper Cells in the Intestine. ACTA ACUST UNITED AC 2016; 7. [PMID: 27853628 DOI: 10.4172/2155-9899.1000458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Establishing an effective humoral immunity is an important host defense mechanism in intestinal mucosa. T follicular helper (Tfh) cells are a spectrum of CXCR5 expressing T helper cells that induce antigen-specific B cell differentiation. Because the differentiation of T helper cells is largely regulated by innate immunity, we addressed whether TRIF signaling regulates Tfh cell differentiation and its ability to trigger humoral immune responses in the intestine. METHOD CD4+CXCR5+ T cells, B cells, and plasma cells in the Peyer's patches (PPs) of WT and TRIF-deficient (TrifLPS2) mice were analyzed by flow cytometry at the baseline, 9 days post primary infection, and 7 days post-secondary infection with Y. enterocolitica. Y. enterocolitica-specific CD4+CXCR5+ T cells were generated in vitro by co-culturing peritoneal macrophages with splenic naïve T cells in the presence of Y. enterocolitica lysate. WT and TrifLPS2 mice received CD4+CXCR5+ T cells isolated either from Y. enterocolitica-primed WT mice or generated in vitro. These mice were infected with Y. enterocolitica and followed up to 4 weeks. Y. enterocolitica-specific IgA and IgG were measured in stool and serum samples, respectively. RESULTS At baseline, CD4+CXCR5+ T cell proportion was higher but the proportion of B cells and plasma cells was lower in the PPs of TrifLPS2 mice compared to WT mice. After infection, the proportion of plasma cells also became higher in the PPs of TrifLPS2 mice compared to WT mice. Corresponding increase of Y. enterocolitica-specific stool IgA but not serum IgG was found in TrifLPS2 mice compared to WT mice. Both in vivo isolated and in vitro generated CD4+CXCR5+ T cells induced protective immunity against Y. enterocolitica infection. CONCLUSION Our results reveal a novel role of TRIF in the regulation of humoral immunity in the intestine that can be utilized as a basis for a unique vaccine strategy.
Collapse
Affiliation(s)
- Saravana Kanagavelu
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Division of Infectious Diseases and Immunology, Department of Biomedical Science, Medicine and Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Claudia Flores
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shinichiro Hagiwara
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jose Ruiz
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jinhee Hyun
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ei E Cho
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Frank Sun
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Laura Romero
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David Q Shih
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Masayuki Fukata
- Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
7
|
Ruiz J, Kanagavelu S, Flores C, Romero L, Riveron R, Shih DQ, Fukata M. Systemic Activation of TLR3-Dependent TRIF Signaling Confers Host Defense against Gram-Negative Bacteria in the Intestine. Front Cell Infect Microbiol 2016; 5:105. [PMID: 26793623 PMCID: PMC4710052 DOI: 10.3389/fcimb.2015.00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/24/2015] [Indexed: 12/11/2022] Open
Abstract
Recognition of Gram-negative bacteria by toll-like receptor (TLR)4 induces MyD88 and TRIF mediated responses. We have shown that TRIF-dependent responses play an important role in intestinal defense against Gram-negative enteropathogens. In the current study, we examined underlying mechanisms of how systemic TRIF activation enhances intestinal immune defense against Gram-negative bacteria. First we confirmed that the protective effect of poly I:C against enteric infection of mice with Yersinia enterocolitica was dependent on TLR3-mediated TRIF signaling by using TLR3-deficient mice. This protection was unique in TRIF-dependent TLR signaling because systemic stimulation of mice with agonists for TLR2 (Pam3CSK4) or TLR5 (flagellin) did not reduce mortality on Y. enterocolitica infection. Systemic administration of poly I:C mobilized CD11c+, F4/80+, and Gr−1hi cells from lamina propria and activated NK cells in the mesenteric lymph nodes (MLN) within 24 h. This innate immune cell rearrangement was type I IFN dependent and mediated through upregulation of TLR4 followed by CCR7 expression in these innate immune cells found in the intestinal mucosa. Poly I:C induced IFN-γ expression by NK cells in the MLN, which was mediated through type I IFNs and IL-12p40 from antigen presenting cells and consequent activation of STAT1 and STAT4 in NK cells. This formation of innate immunity significantly contributed to the elimination of bacteria in the MLN. Our results demonstrated an innate immune network in the intestine that can be established by systemic stimulation of TRIF, which provides a strong host defense against Gram-negative pathogens. The mechanism underlying TRIF-mediated protective immunity may be useful to develop novel therapies for enteric bacterial infection.
Collapse
Affiliation(s)
- Jose Ruiz
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA
| | - Saravana Kanagavelu
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of MedicineMiami, FL, USA; Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research InstituteLos Angeles, CA, USA
| | - Claudia Flores
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute Los Angeles, CA, USA
| | - Laura Romero
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA
| | - Reldy Riveron
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine Miami, FL, USA
| | - David Q Shih
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research InstituteLos Angeles, CA, USA; Department of Medicine, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA
| | - Masayuki Fukata
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of MedicineMiami, FL, USA; Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, F. Widjaja Foundation, Inflammatory Bowel and Immunology Research InstituteLos Angeles, CA, USA; Department of Medicine, David Geffen School of Medicine, University of CaliforniaLos Angeles, CA, USA; Department of Cell Biology, University of Miami Miller School of MedicineMiami, FL, USA; Department of Biomedical Science, Cedars-Sinai Medical CenterLos Angeles, CA, USA
| |
Collapse
|
8
|
Siefker DT, Adkins B. Rapid CD8 + Function Is Critical for Protection of Neonatal Mice from an Extracellular Bacterial Enteropathogen. Front Pediatr 2016; 4:141. [PMID: 28119902 PMCID: PMC5220481 DOI: 10.3389/fped.2016.00141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022] Open
Abstract
Both human and murine neonates are characteristically highly susceptible to bacterial infections. However, we recently discovered that neonatal mice are surprisingly highly resistant to oral infection with Yersinia enterocolitica. This resistance was linked with activation of both innate and adaptive responses, involving innate phagocytes, CD4+ cells, and B cells. We have now extended these studies and found that CD8+ cells also contribute importantly to neonatal protection from Y. enterocolitica. Strikingly, neonatal CD8+ cells in the mesenteric lymph nodes (MLN) are rapidly mobilized, increasing in proportion, number, and IFNγ production as early as 48 h post infection. This early activation appears to be critical for protection since B2m-/- neonates are significantly more susceptible than wt neonates to primary Y. enterocolitica infection. In the absence of CD8+ cells, Y. enterocolitica rapidly disseminated to peripheral tissues. Within 48 h of infection, both the spleens and livers of B2m-/-, but not wt, neonates became heavily colonized, likely leading to their deaths from sepsis. In contrast to primary infection, CD8+ cells were dispensable for the generation of immunological memory protective against secondary infection. These results indicate that CD8+ cells in the neonatal MLN contribute importantly to protection against an extracellular bacterial enteropathogen but, notably, they appear to act during the early innate phase of the immune response.
Collapse
Affiliation(s)
- David T Siefker
- Department of Pediatrics, Le Bonheur Children's Medical Center , Memphis, TN , USA
| | - Becky Adkins
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine , Miami, FL , USA
| |
Collapse
|
9
|
TIR Domain-Containing Adapter-Inducing Beta Interferon (TRIF) Mediates Immunological Memory against Bacterial Pathogens. Infect Immun 2015; 83:4404-15. [PMID: 26351279 DOI: 10.1128/iai.00674-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023] Open
Abstract
Induction of adaptive immunity leads to the establishment of immunological memory; however, how innate immunity regulates memory T cell function remains obscure. Here we show a previously undefined mechanism in which innate and adaptive immunity are linked by TIR domain-containing adapter-inducing beta interferon (TRIF) during establishment and reactivation of memory T cells against Gram-negative enteropathogens. Absence of TRIF in macrophages (Mϕs) but not dendritic cells led to a predominant generation of CD4(+) central memory T cells that express IL-17 during enteric bacterial infection in mice. TRIF-dependent type I interferon (IFN) signaling in T cells was essential to Th1 lineage differentiation and reactivation of memory T cells. TRIF activated memory T cells to facilitate local neutrophil influx and enhance bacterial elimination. These results highlight the importance of TRIF as a mediator of the innate and adaptive immune interactions in achieving the protective properties of memory immunity against Gram-negative bacteria and suggest TRIF as a potential therapeutic target.
Collapse
|
10
|
Fulde M, Hornef MW. Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol Rev 2015; 260:21-34. [PMID: 24942679 DOI: 10.1111/imr.12190] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The innate immune system instructs the host on microbial exposure and infection. This information is critical to mount a protective innate and adaptive host response to microbial challenge, but is also involved in homeostatic and adaptive processes that adjust the organism to meet environmental requirements. This is of particular importance for the neonatal host during the transition from the protected fetal life to the intense and dynamic postnatal interaction with commensal and pathogenic microorganisms. Here, we discuss both adaptive and developmental mechanisms of the mucosal innate immune system that prevent inappropriate stimulation and facilitate establishment of a stable homeostatic host-microbial interaction after birth.
Collapse
Affiliation(s)
- Marcus Fulde
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
11
|
Merritt PM, Nero T, Bohman L, Felek S, Krukonis ES, Marketon MM. Yersinia pestis targets neutrophils via complement receptor 3. Cell Microbiol 2014; 17:666-87. [PMID: 25359083 DOI: 10.1111/cmi.12391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/18/2014] [Accepted: 10/28/2014] [Indexed: 01/20/2023]
Abstract
Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet, the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins because of reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria towards neutrophils during plague infection.
Collapse
Affiliation(s)
- Peter M Merritt
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | | | | | | | | |
Collapse
|
12
|
Zhang K, Dupont A, Torow N, Gohde F, Leschner S, Lienenklaus S, Weiss S, Brinkmann MM, Kühnel M, Hensel M, Fulde M, Hornef MW. Age-dependent enterocyte invasion and microcolony formation by Salmonella. PLoS Pathog 2014; 10:e1004385. [PMID: 25210785 PMCID: PMC4161480 DOI: 10.1371/journal.ppat.1004385] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
The coordinated action of a variety of virulence factors allows Salmonella enterica to invade epithelial cells and penetrate the mucosal barrier. The influence of the age-dependent maturation of the mucosal barrier for microbial pathogenesis has not been investigated. Here, we analyzed Salmonella infection of neonate mice after oral administration. In contrast to the situation in adult animals, we observed spontaneous colonization, massive invasion of enteroabsorptive cells, intraepithelial proliferation and the formation of large intraepithelial microcolonies. Mucosal translocation was dependent on enterocyte invasion in neonates in the absence of microfold (M) cells. It further resulted in potent innate immune stimulation in the absence of pronounced neutrophil-dominated pathology. Our results identify factors of age-dependent host susceptibility and provide important insight in the early steps of Salmonella infection in vivo. We also present a new small animal model amenable to genetic manipulation of the host for the analysis of the Salmonella enterocyte interaction in vivo. Non-typhoidal Salmonella are among of the most prevalent causative agents of infectious diarrheal disease worldwide but also very significantly contribute to infant sepsis and meningitis particularly in developing countries. The underlying mechanisms of the elevated susceptibility of the infant host to systemic Salmonella infection have not been investigated. Here we analyzed age-dependent differences in the colonization, mucosal translocation and systemic spread in a murine oral infection model. We observed efficient entry of Salmonella in intestinal epithelial cells of newborn mice. Enterocyte invasion was followed by massive bacterial proliferation and the formation of large intraepithelial bacterial colonies. Intraepithelial, but not non-invasive, extracellular Salmonella induced a potent immune stimulation. Also, enterocyte invasion was required for translocation through the mucosal barrier and spread of Salmonella to systemic organs. This requirement was due to the absence of M cells, specialized epithelial cells that forward luminal antigen to the underlying immune cells, in the neonate host. Our results identify age-dependent factors of host susceptibility and illustrate the initial phase of Salmonella infection. They further present a new small animal model amenable to genetic manipulation to investigate the interaction of this pathogen with epithelial cells and characterize the early steps in Salmonella pathogenesis.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Aline Dupont
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Natalia Torow
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Fredrik Gohde
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Sara Leschner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Stefan Lienenklaus
- Department of Molecular Immunology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Melanie M. Brinkmann
- Department of Viral Immune Modulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Mark Kühnel
- Centre for Anatomy, Hannover Medical School, Hannover, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Marcus Fulde
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- * E-mail: (MF); (MWH)
| | - Mathias W. Hornef
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- * E-mail: (MF); (MWH)
| |
Collapse
|
13
|
Neonatal immunology: responses to pathogenic microorganisms and epigenetics reveal an "immunodiverse" developmental state. Immunol Res 2014; 57:246-57. [PMID: 24214026 DOI: 10.1007/s12026-013-8439-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neonatal animals have heightened susceptibility to infectious agents and are at increased risk for the development of allergic diseases, such as asthma. Experimental studies using animal models have been quite useful for beginning to identify the cellular and molecular mechanisms underlying these sensitivities. In particular, results from murine neonatal models indicate that developmental regulation of multiple immune cell types contributes to the typically poor responses of neonates to pathogenic microorganisms. Surprisingly, however, animal studies have also revealed that responses at mucosal surfaces in early life may be protective against primary or secondary disease. Our understanding of the molecular events underlying these processes is less well developed. Emerging evidence indicates that the functional properties of neonatal immune cells and the subsequent maturation of the immune system in ontogeny may be regulated by epigenetic phenomena. Here, we review recent findings from our group and others describing cellular responses to infection and developmentally regulated epigenetic processes in the newborn.
Collapse
|
14
|
Murine neonates infected with Yersinia enterocolitica develop rapid and robust proinflammatory responses in intestinal lymphoid tissues. Infect Immun 2013; 82:762-72. [PMID: 24478090 DOI: 10.1128/iai.01489-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neonatal animals are generally very susceptible to infection with bacterial pathogens. However, we recently reported that neonatal mice are highly resistant to orogastric infection with Yersinia enterocolitica. Here, we show that proinflammatory responses greatly exceeding those in adults arise very rapidly in the mesenteric lymph nodes (MLN) of neonates. High-level induction of proinflammatory gene expression occurred in the neonatal MLN as early as 18 h postinfection. Marked innate phagocyte recruitment was subsequently detected at 24 h postinfection. Enzyme-linked immunosorbent spot assay (ELISPOT) analyses indicated that enhanced inflammation in neonatal MLN is contributed to, in part, by an increased frequency of proinflammatory cytokine-secreting cells. Moreover, both CD11b(+) and CD11b(-) cell populations appeared to play a role in proinflammatory gene expression. The level of inflammation in neonatal MLN was also dependent on key bacterial components. Y. enterocolitica lacking the virulence plasmid failed to induce innate phagocyte recruitment. In contrast, tumor necrosis factor alpha (TNF-α) protein expression and neutrophil recruitment were strikingly higher in neonatal MLN after infection with a yopP-deficient strain than with wild-type Y. enterocolitica, whereas only modest increases occurred in adults. This hyperinflammatory response was associated with greater colonization of the spleen and higher mortality in neonates, while there was no difference in mortality among adults. This model highlights the dynamic levels of inflammation in the intestinal lymphoid tissues and reveals the protective (wild-type strain) versus harmful (yopP-deficient strain) consequences of inflammation in neonates. Moreover, these results reveal that the neonatal intestinal lymphoid tissues have great potential to rapidly mobilize innate components in response to infection with bacterial enteropathogens.
Collapse
|
15
|
Role of YopK in Yersinia pseudotuberculosis resistance against polymorphonuclear leukocyte defense. Infect Immun 2012; 81:11-22. [PMID: 23090955 DOI: 10.1128/iai.00650-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The enteropathogen Yersinia pseudotuberculosis can survive in the harsh environment of lymphoid compartments that abounds in immune cells. This capacity is dependent on the plasmid-encoded Yersinia outer proteins (Yops) that are delivered into the host cell via a mechanism involving the Yersinia type III secretion system. We show that the virulence protein YopK has a role in the mechanism by which Y. pseudotuberculosis avoids the polymorphonuclear leukocyte or neutrophil (PMN) defense. A yopK mutant, which is attenuated in the mouse infection model, where it fails to cause systemic infection, was found to colonize Peyer's patches and mesenteric lymph nodes more rapidly than the wild-type strain. Further, in mice lacking PMNs, the yopK mutant caused full disease with systemic spread and typical symptoms. Analyses of effects on PMNs revealed that both the wild-type strain and the yopK mutant inhibited internalization and reactive oxygen species production, as well as neutrophil extracellular trap formation by PMNs. However, the wild-type strain effectively avoided induction of PMN death, whereas the mutant caused a necrosis-like PMN death. Taken together, our results indicate that YopK is required for the ability of Yersinia to resist the PMN defense, which is critical for the virulence of the pathogen. We suggest a mechanism whereby YopK functions to prevent unintended Yop delivery and thereby PMN disruption, resulting in necrosis-like cell death, which would enhance the inflammatory response favoring the host.
Collapse
|
16
|
Sotolongo J, España C, Echeverry A, Siefker D, Altman N, Zaias J, Santaolalla R, Ruiz J, Schesser K, Adkins B, Fukata M. Host innate recognition of an intestinal bacterial pathogen induces TRIF-dependent protective immunity. ACTA ACUST UNITED AC 2011; 208:2705-16. [PMID: 22124111 PMCID: PMC3244044 DOI: 10.1084/jem.20110547] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
TRIF signaling triggers the amplification of macrophage bactericidal activity sufficient to eliminate invading intestinal pathogens through the sequential induction of IFN-β and IFN-γ from macrophages and NK cells, respectively. Toll-like receptor 4 (TLR4), which signals through the adapter molecules myeloid differentiation factor 88 (MyD88) and toll/interleukin 1 receptor domain-containing adapter inducing IFN-β (TRIF), is required for protection against Gram-negative bacteria. TRIF is known to be important in TLR3-mediated antiviral signaling, but the role of TRIF signaling against Gram-negative enteropathogens is currently unknown. We show that TRIF signaling is indispensable for establishing innate protective immunity against Gram-negative Yersinia enterocolitica. Infection of wild-type mice rapidly induced both IFN-β and IFN-γ in the mesenteric lymph nodes. In contrast, TRIF-deficient mice were defective in these IFN responses and showed impaired phagocytosis in regional macrophages, resulting in greater bacterial dissemination and mortality. TRIF signaling may be universally important for protection against Gram-negative pathogens, as TRIF-deficient macrophages were also impaired in killing both Salmonella and Escherichia coli in vitro. The mechanism of TRIF-mediated protective immunity appears to be orchestrated by macrophage-induced IFN-β and NK cell production of IFN-γ. Sequential induction of IFN-β and IFN-γ leads to amplification of macrophage bactericidal activity sufficient to eliminate the invading pathogens at the intestinal interface. Our results demonstrate a previously unknown role of TRIF in host resistance to Gram-negative enteropathogens, which may lead to effective strategies for combating enteric infections.
Collapse
Affiliation(s)
- John Sotolongo
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stockinger S, Hornef MW, Chassin C. Establishment of intestinal homeostasis during the neonatal period. Cell Mol Life Sci 2011; 68:3699-712. [PMID: 21952827 PMCID: PMC11114965 DOI: 10.1007/s00018-011-0831-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 12/15/2022]
Abstract
The intestinal mucosa faces the challenge of regulating the balance between immune tolerance towards commensal bacteria, environmental stimuli and food antigens on the one hand, and induction of efficient immune responses against invading pathogens on the other hand. This regulatory task is of critical importance to prevent inappropriate immune activation that may otherwise lead to chronic inflammation, tissue disruption and organ dysfunction. The most striking example for the efficacy of the adaptive nature of the intestinal mucosa is birth. Whereas the body surfaces are protected from environmental and microbial exposure during fetal life, bacterial colonization and contact with potent immunostimulatory substances start immediately after birth. In the present review, we summarize the current knowledge on the mechanisms underlying the transition of the intestinal mucosa during the neonatal period leading to the establishment of a stable, life-long host-microbial homeostasis. The environmental exposure and microbial colonization during the neonatal period, and also the influence of maternal milk on the immune protection of the mucosa and the role of antimicrobial peptides, are described. We further highlight the molecular mechanisms of innate immune tolerance in neonatal intestinal epithelium. Finally, we link the described immunoregulatory mechanisms to the increased susceptibility to inflammatory and infectious diseases during the neonatal period.
Collapse
Affiliation(s)
- Silvia Stockinger
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany
| | - Mathias W. Hornef
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany
| | - Cécilia Chassin
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
18
|
Adkins B, Contractor N. Immune responses of female BALB/c and C57BL/6 neonatal mice to vaccination or intestinal infection are unaltered by exposure to breast milk lycopene. J Nutr 2011; 141:1326-30. [PMID: 21593356 PMCID: PMC3113289 DOI: 10.3945/jn.110.136762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lycopene, a carotenoid produced by some commonly consumed plants such as tomatoes, is not synthesized by animals. Thus, the levels of lycopene found in the breast milk of lactating females reflect the dietary lycopene supply. Lycopene has potent antioxidant activity but has also been implicated in modulating immune function. Therefore, lycopene in breast milk has the potential to affect the development and/or function of the immune system in the suckling pups. Here, we have investigated the impact of breast milk lycopene on systemic and mucosal immunity in mouse neonates. Diets containing 0.3 g/kg lycopene (Lyc) or control (Con) diets were fed to mouse dams beginning at late gestation and continuing throughout lactation. Seven-day-old female BALB/c pups were parenterally immunized with a model vaccine antigen dinitrophenyl-keyhole limpet hemocyanin (DNP-KLH) and then reimmunized as adults. The levels of DNP-KLH-specific IgG in the sera as well as keyhole limpet hemocyanin-specific IFNγ and IL-4 production by splenic CD4(+) cells were similar in the Lyc and Con pups. In addition, female neonatal (d7) C57BL/6 Lyc and Con pups were infected orally with the enteropathogen Yersinia enterocolitica. Breast milk lycopene had no effect on the recruitment of neutrophils to intestinal lymphoid tissues or on bacterial tissue colonization of the intestines, spleens, and livers. Thus, suckling pups exposed to lycopene in breast milk appear to develop normal innate and adaptive responses both systemically and at intestinal mucosal surfaces.
Collapse
Affiliation(s)
- Becky Adkins
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | |
Collapse
|
19
|
Bubonja Sonje M, Abram M, Stenzel W, Deckert M. Listeria monocytogenes (delta-actA mutant) infection in tumor necrosis factor receptor p55-deficient neonatal mice. Microb Pathog 2010; 49:186-95. [DOI: 10.1016/j.micpath.2010.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/20/2010] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
|
20
|
Yersinia enterocolitica promotes robust mucosal inflammatory T-cell immunity in murine neonates. Infect Immun 2010; 78:3595-608. [PMID: 20515925 DOI: 10.1128/iai.01272-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mucosal immunity to gastrointestinal pathogens in early life has been studied only slightly. Recently, we developed an infection model in murine neonates using the gastroenteric pathogen Yersinia enterocolitica. Here, we report that oral infection of neonatal mice with low doses of virulent Y. enterocolitica leads to vigorous intestinal and systemic adaptive immunity. Y. enterocolitica infection promoted the development of anti-LcrV memory serum IgG1 and IgG2a responses of comparable affinity and magnitude to adult responses. Strikingly, neonatal mesenteric lymph node CD4(+) T cells produced Yersinia-specific gamma interferon (IFN-gamma) and interleukin-17A (IL-17A), exceeding adult levels. The robust T- and B-cell responses elicited in neonates exposed to Y. enterocolitica were associated with long-term protection against mucosal challenge with this pathogen. Using genetically deficient mice, we found that IFN-gamma and CD4(+) cells, but not B cells, are critical for protection of neonates during primary Y. enterocolitica infection. In contrast, adults infected with low bacterial doses did not require either cell population for protection. CD4-deficient neonatal mice adoptively transferred with CD4(+) cells from wild-type, IFN-gamma-deficient, or IL-17AF-deficient mice were equally protected from infection. These data demonstrate that inflammatory CD4(+) T cells are required for protection of neonatal mice and that this protection may not require CD4-derived IFN-gamma, IL-17A, or IL-17F. Overall, these studies support the idea that Y. enterocolitica promotes the development of highly inflammatory mucosal responses in neonates and that intestinal T-cell function may be a key immune component in protection from gastrointestinal pathogens in early life.
Collapse
|
21
|
Fernandez MI, Regnault B, Mulet C, Tanguy M, Jay P, Sansonetti PJ, Pédron T. Maturation of paneth cells induces the refractory state of newborn mice to Shigella infection. THE JOURNAL OF IMMUNOLOGY 2008; 180:4924-30. [PMID: 18354217 DOI: 10.4049/jimmunol.180.7.4924] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestinal tract of adult mice is naturally resistant to infection by Shigella, the causative agent of bacillary dysentery in humans. Conversely, newborn mice are highly susceptible to intragastric Shigella infection and develop inflammatory lesions of the jejunal mucosa, very similar to those observed in the colon of dysenteric patients. However, the susceptibility period is short and one week after birth, animals have acquired a status of resistance characteristic of adult animals. To identify the developmental changes controlling the switch from disease susceptibility to resistance, we performed global gene expression analysis on noninfected and infected intestinal tissues taken from 4-day- and 7-day-old animals. Transcriptomic analysis of 4-day-old mice infected with the invasive Shigella strain showed a profile reflecting a strong inflammatory response with no evidence for retro-control, suggesting that the invasive process had occurred, whereas inflammation had been controlled after infection with the noninvasive strain. Differences in gene expression profiles between noninfected 4-day- and 7-day-old mice corresponded mainly to genes encoding anti-microbial peptides and proteases, suggesting that these molecules could be candidates for host antimicrobial resistance in the course of shigellosis. Indeed, expression of genes specific of Paneth cells was higher in 7-day- than in 4-day-old mice, and histological analysis indicated that Paneth cells were present only at day 7. Finally, using Sox9(flox/flox)-vil-cre mice, we showed that depletion of Paneth cells restored the susceptibility to Shigella of 7-day-old mice, clearly indicating that Paneth cells development is crucial for the clearance of intestinal infection.
Collapse
Affiliation(s)
- Maria-Isabel Fernandez
- Unité de Pathogénie Microbienne Moléculaire, Département de Biologie Cellulaire et Infection, Unité Institut National de la Santé et de la Recherche Médicale U786, Paris, France
| | | | | | | | | | | | | |
Collapse
|