1
|
Siddiki AZ, Alam S, Fuad Bin Hossen F, Alim MA. Development of a multi-epitope chimeric vaccine in silico against Babesia bovis, Theileria annulata, and Anaplasma marginale using computational biology tools and reverse vaccinology approach. PLoS One 2025; 20:e0312262. [PMID: 39854345 PMCID: PMC11759392 DOI: 10.1371/journal.pone.0312262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/04/2024] [Indexed: 01/26/2025] Open
Abstract
The three rickettsial parasites- Babesia bovis, Theileria annulata and Anaplasma Marginale are responsible for causing Babesiosis, Theileriosis and Anaplasmosis among cattle. These diseases exist due to spreading of infected ticks. A large number of cattle were found to suffer from mixed infections caused by the three parasites at the same time. Due to these reasons cattle have been devoid of milk production with reduced meat availability. Hence, it is a matter of urgency for the immunity of cattle to exhibit resilience against all three rickettsial parasites. It could be possible if trials are carried out after producing a subunit chimeric vaccine against the rickettsial protozoan parasites and introducing it into the bloodstream of the cattle species. In this paper, we have used the process of reverse vaccinology to conduct a study in which we have developed a multi-epitope subunit chimeric vaccine against three protozoan parasites. We constructed three chimeric vaccine sequences from which only one chimeric vaccine construct was found to be an effective and efficient vaccine which is stable with high solubility and negative allergenicity. Following that, we performed molecular docking of the refined chimeric vaccine construct with Rp-105 and TLR-9. It was observed that the chimeric vaccines interacted with the receptors with high binding energy. Immune simulation was also performed to determine the potentiality of the chimeric vaccine for eliciting an immune response. The best-designed chimeric vaccine construct was then reverse transcribed and adapted for the host E. coli K12 strain which was later inserted into the pET28a (+) vector for the cloning and expression of the vaccine. The study could be a good initiative for the development of an effective chimeric vaccine against bovine parasites.
Collapse
Affiliation(s)
- Amam Zonaed Siddiki
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University (CVASU), Chittagong, Bangladesh
| | - Sabreena Alam
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Chittagong, Bangladesh
| | - Farhan Fuad Bin Hossen
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Chittagong, Bangladesh
| | - Md. Abdul Alim
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University (CVASU), Chittagong, Bangladesh
| |
Collapse
|
2
|
Siddiki AZ, Alam S, Tithi FA, Hoque SF, Sajib EH, Bin Hossen FF, Hossain MA. Construction of a multi-epitope in silico vaccine against Anaplasma Marginale using immunoinformatics approach. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023; 50:102706. [DOI: 10.1016/j.bcab.2023.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
3
|
Ulucesme MC, Ozubek S, Aktas M. Molecular Prevalence and Genetic Diversity Based on Msp1a Gene of Anaplasma ovis in Goats from Türkiye. Life (Basel) 2023; 13:life13051101. [PMID: 37240746 DOI: 10.3390/life13051101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Anaplasma ovis is a tick-borne obligated intraerythrocytic bacterium that infects domestic sheep, goats, and wild ruminants. Recently, several studies have been carried out using 16S rRNA and msp4 genes to identify the genetic diversity of A. ovis. Instead of these genes, which are known to be highly stable among heterologous strains, Msp1a, which is accepted as a stable molecular marker to classify A. marginale strains, was used in A. ovis genetic diversity studies. The genetic diversity of A. ovis strains according to the Msp1a gene has not been extensively reported. Therefore, the purpose of this study was to examine the genetic diversity of A. ovis in goats specifically using analysis of the Msp1a gene. Blood samples were taken from the vena jugularis to the EDTA tubes from 293 randomly selected goats (apparently healthy) in the Antalya and Mersin provinces of Mediterranean region of Türkiye. The Msp1a gene of A. ovis was amplified in all DNA samples through the use of PCR, using a specific set of primers named AoMsp1aF and AoMsp1aR. Among the amplified products, well-defined bands with different band sizes were subjected to sequence analysis. The obtained sequence data were converted into amino acid sequences using an online bioinformatics program and the tandem regions were examined. The Msp1a gene of A. ovis was amplified in 46.1% (135 out of 293) of the goats. Through tandem analysis, five distinct tandems (Ao8, Ao18, Tr15-16-17) were identified, and it was found that three of these tandems (Tr15-16-17) were previously unknown and were therefore defined as new tandems. The study also involved examination of ticks from goats. It was observed that the goats in the area were infested with several tick species, including Rhipicephalus bursa (888/1091, 81.4%), R. turanicus (96/1091, 8.8%), Dermacentor raskemensis (92/1091, 8.4%), Hyalomma marginatum (9/1091, 0.8%), and R. sanguineus s.l. (6/1091, 0.5%). This study provides important data for understanding the genetic diversity and evolution of A. ovis based on tandem repeats in the Msp1a protein.
Collapse
Affiliation(s)
- Mehmet Can Ulucesme
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Türkiye
| | - Sezayi Ozubek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Türkiye
| | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig 23119, Türkiye
| |
Collapse
|
4
|
Assembly and Comparison of Ca. Neoehrlichia mikurensis Genomes. Microorganisms 2022; 10:microorganisms10061134. [PMID: 35744652 PMCID: PMC9227406 DOI: 10.3390/microorganisms10061134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ca. Neoehrlichia mikurensis is widely prevalent in I. ricinus across Europe and has been associated with human disease. However, diagnostic modalities are limited, and much is still unknown about its biology. Here, we present the first complete Ca. Neoehrlichia mikurensis genomes directly derived from wildlife reservoir host tissues, using both long- and short-read sequencing technologies. This pragmatic approach provides an alternative to obtaining sufficient material from clinical cases, a difficult task for emerging infectious diseases, and to expensive and challenging bacterial isolation and culture methods. Both genomes exhibit a larger chromosome than the currently available Ca. Neoehrlichia mikurensis genomes and expand the ability to find new targets for the development of supportive laboratory diagnostics in the future. Moreover, this method could be utilized for other tick-borne pathogens that are difficult to culture.
Collapse
|
5
|
Both co-infection and superinfection drive complex Anaplasma marginale strain structure in a natural transmission setting. Infect Immun 2021; 89:e0016621. [PMID: 34338549 DOI: 10.1128/iai.00166-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vector-borne pathogens commonly establish multi-strain infections, also called complex infections. How complex infections are established, either prior to or after the development of an adaptive immune response, termed co-infection or superinfection, respectively, has broad implications for the maintenance of genetic diversity, pathogen phenotype, epidemiology, and disease control strategies. Anaplasma marginale, a genetically diverse, obligate, intracellular tick-borne bacterial pathogen of cattle commonly establishes complex infections, particularly in regions with high transmission rates. Both co-infection and superinfection can be established experimentally, however it is unknown how complex infections develop in a natural transmission setting. To address this question, we introduced naïve animals into a herd in southern Ghana with high infection prevalence and high transmission pressure and tracked strain acquisition of A. marginale through time using multi-locus sequence typing. As expected, genetic diversity among strains was high and 97% of animals in the herd harboured multiple strains. All the introduced, naïve animals became infected, and three to four strains were typically detected in an individual animal prior to seroconversion, while one to two new strains were detected in an individual animal following seroconversion. On average, the number of strains acquired via superinfection was 16% less than those acquired via co-infection. Thus, while complex infections develop via both co-infection and superinfection, co-infection predominates in this setting. These findings have broad implications for the development of control strategies in high transmission settings.
Collapse
|
6
|
Dall'Agnol B, Webster A, Souza UA, Barbieri A, Mayer FQ, Cardoso GA, Torres TT, Machado RZ, Ferreira CAS, Reck J. Genomic analysis on Brazilian strains of Anaplasma marginale. ACTA ACUST UNITED AC 2021; 30:e000421. [PMID: 34076044 DOI: 10.1590/s1984-29612021043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
Abstract
Anaplasma marginale is a vector-borne pathogen that causes a disease known as anaplasmosis. No sequenced genomes of Brazilian strains are yet available. The aim of this work was to compare whole genomes of Brazilian strains of A. marginale (Palmeira and Jaboticabal) with genomes of strains from other regions (USA and Australia strains). Genome sequencing of Brazilian strains was performed by means of next-generation sequencing. Reads were mapped using the genome of the Florida strain of A. marginale as a reference sequence. Single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs) were identified. The data showed that two Brazilian strains grouped together in one particular clade, which grouped in a larger American group together with North American strains. Moreover, some important differences in surface proteins between the two Brazilian isolates can be discerned. These results shed light on the evolutionary history of A. marginale and provide the first genome information on South American isolates. Assessing the genome sequences of strains from different regions is essential for increasing knowledge of the pan-genome of this bacteria.
Collapse
Affiliation(s)
- Bruno Dall'Agnol
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor - IPVDF, Eldorado do Sul, RS, Brasil
| | - Anelise Webster
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor - IPVDF, Eldorado do Sul, RS, Brasil
| | - Ugo Araújo Souza
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor - IPVDF, Eldorado do Sul, RS, Brasil
| | - Antonela Barbieri
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor - IPVDF, Eldorado do Sul, RS, Brasil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor - IPVDF, Eldorado do Sul, RS, Brasil
| | | | | | - Rosangela Zacarias Machado
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | | | - José Reck
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor - IPVDF, Eldorado do Sul, RS, Brasil
| |
Collapse
|
7
|
Hove P, Brayton KA, Liebenberg J, Pretorius A, Oosthuizen MC, Noh SM, Collins NE. Anaplasma marginale outer membrane protein vaccine candidates are conserved in North American and South African strains. Ticks Tick Borne Dis 2020; 11:101444. [PMID: 32336660 DOI: 10.1016/j.ttbdis.2020.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/16/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
Bovine anaplasmosis is a globally economically important tick-borne disease caused by the obligate intraerythrocytic rickettsia, Anaplasma marginale. A live Anaplasma centrale blood-based vaccine is available, but it does not protect against all A. marginale field strains and may also transmit other blood-borne pathogens. Five potential outer membrane protein (OMP) vaccine candidates have been well-characterised in A. marginale strains from the USA, however, their levels of conservation in other countries must be ascertained in order to inform their use in a vaccine with regional or global efficacy. This study assessed the amino acid variation in vaccine candidate OMPs in South African strains of A. marginale, and also compared the immunogenic properties between South African and US strains. OMP genes Am779, Am854, omp7, omp8 and omp9 were amplified and sequenced from a set of genetically diverse South African samples with different msp1α-genotypes. OMPs Am854 and Am779 were highly conserved, with 99-100 % amino acid identity, while Omp7, Omp8 and Omp9 had 79-100 % identity with US strains. As has been shown previously, Omp7-9 possess conserved N- and C- termini, a central variable region, and a highly conserved CD4 T-cell epitope, FLLVDDA(I/V)V, in the N-terminal region. Western blot analysis of recombinant OMPs indicates strong antigenic conservation between South African and US strains of A. marginale, suggesting that they are good candidates for use in a novel global vaccine cocktail, although further work on the best formulation and delivery methods will be necessary.
Collapse
Affiliation(s)
- Paidashe Hove
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa; Agricultural Research Council-Biotechnology Platform, Private Bag X5, Onderstepoort, 0110, Pretoria, South Africa
| | - Kelly A Brayton
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa; Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | - Junita Liebenberg
- Agricultural Research Council-Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort, 0110, Pretoria, South Africa
| | - Alri Pretorius
- Agricultural Research Council-Onderstepoort Veterinary Research, Private Bag X5, Onderstepoort, 0110, Pretoria, South Africa
| | - Marinda C Oosthuizen
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa
| | - Susan M Noh
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA; Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Nicola E Collins
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, Pretoria, South Africa.
| |
Collapse
|
8
|
Futse JE, Buami G, Kayang BB, Koku R, Palmer GH, Graça T, Noh SM. Sequence and immunologic conservation of Anaplasma marginale OmpA within strains from Ghana as compared to the predominant OmpA variant. PLoS One 2019; 14:e0217661. [PMID: 31291256 PMCID: PMC6619652 DOI: 10.1371/journal.pone.0217661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022] Open
Abstract
A primary challenge in developing effective vaccines against obligate, intracellular, bacterial tick-borne pathogens that establish persistent infection is the identification of antigens that cross protect against multiple strains. In the case of Anaplasma marginale, the most prevalent tick-borne pathogen of cattle found worldwide, OmpA is an adhesin and thus a promising vaccine candidate. We sequenced ompA from cattle throughout Ghana naturally infected with A. marginale in order to determine the degree of variation in this gene in an area of suspected high genetic diversity. We compared the Ghanaian sequences with those available from N. America, Mexico, Australia and Puerto Rico. When considering only amino acid changes, three unique Ghanaian OmpA variants were identified. In comparison, strains from all other geographic regions, except one, shared a single OmpA variant, Variant 1, which differed from the Ghanaian variants. Next, using recombinant OmpA based on Variant 1, we determined that amino acid differences in OmpA in Ghanaian cattle as compared to OmpA Variant 1 did not alter the binding capacity of antibody directed against OmpA Variant 1, supporting the value of OmpA as a highly conserved vaccine candidate.
Collapse
Affiliation(s)
- James E. Futse
- Animal Disease Biotechnology Laboratory, Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Grace Buami
- Animal Disease Biotechnology Laboratory, Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Boniface B. Kayang
- Animal Disease Biotechnology Laboratory, Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Roberta Koku
- Animal Disease Biotechnology Laboratory, Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States of America
| | - Guy H. Palmer
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Telmo Graça
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Susan M. Noh
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States of America
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States of America
| |
Collapse
|
9
|
Dynamics of repeat-associated plasticity in the aaap gene family in Anaplasma marginale. Gene X 2019; 721S:100010. [PMID: 32099970 PMCID: PMC7041399 DOI: 10.1016/j.gene.2019.100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 11/23/2022] Open
Abstract
Anaplasmosis, the most prevalent tick-transmitted disease of cattle, is caused by the rickettsial intracellular parasite Anaplasma marginale. The pathogen replicates within a parasitophorous vacuole formed from the invagination of the erythrocyte membrane. Several strains of A. marginale form "tails" or "appendages" which are attached to, and extend out from, the cytoplasmic side of the parasitophorous vacuole. Genomic analysis of the parasite antigen distributed along the appendage led to the discovery of the aaap (Anaplasma appendage associated protein) gene family located within a highly plastic region in the genome. The aaap gene family consists of aaap and several alps (for aaap-like proteins), depending on the strain. These genes/proteins are characterized by repeat sequences. To investigate locus plasticity, different versions of the locus were cloned from the same strain as well as from different strains, sequenced and aligned to identify changes. Our findings show that repeat sequences both within and between genes facilitated rearrangement events within the locus. Structural variation of the locus in the St. Maries strain was further investigated during infection of different cellular environments, i.e., bovine erythrocytes and tick cells, with a reduction in subpopulations of the aaap locus within the tick as compared to erythrocytes. Interestingly, subpopulations bearing alternative locus structures began to arise again when the pathogen was transferred from the tick environment into a naïve calf. Additionally, the Aaap protein expression profile between blood and tick samples showed a regulatory shift, indicating a host-specific response. Alignment of the protein sequences from different species of Anaplasma reveals six similar repeating motifs that appear to be unique to a few species of Anaplasma. The role the aaap locus may play in the pathogenesis of the bovine host or in tick infection/transmission remains unknown; however, the changes in aaap locus subpopulations, locus structure, and protein expression indicate that these genes have a role in strain diversification.
Collapse
|
10
|
Cangussu ASR, Mariúba LAM, Lalwani P, Pereira KDES, Astolphi-Filho S, Orlandi PP, Epiphanio S, Viana KF, Ribeiro MFB, Silva HM, Marinho CRF, Nogueira PA. A hybrid protein containing MSP1a repeats and Omp7, Omp8 and Omp9 epitopes protect immunized BALB/c mice against anaplasmosis. Vet Res 2018; 49:6. [PMID: 29351812 PMCID: PMC5775529 DOI: 10.1186/s13567-018-0503-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/20/2017] [Indexed: 12/23/2022] Open
Abstract
Anaplasma marginale (A. marginale) has a remarkable impact on livestock production, and an effective vaccine is not currently available due to the inexistence of a small animal model. Recently, BALB/c mice were successfully infected with A. marginale, resulting in an acute and persistent anaplasmosis infection. Here, we designed a hybrid protein containing repeats of polypeptide 1a from major surface protein-1 complex (MSP1a) repeats and common epitopes of outer membrane proteins (OMPs) OMP7, OMP8 and OMP9 expressed in Escherichia coli. Our proof-of-concept assessed vaccinal effectiveness against a challenge with live bacteria. The MSP1a/OMP7/8/9 immunized BALB/C mice exhibited a strong reduction in rickettsemia and had no signs of anaplasmosis or hepatic lesions. In contrast, the non-immunized mice exhibited signs of anaplasmosis and a body weight loss associated with increases in monocyte and neutrophil counts. Furthermore, the non-immunized mice displayed atrophies with chronic inflammatory infiltrates in the spleen and increased binucleation and hydropic degeneration in the hepatocytes. Our findings demonstrated that immunization with our hybrid protein induced a strong reduction in rickettsemia and conferred protection against anaplasmosis. Therefore, given the strong evidence of the protective effect against anaplasmosis, hybrid protein designs are potential candidates for the rational design of vaccinal subunits.
Collapse
Affiliation(s)
- Alex Sander R Cangussu
- Universidade Federal do Amazonas-Programa de pós-graduação em Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Manaus, AM/Brasil, Brazil. .,Universidade Federal do Tocantins-Engenharia de Bioprocessos e Biotecnologia, Gurupi, TO/Brazil, Brazil.
| | - Luis André M Mariúba
- Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas/Brazil, Brazil
| | - Pritesh Lalwani
- Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas/Brazil, Brazil
| | | | - Spartaco Astolphi-Filho
- Universidade Federal do Amazonas-Programa de pós-graduação em Rede de Biodiversidade e Biotecnologia da Amazônia Legal, Manaus, AM/Brasil, Brazil
| | - Patricia P Orlandi
- Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas/Brazil, Brazil
| | - Sabrina Epiphanio
- Departamento de Análises Clínicas e Toxicológicas da Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, São Paulo/Brazil, Brazil
| | - Kelvison F Viana
- Universidade Federal do Tocantins-Engenharia de Bioprocessos e Biotecnologia, Gurupi, TO/Brazil, Brazil
| | - Mucio Flavio B Ribeiro
- Departamento de Parasitologia do Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais/Brazil, Brazil
| | - Hidelberto M Silva
- Faculdade de Medicina, Centro Universitário Unirg, Gurupi, Tocantins/Brazil, Brazil
| | - Claudio R F Marinho
- Departamento de Parasitologia do Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo A Nogueira
- Instituto Leônidas e Maria Deane-Fiocruz Amazônia, Manaus, Amazonas/Brazil, Brazil
| |
Collapse
|
11
|
Identification of a T-Cell Epitope That Is Globally Conserved among Outer Membrane Proteins (OMPs) OMP7, OMP8, and OMP9 of Anaplasma marginale Strains and with OMP7 from the A. marginale subsp. centrale Vaccine Strain. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00406-16. [PMID: 27795302 DOI: 10.1128/cvi.00406-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/13/2016] [Indexed: 12/15/2022]
Abstract
Within the protective outer membrane (OM) fraction of Anaplasma marginale, several vaccine candidates have emerged, including a family of OM proteins (OMPs) 7 to 9, which share sequence identity with each other and with the single protein OMP7 in the vaccine strain A. marginale subsp. centrale. A. marginale OMPs 7 to 9 are logical vaccine candidates because they are surface exposed, present in the OM immunogen and protective cross-linked OM proteins, recognized by immune serum IgG2 and T cells in cattle immunized with OM, and recognized by immune serum IgG2 from cattle immunized with the A. centrale vaccine strain. We report the identification of a globally conserved 9-amino-acid T-cell epitope FLLVDDAI/VV shared between A. centrale vaccine strain OMP7 and the related A. marginale OMPs 7 to 9, where position 8 of the peptide can be isoleucine or valine. The epitope is conserved in American A. marginale strains, in the Australia Gypsy Plains strain, and in multiple field isolates from Ghana. This epitope, together with additional T-cell epitopes that are present within these proteins, should be considered for inclusion in a multivalent vaccine for A. marginale that can provide protection against disease caused by globally distributed bacterial strains.
Collapse
|
12
|
Abstract
Antigenic variation is a strategy used by a broad diversity of microbial pathogens to persist within the mammalian host. Whereas viruses make use of a minimal proofreading capacity combined with large amounts of progeny to use random mutation for variant generation, antigenically variant bacteria have evolved mechanisms which use a stable genome, which aids in protecting the fitness of the progeny. Here, three well-characterized and highly antigenically variant bacterial pathogens are discussed: Anaplasma, Borrelia, and Neisseria. These three pathogens display a variety of mechanisms used to create the structural and antigenic variation needed for immune escape and long-term persistence. Intrahost antigenic variation is the focus; however, the role of these immune escape mechanisms at the population level is also presented.
Collapse
|
13
|
Ducken DR, Brown WC, Alperin DC, Brayton KA, Reif KE, Turse JE, Palmer GH, Noh SM. Subdominant Outer Membrane Antigens in Anaplasma marginale: Conservation, Antigenicity, and Protective Capacity Using Recombinant Protein. PLoS One 2015; 10:e0129309. [PMID: 26079491 PMCID: PMC4469585 DOI: 10.1371/journal.pone.0129309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 05/08/2015] [Indexed: 12/21/2022] Open
Abstract
Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a defined surface protein complex reproducibly induce protective immunity. However, there are several knowledge gaps limiting progress in vaccine development. First, are these OMPs conserved among the diversity of A. marginale strains circulating in endemic regions? Second, are the most highly conserved outer membrane proteins in the immunogens recognized by immunized and protected animals? Lastly, can this subset of OMPs recognized by antibody from protected vaccinates and conserved among strains recapitulate the protection of outer membrane vaccines? To address the first goal, genes encoding OMPs AM202, AM368, AM854, AM936, AM1041, and AM1096, major subdominant components of the outer membrane, were cloned and sequenced from geographically diverse strains and isolates. AM202, AM936, AM854, and AM1096 share 99.9 to 100% amino acid identity. AM1041 has 97.1 to 100% and AM368 has 98.3 to 99.9% amino acid identity. While all four of the most highly conserved OMPs were recognized by IgG from animals immunized with outer membranes, linked surface protein complexes, or unlinked surface protein complexes and shown to be protected from challenge, the highest titers and consistent recognition among vaccinates were to AM854 and AM936. Consequently, animals were immunized with recombinant AM854 and AM936 and challenged. Recombinant vaccinates and purified outer membrane vaccinates had similar IgG and IgG2 responses to both proteins. However, the recombinant vaccinates developed higher bacteremia after challenge as compared to adjuvant-only controls and outer membrane vaccinates. These results provide the first evidence that vaccination with specific antigens may exacerbate disease. Progressing from the protective capacity of outer membrane formulations to recombinant vaccines requires testing of additional antigens, optimization of the vaccine formulation and a better understanding of the protective immune response.
Collapse
Affiliation(s)
- Deirdre R. Ducken
- Animal Disease Research Unit, Agricultural Research Service, U. S. Department of Agriculture, Pullman, Washington, United States of America
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Wendy C. Brown
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Debra C. Alperin
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Kelly A. Brayton
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Kathryn E. Reif
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Joshua E. Turse
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Guy H. Palmer
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Susan M. Noh
- Animal Disease Research Unit, Agricultural Research Service, U. S. Department of Agriculture, Pullman, Washington, United States of America
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
14
|
Association of Anaplasma marginale strain superinfection with infection prevalence within tropical regions. PLoS One 2015; 10:e0120748. [PMID: 25793966 PMCID: PMC4368111 DOI: 10.1371/journal.pone.0120748] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
Abstract
Strain superinfection occurs when a second strain infects a host already infected with and having mounted an immune response to a primary strain. The incidence of superinfection with Anaplasma marginale, a tick-borne rickettsial pathogen of domestic and wild ruminants, has been shown to be higher in tropical versus temperate regions. This has been attributed to the higher prevalence of infection, with consequent immunity against primary strains and thus greater selective pressure for superinfection with antigenically distinct strains. However an alternative explanation would be the differences in the transmitting vector, Dermacentor andersoni in the studied temperate regions and Rhipicephalus microplus in the studied tropical regions. To address this question, we examined two tropical populations sharing the same vector, R. microplus, but with significantly different infection prevalence. Using two separate markers, msp1α (one allele per genome) and msp2 (multiple alleles per genome), there were higher levels of multiple strain infections in the high infection prevalence as compared to the low prevalence population. The association of higher strain diversity with infection prevalence supports the hypothesis that high levels of infection prevalence and consequent population immunity is the predominant driver of strain superinfection.
Collapse
|
15
|
Tissue distribution of the Ehrlichia muris-like agent in a tick vector. PLoS One 2015; 10:e0122007. [PMID: 25781930 PMCID: PMC4363788 DOI: 10.1371/journal.pone.0122007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/09/2015] [Indexed: 11/19/2022] Open
Abstract
Human pathogens transmitted by ticks undergo complex life cycles alternating between the arthropod vector and a mammalian host. While the latter has been investigated to a greater extent, examination of the biological interactions between microbes and the ticks that carry them presents an equally important opportunity for disruption of the disease cycle. In this study, we used in situ hybridization to demonstrate infection by the Ehrlichia muris-like organism, a newly recognized human pathogen, of Ixodes scapularis ticks, a primary vector for several important human disease agents. This allowed us to assess whole sectioned ticks for the patterns of tissue invasion, and demonstrate generalized dissemination of ehrlichiae in a variety of cell types and organs within ticks infected naturally via blood feeding. Electron microscopy was used to confirm these results. Here we describe a strong ehrlichial affinity for epithelial cells, neuronal cells of the synganglion, salivary glands, and male accessory glands.
Collapse
|
16
|
Reduced Infectivity in cattle for an outer membrane protein mutant of Anaplasma marginale. Appl Environ Microbiol 2015; 81:2206-14. [PMID: 25595772 DOI: 10.1128/aem.03241-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma marginale is the causative agent of anaplasmosis in cattle. Transposon mutagenesis of this pathogen using the Himar1 system resulted in the isolation of an omp10 operon insertional mutant referred to as the omp10::himar1 mutant. The work presented here evaluated if this mutant had morphological and/or growth rate defects compared to wild-type A. marginale. Results showed that the morphology, developmental cycle, and growth in tick and mammalian cell cultures are similar for the mutant and the wild type. Tick transmission experiments established that tick infection levels with the mutant were similar to those with wild-type A. marginale and that infected ticks successfully infected cattle. However, this mutant exhibited reduced infectivity and growth in cattle. The possibility of transforming A. marginale by transposon mutagenesis coupled with in vitro and in vivo assessment of altered phenotypes can aid in the identification of genes associated with virulence. The isolation of deliberately attenuated organisms that can be evaluated in their natural biological system is an important advance for the rational design of vaccines against this species.
Collapse
|
17
|
Aistleitner K, Anrather D, Schott T, Klose J, Bright M, Ammerer G, Horn M. Conserved features and major differences in the outer membrane protein composition of chlamydiae. Environ Microbiol 2014; 17:1397-413. [DOI: 10.1111/1462-2920.12621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/06/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Karin Aistleitner
- Department of Microbiology and Ecosystem Science University of Vienna Vienna Austria
| | - Dorothea Anrather
- Department of Mass Spectrometry Facility Max F. Perutz Laboratories University of Vienna Vienna Austria
| | - Thomas Schott
- Department of Microbiology and Ecosystem Science University of Vienna Vienna Austria
| | - Julia Klose
- Department of Limnology and Oceanography University of Vienna Vienna Austria
| | - Monika Bright
- Department of Limnology and Oceanography University of Vienna Vienna Austria
| | - Gustav Ammerer
- Department of Biochemistry and Cell Biology Max F. Perutz Laboratories University of Vienna Vienna Austria
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science University of Vienna Vienna Austria
| |
Collapse
|
18
|
Anaplasma marginale superinfection attributable to pathogen strains with distinct genomic backgrounds. Infect Immun 2014; 82:5286-92. [PMID: 25287920 DOI: 10.1128/iai.02537-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Strain superinfection occurs when a second pathogen strain infects a host already infected with a primary strain. The selective pressures that drive strain divergence, which underlies superinfection, and allow penetration of a new strain into a host population are critical knowledge gaps relevant to shifts in infectious disease epidemiology. In regions of endemicity with a high prevalence of infection, broad population immunity develops against Anaplasma marginale, a highly antigenically variant rickettsial pathogen, and creates strong selective pressure for emergence of and superinfection with strains that differ in their Msp2 variant repertoires. The strains may emerge either by msp2 locus duplication and allelic divergence on an existing genomic background or by introduction of a strain with a different msp2 allelic repertoire on a distinct genomic background. To answer this question, we developed a multilocus typing assay based on high-throughput sequencing of non-msp2 target loci to distinguish among strains with different genomic backgrounds. The technical error level was statistically defined based on the percentage of perfect sequence matches of clones of each target locus and validated using experimental single strains and strain pairs. Testing of A. marginale-positive samples from tropical regions where A. marginale infection is endemic identified individual infections that contained unique alleles for all five targeted loci. The data revealed a highly significant difference in the number of strains per animal in the tropical regions compared to infections in temperate regions and strongly supported the hypothesis that transmission of genomically distinct A. marginale strains predominates in high-prevalence areas of endemicity.
Collapse
|
19
|
Hammac GK, Pierlé SA, Cheng X, Scoles GA, Brayton KA. Global transcriptional analysis reveals surface remodeling of Anaplasma marginale in the tick vector. Parasit Vectors 2014; 7:193. [PMID: 24751137 PMCID: PMC4022386 DOI: 10.1186/1756-3305-7-193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/08/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pathogens dependent upon vectors for transmission to new hosts undergo environment specific changes in gene transcription dependent on whether they are replicating in the vector or the mammalian host. Differential gene transcription, especially of potential vaccine candidates, is of interest in Anaplasma marginale, the tick-borne causative agent of bovine anaplasmosis. METHODS RNA-seq technology allowed a comprehensive analysis of the transcriptional status of A. marginale genes in two conditions: bovine host blood and tick derived cell culture, a model for the tick vector. Quantitative PCR was used to assess transcription of a set of genes in A. marginale infected tick midguts and salivary glands at two time points during the transmission cycle. RESULTS Genes belonging to fourteen pathways or component groups were found to be differentially transcribed in A. marginale in the bovine host versus the tick vector. One of the most significantly altered groups was composed of surface proteins. Of the 56 genes included in the surface protein group, eight were up regulated and 26 were down regulated. The down regulated surface protein encoding genes include several that are well studied due to their immunogenicity and function. Quantitative PCR of a set of genes demonstrated that transcription in tick cell culture most closely approximates transcription in salivary glands of recently infected ticks. CONCLUSIONS The ISE6 tick cell culture line is an acceptable model for early infection in tick salivary glands, and reveals disproportionate down regulation of surface protein genes in the tick. Transcriptional profiling in other cell lines may help us simulate additional microenvironments. Understanding vector-specific alteration of gene transcription, especially of surface protein encoding genes, may aid in the development of vaccines or transmission blocking therapies.
Collapse
Affiliation(s)
| | | | | | | | - Kelly A Brayton
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G, Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA.
| |
Collapse
|
20
|
Crosby FL, Wamsley HL, Pate MG, Lundgren AM, Noh SM, Munderloh UG, Barbet AF. Knockout of an outer membrane protein operon of Anaplasma marginale by transposon mutagenesis. BMC Genomics 2014; 15:278. [PMID: 24725301 PMCID: PMC4198910 DOI: 10.1186/1471-2164-15-278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/31/2014] [Indexed: 01/09/2023] Open
Abstract
Background The large amounts of data generated by genomics, transcriptomics and proteomics have increased our understanding of the biology of Anaplasma marginale. However, these data have also led to new assumptions that require testing, ideally through classical genetic mutation. One example is the definition of genes associated with virulence. Here we describe the molecular characterization of a red fluorescent and spectinomycin and streptomycin resistant A. marginale mutant generated by Himar1 transposon mutagenesis. Results High throughput genome sequencing to determine the Himar1-A. marginale genome junctions established that the transposon sequences were integrated within the coding region of the omp10 gene. This gene is arranged within an operon with AM1225 at the 5’ end and with omp9, omp8, omp7 and omp6 arranged in tandem at the 3’ end. RNA analysis to determine the effects of the transposon insertion on the expression of omp10 and downstream genes revealed that the Himar1 insertion not only reduced the expression of omp10 but also that of downstream genes. Transcript expression from omp9, and omp8 dropped by more than 90% in comparison with their counterparts in wild-type A. marginale. Immunoblot analysis showed a reduction in the production of Omp9 protein in these mutants compared to wild-type A. marginale. Conclusions These results demonstrate that transposon mutagenesis in A. marginale is possible and that this technology can be used for the creation of insertional gene knockouts that can be evaluated in natural host-vector systems.
Collapse
Affiliation(s)
- Francy L Crosby
- College of Veterinary Medicine, University of Florida, Department of Infectious Diseases and Pathology, 2015 SW 16th avenue, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Aguilar Pierlé S, Imaz Rosshandler I, Akim Kerudin A, Sambono J, Lew-Tabor A, Rolls P, Rangel-Escareño C, Brayton KA. Genetic Diversity of Tick-Borne Rickettsial Pathogens; Insights Gained from Distant Strains. Pathogens 2014; 3:57-72. [PMID: 25364572 PMCID: PMC4213813 DOI: 10.3390/pathogens3010057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ability to capture genetic variation with unprecedented resolution improves our understanding of bacterial populations and their ability to cause disease. The goal of the pathogenomics era is to define genetic diversity that results in disease. Despite the economic losses caused by vector-borne bacteria in the Order Rickettsiales, little is known about the genetic variants responsible for observed phenotypes. The tick-transmitted rickettsial pathogen Anaplasma marginale infects cattle in tropical and subtropical regions worldwide, including Australia. Genomic analysis of North American A. marginale strains reveals a closed core genome defined by high levels of Single Nucleotide Polymorphisms (SNPs). Here we report the first genome sequences and comparative analysis for Australian strains that differ in virulence and transmissibility. A list of genetic differences that segregate with phenotype was evaluated for the ability to distinguish the attenuated strain from virulent field strains. Phylogenetic analyses of the Australian strains revealed a marked evolutionary distance from all previously sequenced strains. SNP analysis showed a strikingly reduced genetic diversity between these strains, with the smallest number of SNPs detected between any two A. marginale strains. The low diversity between these phenotypically distinct bacteria presents a unique opportunity to identify the genetic determinants of virulence and transmission.
Collapse
Affiliation(s)
- Sebastián Aguilar Pierlé
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
- Authors to whom correspondence should be addressed; E-Mails: (S.A.P.); (K.A.B.); Tel.: +509-335-6340 (K.A.B. and S.A.P.); Fax: +509-335-8529 (K.A.B. & S.A.P.)
| | - Ivan Imaz Rosshandler
- National Institute of Genomic Medicine, Computational Genomics Lab, Mexico City 14610, Mexico; E-Mails: (I.I.R.); (C.R.-E.)
| | - Ammielle Akim Kerudin
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, St. Lucia, Queensland 4072, Australia; E-Mails: (A.A.K.); (A.L.-T.)
| | - Jacqueline Sambono
- Queensland Department of Agriculture, Fisheries & Forestry, Tick Fever Centre, Wacol, Queensland 4076, Australia; E-Mails: (J.S.); (P.R.)
| | - Ala Lew-Tabor
- The University of Queensland, Queensland Alliance for Agriculture & Food Innovation, St. Lucia, Queensland 4072, Australia; E-Mails: (A.A.K.); (A.L.-T.)
| | - Peter Rolls
- Queensland Department of Agriculture, Fisheries & Forestry, Tick Fever Centre, Wacol, Queensland 4076, Australia; E-Mails: (J.S.); (P.R.)
| | - Claudia Rangel-Escareño
- National Institute of Genomic Medicine, Computational Genomics Lab, Mexico City 14610, Mexico; E-Mails: (I.I.R.); (C.R.-E.)
| | - Kelly A. Brayton
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
- Authors to whom correspondence should be addressed; E-Mails: (S.A.P.); (K.A.B.); Tel.: +509-335-6340 (K.A.B. and S.A.P.); Fax: +509-335-8529 (K.A.B. & S.A.P.)
| |
Collapse
|
22
|
Identification of multilocus genetic heterogeneity in Anaplasma marginale subsp. centrale and its restriction following tick-borne transmission. Infect Immun 2013; 81:1852-8. [PMID: 23509140 DOI: 10.1128/iai.00199-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma marginale subsp. centrale was the first vaccine used to protect against a rickettsial disease and is still in widespread use a century later. As its use preceded development of either cryopreservation or cell culture, the vaccine strain was maintained for decades by sequential passage among donor animals, excluding the natural tick-borne transmission cycle that provides a selective pressure or population "bottleneck." We demonstrated that the vaccine strain is genetically heterogeneous at 46 chromosomal loci and that heterogeneity was maintained upon inoculation into recipient animals. The number of variants per site ranged from 2 to 11 with a mean of 2.8/locus and a mode and median of 2/locus; variants included single-nucleotide polymorphisms, insertions/deletions, polynucleotide tracts, and different numbers of perfect repeats. The genetic heterogeneity is highly unlikely to be a result of strain contamination based on analysis using a panel of eight gene markers with a high power for strain discrimination. In contrast, heterogeneity appears to be a result of genetic drift in the absence of the restriction of tick passage. Heterogeneity could be reduced following tick passage, and the reduced heterogeneity could be maintained in sequential intravenous and tick-borne passages. The reduction in vaccine strain heterogeneity following tick passage did not confer an enhanced transmission phenotype, indicating that a stochastically determined population bottleneck was likely responsible as opposed to a positive selective pressure. These findings demonstrate the plasticity of an otherwise highly constrained genome and highlight the role of natural transmission cycles in shaping and maintaining the bacterial genome.
Collapse
|
23
|
Linkage between Anaplasma marginale outer membrane proteins enhances immunogenicity but is not required for protection from challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:651-6. [PMID: 23446216 DOI: 10.1128/cvi.00600-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prevention of bacterial infections via immunization presents particular challenges. While outer membrane extracts are often protective, they are difficult and expensive to isolate and standardize and thus are often impractical for development and implementation in vaccination programs. In contrast, individual proteins, which are easily adapted for use in subunit vaccines, tend to be poorly protective. Consequently, identification of the specific characteristics of outer membrane-based immunogens, in terms of the antigen contents and contexts that are required for protective immunity, represents a major gap in the knowledge needed for bacterial vaccine development. Using as a model Anaplasma marginale, a persistent tick-borne bacterial pathogen of cattle, we tested two sets of immunogens to determine whether membrane context affected immunogenicity and the capacity to induce protection. The first immunogen was composed of a complex of outer membrane proteins linked by covalent bonds and known to be protective. The second immunogen was derived directly from the first one, but the proteins were individualized rather than linked. The antibody response induced by the linked immunogen was much greater than that induced by the unlinked immunogen. However, both immunogens induced protective immunity and an anamnestic response. These findings suggest that individual proteins or combinations of proteins can be successfully tested for the ability to induce protective immunity with less regard for overall membrane context. Once protective antigens are identified, immunogenicity could be enhanced by cross-linking to allow a reduced immunogen dose or fewer booster vaccinations.
Collapse
|
24
|
Passos LMF. In vitro cultivation of Anaplasma marginale and A. phagocytophilum in tick cell lines: a review. ACTA ACUST UNITED AC 2013; 21:81-6. [PMID: 22832744 DOI: 10.1590/s1984-29612012000200002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/16/2012] [Indexed: 11/22/2022]
Abstract
Continuous cell lines have been established from several ixodid and argasid tick species, representing an excellent tool suitable for the isolation of pathogens and their subsequent propagation, which in turn allows the production of antigenic material for diagnostic tests, antibody and vaccine production, and also for studies on host-vector-pathogen relationships. This paper reviews the use of tick cells for culture initiation and maintenance of two obligate intracellular bacterial pathogens, Anaplasma marginale and Anaplasma phagocytophilum. These in vitro cultivation systems have been used in a wide range of studies, covering morphological ultrastructural analysis, genetics, proteomics and biological differences between strains, including genome transcriptional and protein expression approaches, enabling comparisons between host and vector cells. Thus, such systems open a new window for a better understanding of interactions between pathogens and tick cells. Last but not least, such systems contribute to the reduction in usage of animals for experimental research, as antigenic material can be produced in reasonably large quantities without the use of in vivo species-specific systems.
Collapse
Affiliation(s)
- Lygia Maria Friche Passos
- Departamento de Medicina Veterinária Preventiva, Instituto Nacional em Ciência e Tecnologia--Informação Genético-Sanitária da Pecuária Brasileira, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
25
|
Subdominant antigens in bacterial vaccines: AM779 is subdominant in the Anaplasma marginale outer membrane vaccine but does not associate with protective immunity. PLoS One 2012; 7:e46372. [PMID: 23029498 PMCID: PMC3460813 DOI: 10.1371/journal.pone.0046372] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
Identification of specific antigens responsible for the ability of complex immunogens to induce protection is a major goal in development of bacterial vaccines. Much of the investigation has focused on highly abundant and highly immunodominant outer membrane proteins. Recently however, genomic and proteomic approaches have facilitated identification of minor components of the bacterial outer membrane that have previously been missed or ignored in immunological analyses. Immunization with Anaplasma marginale outer membranes or a cross-linked surface complex induces protection against bacteremia, however the components responsible for protection within these complex immunogens are unknown. Using outer membrane protein AM779 as a model, we demonstrated that this highly conserved but minor component of the A. marginale surface was immunologically sub-dominant in the context of the outer membrane or surface complex vaccines. Immunologic sub-dominance could be overcome by targeted vaccination with AM779 for T lymphocyte responses but not for antibody responses, suggesting that both abundance and intrinsic immunogenicity determine relative dominance. Importantly, immunization with AM779 supports that once priming is achieved by specific targeting, recall upon infectious challenge is achieved. While immunization with AM779 alone was not sufficient to induce protection, the ability of targeted immunization to prime the immune response to highly conserved but low abundance proteins supports continued investigation into the role of sub-dominant antigens, individually and collectively, in vaccine development for A. marginale and related bacterial pathogens.
Collapse
|
26
|
Palmer GH, Brown WC, Noh SM, Brayton KA. Genome-wide screening and identification of antigens for rickettsial vaccine development. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2012; 64:115-9. [PMID: 22066488 PMCID: PMC3288579 DOI: 10.1111/j.1574-695x.2011.00878.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The capacity to identify immunogens for vaccine development by genome-wide screening has been markedly enhanced by the availability of microbial genome sequences coupled to proteomic and bioinformatic analysis. Critical to this approach is in vivo testing in the context of a natural host–pathogen relationship, one that includes genetic diversity in the host as well as among pathogen strains. We aggregate the results of three independent genome-wide screens using in vivo immunization and protection against Anaplasma marginale as a model for discovery of vaccine antigens for rickettsial pathogens. In silico analysis identified 62 outer membrane proteins (Omp) from the 949 predicted proteins in the A. marginale genome. These 62 Omps were reduced to 10 vaccine candidates by two independent genome-wide screens using IgG2 from vaccinates protected from challenge following vaccination with outer membranes (screen 1) or bacterial surface complexes (screen 2). Omps with broadly conserved epitopes were identified by immunization with a live heterologous vaccine, A. marginale ssp. centrale (screen 3), reducing the candidates to three. The genome-wide screens identified Omps that have orthologs broadly conserved among rickettsial pathogens, highlighted the importance of identifying immunologically subdominant antigens, and supported the use of reverse vaccinology approaches in vaccine development for rickettsial diseases.
Collapse
Affiliation(s)
- Guy H Palmer
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology and The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | |
Collapse
|
27
|
G Junior DS, Araújo FR, Almeida Junior NF, Adi SS, Cheung LM, Fragoso SP, Ramos CAN, Oliveira RHMD, Santos CS, Bacanelli G, Soares CO, Rosinha GMS, Fonseca AH. Analysis of membrane protein genes in a Brazilian isolate of Anaplasma marginale. Mem Inst Oswaldo Cruz 2011; 105:843-9. [PMID: 21120351 DOI: 10.1590/s0074-02762010000700001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 05/18/2010] [Indexed: 11/21/2022] Open
Abstract
The sequencing of the complete genome of Anaplasma marginale has enabled the identification of several genes that encode membrane proteins, thereby increasing the chances of identifying candidate immunogens. Little is known regarding the genetic variability of genes that encode membrane proteins in A. marginale isolates. The aim of the present study was to determine the degree of conservation of the predicted amino acid sequences of OMP1, OMP4, OMP5, OMP7, OMP8, OMP10, OMP14, OMP15, SODb, OPAG1, OPAG3, VirB3, VirB9-1, PepA, EF-Tu and AM854 proteins in a Brazilian isolate of A. marginale compared to other isolates. Hence, primers were used to amplify these genes: omp1, omp4, omp5, omp7, omp8, omp10, omp14, omp15, sodb, opag1, opag3, virb3, VirB9-1, pepA, ef-tu and am854. After polimerase chain reaction amplification, the products were cloned and sequenced using the Sanger method and the predicted amino acid sequence were multi-aligned using the CLUSTALW and MEGA 4 programs, comparing the predicted sequences between the Brazilian, Saint Maries, Florida and A. marginale centrale isolates. With the exception of outer membrane protein (OMP) 7, all proteins exhibited 92-100% homology to the other A. marginale isolates. However, only OMP1, OMP5, EF-Tu, VirB3, SODb and VirB9-1 were selected as potential immunogens capable of promoting cross-protection between isolates due to the high degree of homology (over 72%) also found with A. (centrale) marginale.
Collapse
Affiliation(s)
- Daniel S G Junior
- Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dark MJ, Al-Khedery B, Barbet AF. Multistrain genome analysis identifies candidate vaccine antigens of Anaplasma marginale. Vaccine 2011; 29:4923-32. [PMID: 21596083 PMCID: PMC3133685 DOI: 10.1016/j.vaccine.2011.04.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/28/2011] [Accepted: 04/30/2011] [Indexed: 01/12/2023]
Abstract
Anaplasmosis in domestic livestock is an impediment to animal health and production worldwide, especially in developing countries in Africa, Asia, and South America. Vaccines have been developed and marketed against the causative organism, Anaplasma marginale; however, these have not been widely used because of breakthrough infections caused by heterologous strains and because of the risk of disease induced by live vaccine strains themselves. Recently, molecular studies have enabled progress to be made in understanding the causes for breakthrough infections and in defining new vaccine targets. A. marginale has a system for antigenic variation of the MSP2 and MSP3 outer membrane proteins which are members of the pfam01617 gene superfamily. In this study, we used high throughput genome sequencing to define conservation of different superfamily members in ten U.S. strains of A. marginale and also in the related live vaccine strain A. marginale subspecies centrale. The comparisons included the pseudogenes that contribute to antigenic variation and other superfamily-encoded outer membrane proteins. Additionally, we examined conservation of other proteins proposed previously as vaccine candidates. These data showed significantly increased numbers of SNPs in A. marginale subspecies centrale when compared to all U.S. A. marginale strains. We defined a catalog of 19 conserved candidate vaccine antigens that may be suitable for development of a multi-component recombinant vaccine. The methods described are rapid and may be suitable for other prokaryotes where repeats comprise a substantial portion of their genomes.
Collapse
Affiliation(s)
- Michael J Dark
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
29
|
Expression of Anaplasma marginale ankyrin repeat-containing proteins during infection of the mammalian host and tick vector. Infect Immun 2011; 79:2847-55. [PMID: 21576345 DOI: 10.1128/iai.05097-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transmission of tick-borne pathogens requires transition between distinct host environments with infection and replication in host-specific cell types. Anaplasma marginale illustrates this transition: in the mammalian host, the bacterium infects and replicates in mature (nonnucleated) erythrocytes, while in the tick vector, replication occurs in nucleated epithelial cells. We hypothesized that proteins containing ankyrin motifs would be expressed by A. marginale only in tick cells and would traffic to the infected host cell nucleus. A. marginale encodes three proteins containing ankyrin motifs, an AnkA orthologue (the AM705 protein), AnkB (the AM926 protein), and AnkC (the AM638 protein). All three A. marginale Anks were confirmed to be expressed during intracellular infection: AnkA is expressed at significantly higher levels in erythrocytes, AnkB is expressed equally by both infected erythrocytes and tick cells, and AnkC is expressed exclusively in tick cells. There was no evidence of any of the Ank proteins trafficking to the nucleus. Thus, the hypothesis that ankyrin-containing motifs were predictive of cell type expression and nuclear localization was rejected. In contrast, AnkA orthologues in the closely related A. phagocytophilum and Ehrlichia chaffeensis have been shown to localize to the host cell nucleus. This difference, together with the lack of a nuclear localization signal in any of the AnkA orthologues, suggests that trafficking may be mediated by a separate transporter rather than by endogenous signals. Selection for divergence in Ank function among Anaplasma and Ehrlichia spp. is supported by both locus and allelic analyses of genes encoding orthologous proteins and their ankyrin motif compositions.
Collapse
|
30
|
Agnes JT, Brayton KA, LaFollett M, Norimine J, Brown WC, Palmer GH. Identification of Anaplasma marginale outer membrane protein antigens conserved between A. marginale sensu stricto strains and the live A. marginale subsp. centrale vaccine. Infect Immun 2011; 79:1311-8. [PMID: 21189322 PMCID: PMC3067503 DOI: 10.1128/iai.01174-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 11/30/2010] [Accepted: 12/17/2010] [Indexed: 01/27/2023] Open
Abstract
Live vaccination with Anaplasma marginale subsp. centrale (synonym for Anaplasma centrale) induces protection against severe disease upon challenge with A. marginale sensu stricto strains. Despite over a century of field use, the targets of protective immunity remained unknown. Using a broad proteomic approach, we identified the proteins in a challenge sensu stricto strain that were bound by the relevant antibody isotype induced by live vaccination with Anaplasma marginale subsp. centrale. A core of 15 proteins was identified in vaccinated animals across multiple major histocompatibility complex (MHC) haplotypes. This core separated into two structural/functional classes: "housekeeping" proteins involved in replication and metabolism and outer membrane proteins (OMPs). Orthologous proteins of both classes were identified within the vaccine strain and among sensu stricto strains. In contrast to the broad conservation among strains in the sequences of the housekeeping proteins, there was significantly greater divergence in the OMPs and greater divergence in both OMP sequences and the encoding locus structure between the vaccine strain and the sensu stricto strains than among the sensu stricto strains. The OMPs bound by live vaccine-induced antibody overlapped with OMPs that were immunogenic in animals vaccinated with inactivated vaccines and subsequently protected against bacteremia and disease. The identification of this core set of OMPs is consistent with the hypothesis that "subdominant" immunogens are required for vaccine-induced protection against A. marginale and provides clear direction for development of a safer, more effective vaccine.
Collapse
Affiliation(s)
- Joseph T. Agnes
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, and The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington 99164
| | - Kelly A. Brayton
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, and The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington 99164
| | - Megan LaFollett
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, and The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington 99164
| | - Junzo Norimine
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, and The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington 99164
| | - Wendy C. Brown
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, and The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington 99164
| | - Guy H. Palmer
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, and The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington 99164
| |
Collapse
|
31
|
Stability and tick transmission phenotype of gfp-transformed Anaplasma marginale through a complete in vivo infection cycle. Appl Environ Microbiol 2010; 77:330-4. [PMID: 21057014 DOI: 10.1128/aem.02096-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We tested the stability and tick transmission phenotype of transformed Anaplasma marginale through a complete in vivo infection cycle. Similar to the wild type, the gfp-transformed A. marginale strain established infection in cattle, a natural reservoir host, and persisted in immune competent animals. The tick infection rates for the transformed A. marginale and the wild type were the same. However, there were significantly lower levels of the transformed A. marginale than of the wild type in the tick. Despite the lower levels of replication, ticks transmitted the transformant. Transformants can serve as valuable tools to dissect the molecular requirements of tick colonization and pathogen transmission.
Collapse
|
32
|
Identification of Anaplasma marginale proteins specifically upregulated during colonization of the tick vector. Infect Immun 2010; 78:3047-52. [PMID: 20439479 DOI: 10.1128/iai.00300-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transition between infection of the mammalian host and colonization of an arthropod vector is required for the ongoing transmission of a broad array of pathogens, from viruses to protozoa. Understanding how this transition is mediated provides opportunities to disrupt transmission through either chemotherapy or immunization. We used an unbiased proteomic screen to identify Anaplasma marginale proteins specifically upregulated in the tick compared to the mammalian host. Comparative mass spectrometric analysis of proteins separated by two-dimensional gel electrophoresis of uninfected and infected ISE6 cells and infected mammalian cells identified 15 proteins exclusively expressed or upregulated in tick cells. All 15 had originally been annotated as hypothetical proteins. We confirmed quantitative upregulation and expression in situ within the midgut epithelial and salivary gland acinar cells of vector ticks during successful transmission. The results support the hypothesis that A. marginale gene expression is regulated by the specific host environment and, in a broader context, that the core genome evolved in the arthropod vector with differential regulation, allowing adaptation to mammalian hosts. Furthermore, the confirmation of the in situ expression of candidates identified in ISE6 cell lines indicates that this approach may be widely applicable to bacteria in the genera Anaplasma and Ehrlichia, removing a major technical impediment to the identification of new targets for vaccine and chemotherapeutic blocking of transmission.
Collapse
|
33
|
Herndon DR, Palmer GH, Shkap V, Knowles DP, Brayton KA. Complete genome sequence of Anaplasma marginale subsp. centrale. J Bacteriol 2010; 192:379-80. [PMID: 19854912 PMCID: PMC2798241 DOI: 10.1128/jb.01330-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 10/16/2009] [Indexed: 11/20/2022] Open
Abstract
Anaplasma marginale subsp. centrale is a naturally attenuated subtype that has been used as a vaccine for a century. We sequenced the genome of this organism and compared it to those of virulent senso stricto A. marginale strains. The comparison markedly narrows the number of outer membrane protein candidates for development of a safer inactivated vaccine and provides insight into the diversity among strains of senso lato A. marginale.
Collapse
Affiliation(s)
- David R. Herndon
- Animal Diseases Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington 99164, Programs in Vector-Borne Diseases and Genomics, Department of Veterinary Microbiology and Pathology and School for Global Animal Health, Washington State University, Pullman, Washington 99164, Division of Parasitology, Kimron Veterinary Institute, Bet Dagan 50250, Israel
| | - Guy H. Palmer
- Animal Diseases Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington 99164, Programs in Vector-Borne Diseases and Genomics, Department of Veterinary Microbiology and Pathology and School for Global Animal Health, Washington State University, Pullman, Washington 99164, Division of Parasitology, Kimron Veterinary Institute, Bet Dagan 50250, Israel
| | - Varda Shkap
- Animal Diseases Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington 99164, Programs in Vector-Borne Diseases and Genomics, Department of Veterinary Microbiology and Pathology and School for Global Animal Health, Washington State University, Pullman, Washington 99164, Division of Parasitology, Kimron Veterinary Institute, Bet Dagan 50250, Israel
| | - Donald P. Knowles
- Animal Diseases Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington 99164, Programs in Vector-Borne Diseases and Genomics, Department of Veterinary Microbiology and Pathology and School for Global Animal Health, Washington State University, Pullman, Washington 99164, Division of Parasitology, Kimron Veterinary Institute, Bet Dagan 50250, Israel
| | - Kelly A. Brayton
- Animal Diseases Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, Washington 99164, Programs in Vector-Borne Diseases and Genomics, Department of Veterinary Microbiology and Pathology and School for Global Animal Health, Washington State University, Pullman, Washington 99164, Division of Parasitology, Kimron Veterinary Institute, Bet Dagan 50250, Israel
| |
Collapse
|
34
|
Molecular epidemiology of bovine anaplasmosis with a particular focus in Mexico. INFECTION GENETICS AND EVOLUTION 2009; 9:1092-101. [PMID: 19786123 DOI: 10.1016/j.meegid.2009.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 09/15/2009] [Accepted: 09/21/2009] [Indexed: 11/21/2022]
Abstract
Bovine anaplasmosis, caused by the rickettsia Anaplasma marginale, has a worldwide distribution and is the cause of great economic losses in developing countries where it is highly endemic. Transmission is carried mainly by ixodid ticks: Dermacentor spp. and Rhipicephalus (Boophilus) spp. Mechanical transmission is important in disseminating the disease within and across herds. The relationship between the rickettsia, the host and the vector is complex. Several surface proteins (Msps) have been described with functions that span from adhesins towards the erythrocyte and tick cells to evasion of the immune system of the host through the generation of antigenic variants. Biologic transmission of A. marginale through Dermacentor ticks has been well studied but many questions are unresolved as to how this organism spreads within and across herds and little is known about the role Rhipicephalus (Boophilus) ticks play in transmission in the Americas. Mechanical transmission in the absence of ticks and lack of transmission through ticks are questions that need to be addressed. Phylogenetic studies of the rickettsia show wide antigenic and genetic mosaics which affects the design of new vaccines. In the present work we will discuss the molecular elements in the relationship between the rickettsia, the tick and the mammalian host associated to the distribution and persistence of the pathogen in nature.
Collapse
|
35
|
de la Fuente J, Kocan KM, Blouin EF, Zivkovic Z, Naranjo V, Almazán C, Esteves E, Jongejan F, Daffre S, Mangold AJ. Functional genomics and evolution of tick-Anaplasma interactions and vaccine development. Vet Parasitol 2009; 167:175-86. [PMID: 19819630 DOI: 10.1016/j.vetpar.2009.09.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The genus Anaplasma (Rickettsiales: Anaplasmataceae) includes several tick-transmitted pathogens that impact veterinary and human health. Tick-borne pathogens cycle between tick vectors and vertebrate hosts and their interaction is mediated by molecular mechanisms at the tick-pathogen interface. These mechanisms have evolved characteristics that involve traits from both the tick vector and the pathogen to insure their mutual survival. Herein, we review the information obtained from functional genomics and genetic studies to characterize the tick-Anaplasma interface and evolution of A. marginale and A. phagocytophilum. Anaplasma and tick genes and proteins involved in tick-pathogen interactions were characterized. The results of these studies demonstrated that common and Anaplasma species-specific molecular mechanism occur by which pathogen and tick cell gene expression mediates or limits Anaplasma developmental cycle and trafficking through ticks. These results have advanced our understanding of the biology of tick-Anaplasma interactions and have opened new avenues for the development of improved methods for the control of tick infestations and the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- José de la Fuente
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Serbus LR, Casper-Lindley C, Landmann F, Sullivan W. The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet 2009; 42:683-707. [PMID: 18713031 DOI: 10.1146/annurev.genet.41.110306.130354] [Citation(s) in RCA: 294] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Wolbachia are gram-negative bacteria that are widespread in nature, carried by the majority of insect species as well as some mites, crustaceans, and filarial nematodes. Wolbachia can range from parasitic to symbiotic, depending upon the interaction with the host species. The success of Wolbachia is attributed to efficient maternal transmission and manipulations of host reproduction that favor infected females, such as sperm-egg cytoplasmic incompatibility (CI). Much remains unknown about the mechanistic basis for Wolbachia-host interactions. Here we summarize the current understanding of Wolbachia interaction with insect hosts, with a focus on Drosophila. The areas of discussion include Wolbachia transmission in oogenesis, Wolbachia distribution in spermatogenesis, induction and rescue of the CI phenotype, Wolbachia genomics, and Wolbachia-membrane interactions.
Collapse
Affiliation(s)
- Laura R Serbus
- Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | | | |
Collapse
|
37
|
Dark MJ, Herndon DR, Kappmeyer LS, Gonzales MP, Nordeen E, Palmer GH, Knowles DP, Brayton KA. Conservation in the face of diversity: multistrain analysis of an intracellular bacterium. BMC Genomics 2009; 10:16. [PMID: 19134224 PMCID: PMC2649000 DOI: 10.1186/1471-2164-10-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 01/11/2009] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND With the recent completion of numerous sequenced bacterial genomes, notable advances have been made in understanding the level of conservation between various species. However, relatively little is known about the genomic diversity among strains. We determined the complete genome sequence of the Florida strain of Anaplasma marginale, and near complete (>96%) sequences for an additional three strains, for comparative analysis with the previously fully sequenced St. Maries strain genome. RESULTS These comparisons revealed that A. marginale has a closed-core genome with few highly plastic regions, which include the msp2 and msp3 genes, as well as the aaap locus. Comparison of the Florida and St. Maries genome sequences found that SNPs comprise 0.8% of the longer Florida genome, with 33.5% of the total SNPs between all five strains present in at least two strains and 3.0% of SNPs present in all strains except Florida. Comparison of genomes from three strains of Mycobacterium tuberculosis, Bacillus anthracis, and Nessieria meningiditis, as well as four Chlamydophila pneumoniae strains found that 98.8%-100% of SNPs are unique to each strain, suggesting A. marginale, with 76.0%, has an intermediate level of strain-specific SNPs. Comparison of genomes from other organisms revealed variation in diversity that did not segregate with the environmental niche the bacterium occupies, ranging from 0.00% to 8.00% of the larger pairwise-compared genome. CONCLUSION Analysis of multiple A. marginale strains suggests intracellular bacteria have more variable SNP retention rates than previously reported, and may have closed-core genomes in response to the host organism environment and/or reductive evolution.
Collapse
Affiliation(s)
- Michael J Dark
- Program in Genomics, Department of Veterinary Microbiology and Pathology, School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
| | - David R Herndon
- Animal Disease Research Unit, U.S. Department of Agriculture/Agriculture Research Service, Pullman, WA 99164-7030, USA
| | - Lowell S Kappmeyer
- Animal Disease Research Unit, U.S. Department of Agriculture/Agriculture Research Service, Pullman, WA 99164-7030, USA
| | - Mikel P Gonzales
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Elizabeth Nordeen
- Program in Genomics, Department of Veterinary Microbiology and Pathology, School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
| | - Guy H Palmer
- Program in Genomics, Department of Veterinary Microbiology and Pathology, School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
| | - Donald P Knowles
- Program in Genomics, Department of Veterinary Microbiology and Pathology, School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
- Animal Disease Research Unit, U.S. Department of Agriculture/Agriculture Research Service, Pullman, WA 99164-7030, USA
| | - Kelly A Brayton
- Program in Genomics, Department of Veterinary Microbiology and Pathology, School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA
| |
Collapse
|
38
|
Composition of the surface proteome of Anaplasma marginale and its role in protective immunity induced by outer membrane immunization. Infect Immun 2008; 76:2219-26. [PMID: 18316389 DOI: 10.1128/iai.00008-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface proteins of tick-borne, intracellular bacterial pathogens mediate functions essential for invasion and colonization. Consequently, the surface proteome of these organisms is specifically relevant from two biological perspectives, induction of protective immunity in the mammalian host and understanding the transition from the mammalian host to the tick vector. In this study, the surface proteome of Anaplasma marginale, a tick-transmitted bacterial pathogen, was targeted by using surface-specific cross-linking to form intermolecular bonds between adjacent proteins. Liquid chromatography and tandem mass spectroscopy were then employed to characterize the specific protein composition of the resulting complexes. The surface complexes of A. marginale isolated from erythrocytes of the mammalian host were composed of multiple membrane proteins, most of which belong to a protein family, pfam01617, which is conserved among bacteria in the genus Anaplasma and the closely related genus Ehrlichia. In contrast, the surface proteome of A. marginale isolated from tick cells was much less complex and contained a novel protein, AM778, not identified within the surface proteome of organisms from the mammalian host. Immunization using the cross-linked surface complex induced protection against high-level bacteremia and anemia upon A. marginale challenge of cattle and effectively recapitulated the protection induced by immunization with whole outer membranes. These results indicate that a surface protein subset of the outer membrane is capable of inducing protective immunity and serves to direct vaccine development. Furthermore, the data support that remodeling of the surface proteome accompanies the transition between mammalian and arthropod hosts and identify novel targets for blocking transmission.
Collapse
|
39
|
Lopez JE, Beare PA, Heinzen RA, Norimine J, Lahmers KK, Palmer GH, Brown WC. High-throughput identification of T-lymphocyte antigens from Anaplasma marginale expressed using in vitro transcription and translation. J Immunol Methods 2008; 332:129-41. [DOI: 10.1016/j.jim.2007.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/10/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
|
40
|
Sequential analysis of Anaplasma phagocytophilum msp2 transcription in murine and equine models of human granulocytic anaplasmosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 15:418-24. [PMID: 18094110 DOI: 10.1128/cvi.00417-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anaplasma phagocytophilum causes human granulocytic anaplasmosis by inducing immunopathologic responses. Its immunodominant Msp2 protein is encoded by a family of >100 paralogs. Msp2 (msp2) expression modulates in the absence of immune pressure, and prolonged in vitro passage modulates in vivo virulence. Because programmed MSP2 expression occurs in Anaplasma marginale, we hypothesized a similar event in A. phagocytophilum in vivo, with specific Msp2 expression triggering immunopathologic injury or clinical manifestations of disease. We examined msp2 transcripts in 11 B6 mice and 6 horses inoculated with low- or high-passage A. phagocytophilum Webster strain. Blood was sequentially obtained through 3 weeks postinfection for msp2 reverse transcription-PCR. Horses were additionally assessed for clinical manifestations, seroconversion, complete blood count, blood chemistry, and cytokine gene transcription. In both species, there was no consistent emergence of msp2 transcripts, and all 22 msp2 variants were detected in both passage groups. Clinical severity was much higher for high-passage-infected than for low-passage-infected horses, preceded by higher levels of blood gamma interferon transcription on day 7. Antibody was first detected on day 7, and all horses seroconverted by day 22, with a trend toward lower antibody titers in low-passage-infected animals. Leukocyte and platelet counts were similar between experimental groups except on day 13, when low-passage-infected animals had more profound thrombocytopenia. These findings corroborate studies with mice, where msp2 diversity did not explain differences in hepatic histopathology, but differ from the paradigm of low-passage A. phagocytophilum causing more significant clinical illness. Alteration in transcription of msp2 has no bearing on clinical disease in horses, suggesting the existence of a separate proinflammatory component differentially expressed with changing in vitro passage.
Collapse
|
41
|
Physical linkage of naturally complexed bacterial outer membrane proteins enhances immunogenicity. Infect Immun 2007; 76:1223-9. [PMID: 18086812 DOI: 10.1128/iai.01356-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The outer membrane proteins (OMPs) of bacterial pathogens are essential for their growth and survival and especially for attachment and invasion of host cells. Since the outer membrane is the interface between the bacterium and the host cell, outer membranes and individual OMPs are targeted for development of vaccines against many bacterial diseases. Whole outer membrane fractions often protect against disease, and this protection cannot be fully reproduced by using individual OMPs. Exactly how the interactions among individual OMPs influence immunity is not well understood. We hypothesized that one OMP rich in T-cell epitopes can act as a carrier for an associated OMP which is poor in T-cell epitopes to generate T-dependent antibody responses, similar to the hapten-carrier effect. Major surface protein 1a (MSP1a) and MSP1b1 occur as naturally complexed OMPs in the Anaplasma marginale outer membrane. Previous studies demonstrated that immunization with the native MSP1 heteromer induced strong immunoglobulin G (IgG) responses to both proteins, but only MSP1a stimulated strong CD4+ T-cell responses. Therefore, to test our hypothesis, constructs of CD4+ T-cell epitopes from MSP1a linked to MSP1b1 were compared with individually administered MSP1a and MSP1b1 for induction of MSP1b-specific IgG. By linking the T-cell epitopes from MSP1a to MSP1b1, significantly higher IgG titers against MSP1b1 were induced. Understanding how the naturally occurring intermolecular interactions between OMPs influence the immune response may lead to more effective vaccine design.
Collapse
|
42
|
Ramos CA, Araújo FR, Osório AL, Madruga CR, Rosinha GMS, Soares CO, Elisei C. Transcrição de genes de proteínas de membrana de isolados brasileiros de Anaplasma marginale. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2007; 16:152-5. [DOI: 10.1590/s1984-29612007000300007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 07/09/2007] [Indexed: 11/22/2022]
Abstract
Este trabalho demonstra o padrão de transcrição de genes de proteínas de membrana em três isolados brasileiros de A. marginale (Rio Grande do Norte, Pernambuco-Zona da Mata e Pernambuco-Sertão). O RNA foi purificado a partir de sangue de bovinos infectados experimentalmente com os três isolados de A. marginale. Após transcrição reversa, os genes omp1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 e 14; opag1-3; virB3, 9, 10; am097, 197, 254, 854 e 956 foram amplificados por PCR, com oligonucleotídeos iniciadores específicos. Detectaram-se transcritos para todos os genes analisados, exceto omp2, 3 e opag3 em todos os isolados e do gene omp7 em um dos isolados estudados. A ausência de transcrito para os genes opag3 e omp7 diverge do observado em isolados americanos da riquétsia. Possíveis razões para essas diferenças são discutidas.
Collapse
|
43
|
Ge Y, Rikihisa Y. Identification of novel surface proteins of Anaplasma phagocytophilum by affinity purification and proteomics. J Bacteriol 2007; 189:7819-28. [PMID: 17766422 PMCID: PMC2168727 DOI: 10.1128/jb.00866-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum is the etiologic agent of human granulocytic anaplasmosis (HGA), one of the major tick-borne zoonoses in the United States. The surface of A. phagocytophilum plays a crucial role in subverting the hostile host cell environment. However, except for the P44/Msp2 outer membrane protein family, the surface components of A. phagocytophilum are largely unknown. To identify the major surface proteins of A. phagocytophilum, a membrane-impermeable, cleavable biotin reagent, sulfosuccinimidyl-2-[biotinamido]ethyl-1,3-dithiopropionate (Sulfo-NHS-SS-Biotin), was used to label intact bacteria. The biotinylated bacterial surface proteins were isolated by streptavidin agarose affinity purification and then separated by electrophoresis, followed by capillary liquid chromatography-nanospray tandem mass spectrometry analysis. Among the major proteins captured by affinity purification were five A. phagocytophilum proteins, Omp85, hypothetical proteins APH_0404 (designated Asp62) and APH_0405 (designated Asp55), P44 family proteins, and Omp-1A. The surface exposure of Asp62 and Asp55 was verified by immunofluorescence microscopy. Recombinant Asp62 and Asp55 proteins were recognized by an HGA patient serum. Anti-Asp62 and anti-Asp55 peptide sera partially neutralized A. phagocytophilum infection of HL-60 cells in vitro. We found that the Asp62 and Asp55 genes were cotranscribed and conserved among members of the family Anaplasmataceae. With the exception of P44-18, all of the proteins were newly revealed major surface-exposed proteins whose study should facilitate understanding the interaction between A. phagocytophilum and the host. These proteins may serve as targets for development of chemotherapy, diagnostics, and vaccines.
Collapse
Affiliation(s)
- Yan Ge
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Rd., Columbus, OH 43210, USA
| | | |
Collapse
|
44
|
Bell-Sakyi L, Zweygarth E, Blouin EF, Gould EA, Jongejan F. Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol 2007; 23:450-7. [PMID: 17662657 DOI: 10.1016/j.pt.2007.07.009] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 05/25/2007] [Accepted: 07/10/2007] [Indexed: 11/17/2022]
Abstract
Over 40 cell lines are currently available from 13 ixodid and one argasid tick species. The successful isolation and propagation of several economically important tick-borne pathogens in tick cell lines has created a useful model to study interactions between tick cells and these viral and bacterial disease agents. Tick cell lines have already proved to be a useful tool in helping to define the complex nature of the host-vector-pathogen relationship. With the availability of genomics tools, tick cell lines will become increasingly important as a complement to tick and tick-borne disease research in vivo once genetic transformation and gene silencing using RNA interference become routine.
Collapse
Affiliation(s)
- Lesley Bell-Sakyi
- Centre for Tropical Veterinary Medicine, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK.
| | | | | | | | | |
Collapse
|