1
|
Smith EP, Valdivia RH. Chlamydia trachomatis: a model for intracellular bacterial parasitism. J Bacteriol 2025; 207:e0036124. [PMID: 39976429 PMCID: PMC11925236 DOI: 10.1128/jb.00361-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Chlamydia comprises a diverse group of obligate intracellular bacteria that cause infections in animals, including humans. These organisms share fascinating biology, including distinct developmental stages, non-canonical cell surface structures, and adaptations to intracellular parasitism. Chlamydia trachomatis is of particular interest due to its significant clinical importance, causing both ocular and sexually transmitted infections. The strain L2/434/Bu, responsible for lymphogranuloma venereum, is the most common strain used to study chlamydial molecular and cell biology because it grows readily in cell culture and is amenable to genetic manipulation. Indeed, this strain has enabled researchers to tackle fundamental questions about the molecular mechanisms underlying Chlamydia's developmental transitions and biphasic lifecycle and cellular adaptations to obligate intracellular parasitism, including characterizing numerous conserved virulence genes and defining immune responses. However, L2/434/Bu is not representative of C. trachomatis strains that cause urogenital infections in humans, limiting its utility in addressing questions of host tropism and immune evasion in reproductive organs. Recent research efforts are shifting toward understanding the unique attributes of more clinically relevant C. trachomatis genovars.
Collapse
Affiliation(s)
- Erin P. Smith
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Raphael H. Valdivia
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Host-Microbe Interactions, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Wan D, Pan M, Zhong G, Fan H. Chlamydia plasmid-encoded protein Pgp2 is a replication initiator with a unique β-hairpin necessary for iteron-binding and plasmid replication. Infect Immun 2025; 93:e0060224. [PMID: 39918305 PMCID: PMC11895440 DOI: 10.1128/iai.00602-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/23/2025] [Indexed: 02/12/2025] Open
Abstract
The virulence plasmid of the obligate intracellular bacterium Chlamydia encodes eight proteins. Among these, Pgp3 is crucial for pathogenicity, and Pgp4 functions as a transcriptional regulator of both plasmid and chromosomal genes. The remaining proteins, Pgp1, Pgp5, Pgp6, Pgp7, and Pgp8, are predicted to play various roles in plasmid replication or maintenance based on their amino acid sequences. However, the function of Pgp2 remains unknown, even though it is required for transformation. In this study, we utilized AlphaFold to predict the three-dimensional (3-D) structure of Chlamydia trachomatis Pgp2. Despite a lack of apparent sequence homology, the AlphaFold structure exhibited high similarity to experimentally determined structures of several plasmid replication initiators. Notably, Pgp2 features a unique β-hairpin motif near the DNA-binding domain, absent in other plasmid replication initiators with overall 3-D structures similar to Pgp2. This β-hairpin motif is also present in AlphaFold models of Pgp2s across all 13 Chlamydia species. To assess its significance, we engineered a plasmid lacking the 11 amino acids constituting the β-hairpin motif in C. trachomatis Pgp2. Although this deletion did not alter the overall structure of Pgp2, the mutated plasmid failed to transform plasmid-free C. trachomatis. These findings reveal that Pgp2 is a plasmid replication initiator, with the β-hairpin motif playing a critical role in binding to its cognate iteron sequences in the replication origin of the chlamydial plasmid.
Collapse
Affiliation(s)
- Danny Wan
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Matthew Pan
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Huizhou Fan
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
3
|
Chen X, Fu Y, Deng H, Li P, Zhao W, Shao L, Liu Y, Wang H, Hou S. Pgp3 monoclonal antibody inhibits the pathogenicity of Chlamydia muridarum to the genital tract of mice. Int Immunopharmacol 2025; 148:114039. [PMID: 39837015 DOI: 10.1016/j.intimp.2025.114039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/28/2024] [Accepted: 01/05/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Chlamydia trachomatis (Ct) is the leading cause of tubal inflammation in women, with a high tendency for persistent asymptomatic infections. Antibiotics are currently the primary treatment for Ct infections of the reproductive tract. However, mounting evidence indicates an increasing incidence of persistent infections and recurrence due to antibiotic treatment failure, highlighting the urgent need for novel therapeutic approaches. METHODS In this study, a monoclonal antibody against plasmid-encoded protein Pgp3 was prepared using hybridoma technology and its effects on the pathogenicity of Ct were investigated both in vitro and in vivo. RESULTS Infectivity of Chlamydia muridarum (Cm) elementary bodies (EBs) increased after incubation with His-Pgp3. When Pgp3mAb-pretreated Ct EBs or Cm-infected cell lysates were used to inoculate HeLa cells, a significantly reduced number of inclusions was observed compared with untreated controls. Cm-infected HeLa cells began to secrete Pgp3 after 6 h. Infection with Cm progeny was significantly inhibited by the addition of Pgp3mAb co-cultured during the first developmental cycle of Cm. Immunofluorescence assays revealed that Pgp3mAb could not enter the host cells. His-Pgp3 stimulated the secretion of IL-6 and IL-8 in human fallopian tube epithelial cells, while Pgp3mAb inhibited this pro-inflammatory effect of His-Pgp3. Cm-infected mice subcutaneously injected with Pgp3mAb demonstrated reduced shedding of live organisms in the lower genital tract, shorter infection cycles, reduced hydrosalpinx, and a reduced inflammatory response. CONCLUSION Pgp3 enhanced Cm infectivity in host cells. In vitro, Pgp3mAb inhibited Cm infection by binding to secreted Pgp3 and membrane-bound Pgp3, with a more pronounced effect on secreted Pgp3. Furthermore, Pgp3mAb inhibited the pro-inflammatory effects of Pgp3, thereby attenuating the inflammatory response. Subcutaneous administration of Pgp3mAb effectively reduced Cm-induced pathogenicity in the murine reproductive tract.
Collapse
Affiliation(s)
- Xiuqi Chen
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin 300052, China
| | - Yujie Fu
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin 300052, China
| | - Han Deng
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin 300052, China
| | - Pinglu Li
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin 300052, China
| | - Wanxing Zhao
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin 300052, China
| | - Lili Shao
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin 300052, China
| | - Yuanjun Liu
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin 300052, China
| | - Huiping Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin 300052, China
| | - Shuping Hou
- Department of Dermatovenereology, Tianjin Medical University General Hospital/Tianjin Institute of Sexually Transmitted Disease, Tianjin 300052, China.
| |
Collapse
|
4
|
Wan D, Pan M, Zhong G, Fan H. Chlamydia plasmid-encoded protein Pgp2 is a replication initiator with a unique β-hairpin necessary for iteron-binding and plasmid replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623704. [PMID: 39569140 PMCID: PMC11577247 DOI: 10.1101/2024.11.14.623704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The virulence plasmid of the obligate intracellular bacterium Chlamydia encodes eight proteins. Among these, Pgp3 is crucial for pathogenicity, and Pgp4 functions as a transcriptional regulator of both plasmid and chromosomal genes. The remaining proteins, Pgp1, Pgp5, Pgp6, Pgp7, and Pgp8, are predicted to play various roles in plasmid replication or maintenance based on their amino acid sequences. However, the function of Pgp2 remains unknown, even though it is required for transformation. In this study, we utilized AlphaFold to predict the 3-dimensional (3-D) structure of C. trachomatis Pgp2. Despite a lack of apparent sequence homology, the AlphaFold structure exhibited high similarity to experimentally determined structures of several plasmid replication initiators. Notably, Pgp2 features a unique β-hairpin motif near the DNA-binding domain, absent in other plasmid replication initiators with overall 3-D structures similar to Pgp2. This β-hairpin motif was also present in AlphaFold models of Pgp2s across all 13 Chlamydia species. To assess its significance, we engineered a plasmid lacking the 11 amino acids constituting the β-hairpin motif in C. trachomatis Pgp2. Although this deletion did not alter the overall structure of Pgp2, the mutated plasmid failed to transform plasmid-free C. trachomatis. These findings reveal that Pgp2 is a plasmid replication initiator, with the β-hairpin motif playing a critical role in binding to its cognate iteron sequences in the replication origin of the chlamydial plasmid.
Collapse
Affiliation(s)
- Danny Wan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Matthew Pan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
5
|
Poston TB. Advances in vaccine development for Chlamydia trachomatis. Pathog Dis 2024; 82:ftae017. [PMID: 39043447 PMCID: PMC11338180 DOI: 10.1093/femspd/ftae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 07/25/2024] Open
Abstract
Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection globally. Antibiotic treatment is highly effective, but infection is often asymptomatic resulting in most individuals going undetected and untreated. This untreated infection can ascend to the upper female genital tract to cause pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. Chlamydia screening and treatment programs have failed to control this epidemic and demonstrate the need for an efficacious vaccine to prevent transmission and disease. Animal models and human epidemiological data reveal that natural immunity can provide partial or short-lived sterilizing immunity. These data further demonstrate the importance of eliciting interferon gamma (IFNγ)-producing cluster of differentiation 4 (CD4) T cells (Th1 and Th1/17 cells) that can likely synergize with antibody-mediated opsonophagocytosis to provide optimal protection. These studies have guided preclinical rational vaccine design for decades and the first Phase 1 clinical trials have recently been completed. Recent advances have led to improvements in vaccine platforms and clinically safe adjuvants that help provide a path forward. This review describes vaccine models, correlates of immunity, antigen and adjuvant selection, and future clinical testing for Chlamydia vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
6
|
Xu Y, Wang Y, Winner H, Yang H, He R, Wang J, Zhong G. Regulation of chlamydial spreading from the small intestine to the large intestine by IL-22-producing CD4 + T cells. Infect Immun 2024; 92:e0042123. [PMID: 38047677 PMCID: PMC10790816 DOI: 10.1128/iai.00421-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
Following an oral inoculation, Chlamydia muridarum descends to the mouse large intestine for long-lasting colonization. However, a mutant C. muridarum that lacks the plasmid-encoded protein pGP3 due to an engineered premature stop codon (designated as CMpGP3S) failed to do so even following an intrajejunal inoculation. This was because a CD4+ T cell-dependent immunity prevented the spread of CMpGP3S from the small intestine to the large intestine. In the current study, we found that mice deficient in IL-22 (IL-22-/-) allowed CMpGP3S to spread from the small intestine to the large intestine on day 3 after intrajejunal inoculation, indicating a critical role of IL-22 in regulating the chlamydial spread. The responsible IL-22 is produced by CD4+ T cells since IL-22-/- mice were rescued to block the CMpGP3S spread by donor CD4+ T cells from C57BL/6J mice. Consistently, CD4+ T cells lacking IL-22 failed to block the spread of CMpGP3S in Rag2-/- mice, while IL-22-competent CD4+ T cells did block. Furthermore, mice deficient in cathelicidin-related antimicrobial peptide (CRAMP) permitted the CMpGP3S spread, but donor CD4+ T cells from CRAMP-/- mice were still sufficient for preventing the CMpGP3S spread in Rag2-/- mice, indicating a critical role of CRAMP in regulating chlamydial spreading, and the responsible CRAMP is not produced by CD4+ T cells. Thus, the IL-22-producing CD4+ T cell-dependent regulation of chlamydial spreading correlated with CRAMP produced by non-CD4+ T cells. These findings provide a platform for further characterizing the subset(s) of CD4+ T cells responsible for regulating bacterial spreading in the intestine.
Collapse
Affiliation(s)
- Ying Xu
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yihui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Halah Winner
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Huijie Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rongze He
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
7
|
Marti H, Biggel M, Shima K, Onorini D, Rupp J, Charette SJ, Borel N. Chlamydia suis displays high transformation capacity with complete cloning vector integration into the chromosomal rrn-nqrF plasticity zone. Microbiol Spectr 2023; 11:e0237823. [PMID: 37882558 PMCID: PMC10715202 DOI: 10.1128/spectrum.02378-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The obligate intracellular Chlamydia genus contains many pathogens with a negative impact on global health and economy. Despite recent progress, there is still a lack of genetic tools limiting our understanding of these complex bacteria. This study provides new insights into genetic manipulation of Chlamydia with the opportunistic porcine pathogen Chlamydia suis, the only chlamydial species naturally harboring an antibiotic resistance gene, originally obtained by horizontal gene transfer. C. suis is transmissible to humans, posing a potential public health concern. We report that C. suis can take up vectors that lack the native plasmid, a requirement for most chlamydial transformation systems described to date. Additionally, we show that C. trachomatis, the most common cause for bacterial sexually transmitted infections and infectious blindness worldwide, can be transformed with C. suis vectors. Finally, the chromosomal region that harbors the resistance gene of C. suis is highly susceptible to complete vector integration.
Collapse
Affiliation(s)
- Hanna Marti
- Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Michael Biggel
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Delia Onorini
- Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Steve J. Charette
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec City, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Canada
| | - Nicole Borel
- Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Fernandez CM, Krockenberger MB, Crowther MS, Mella VSA, Wilmott L, Higgins DP. Genetic markers of Chlamydia pecorum virulence in ruminants support short term host-pathogen evolutionary relationships in the koala, Phascolarctos cinereus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105527. [PMID: 37977420 DOI: 10.1016/j.meegid.2023.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
In ruminants infected with Chlamydia pecorum, shorter lengths of coding tandem repeats (CTR) within two genes, the inclusion membrane protein (incA) and Type III secretor protein (ORF663), have been previously associated with pathogenic outcomes. In other chlamydial species, the presence of a chlamydial plasmid has been linked to heightened virulence, and the plasmid is not ubiquitous in C. pecorum across the koala's range. We therefore investigated these three markers: incA, ORF663 and C. pecorum plasmid, as potential indicators of virulence in two koala populations in New South Wales with differing expression of urogenital chlamydiosis; the Liverpool Plains and one across the Southern Highlands and South-west Sydney (SHSWS). We also investigated the diversity of these loci within strains characterised by the national multi-locus sequence typing (MLST) scheme. Although CTR lengths of incA and ORF663 varied across the populations, they occurred only within previously described pathogenic ranges for ruminants. This suggests a relatively short-term host-pathogen co-evolution within koalas and limits the utility of CTR lengths for incA and ORF663 as virulence markers in the species. However, in contrast to reports of evolution of C. pecorum towards lower virulence, as indicated by longer CTR lengths in ruminants and swine, CTR lengths for ORF663 appeared to be diverging towards less common shorter CTR lengths within strains recently introduced to koalas in the Liverpool Plains. We detected the plasmid across 90% and 92% of samples in the Liverpool Plains and SHSWS respectively, limiting its utility as an indicator of virulence. It would be valuable to examine the CTR lengths of these loci across koala populations nationally. Investigation of other hypervariable loci may elucidate the evolutionary trajectory of virulence in C. pecorum induced disease in koalas. Profiling of virulent strains will be important in risk assessments for strain movement to naïve or susceptible populations through translocations and wildlife corridor construction.
Collapse
Affiliation(s)
- Cristina M Fernandez
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, Sydney 2006, NSW, Australia
| | - Mark B Krockenberger
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, Sydney 2006, NSW, Australia; Sydney Infectious diseases, The University of Sydney, Camperdown, Sydney 2006, NSW, Australia
| | - Mathew S Crowther
- Faculty of Science, School of Life and Environmental Science, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Valentina S A Mella
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, Sydney 2006, NSW, Australia; Faculty of Science, School of Life and Environmental Science, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Lachlan Wilmott
- NSW Department of Planning and Environment, Wollongong 2005, New South Wales, Australia
| | - Damien P Higgins
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, Sydney 2006, NSW, Australia.
| |
Collapse
|
9
|
Song D, Li A, Chen B, Feng J, Duan T, Cheng J, Chen L, Wang W, Min Y. Multi-omics analysis reveals the molecular regulatory network underlying the prevention of Lactiplantibacillus plantarum against LPS-induced salpingitis in laying hens. J Anim Sci Biotechnol 2023; 14:147. [PMID: 37978561 PMCID: PMC10655300 DOI: 10.1186/s40104-023-00937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Salpingitis is one of the common diseases in laying hen production, which greatly decreases the economic outcome of laying hen farming. Lactiplantibacillus plantarum was effective in preventing local or systemic inflammation, however rare studies were reported on its prevention against salpingitis. This study aimed to investigate the preventive molecular regulatory network of microencapsulated Lactiplantibacillus plantarum (MLP) against salpingitis through multi-omics analysis, including microbiome, transcriptome and metabolome analyses. RESULTS The results revealed that supplementation of MLP in diet significantly alleviated the inflammation and atrophy of uterus caused by lipopolysaccharide (LPS) in hens (P < 0.05). The concentrations of plasma IL-2 and IL-10 in hens of MLP-LPS group were higher than those in hens of LPS-stimulation group (CN-LPS group) (P < 0.05). The expression levels of TLR2, MYD88, NF-κB, COX2, and TNF-α were significantly decreased in the hens fed diet supplemented with MLP and suffered with LPS stimulation (MLP-LPS group) compared with those in the hens of CN-LPS group (P < 0.05). Differentially expressed genes (DEGs) induced by MLP were involved in inflammation, reproduction, and calcium ion transport. At the genus level, the MLP supplementation significantly increased the abundance of Phascolarctobacterium, whereas decreased the abundance of Candidatus_Saccharimonas in LPS challenged hens (P < 0.05). The metabolites altered by dietary supplementation with MLP were mainly involved in galactose, uronic acid, histidine, pyruvate and primary bile acid metabolism. Dietary supplementation with MLP inversely regulates LPS-induced differential metabolites such as LysoPA (24:0/0:0) (P < 0.05). CONCLUSIONS In summary, dietary supplementation with microencapsulated Lactiplantibacillus plantarum prevented salpingitis by modulating the abundances of Candidatus_Saccharimonas, Phascolarctobacterium, Ruminococcus_torques_group and Eubacterium_hallii_group while downregulating the levels of plasma metabolites, p-tolyl sulfate, o-cresol and N-acetylhistamine and upregulating S-lactoylglutathione, simultaneously increasing the expressions of CPNE4, CNTN3 and ACAN genes in the uterus, and ultimately inhibiting oviducal inflammation.
Collapse
Affiliation(s)
- Dan Song
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Aike Li
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Bingxu Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Jia Feng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China
| | - Tao Duan
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Junlin Cheng
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Lixian Chen
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China
| | - Weiwei Wang
- Key Laboratory of Grain and Oil Biotechnology of National Food and Strategic Reserves Administration, Academy of National Food and Strategic Reserves Administration, Beijing, People's Republic of China.
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, People's Republic of China.
| |
Collapse
|
10
|
Lu C, Wang J, Zhong G. Preclinical screen for protection efficacy of chlamydial antigens that are immunogenic in humans. Infect Immun 2023; 91:e0034923. [PMID: 37889004 PMCID: PMC10652899 DOI: 10.1128/iai.00349-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
To search for subunit vaccine candidates, immunogenic chlamydial antigens identified in humans were evaluated for protection against both infection and pathology in a mouse genital tract infection model under three different immunization regimens. The intramuscular immunization regimen was first used to evaluate 106 chlamydial antigens, which revealed that two antigens significantly reduced while 11 increased genital chlamydial burden. The two infection-reducing antigens failed to prevent pathology and 23 additional antigens even exacerbated pathology. Thus, intranasal mucosal immunization was tested next since intranasal inoculation with live Chlamydia muridarum prevented both genital infection and pathology. Two of the 29 chlamydial antigens evaluated were found to prevent genital infection but not pathology and three exacerbate pathology. To further improve protection efficacy, a combinational regimen (intranasal priming + intramuscular boosting + a third intraperitoneal/subcutaneous boost) was tested. This regimen identified four infection-reducing antigens, but only one of them prevented pathology. Unfortunately, this protective antigen was not advanced further due to its amino acid sequence homology with several human molecules. Two pathology-exacerbating antigens were also found. Nevertheless, intranasal mucosal priming with viable C. muridarum in control groups consistently prevented both genital infection and pathology regardless of the subsequent boosters. Thus, screening 140 different chlamydial antigens with 21 repeated multiple times in 17 experiments failed to identify a subunit vaccine candidate but demonstrated the superiority of viable chlamydial organisms in inducing immunity against both genital infection and pathology, laying the foundation for developing a live-attenuated Chlamydia vaccine.
Collapse
Affiliation(s)
- Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jie Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
11
|
Luo Y, Sun Z, Chen Q, Xiao J, Yan X, Li Y, Wu Y. TLR2 mediates autophagy through ERK signaling pathway in Chlamydia psittaci CPSIT_p7 protein-stimulated RAW264.7 cells. Microbiol Immunol 2023; 67:469-479. [PMID: 37615441 DOI: 10.1111/1348-0421.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Chlamydia psittaci is a zoonotic pathogen found in birds and humans. Macrophages, major components of the innate immune system, can resist chlamydial infections and trigger adaptive immune responses. However, the molecular mechanisms underlying the action of macrophages against C. psittaci infection are not well understood. This study investigated the roles and mechanisms of plasmid-encoded protein CPSIT_p7 of C. psittaci in regulating autophagy in RAW264.7 cells. The results demonstrated that stimulation of RAW264.7 with C. psittaci plasmid protein CPSIT_p7 induced the expressions of the autophagy signaling primary regulators LC3 and Beclin1, which could also significantly induce the phosphorylation levels of ERK, JNK, p38, and Akt. Next, siRNA knockdown of TLR2 resulted in significant downregulation of CPSIT_p7-triggered autophagy in RAW264.7 cells. Moreover, the extracellular regulated protein kinase (ERK) inhibitor PD98059 markedly reduced autophagy in CPSIT_p7-stimulated macrophages. In summary, these results indicated that TLR2 plays an essential role in the induction of autophagy through the ERK signaling pathway in CPSIT_p7-stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Ying Luo
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
- Department of Molecular Diagnosis Center, The Sixth Affiliated Hospital of Guangzhou Medical University/Qingyuan People's Hospital, Qingyuan, China
| | - Zhenjie Sun
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Qian Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jian Xiao
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, China
| | - XiaoLiang Yan
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yimou Wu
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
12
|
Liu C, Mokashi NV, Darville T, Sun X, O’Connell CM, Hufnagel K, Waterboer T, Zheng X. A Machine Learning-Based Analytic Pipeline Applied to Clinical and Serum IgG Immunoproteome Data To Predict Chlamydia trachomatis Genital Tract Ascension and Incident Infection in Women. Microbiol Spectr 2023; 11:e0468922. [PMID: 37318345 PMCID: PMC10434056 DOI: 10.1128/spectrum.04689-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
We developed a reusable and open-source machine learning (ML) pipeline that can provide an analytical framework for rigorous biomarker discovery. We implemented the ML pipeline to determine the predictive potential of clinical and immunoproteome antibody data for outcomes associated with Chlamydia trachomatis (Ct) infection collected from 222 cis-gender females with high Ct exposure. We compared the predictive performance of 4 ML algorithms (naive Bayes, random forest, extreme gradient boosting with linear booster [xgbLinear], and k-nearest neighbors [KNN]), screened from 215 ML methods, in combination with two different feature selection strategies, Boruta and recursive feature elimination. Recursive feature elimination performed better than Boruta in this study. In prediction of Ct ascending infection, naive Bayes yielded a slightly higher median value of are under the receiver operating characteristic curve (AUROC) 0.57 (95% confidence interval [CI], 0.54 to 0.59) than other methods and provided biological interpretability. For prediction of incident infection among women uninfected at enrollment, KNN performed slightly better than other algorithms, with a median AUROC of 0.61 (95% CI, 0.49 to 0.70). In contrast, xgbLinear and random forest had higher predictive performances, with median AUROC of 0.63 (95% CI, 0.58 to 0.67) and 0.62 (95% CI, 0.58 to 0.64), respectively, for women infected at enrollment. Our findings suggest that clinical factors and serum anti-Ct protein IgGs are inadequate biomarkers for ascension or incident Ct infection. Nevertheless, our analysis highlights the utility of a pipeline that searches for biomarkers and evaluates prediction performance and interpretability. IMPORTANCE Biomarker discovery to aid early diagnosis and treatment using machine learning (ML) approaches is a rapidly developing area in host-microbe studies. However, lack of reproducibility and interpretability of ML-driven biomarker analysis hinders selection of robust biomarkers that can be applied in clinical practice. We thus developed a rigorous ML analytical framework and provide recommendations for enhancing reproducibility of biomarkers. We emphasize the importance of robustness in selection of ML methods, evaluation of performance, and interpretability of biomarkers. Our ML pipeline is reusable and open-source and can be used not only to identify host-pathogen interaction biomarkers but also in microbiome studies and ecological and environmental microbiology research.
Collapse
Affiliation(s)
- Chuwen Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Neha Vivek Mokashi
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xuejun Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Catherine M. O’Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katrin Hufnagel
- Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany
| | - Xiaojing Zheng
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
13
|
Turman BJ, Darville T, O'Connell CM. Plasmid-mediated virulence in Chlamydia. Front Cell Infect Microbiol 2023; 13:1251135. [PMID: 37662000 PMCID: PMC10469868 DOI: 10.3389/fcimb.2023.1251135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Chlamydia trachomatis infection of ocular conjunctiva can lead to blindness, while infection of the female genital tract can lead to chronic pelvic pain, ectopic pregnancy, and/or infertility. Conjunctival and fallopian tube inflammation and the resulting disease sequelae are attributed to immune responses induced by chlamydial infection at these mucosal sites. The conserved chlamydial plasmid has been implicated in enhancing infection, via improved host cell entry and exit, and accelerating innate inflammatory responses that lead to tissue damage. The chlamydial plasmid encodes eight open reading frames, three of which have been associated with virulence: a secreted protein, Pgp3, and putative transcriptional regulators, Pgp4 and Pgp5. Although Pgp3 is an important plasmid-encoded virulence factor, recent studies suggest that chlamydial plasmid-mediated virulence extends beyond the expression of Pgp3. In this review, we discuss studies of genital, ocular, and gastrointestinal infection with C. trachomatis or C. muridarum that shed light on the role of the plasmid in disease development, and the potential for tissue and species-specific differences in plasmid-mediated pathogenesis. We also review evidence that plasmid-associated inflammation can be independent of bacterial burden. The functions of each of the plasmid-encoded proteins and potential molecular mechanisms for their role(s) in chlamydial virulence are discussed. Although the understanding of plasmid-associated virulence has expanded within the last decade, many questions related to how and to what extent the plasmid influences chlamydial infectivity and inflammation remain unknown, particularly with respect to human infections. Elucidating the answers to these questions could improve our understanding of how chlamydia augment infection and inflammation to cause disease.
Collapse
Affiliation(s)
- Breanna J. Turman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Toni Darville
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | | |
Collapse
|
14
|
Bastidas RJ, Valdivia RH. The emerging complexity of Chlamydia trachomatis interactions with host cells as revealed by molecular genetic approaches. Curr Opin Microbiol 2023; 74:102330. [PMID: 37247566 PMCID: PMC10988583 DOI: 10.1016/j.mib.2023.102330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Chlamydia trachomatis (Ct) is an intracellular bacterial pathogen that relies on the activity of secreted proteins known as effectors to promote replication and avoidance of immune clearance. Understanding the contribution of Ct effectors to pathogenesis has proven to be challenging, given that these proteins often perform multiple functions during intracellular infection. Recent advances in molecular genetic analysis of Ct have provided valuable insights into the multifaceted nature of secreted effector proteins and their impact on the interaction between Ct and host cells and tissues. This review highlights significant findings from genetic analysis of Ct effector functions, shedding light on their diverse roles. We also discuss the challenges faced in this field of study and explore potential opportunities for further research.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Raphael H Valdivia
- Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
15
|
Huang Y, Wu H, Sun Y, Liu Y. Tryptophan residue of plasmid-encoded Pgp3 is important for Chlamydia muridarum to induce hydrosalpinx in mice. Front Microbiol 2023; 14:1216372. [PMID: 37497542 PMCID: PMC10367112 DOI: 10.3389/fmicb.2023.1216372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
The crucial role of plasmid-encoded protein Pgp3 in Chlamydia pathogenesis has been demonstrated in various animal models. Previous studies have revealed that the Pgp3-deficient C. muridarum mutant fails to induce hydrosalpinx after vaginal inoculation in mice. Structural analysis of C. trachomatis Pgp3 trimer has indicated that Trp234 may play a critical role in trimeric crystal packing interactions and that Tyr197 is involved at predominant cation-binding sites. In this study, we constructed C. muridarum transformants harboring Pgp3, Trp234, or Tyr197 point mutations (Pgp3W234A and Pgp3Y197A). C3H/HeJ mice infected with Pgp3W234A mutant failed to induce severe hydrosalpinx in the oviduct tissue, which largely phenocopied the full-length Pgp3-deficient C. muridarum. The Pgp3Y197A variant induced an intermediate severity of pathology. The attenuated pathogenicity caused by the Pgp3W234A mutant may be due to its decreased survival in the lower genital tracts of mice, reduced ascension to the oviduct, and milder induction of inflammatory cell infiltration in the oviduct tissue. Thus, our results point to an important amino acid residue involved in Pgp3 virulence, providing a potential therapeutic target for chlamydial infection.
Collapse
Affiliation(s)
- Yumeng Huang
- Tianjin Medical University General Hospital, Tianjin, China
| | - Haoqing Wu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Yina Sun
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yuanjun Liu
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
16
|
Shu M, Bu J, Lei W, Chen L, Zhou Z, Lu C, Chen C, Li Z. Pgp3 protein of Chlamydia trachomatis inhibits apoptosis via HO-1 upregulation mediated by PI3K/Akt activation. Microb Pathog 2023; 178:106056. [PMID: 36893904 DOI: 10.1016/j.micpath.2023.106056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/31/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
As an obligate intracellular pathogen, Chlamydia trachomatis assumes various strategies to inhibit host cells apoptosis, thereby providing a suitable intracellular environment to ensure completion of the development cycle. In the current study, we revealed that Pgp3 protein, one of eight plasmid proteins of C. trachomatis that has been illustrated as the key virulence factor, increased HO-1 expression to suppress apoptosis, and downregulation of HO-1 with siRNA-HO-1 failed to exert anti-apoptosis activity of Pgp3 protein. Moreover, treatment of PI3K/Akt pathway inhibitor and Nrf2 inhibitor evidently reduced HO-1 expression and Nrf2 nuclear translocation was blocked by PI3K/Akt pathway inhibitor. These findings highlight that induction of HO-1 expression by Pgp3 protein is probably due to regulation of Nrf2 nuclear translocation activated by PI3K/Akt pathway, which provide clues on how C. trachomatis adjusts apoptosis.
Collapse
Affiliation(s)
- Mingyi Shu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Jichang Bu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Wenbo Lei
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Lili Chen
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Zhou Zhou
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Chunxue Lu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Chaoqun Chen
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang Medical School, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
17
|
Cheong HC, Cheok YY, Chan YT, Tang TF, Sulaiman S, Looi CY, Gupta R, Arulanandam B, Chang LY, Wong WF. Chlamydia trachomatis plasmid-encoding Pgp3 protein induces secretion of distinct inflammatory signatures from HeLa cervical epithelial cells. BMC Microbiol 2023; 23:58. [PMID: 36870960 PMCID: PMC9985209 DOI: 10.1186/s12866-023-02802-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Genital Chlamydia trachomatis infection is the most common bacterial sexual transmitted disease that causes severe complications including pelvic inflammatory disease, ectopic pregnancy, and infertility in females. The Pgp3 protein encoded by C. trachomatis plasmid has been speculated to be an important player in chlamydial pathogenesis. However, the precise function of this protein is unknown and thus remains to be thoroughly investigated. METHODS In this study, we synthesized Pgp3 protein for in vitro stimulation in the Hela cervical carcinoma cells. RESULTS AND CONCLUSION We showed that Pgp3 induced prominent expression of host inflammatory cytokine genes including interleukin-6 (IL-6), IL-8, tumor necrosis factor alpha-induced protein 3 (TNFAIP3), and chemokine C-X-C motif ligand 1 (CXCL1), implying a possible role of Pgp3 in modulating the inflammatory reaction in the host.
Collapse
Affiliation(s)
- Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Bernard Arulanandam
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA.,Department of Immunology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
18
|
Virulence Protein Pgp3 Is Insufficient To Mediate Plasmid-Dependent Infectivity of Chlamydia trachomatis. Infect Immun 2023; 91:e0039222. [PMID: 36722979 PMCID: PMC9933628 DOI: 10.1128/iai.00392-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chlamydia trachomatis is the most common cause of infectious blindness and sexually transmitted bacterial infection globally. C. trachomatis contains a conserved chlamydial plasmid with eight coding sequences. Plasmid-cured Chlamydia strains are attenuated and display reduced infectivity in cell culture and in vivo genital infection of female mice. Mutants that do not express the plasmid-encoded proteins Pgp3, a secreted protein with unknown function, or Pgp4, a putative regulator of pgp3 and other chromosomal loci, display an infectivity defect similar to plasmid-deficient strains. Our objective was to determine the combined and individual contributions of Pgp3 and Pgp4 to this phenotype. Deletion of pgp3 and pgp4 resulted in an infectivity defect detected by competition assay in cell culture and in mice. The pgp3 locus was placed under the control of an anhydrotetracycline-inducible promoter to examine the individual contributions of Pgp3 and Pgp4 to infectivity. Expression of pgp3 was induced 100- to 1,000-fold after anhydrotetracycline administration, regardless of the presence or absence of pgp4. However, secreted Pgp3 was not detected when pgp4 was deleted, confirming a role for Pgp4 in Pgp3 secretion. We discovered that expression of pgp3 or pgp4 alone was insufficient to restore normal infectivity, which required expression of both Pgp3 and Pgp4. These results suggest Pgp3 and Pgp4 are both required for infectivity during C. trachomatis infection. Future studies are required to determine the mechanism by which Pgp3 and Pgp4 influence chlamydial infectivity as well as the potential roles of Pgp4-regulated loci.
Collapse
|
19
|
Tian Q, Zhang T, Wang L, Ma J, Sun X. Gut dysbiosis contributes to chlamydial induction of hydrosalpinx in the upper genital tract. Front Microbiol 2023; 14:1142283. [PMID: 37125189 PMCID: PMC10133527 DOI: 10.3389/fmicb.2023.1142283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Chlamydia trachomatis is one of the most common sexually infections that cause infertility, and its genital infection induces tubal adhesion and hydrosalpinx. Intravaginal Chlamydia muridarum infection in mice can induce hydrosalpinx in the upper genital tract and it has been used for studying C. trachomatis pathogenicity. DBA2/J strain mice were known to be resistant to the chlamydial induction of hydrosalpinx. In this study, we took advantage of this feature of DBA2/J mice to evaluate the role of antibiotic induced dysbiosis in chlamydial pathogenicity. Antibiotics (vancomycin and gentamicin) were orally administrated to induce dysbiosis in the gut of DBA2/J mice. The mice with or without antibiotic treatment were evaluated for gut and genital dysbiosis and then intravaginally challenged by C. muridarum. Chlamydial burden was tested and genital pathologies were evaluated. We found that oral antibiotics significantly enhanced chlamydial induction of genital hydrosalpinx. And the antibiotic treatment induced severe dysbiosis in the GI tract, including significantly reduced fecal DNA and increased ratios of firmicutes over bacteroidetes. The oral antibiotic did not alter chlamydial infection or microbiota in the mouse genital tracts. Our study showed that the oral antibiotics-enhanced hydrosalpinx correlated with dysbiosis in gut, providing the evidence for associating gut microbiome with chlamydial genital pathogenicity.
Collapse
Affiliation(s)
- Qi Tian
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- *Correspondence: Qi Tian,
| | - Tianyuan Zhang
- Key Lab of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Tianyuan Zhang,
| | - Luying Wang
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingyue Ma
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Sun
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Fields KA, Bodero MD, Scanlon KR, Jewett TJ, Wolf K. A Minimal Replicon Enables Efficacious, Species-Specific Gene Deletion in Chlamydia and Extension of Gene Knockout Studies to the Animal Model of Infection Using Chlamydia muridarum. Infect Immun 2022; 90:e0045322. [PMID: 36350146 PMCID: PMC9753632 DOI: 10.1128/iai.00453-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
The genus Chlamydia consists of diverse, obligate intracellular bacteria that infect various animals, including humans. Although chlamydial species share many aspects of the typical intracellular lifestyle, such as the biphasic developmental cycle and the preference for invasion of epithelial cells, each chlamydial strain also employs sophisticated species-specific strategies that contribute to an extraordinary diversity in organ and/or tissue tropism and disease manifestation. In order to discover and understand the mechanisms underlying how these pathogens infect particular hosts and cause specific diseases, it is imperative to develop a mutagenesis approach that would be applicable to every chlamydial species. We present functional evidence that the region between Chlamydia trachomatis and Chlamydia muridarum pgp6 and pgp7, containing four 22-bp tandem repeats that are present in all chlamydial endogenous plasmids, represents the plasmid origin of replication. Furthermore, by introducing species-specific ori regions into an engineered 5.45-kb pUC19-based plasmid, we generated vectors that can be successfully transformed into and propagated under selective pressure by C. trachomatis serovars L2 and D, as well as C. muridarum. Conversely, these vectors were rapidly lost upon removal of the selective antibiotic. This conditionally replicating system was used to generate a tarP deletion mutant by fluorescence-reported allelic exchange mutagenesis in both C. trachomatis serovar D and C. muridarum. The strains were analyzed using in vitro invasion and fitness assays. The virulence of the C. muridarum strains was then assessed in a murine infection model. Our approach represents a novel and efficient strategy for targeted genetic manipulation in Chlamydia beyond C. trachomatis L2. This advance will support comparative studies of species-specific infection biology and enable studies in a well-established murine model of chlamydial pathogenesis.
Collapse
Affiliation(s)
- Kenneth A. Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Maria D. Bodero
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Kaylyn R. Scanlon
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Travis J. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Katerina Wolf
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
21
|
Shu M, Zhao L, Shi K, Lei W, Yang Y, Li Z. Chitosan particle stabilized Pickering emulsion/interleukin-12 adjuvant system for Pgp3 subunit vaccine elicits immune protection against genital chlamydial infection in mice. Front Immunol 2022; 13:989620. [PMID: 36505424 PMCID: PMC9727174 DOI: 10.3389/fimmu.2022.989620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
Considering the shortcomings in current chlamydia infection control strategies, a major challenge in curtailing infection is the implementation of an effective vaccine. The immune response induced by C. trachomatis plasmid encoded Pgp3 was insufficient against C. trachomatis infection, which requires adjuvant applications to achieve the robust immune response induced by Pgp3. There is increasing promising in developing adjuvant systems relying on the delivery potential of Pickering emulsions and the immunomodulatory effects of interleukin (IL)-12. Here, owing to the polycationic nature, chitosan particles tended to absorb on the oil/water interphase to prepare the optimized chitosan particle-stabilized Pickering emulsion (CSPE), which was designed as a delivery system for Pgp3 protein and IL-12. Our results showed that the average droplets size of CSPE was 789.47 ± 44.26 nm after a series of optimizations and about 90% antigens may be absorbed by CSPE owing to the positively charged surface (33.2 ± 3mV), and CSPE promoted FITC-BSA proteins uptake by macrophages. Furthermore, as demonstrated by Pgp3-specific antibody production and cytokine secretion, CSPE/IL-12 system enhanced significantly higher levels of Pgp3-specific IgG, IgG1, IgG2a, sIgA and significant cytokines secretion of IFN-γ, IL-2, TNF-α, IL-4. Similarly, vaginal chlamydial shedding and hydrosalpinx pathologies were markedly reduced in mice immunized with Pgp3/CSPE/IL-12. Collectively, vaccination with Pgp3/CSPE/IL-12 regimen elicited robust cellular and humoral immune response in mice resulting in an obvious reduction of live chlamydia load in the vaginal and inflammatory pathologies in the oviduct, which further propells the development of vaccines against C. trachomatis infection.
Collapse
|
22
|
Peng B, Zhong S, Hua Y, Luo Q, Dong W, Wang C, Li Z, Yang C, Lei A, Lu C. Efficacy of Pgp3 vaccination for Chlamydia urogenital tract infection depends on its native conformation. Front Immunol 2022; 13:1018774. [PMID: 36466885 PMCID: PMC9709265 DOI: 10.3389/fimmu.2022.1018774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/31/2022] [Indexed: 07/28/2023] Open
Abstract
Urogenital tract infections with Chlamydia trachomatis have frequently been detected among patients diagnosed with sexually transmitted infections, and such infections lead to inflammatory complications. Currently, no licensed chlamydial vaccine is available in clinical practice. We previously reported that immunization with recombinant C. trachomatis plasmid-encoded virulence factor Pgp3 provided cross-serovar protection against C. muridarum genital tract infection. Because Pgp3 is a homotrimer and human antisera only recognize the trimeric form of Pgp3, we compared the effects of the native conformation of Pgp3 (trimer) and heat-denatured Pgp3 (monomer) to determine whether the native conformation is dispensable for the induction of protective immunity against chlamydial vaginal challenge. Both Pgp3 trimer and monomer immunization induced corresponding specific antibody production, but only trimer-induced antibody recognized endogenous Pgp3, and trimer-immunized mouse splenocytes showed the highest IFN-γ production upon restimulation with the chlamydial elementary body or native Pgp3 in vitro. Importantly, only Pgp3 trimer-immunized mice showed shortened lower genital tract chlamydial shedding and decreased upper genital tract pathology. Thus, Pgp3-induced protective immunity against Chlamydia urogenital tract infection is highly dependent on the native conformation, which will guide the design of Pgp3-based polypeptides and multi-subunit chlamydial vaccines.
Collapse
Affiliation(s)
- Bo Peng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
- Department of Pathology, Hengyang Medical College, University of South China, Hengyang, China
| | - Shufang Zhong
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Yaoqin Hua
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Qizheng Luo
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Weilei Dong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Chunfen Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Aihua Lei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| |
Collapse
|
23
|
He S, Wang C, Huang Y, Lu S, Li W, Ding N, Chen C, Wu Y. Chlamydia psittaci plasmid-encoded CPSIT_P7 induces macrophage polarization to enhance the antibacterial response through TLR4-mediated MAPK and NF-κB pathways. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119324. [PMID: 35809864 DOI: 10.1016/j.bbamcr.2022.119324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Although the protective effects of Chlamydia psittaci plasmid-encoded protein CPSIT_P7 as vaccine antigens to against chlamydial infection have been confirmed in our previous study, the function and mechanism of CPSIT_P7 inducing innate immunity in the antibacterial response remain unknown. Here, we found that plasmid protein CPSIT_P7 could induce M1 macrophage polarization upregulating the genes of the surface molecule CD86, proinflammatory cytokines (TNF-α, IL-6, and IL-1β), and antibacterial effector NO synthase 2 (iNOS). During M1 macrophage polarization, macrophages acquire phagocytic and microbicidal competence, which promotes the host antibacterial response. As we observed that CPSIT_P7-induced M1 macrophages could partially reduce the infected mice pulmonary Chlamydia psittaci load. Furthermore, CPSIT_P7 induced M1 macrophage polarization through the TLR4-mediated MAPK and NF-κB pathways. Collectively, our results highlight the effect of CPSIT_P7 on macrophage polarization and provide new insights into new prevention and treatment strategies for chlamydial infection.
Collapse
Affiliation(s)
- Siqin He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Yanru Huang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Simin Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Weiwei Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Chaoqun Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China.
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
24
|
Xu Y, Wang J. Chlamydia
transmitting from the genital to gastrointestinal tract and inducing tubal disease: Double attack pattern. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1275-1280. [PMID: 36411712 PMCID: PMC10930326 DOI: 10.11817/j.issn.1672-7347.2022.220023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 06/16/2023]
Abstract
Chlamydia trachomatis ( CT ) genital tract infection is insidious, and patients often have no conscious symptoms.Delayed treatment after infection can lead to serious complications. Chlamydia muridarum ( CM ) genital tract infection in female mice can simulate CT genital tract infection in women, which is an ideal model to investigate the pathogenesis of CT . CM plasmid protein pGP3, chromosomal protein TC0237/TC0668, CM -specific CD8 + T cells, TNF-α, and IL-13 can induce genital tract inflammation, CD4 + T cells are responsible for CM clearance. However, tubal inflammation persists after genital tract CM is removed. Genital tract CM can spread spontaneously in vivo and colonize the gastrointestinal (GI) tract, but the GI tract CM cannot reverse spread to the genital tract. The survival time and number of CM transmitted from genital tract to GI tract are positively correlated with the long-term lesion of oviduct, while the CM inoculated directly into the GI tract has no pathogenicity in both the genital and GI tract. The double attack pattern of Chlamydia -induced genital tract inflammatory lesions is as follows: CM infection of oviduct epithelial cells initiates the process of oviduct repair as the first attack. After genital CM spreads to the GI tract, activated chlamydia-specific CD8 + T cells are recruited to the genital tract and secreted pro-fibrotic cytokines such as TNF-α and IL-13. This process is called the second attack which transform tubal repair initiated by the first attack into long-term tubal fibrosis/hydrosalpinx. Elucidating the pathogenic mechanism of Chlamydia infection can provide new ideas for the development of Chlamydia vaccine, which is expected to solve the problems of infertility caused by repeated CT infection in women.
Collapse
Affiliation(s)
- Ying Xu
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha 410078, China.
| | - Jie Wang
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha 410078, China.
| |
Collapse
|
25
|
N'Gadjaga MD, Perrinet S, Connor MG, Bertolin G, Millot GA, Subtil A. Chlamydia trachomatis development requires both host glycolysis and oxidative phosphorylation but has only minor effects on these pathways. J Biol Chem 2022; 298:102338. [PMID: 35931114 PMCID: PMC9449673 DOI: 10.1016/j.jbc.2022.102338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The obligate intracellular bacteria Chlamydia trachomatis obtain all nutrients from the cytoplasm of their epithelial host cells and stimulate glucose uptake by these cells. They even hijack host ATP, exerting a strong metabolic pressure on their host at the peak of the proliferative stage of their developmental cycle. However, it is largely unknown whether infection modulates the metabolism of the host cell. Also, the reliance of the bacteria on host metabolism might change during their progression through their biphasic developmental cycle. Herein, using primary epithelial cells and 2 cell lines of nontumoral origin, we showed that between the 2 main ATP-producing pathways of the host, oxidative phosphorylation (OxPhos) remained stable and glycolysis was slightly increased. Inhibition of either pathway strongly reduced bacterial proliferation, implicating that optimal bacterial growth required both pathways to function at full capacity. While we found C. trachomatis displayed some degree of energetic autonomy in the synthesis of proteins expressed at the onset of infection, functional host glycolysis was necessary for the establishment of early inclusions, whereas OxPhos contributed less. These observations correlated with the relative contributions of the pathways in maintaining ATP levels in epithelial cells, with glycolysis contributing the most. Altogether, this work highlights the dependence of C. trachomatis on both host glycolysis and OxPhos for efficient bacterial replication. However, ATP consumption appears at equilibrium with the normal production capacity of the host and the bacteria, so that no major shift between these pathways is required to meet bacterial needs.
Collapse
Affiliation(s)
- Maimouna D N'Gadjaga
- Institut Pasteur, CNRS UMR3691, Cellular Biology of Microbial Infection, Université Paris Cité, Paris, France; Sorbonne Université, Collège Doctoral, Paris, France
| | - Stéphanie Perrinet
- Institut Pasteur, CNRS UMR3691, Cellular Biology of Microbial Infection, Université Paris Cité, Paris, France
| | - Michael G Connor
- Institut Pasteur, Chromatin and Infection, Université Paris Cité, Paris, France
| | - Giulia Bertolin
- CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Univ Rennes, Rennes, France
| | - Gaël A Millot
- Institut Pasteur, Hub Bioinformatique et Biostatistique-DBC, Université Paris Cité, Paris, France
| | - Agathe Subtil
- Institut Pasteur, CNRS UMR3691, Cellular Biology of Microbial Infection, Université Paris Cité, Paris, France.
| |
Collapse
|
26
|
Anyalechi GE, Hong J, Kirkcaldy RD, Wiesenfeld HC, Horner P, Wills GS, McClure MO, Hammond KR, Haggerty CL, Kissin DM, Hook EW, Steinkampf MP, Bernstein K, Geisler WM. Chlamydial Pgp3 Seropositivity and Population-Attributable Fraction Among Women With Tubal Factor Infertility. Sex Transm Dis 2022; 49:527-533. [PMID: 34110735 PMCID: PMC9208281 DOI: 10.1097/olq.0000000000001434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chlamydial infection is associated with tubal factor infertility (TFI); however, assessment of prior chlamydial infection and TFI is imperfect. We previously evaluated a combination of serological assays for association with TFI. We now describe the chlamydial contribution to TFI using a newer Chlamydia trachomatis Pgp3-enhanced serological (Pgp3) assay. METHODS In our case-control study of women 19 to 42 years old with hysterosalpingogram-diagnosed TFI (cases) and non-TFI (controls) in 2 US infertility clinics, we assessed possible associations and effect modifiers between Pgp3 seropositivity and TFI using adjusted odds ratios with 95% confidence intervals (CIs) stratified by race. We then estimated the adjusted chlamydia population-attributable fraction with 95% CI of TFI. RESULTS All Black (n = 107) and 618 of 620 non-Black women had Pgp3 results. Pgp3 seropositivity was 25.9% (95% CI, 19.3%-33.8%) for non-Black cases, 15.2% (95% CI, 12.3%-18.7%) for non-Black controls, 66.0% (95% CI, 51.7%-77.8%) for Black cases, and 71.7% (95% CI, 59.2%-81.5%) for Black controls. Among 476 non-Black women without endometriosis (n = 476), Pgp3 was associated with TFI (adjusted odds ratio, 2.6 [95% CI, 1.5-4.4]), adjusting for clinic, age, and income; chlamydia TFI-adjusted population-attributable fraction was 19.8% (95% CI, 7.7%-32.2%) in these women. Pgp3 positivity was not associated with TFI among non-Black women with endometriosis or among Black women (regardless of endometriosis). CONCLUSIONS Among non-Black infertile women without endometriosis in these clinics, 20% of TFI was attributed to chlamydia. Better biomarkers are needed to estimate chlamydia TFI PAF, especially in Black women.
Collapse
Affiliation(s)
- Gloria E. Anyalechi
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta GA
| | - Jaeyoung Hong
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta GA
| | - Robert D. Kirkcaldy
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta GA
| | - Harold C. Wiesenfeld
- University of Pittsburgh School of Medicine and Magee-Womens Research Institute, Pittsburgh, PA
| | - Paddy Horner
- Population Health Sciences and National Institute for Health Research, Health Protection Research Unit in Behavioural Science and Evaluation in Partnership with Public Health England, University of Bristol, Bristol, UK
| | - Gillian S. Wills
- Section of Infectious Diseases Jefferiss Research Trust Laboratories Wright-Fleming Institute, Faculty of Medicine, Imperial College London, St Mary’s Campus
| | - Myra O. McClure
- Section of Infectious Diseases Jefferiss Research Trust Laboratories Wright-Fleming Institute, Faculty of Medicine, Imperial College London, St Mary’s Campus
| | | | - Catherine L. Haggerty
- University of Pittsburgh Graduate School of Public Health Department of Epidemiology and Magee-Womens Research Institute, Pittsburgh, PA
| | - Dmitry M. Kissin
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta GA
| | - Edward W. Hook
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Kyle Bernstein
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta GA
| | - William M. Geisler
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
27
|
Liu Y, Xiang J, Hu X, Wang H, Sun Y. Expression profile screening and bioinformatics analysis of CircRNA, LncRNA, and mRNA in HeLa cells infected with Chlamydia muridarum. Arch Microbiol 2022; 204:352. [PMID: 35622163 DOI: 10.1007/s00203-022-02941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/02/2022]
Abstract
We have previously shown that circRNAs in host cells are involved in the process of Chlamydia trachomatis infection. In this study we aimed to identify significantly altered circRNAs/lncRNAs/mRNAs in Chlamydia muridarum infected cells and investigate their biological functions in the interaction between Chlamydia muridarum and host cells. For this purpose, circRNA, lncRNA and mRNA expression profiles were screened and identified in HeLa cells with or without Chlamydia muridarum infection by microarray. Bioinformatics analyses including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) analysis were then carried out and the circRNA-miRNA ceRNA network was constructed. The differentially expressed circRNAs and lncRNAs were selected for validation by RT-qPCR. The results shown that a total of 834 circRNAs, 2149 lncRNAs and 1283 mRNAs were found to be differentially expressed. Enrichment analysis of GO and KEGG showed that the dysregulated genes involved nuclear-transcribed mRNA catabolic process, protein binding, RNA catabolic process and translation, the MAPK signaling pathway, apoptosis, Toll-like receptor signaling pathway, cAMP signaling pathway and Notch signaling pathway may play important roles in Chlamydia infection. Our study provides a systematic outlook on the potential function of non-coding RNAs in the molecular basis of Chlamydia infection.
Collapse
Affiliation(s)
- Yuanjun Liu
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junqiu Xiang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xinyue Hu
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Huiping Wang
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yina Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
28
|
Peng L, Gao J, Hu Z, Zhang H, Tang L, Wang F, Cui L, Liu S, Zhao Y, Xu H, Su X, Feng X, Fang Y, Chen J. A Novel Cleavage Pattern of Complement C5 Induced by Chlamydia trachomatis Infection via the Chlamydial Protease CPAF. Front Cell Infect Microbiol 2022; 11:732163. [PMID: 35087765 PMCID: PMC8787135 DOI: 10.3389/fcimb.2021.732163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
Urogenital Chlamydia trachomatis infection is one of the most common bacterial sexually transmitted diseases globally. Untreated C. trachomatis infections can ascend to the upper genital tract and establish a series of severe complications. Previous studies using C3−/− and C5−/− mice models demonstrated that C3-independent activation of C5 occurred during C. trachomatis infection. However, the mechanism of how chlamydial infection activates C5 in the absence of C3 has yet to be elucidated. To delineate interactions between C5 and chlamydial infection, cleavage products in a co-incubation system containing purified human C5 and C. trachomatis-HeLa229 cell lysates were analyzed, and a novel cleavage pattern of C5 activation induced by C. trachomatis infection was identified. C5 was cleaved efficiently at the previously unidentified site K970, but was cleaved poorly at site R751. C5b was modified to C5bCt, which later formed C5bCt-9, which had enhanced lytic ability compared with C5b-9. The chlamydial serine protease CPAF contributed to C3-independent C5 activation during C. trachomatis infection. Nafamostat mesylate, a serine protease inhibitor with a good safety profile, had a strong inhibitory effect on C5 activation induced by chlamydial infection. These discoveries reveal the mechanism of C3-independent C5 activation induced by chlamydial infection, and furthermore provide a potential therapeutic target and drug for preventing tubal fibrosis caused by chlamydial infection.
Collapse
Affiliation(s)
- Liang Peng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingping Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zihao Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongbo Zhang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingli Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fuyan Wang
- Department of Immunology, School of Basic Medical Science, Central South University, Changsha, China
| | - Lei Cui
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yujie Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin Su
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojing Feng
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiyuan Fang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianlin Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Zhou Z, Tian Q, Wang L, Zhong G. Chlamydia Deficient in Plasmid-Encoded Glycoprotein 3 (pGP3) as an Attenuated Live Oral Vaccine. Infect Immun 2022; 90:e0047221. [PMID: 35100010 PMCID: PMC8929356 DOI: 10.1128/iai.00472-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the extensive efforts, there is still a lack of a licensed vaccine against Chlamydia trachomatis in humans. The mouse genital tract infection with Chlamydia muridarum has been used to both investigate chlamydial pathogenic mechanisms and evaluate vaccine candidates due to the C. muridarum's ability to induce mouse hydrosalpinx. C. muridarum mutants lacking the entire plasmid or deficient in only the plasmid-encoded pGP3 are highly attenuated in inducing hydrosalpinx. We now report that intravaginal immunization with these mutants as live attenuated vaccines protected mice from hydrosalpinx induced by wild type C. muridarum. However, these mutants still productively infected the mouse genital tract. Further, the mutant-infected mice were only partially protected against the subsequent infection with wild type C. muridarum. Thus, these mutants as vaccines are neither safe nor effective when they are delivered via the genital tract. Interestingly, these mutants were highly deficient in colonizing the gastrointestinal tract. Particularly, the pGP3-deficient mutant failed to shed live organisms from mice following an oral inoculation, suggesting that the pGP3-deficient mutant may be developed into a safe oral vaccine. Indeed, oral inoculation with the pGP3-deficient mutant induced robust transmucosal immunity against both the infection and pathogenicity of wild type C. muridarum in the genital tract. Thus, we have demonstrated that the plasmid-encoded virulence factor pGP3 may be targeted for developing an attenuated live oral vaccine.
Collapse
Affiliation(s)
- Zengzi Zhou
- The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Qi Tian
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan, China
| | - Luying Wang
- The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, Texas, USA
| |
Collapse
|
30
|
Huang Y, Wurihan W, Lu B, Zou Y, Wang Y, Weldon K, Fondell JD, Lai Z, Wu X, Fan H. Robust Heat Shock Response in Chlamydia Lacking a Typical Heat Shock Sigma Factor. Front Microbiol 2022; 12:812448. [PMID: 35046926 PMCID: PMC8762339 DOI: 10.3389/fmicb.2021.812448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cells reprogram their transcriptome in response to stress, such as heat shock. In free-living bacteria, the transcriptomic reprogramming is mediated by increased DNA-binding activity of heat shock sigma factors and activation of genes normally repressed by heat-induced transcription factors. In this study, we performed transcriptomic analyses to investigate heat shock response in the obligate intracellular bacterium Chlamydia trachomatis, whose genome encodes only three sigma factors and a single heat-induced transcription factor. Nearly one-third of C. trachomatis genes showed statistically significant (≥1.5-fold) expression changes 30 min after shifting from 37 to 45°C. Notably, chromosomal genes encoding chaperones, energy metabolism enzymes, type III secretion proteins, as well as most plasmid-encoded genes, were differentially upregulated. In contrast, genes with functions in protein synthesis were disproportionately downregulated. These findings suggest that facilitating protein folding, increasing energy production, manipulating host activities, upregulating plasmid-encoded gene expression, and decreasing general protein synthesis helps facilitate C. trachomatis survival under stress. In addition to relieving negative regulation by the heat-inducible transcriptional repressor HrcA, heat shock upregulated the chlamydial primary sigma factor σ66 and an alternative sigma factor σ28. Interestingly, we show for the first time that heat shock downregulates the other alternative sigma factor σ54 in a bacterium. Downregulation of σ54 was accompanied by increased expression of the σ54 RNA polymerase activator AtoC, thus suggesting a unique regulatory mechanism for reestablishing normal expression of select σ54 target genes. Taken together, our findings reveal that C. trachomatis utilizes multiple novel survival strategies to cope with environmental stress and even to replicate. Future strategies that can specifically target and disrupt Chlamydia’s heat shock response will likely be of therapeutic value.
Collapse
Affiliation(s)
- Yehong Huang
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Wurihan Wurihan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Bin Lu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Yuxuan Wang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Joseph D Fondell
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States.,Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Xiang Wu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
31
|
Characterization of pathogenic CD8 + T cells in Chlamydia-infected OT1 mice. Infect Immun 2021; 90:e0045321. [PMID: 34724387 DOI: 10.1128/iai.00453-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis is a leading infectious cause of infertility in women due to its induction of lasting pathology such as hydrosalpinx. Chlamydia muridarum induces mouse hydrosalpinx because C. muridarum can both invade tubal epithelia directly (as a 1st hit) and induce lymphocytes to promote hydrosalpinx indirectly (as a 2nd hit). In the current study, a critical role of CD8+ T cells in chlamydial induction of hydrosalpinx was validated in both wild type C57BL/6J and OT1 transgenic mice. OT1 mice failed to develop hydrosalpinx partially due to the failure of their lymphocytes to recognize chlamydial antigens. CD8+ T cells from naïve C57BL/6J rescued the recipient OT1 mice to develop hydrosalpinx when naïve CD8+ T cells were transferred at the time of infection with Chlamydia. However, when the transfer was delayed for 2 weeks or longer after the chlamydial infection, naïve CD8+ T cells no longer promoted hydrosalpinx. Nevertheless, Chlamydia-immunized CD8+ T cells still promoted significant hydrosalpinx in the recipient OT1 mice even when the transfer was delayed for 3 weeks. Thus, CD8+ T cells must be primed within 2 weeks after chlamydial infection to be pathogenic but once primed, they can promote hydrosalpinx for >3 weeks. However, Chlamydia-primed CD4+ T cells failed to promote chlamydial induction of pathology in OT1 mice. This study has optimized an OT1 mouse-based model for revealing the pathogenic mechanisms of Chlamydia-specific CD8+ T cells.
Collapse
|
32
|
Liu C, Hufnagel K, O'Connell CM, Goonetilleke N, Mokashi N, Waterboer T, Tollison TS, Peng X, Wiesenfeld HC, Hillier SL, Zheng X, Darville T. Reduced Endometrial Ascension and Enhanced Reinfection Associated with IgG Antibodies to Specific Chlamydia trachomatis Proteins in Women at Risk for Chlamydia. J Infect Dis 2021; 225:846-855. [PMID: 34610131 DOI: 10.1093/infdis/jiab496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous research revealed antibodies targeting Chlamydia trachomatis (CT) elementary bodies was not associated with reduced endometrial or incident infection in CT-exposed women. However, data on the role of CT protein-specific antibodies in protection are limited. METHODS A whole-proteome CT array screening serum pools from CT-exposed women identified 121 immunoprevalent proteins. Individual sera were probed using a focused array. IgG antibody frequencies and endometrial or incident infection relationships were examined using Wilcoxon Rank sum test. The impact of breadth and magnitude of protein-specific IgGs on ascension and incident infection were examined using multivariable stepwise logistic regression. Complementary RNA-sequencing quantified CT gene transcripts in cervical swabs from infected women. RESULTS IgG to Pgp3 and CT005 were associated with reduced endometrial infection; anti-CT443, -CT486 and -CT123 were associated with increased incident infection. Increased breadth of protein recognition did not however predict protection from endometrial or incident infection. mRNAs for immunoprevalent CT proteins were highly abundant in the cervix. CONCLUSIONS Protein-specific CT antibodies are not sufficient to protect against ascending or incident infection but broad recognition of CT proteins by IgG correlates with cervical CT gene transcript abundance, suggesting CT protein abundance correlates with immunogenicity and signifies their potential as vaccine candidates.
Collapse
Affiliation(s)
- Chuwen Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katrin Hufnagel
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Neha Mokashi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Tammy S Tollison
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Harold C Wiesenfeld
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Pittsburgh School of Medicine, The Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Sharon L Hillier
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Pittsburgh School of Medicine, The Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Xiaojing Zheng
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
33
|
Abstract
Chlamydia in the genital tract is known to spread via the blood circulation system to the large intestinal lumen to achieve long-lasting colonization. However, the precise pathways for genital Chlamydia to access to the large intestinal lumen remain unclear. The spleen was recently reported to be critical for the chlamydial spreading. In the current study, it was found that following intravaginal inoculation with Chlamydia, mice with or without splenectomy both produced infectious Chlamydia in the rectal swabs, indicating that spleen is not essential for genital Chlamydia to spread to the gastrointestinal tract. This conclusion was validated by the observation that intravenously inoculated Chlamydia was also detected in the rectal swabs of mice regardless of splenectomy. Careful comparison of the tissue distribution of live chlamydial organisms following intravenous inoculation revealed redundant pathways for Chlamydia to reach the large intestine lumen. The intravenously inoculated Chlamydia was predominantly recruited to the spleen within 12h and then detected in the stomach lumen by 24h, the intestinal lumen by 48h and rectal swabs by 72h. These observations suggest a potential spleen-to-stomach pathway for hematogenous Chlamydia to reach the large intestine lumen. This conclusion was supported by the observation made in mice under coprophagy-free condition. However, in the absence of spleen, hematogenous Chlamydia was predominantly recruited to the liver and then simultaneously detected in the intestinal tissue and lumen, suggesting a potential liver-to-intestine pathway for Chlamydia to reach the large intestine lumen. Thus, genital/hematogenous Chlamydia may reach the large intestinal lumen via multiple redundant pathways.
Collapse
|
34
|
Danavall DC, Gwyn S, Anyalechi GE, Bowden KE, Hong J, Kirkcaldy RD, Bernstein KT, Kersh EN, Martin D, Raphael BH. Assessment and utility of 2 Chlamydia trachomatis Pgp3 serological assays for seroprevalence studies among women in the United States. Diagn Microbiol Infect Dis 2021; 101:115480. [PMID: 34325205 DOI: 10.1016/j.diagmicrobio.2021.115480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/27/2022]
Abstract
Two plasmid gene protein (Pgp3)-based serological assays, the Pgp3-ELISA and multiplex bead assay (Pgp3-MBA), were compared and used to estimate seropositivity of Chlamydia trachomatis (CT) among females 14 to 39 years old participating in the National Health and Nutrition Examination Survey between 2013-2016. Of the 2,201 specimens tested, 502 (29.5%, 95% CI 27.6-31.5) were positive using Pgp3-ELISA and 624 (28.4%, 95% CI 26.5-30.3) were positive using Pgp3-MBA. The overall agreement between the assays was 87.7%. Corresponding nucleic acid amplification test (NAAT) results were available for 1,725 specimens (from women 18-39 years old); of these, 42 (2.4%, 95% CI 1.8-3.3) were CT NAAT-positive. Most of the CT NAAT-positive specimens had corresponding positive serological assay results; 33 (78.6%, 95% CI 62.8-89.2) were Pgp3-ELISA-positive and 36 (85.7%, 95% CI 70.8-94.1) were Pgp3-MBA-positive. Although Pgp3-ELISA and Pgp3-MBA demonstrated equivalent performance in this study, an advantage of the Pgp3-MBA over Pgp3-ELISA is that it is well suited for high sample throughput applications.
Collapse
Affiliation(s)
- Damien C Danavall
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Sarah Gwyn
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gloria E Anyalechi
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Katherine E Bowden
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jaeyoung Hong
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Robert D Kirkcaldy
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kyle T Bernstein
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ellen N Kersh
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diana Martin
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brian H Raphael
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
35
|
Gastrointestinal Chlamydia-induced CD8 + T cells promote chlamydial pathogenicity in the female upper genital tract. Infect Immun 2021; 89:e0020521. [PMID: 34227838 DOI: 10.1128/iai.00205-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia is known to both ascend to the upper genital tract and spread to the gastrointestinal tract following intravaginal inoculation. The gastrointestinal Chlamydia was recently reported to promote chlamydial pathogenicity in the genital tract since mice intravaginally inoculated with an attenuated Chlamydia, which alone failed to develop pathology in the genital tract, were restored to develop hydrosalpinx by intragastric co-inoculation with wild type Chlamydia. Gastrointestinal Chlamydia promoted hydrosalpinx via an indirect mechanism since Chlamydia in the gut did not directly spread to the genital tract lumen. In the current study, we further investigated the role of CD8+ T cells in the promotion of hydrosalpinx by gastrointestinal Chlamydia. First, we confirmed that intragastric co-inoculation with wild type Chlamydia promoted hydrosalpinx in mice that were inoculated with an attenuated Chlamydia in the genital tract one week earlier. Second, the promotion of hydrosalpinx by intragastrically co-inoculated Chlamydia was blocked by depleting CD8+ T cells. Third, adoptive transfer of the gastrointestinal Chlamydia-induced CD8+ T cells was sufficient for promoting hydrosalpinx in mice that were intravaginally inoculated with an attenuated Chlamydia. These observations have demonstrated that CD8+ T cells induced by gastrointestinal Chlamydia are both necessary and sufficient for promoting hydrosalpinx in the genital tract. The study has laid a foundation for further revealing the mechanisms by which Chlamydia-induced T lymphocyte responses (as a 2nd hit) promote hydrosalpinx in mice with genital Chlamydia-triggered tubal injury (as a 1st hit), a continuing effort in testing the two-hit hypothesis as a chlamydial pathogenic mechanism.
Collapse
|
36
|
A Chlamydial Plasmid-Dependent Secretion System for the Delivery of Virulence Factors to the Host Cytosol. mBio 2021; 12:e0117921. [PMID: 34101486 PMCID: PMC8262877 DOI: 10.1128/mbio.01179-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chlamydia are obligate intracellular Gram-negative bacteria distinguished by a unique developmental biology confined within a parasitophorous vacuole termed an inclusion. The chlamydial plasmid is a central virulence factor in the pathogenesis of infection. Plasmid gene protein 4 (Pgp4) regulates the expression of plasmid gene protein 3 (Pgp3) and chromosomal glycogen synthase (GlgA), virulence factors secreted from the inclusion to the host cytosol by an unknown mechanism. Here, we identified a plasmid-dependent secretion system for the cytosolic delivery of Pgp3 and GlgA. The secretion system consisted of a segregated population of globular structures originating from midcycle reticulate bodies. Globular structures contained the Pgp4-regulated proteins CT143, CT144, and CT050 in addition to Pgp3 and GlgA. Genetic replacement of Pgp4 with Pgp3 or GlgA negated the formation of globular structures, resulting in retention of Pgp3 and GlgA in chlamydial organisms. The generation of globular structures and secretion of virulence factors occurred independently of type 2 and type 3 secretion systems. Globular structures were enriched with lipopolysaccharide but lacked detectable major outer membrane protein and heat shock protein 60, implicating them as outer membrane vesicles. Thus, we have discovered a novel chlamydial plasmid-dependent secretion system that transports virulence factor cargo from the chlamydial inclusion to the host cytosol.
Collapse
|
37
|
Anyalechi GE, Hong J, Danavall DC, Martin DL, Gwyn SE, Horner PJ, Raphael BH, Kirkcaldy RD, Kersh EN, Bernstein KT. High Pgp3 Chlamydia trachomatis seropositivity, pelvic inflammatory disease and infertility among women, National Health and Nutrition Examination Survey, United States, 2013-2016. Clin Infect Dis 2021; 73:1507-1516. [PMID: 34050737 DOI: 10.1093/cid/ciab506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Chlamydia trachomatis causes pelvic inflammatory disease (PID) and tubal infertility. Pgp3 antibody (Pgp3Ab) detects prior chlamydial infections. We evaluated for an association of high chlamydial seropositivity with sequelae using a Pgp3Ab multiplex bead array (Pgp3AbMBA). METHODS We performed chlamydia Pgp3AbMBA on sera from women 18-39 years old participating in the 2013-2016 National Health and Nutrition Examination Survey (NHANES) with urine chlamydia nucleic acid amplification test results. High chlamydial seropositivity was defined as a median fluorescence intensity (MFI ≥ 50,000; low-positive was MFI > 551-<50,000. Weighted US population high-positive, low-positive, and negative Pgp3Ab chlamydia seroprevalence and 95% confidence intervals (95% CI) were compared for women with chlamydial infection, self-reported PID, and infertility. RESULTS Of 2,339 women aged 18-39 years, 1,725 (73.7%) had sera and 1,425 were sexually experienced. Overall, 104 women had high positive Pgp3Ab (5.4% [95% CI 4.0-7.0] of US women); 407 had low positive Pgp3Ab (25.1% [95% CI 21.5-29.0]), and 914 had negative Pgp3Ab (69.5% [95% CI 65.5-73.4]).Among women with high Pgp3Ab, infertility prevalence was 2.0 (95% CI 1.1-3.7) times higher than among Pgp3Ab-negative women (19.6% [95% CI 10.5-31.7] versus 9.9% [95% CI 7.7-12.4]). For women with low Pgp3Ab, PID prevalence was 7.9% (95% CI 4.6-12.6) compared to 2.3% (95% CI 1.4-3.6) in negative Pgp3Ab. CONCLUSIONS High chlamydial Pgp3Ab seropositivity was associated with infertility although small sample size limited evaluation of an association of high seropositivity with PID. In infertile women, Pgp3Ab may be a marker of prior chlamydial infection.
Collapse
Affiliation(s)
- Gloria E Anyalechi
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jaeyoung Hong
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Damien C Danavall
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diana L Martin
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sarah E Gwyn
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Patrick J Horner
- Population Health Sciences and National Institute for Health Research, Health Protection Research Unit in Behavioural Science and Evaluation in Partnership with Public Health England, University of Bristol, Bristol, UK
| | - Brian H Raphael
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Robert D Kirkcaldy
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ellen N Kersh
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kyle T Bernstein
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
38
|
Hu C, Wu H, Sun Y, Kong J, Shao L, Chen X, Liu Q, Liu Y. GlgA plays an important role in the induction of hydrosalpinx by Chlamydia muridarum. Pathog Dis 2021; 78:5857168. [PMID: 32533831 DOI: 10.1093/femspd/ftaa027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/12/2020] [Indexed: 01/10/2023] Open
Abstract
While glycogen synthase A deficiency can reduce the growth and proliferation of Chlamydia muridarum, the effect of glycogen synthase A on the pathogenic process of C. muridarum remains unclear. To characterize the effect of glycogen synthase A deficiency on the pathogenicity of C. muridarum in the genital tract, BALB/c mice were intravaginally inoculated with wild-type, plasmid-free and glycogen synthase A-deficient C. muridarum, and the genital tract tissue was isolated to assess the severity of hydrosalpinx and the levels of oviduct dilatation at day 60 after infection. The glycogen storage capacity and in vitro infection ability of different C. muridarum strains were analyzed by periodic acid-Schiff staining and quantification of progeny elementary body(EB) formation. The tissue homogenate was used to determine the recovery of different C. muridarum strains. The results show that glycogen synthase A-deficient C. muridarum induced reduction of hydrosalpinx and attenuated the extent of oviduct dilatation in mice, and exhibited reduced growth and proliferation in the mouse lower genital tract. In addition, glycogen synthase A point mutations at different sites reduced the glycogen storage capacity and in vitro infectivity of C. muridarum to different degrees. Glycogen synthase A deficiency also reduced the host inflammatory reaction and ascending infection of C. muridarum.
Collapse
Affiliation(s)
- Chunmin Hu
- Department of Dermatovenereology, Tianjin Medical University General Hospital, 154 Anshan Rd., Tianjin 300052, PR China
| | - Haoqing Wu
- Department of Dermatovenereology, Tianjin Medical University General Hospital, 154 Anshan Rd., Tianjin 300052, PR China
| | - Yina Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, 22 Qixiangtai Rd., Tianjin 300070, China
| | - Jie Kong
- Department of Dermatovenereology, Tianjin Medical University General Hospital, 154 Anshan Rd., Tianjin 300052, PR China
| | - LiLi Shao
- Department of Dermatovenereology, Tianjin Medical University General Hospital, 154 Anshan Rd., Tianjin 300052, PR China
| | - Xiaojun Chen
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry, Tianjin Medical University, Tianjin 300070, China
| | - Quanzhong Liu
- Department of Dermatovenereology, Tianjin Medical University General Hospital, 154 Anshan Rd., Tianjin 300052, PR China
| | - Yuanjun Liu
- Department of Dermatovenereology, Tianjin Medical University General Hospital, 154 Anshan Rd., Tianjin 300052, PR China
| |
Collapse
|
39
|
Banerjee A, Nelson DE. The growing repertoire of genetic tools for dissecting chlamydial pathogenesis. Pathog Dis 2021; 79:ftab025. [PMID: 33930127 PMCID: PMC8112481 DOI: 10.1093/femspd/ftab025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/28/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple species of obligate intracellular bacteria in the genus Chlamydia are important veterinary and/or human pathogens. These pathogens all share similar biphasic developmental cycles and transition between intracellular vegetative reticulate bodies and infectious elementary forms, but vary substantially in their host preferences and pathogenic potential. A lack of tools for genetic engineering of these organisms has long been an impediment to the study of their biology and pathogenesis. However, the refinement of approaches developed in C. trachomatis over the last 10 years, and adaptation of some of these approaches to other Chlamydia spp. in just the last few years, has opened exciting new possibilities for studying this ubiquitous group of important pathogens.
Collapse
Affiliation(s)
- Arkaprabha Banerjee
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
40
|
Shu M, Lei W, Su S, Wen Y, Luo F, Zhao L, Chen L, Lu C, Zhou Z, Li Z. Chlamydia trachomatis Pgp3 protein regulates oxidative stress via activation of the Nrf2/NQO1 signal pathway. Life Sci 2021; 277:119502. [PMID: 33891941 DOI: 10.1016/j.lfs.2021.119502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 01/10/2023]
Abstract
AIM Chlamydia trachomatis has evolved various strategies to alleviate oxidative stress of host cells to maintain their intracellular survival. However, the exact mechanism of anti-oxidative stress of C. trachomatis is still unclear. The activation of nuclear factor erythroid 2-related factor 2/quinone oxidoreductase (Nrf2/NQO1) signal pathway has been identified as an efficient antioxidant defensive mechanism used by host cells to counteract oxidative stress. Pgp3 is a pivotal virulence factor of C. trachomatis involved in intracellular survival. The aim of this study is to explore the role of Pgp3 on Nrf2/NQO1 signal pathway against oxidative stress. MAIN METHODS After HeLa cells were stimulated with Pgp3 protein, Nrf2 location and the inclusion bodies of C. trachomatis were detected by indirect immunofluorescence, western blotting and Oxidative stress assay kits were used to separately determine the protein expression and the content of malondialdehyde (MDA), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) before and after the interference of Nrf-2 and NQO1. KEY FINDINGS Pgp3 promoted the nuclear translocation of Nrf2 to increase NQO1 expression and reduced oxidative stress induced by LPS to contribute to the survival of C. trachomatis. Inhibition of Nrf2/NQO1 signal pathway with Nrf2 inhibitor and down-regulation of NQO1 with siRNA-NQO1 suppressed oxidative stress resistance induced by Pgp3. SIGNIFICANCE Here we found that Pgp3 alleviated oxidative stress to promote the infectivity of C. trachomatis through activation of Nrf2/NQO1 signal pathway, which provided a novel understanding of the effects of Pgp3 in the pathogenesis of C. trachomatis.
Collapse
Affiliation(s)
- Mingyi Shu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Wenbo Lei
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Shengmei Su
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Fangzhen Luo
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Lanhua Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Lili Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Zhou Zhou
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China.
| |
Collapse
|
41
|
Zhong G. Chlamydia overcomes multiple gastrointestinal barriers to achieve long-lasting colonization. Trends Microbiol 2021; 29:1004-1012. [PMID: 33865675 DOI: 10.1016/j.tim.2021.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/19/2022]
Abstract
Chlamydia trachomatis (CT) is frequently detected in the human gastrointestinal (GI) tract despite its leading role in sexually transmitted bacterial infections in the genital tract. Chlamydia muridarum (CM), a model pathogen for investigating CT pathogenesis in the genital tract, can also colonize the mouse GI tract for long periods. Genital-tract mutants of CM no longer colonize the GI tract. The mutants lacking plasmid functions are more defective in colonizing the upper GI tract while certain chromosomal gene-deficient mutants are more defective in the lower GI tract, suggesting that Chlamydia may use the plasmid for promoting its spread to the large intestine while using the chromosome-encoded factors for maintaining its colonization in the large intestine. The plasmid-encoded Pgp3 is critical for Chlamydia to resist the acid barrier in the stomach and to overcome a CD4+ T cell barrier in the small intestine. On reaching the large intestine, Pgp3 is no longer required. Instead, the chromosome-encoded open reading frames TC0237/TC0668 become essential for Chlamydia to evade the group 3-like innate lymphoid cell-secreted interferon (IFN)γ in the large intestine. These findings are important for exploring the medical significance of chlamydial colonization in the gut and for understanding the mechanisms of chlamydial pathogenicity in the genital tract.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
42
|
Kallon S, Samir S, Goonetilleke N. Vaccines: Underlying Principles of Design and Testing. Clin Pharmacol Ther 2021; 109:987-999. [PMID: 33705574 PMCID: PMC8048882 DOI: 10.1002/cpt.2207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/09/2021] [Indexed: 11/07/2022]
Abstract
In this paper, we review the key elements that should be considered to take a novel vaccine from the laboratory through to licensure in the modern era. This paper is divided into four sections. First, we discuss the host immune responses that we engage with vaccines. Second, we discuss how in vivo and in vitro studies can inform vaccine design. Third, we discuss different vaccine modalities that have been licensed or are in testing in humans. Last, we overview the basic principles of vaccine approvals. Throughout we provide real-world examples of vaccine development against infectious diseases, including coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Sallay Kallon
- Department of Microbiology & ImmunologyUNC‐Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
| | - Shahryar Samir
- Department of Microbiology & ImmunologyUNC‐Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
| | - Nilu Goonetilleke
- Department of Microbiology & ImmunologyUNC‐Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
- UNC HIV Cure CenterUNC‐Chapel Hill School of MedicineChapel HillNorth CarolinaUSA
| |
Collapse
|
43
|
Dockterman J, Coers J. Immunopathogenesis of genital Chlamydia infection: insights from mouse models. Pathog Dis 2021; 79:ftab012. [PMID: 33538819 PMCID: PMC8189015 DOI: 10.1093/femspd/ftab012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chlamydiae are pathogenic intracellular bacteria that cause a wide variety of diseases throughout the globe, affecting the eye, lung, coronary arteries and female genital tract. Rather than by direct cellular toxicity, Chlamydia infection generally causes pathology by inducing fibrosis and scarring that is largely mediated by host inflammation. While a robust immune response is required for clearance of the infection, certain elements of that immune response may also damage infected tissue, leading to, in the case of female genital infection, disease sequelae such as pelvic inflammatory disease, infertility and ectopic pregnancy. It has become increasingly clear that the components of the immune system that destroy bacteria and those that cause pathology only partially overlap. In the ongoing quest for a vaccine that prevents Chlamydia-induced disease, it is important to target mechanisms that can achieve protective immunity while preventing mechanisms that damage tissue. This review focuses on mouse models of genital Chlamydia infection and synthesizes recent studies to generate a comprehensive model for immunity in the murine female genital tract, clarifying the respective contributions of various branches of innate and adaptive immunity to both host protection and pathogenic genital scarring.
Collapse
Affiliation(s)
- Jacob Dockterman
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
| | - Jörn Coers
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 22710, USA
| |
Collapse
|
44
|
Shima K, Kaufhold I, Eder T, Käding N, Schmidt N, Ogunsulire IM, Deenen R, Köhrer K, Friedrich D, Isay SE, Grebien F, Klinger M, Richer BC, Günther UL, Deepe GS, Rattei T, Rupp J. Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of Chlamydia trachomatis during Treatment with β-Lactam Antimicrobials. mBio 2021; 12:e00023-21. [PMID: 33785629 PMCID: PMC8092193 DOI: 10.1128/mbio.00023-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for C. trachomatis regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In C. trachomatis infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, C. trachomatis increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of C. trachomatis during treatment with β-lactam antimicrobials.IMPORTANCE The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, β-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how C. trachomatis undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with β-lactam antimicrobials.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Inga Kaufhold
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Thomas Eder
- Division of Computational Systems Biology, University Vienna, Vienna, Austria
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nadja Käding
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Nis Schmidt
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Iretiolu M Ogunsulire
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - René Deenen
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dirk Friedrich
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Sophie E Isay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Barbara C Richer
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - Ulrich L Günther
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - George S Deepe
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Thomas Rattei
- Division of Computational Systems Biology, University Vienna, Vienna, Austria
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| |
Collapse
|
45
|
He C, Xu Y, Huo Z, Wang J, Jia T, Li XD, Zhong G. Regulation of Chlamydia spreading from the small intestine to the large intestine via an immunological barrier. Immunol Cell Biol 2021; 99:611-621. [PMID: 33565158 DOI: 10.1111/imcb.12446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
The obligate intracellular bacterium Chlamydia is a genital tract pathogen that can also colonize the gastrointestinal tract for long periods. The long-lasting colonization is dependent on chlamydial spreading from the small intestine to the large intestine. We previously reported that a mutant Chlamydia was able to activate an intestinal barrier for blocking its own spreading to the large intestine. In the current study, we used the mutant Chlamydia colonization model to confirm the intestinal barrier function and further to determine the immunological basis of the barrier with gene-deficient mice. Recombination activating gene 1-/- mice failed to block the mutant Chlamydia spreading, while mice deficient in toll-like receptors, myeloid differentiation primary response 88 or stimulator of interferon genes still blocked the spreading, suggesting that the intestinal barrier function is dependent on lymphocytes that express antigen receptors. Mice deficient in CD4, but not CD8 nor μ chain failed to prevent the chlamydial spreading, indicating a protective role of CD4+ cells in the intestinal barrier. Consistently, adoptive transfer of CD4+ T cells reconstituted the intestinal barrier in CD4-/- mice. More importantly, CD4+ but not CD8+ T cells nor B cells restored the intestinal barrier function in recombination activating gene 1-/- mice. Thus, CD4+ T cells are necessary and sufficient for maintaining the intestinal barrier function, indicating that the spread of an intracellular bacterium from the small intestine to the large intestine is regulated by an immunological barrier. This study has also laid a foundation for further illuminating the mechanisms by which a CD4+ T cell-dependent intestinal barrier regulates bacterial spreading in the gut.
Collapse
Affiliation(s)
- Conghui He
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Immunology, Medical College of Hebei North University, Zhangjiakou, Hebei, China
| | - Ying Xu
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Immunology, Xiangya School of Medicine, Central South University, Changsha City, Hunan, China
| | - Zhi Huo
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Immunology, Xiangya School of Medicine, Central South University, Changsha City, Hunan, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha City, Hunan, China
| | - Tianjun Jia
- Department of Immunology, Medical College of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiao-Dong Li
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
46
|
Köstlbacher S, Collingro A, Halter T, Domman D, Horn M. Coevolving Plasmids Drive Gene Flow and Genome Plasticity in Host-Associated Intracellular Bacteria. Curr Biol 2021; 31:346-357.e3. [PMID: 33157023 PMCID: PMC7846284 DOI: 10.1016/j.cub.2020.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022]
Abstract
Plasmids are important in microbial evolution and adaptation to new environments. Yet, carrying a plasmid can be costly, and long-term association of plasmids with their hosts is poorly understood. Here, we provide evidence that the Chlamydiae, a phylum of strictly host-associated intracellular bacteria, have coevolved with their plasmids since their last common ancestor. Current chlamydial plasmids are amalgamations of at least one ancestral plasmid and a bacteriophage. We show that the majority of plasmid genes are also found on chromosomes of extant chlamydiae. The most conserved plasmid gene families are predominantly vertically inherited, while accessory plasmid gene families show significantly increased mobility. We reconstructed the evolutionary history of plasmid gene content of an entire bacterial phylum over a period of around one billion years. Frequent horizontal gene transfer and chromosomal integration events illustrate the pronounced impact of coevolution with these extrachromosomal elements on bacterial genome dynamics in host-dependent microbes.
Collapse
Affiliation(s)
- Stephan Köstlbacher
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Astrid Collingro
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Tamara Halter
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Daryl Domman
- Wellcome Sanger Institute, Parasites and Microbes Programme, Hinxton, Cambridge CB10 1SA, UK; Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria.
| |
Collapse
|
47
|
Chen Q, Li Y, Yan X, Sun Z, Wang C, Liu S, Xiao J, Lu C, Wu Y. Chlamydia psittaci Plasmid-Encoded CPSIT_P7 Elicits Inflammatory Response in Human Monocytes via TLR4/Mal/MyD88/NF-κB Signaling Pathway. Front Microbiol 2020; 11:578009. [PMID: 33343522 PMCID: PMC7744487 DOI: 10.3389/fmicb.2020.578009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/29/2020] [Indexed: 01/27/2023] Open
Abstract
The chlamydial plasmid, an essential virulence factor, encodes plasmid proteins that play important roles in chlamydial infection and the corresponding immune response. However, the virulence factors and the molecular mechanisms of Chlamydia psittaci are not well understood. In the present study, we investigated the roles and mechanisms of the plasmid-encoded protein CPSIT_P7 of C. psittaci in regulating the inflammatory response in THP-1 cells (human monocytic leukemia cell line). Based on cytokine arrays, CPSIT_P7 induces the expression of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1) in THP-1 cells. Moreover, the expression levels of IL-6, IL-8, and MCP-1 stimulated by CPSIT_P7 declined after silencing of the Toll-like receptor 4 (TLR4) gene using small interfering RNA and transfection of a dominant negative plasmid encoding TLR4 (pZERO-hTLR4). We further demonstrated that transfection with the dominant negative plasmid encoding MyD88 (pDeNy-hMyD88) and the dominant negative plasmid encoding Mal (pDeNy-hMal) could also abrogate the expression of the corresponding proteins. Western blot and immunofluorescence assay results showed that CPSIT_P7 could activate nuclear factor κB (NF-κB) signaling pathways in THP-1 cells. Altogether, our results indicate that the CPSIT_P7 induces the TLR4/Mal/MyD88/NF-κB signaling axis and therefore contributes to the inflammatory cytokine response.
Collapse
Affiliation(s)
- Qian Chen
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Institute of Clinical Research, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yumeng Li
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xiaoliang Yan
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhenjie Sun
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Chuan Wang
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Shuangquan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jian Xiao
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Chunxue Lu
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yimou Wu
- Institution of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
48
|
Effects of Immunomodulatory Drug Fingolimod (FTY720) on Chlamydia Dissemination and Pathogenesis. Infect Immun 2020; 88:IAI.00281-20. [PMID: 32868341 DOI: 10.1128/iai.00281-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Fingolimod (FTY720), an FDA-approved immunomodulatory drug for treating multiple sclerosis, is an agonist of sphingosine-1-phosphate receptor (S1PR), which has been used as a research tool for inhibiting immune cell trafficking. FTY720 was recently reported to inhibit Chlamydia dissemination. Since genital Chlamydia spreading to the gastrointestinal tract correlated with its pathogenicity in the upper genital tract, we evaluated the effect of FTY720 on chlamydial pathogenicity in the current study. Following an intravaginal inoculation, live chlamydial organisms were detected in mouse rectal swabs. FTY720 treatment significantly delayed live organism shedding in the rectal swabs. However, FTY720 failed to block chlamydial spreading to the gastrointestinal tract. The live chlamydial organisms recovered from rectal swabs reached similar levels between mice with or without FTY720 treatment by day 42 in C57BL/6J and day 28 in CBA/J mice, respectively. Thus, genital Chlamydia is able to launch a 2nd wave of spreading via an FTY720-resistant pathway after the 1st wave of spreading is inhibited by FTY720. As a result, all mice developed significant hydrosalpinx. The FTY720-resistant spreading led to stable colonization of chlamydial organisms in the colon. Consistently, FTY720 did not alter the colonization of intracolonically inoculated Chlamydia Thus, we have demonstrated that, following a delay in chlamydial spreading caused by FTY720, genital Chlamydia is able to both spread to the gastrointestinal tract via an FTY720-resistant pathway and maintain its pathogenicity in the upper genital tract. Further characterization of the FTY720-resistant pathway(s) explored by Chlamydia for spreading to the gastrointestinal tract may promote our understanding of Chlamydia pathogenic mechanisms.
Collapse
|
49
|
Xie L, He C, Chen J, Tang L, Zhou Z, Zhong G. Suppression of Chlamydial Pathogenicity by Nonspecific CD8 + T Lymphocytes. Infect Immun 2020; 88:e00315-20. [PMID: 32747602 PMCID: PMC7504968 DOI: 10.1128/iai.00315-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Chlamydia trachomatis, a leading infectious cause of tubal infertility, induces upper genital tract pathology, such as hydrosalpinx, which can be modeled with Chlamydia muridarum infection in mice. Following C. muridarum inoculation, wild-type mice develop robust hydrosalpinx, but OT1 mice fail to do so because their T cell receptors are engineered to recognize a single ovalbumin epitope (OVA457-462). These observations have demonstrated a critical role of Chlamydia-specific T cells in chlamydial pathogenicity. In the current study, we have also found that OT1 mice can actively inhibit chlamydial pathogenicity. First, depletion of CD8+ T cells from OT1 mice led to the induction of significant hydrosalpinx by Chlamydia, indicating that CD8+ T cells are necessary to inhibit chlamydial pathogenicity. Second, adoptive transfer of CD8+ T cells from OT1 mice to CD8 knockout mice significantly reduced chlamydial induction of hydrosalpinx, demonstrating that OT1 CD8+ T cells are sufficient for attenuating chlamydial pathogenicity in CD8 knockout mice. Finally, CD8+ T cells from OT1 mice also significantly inhibited hydrosalpinx development in wild-type mice following an intravaginal inoculation with Chlamydia Since T cells in OT1 mice are engineered to recognize only the OVA457-462 epitope, the above observations have demonstrated a chlamydial antigen-independent immune mechanism for regulating chlamydial pathogenicity. Further characterization of this mechanism may provide information for developing strategies to reduce infertility-causing pathology induced by infections.
Collapse
Affiliation(s)
- Lingxiang Xie
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Conghui He
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jianlin Chen
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lingli Tang
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
50
|
Chlamydia trachomatis Plasmid Gene Protein 3 Is Essential for the Establishment of Persistent Infection and Associated Immunopathology. mBio 2020; 11:mBio.01902-20. [PMID: 32817110 PMCID: PMC7439461 DOI: 10.1128/mbio.01902-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chlamydia trachomatis can cause persistent infection that drives damaging inflammatory responses resulting in infertility and blindness. Little is known about chlamydial genes that cause persistence or factors that drive damaging pathology. In this work, we show that the C. trachomatis plasmid protein gene 3 (Pgp3) is the essential virulence factor for establishing persistent female genital tract infection and provide supportive evidence that Pgp3 functions similarly in a nonhuman primate trachoma model. We further show that persistent Ppg3-dependent infection drives damaging immunopathology. These results are important advances in understanding the pathophysiology of chlamydial persistence. Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes blinding trachoma and sexually transmitted disease afflicting hundreds of millions of people globally. A fundamental but poorly understood pathophysiological characteristic of chlamydial infection is the propensity to cause persistent infection that drives damaging inflammatory disease. The chlamydial plasmid is a virulence factor, but its role in the pathogenesis of persistent infection capable of driving immunopathology is unknown. Here, we show by using mouse and nonhuman primate infection models that the secreted plasmid gene protein 3 (Pgp3) is essential for establishing persistent infection. Ppg3-dependent persistent genital tract infection resulted in a severe endometritis caused by an intense infiltration of endometrial submucosal macrophages. Pgp3 released from the cytosol of lysed infected oviduct epithelial cells, not organism outer membrane-associated Pgp3, inhibited the chlamydial killing activity of antimicrobial peptides. Genetic Pgp3 rescue experiments in cathelin-related antimicrobial peptide (CRAMP)-deficient mice showed Pgp3-targeted antimicrobial peptides to subvert innate immunity as a pathogenic strategy to establish persistent infection. These findings provide important advances in understanding the role of Pgp3 in the pathogenesis of persistent chlamydial infection and associated immunopathology.
Collapse
|