1
|
Espinoza ME, Swing AM, Elghraoui A, Modlin SJ, Valafar F. Interred mechanisms of resistance and host immune evasion revealed through network-connectivity analysis of M. tuberculosis complex graph pangenome. mSystems 2025; 10:e0049924. [PMID: 40261029 PMCID: PMC12013269 DOI: 10.1128/msystems.00499-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/16/2024] [Indexed: 04/24/2025] Open
Abstract
Mycobacterium tuberculosis complex successfully adapts to environmental pressures through mechanisms of rapid adaptation which remain poorly understood despite knowledge gained through decades of research. In this study, we used 110 reference-quality, complete de novo assembled, long-read sequenced clinical genomes to study patterns of structural adaptation through a graph-based pangenome analysis, elucidating rarely studied mechanisms that enable enhanced clinical phenotypes offering a novel perspective to the species' adaptation. Across isolates, we identified a pangenome of 4,325 genes (3,767 core and 558 accessory), revealing 290 novel genes, and a substantially more complete account of difficult-to-sequence esx/pe/pgrs/ppe genes. Seventy-four percent of core genes were deemed non-essential in vitro, 38% of which support the pathogen's survival in vivo, suggesting a need to broaden current perspectives on essentiality. Through information-theoretic analysis, we reveal the ppe genes that contribute most to the species' diversity-several with known consequences for antigenic variation and immune evasion. Construction of a graph pangenome revealed topological variations that implicate genes known to modulate host immunity (Rv0071-73, Rv2817c, cas2), defense against phages/viruses (cas2, csm6, and Rv2817c-2821c), and others associated with host tissue colonization. Here, the prominent trehalose transport pathway stands out for its involvement in caseous granuloma catabolism and the development of post-primary disease. We show paralogous duplications of genes implicated in bedaquiline (mmpL5 in all L1 isolates) and ethambutol (embC-A) resistance, with a paralogous duplication of its regulator (embR) in 96 isolates. We provide hypotheses for novel mechanisms of immune evasion and antibiotic resistance through gene dosing that can escape detection by molecular diagnostics.IMPORTANCEM. tuberculosis complex (MTBC) has killed over a billion people in the past 200 years alone and continues to kill nearly 1.5 million annually. The pathogen has a versatile ability to diversify under immune and drug pressure and survive, even becoming antibiotic persistent or resistant in the face of harsh chemotherapy. For proper diagnosis and design of an appropriate treatment regimen, a full understanding of this diversification and its clinical consequences is desperately needed. A mechanism of diversification that is rarely studied systematically is MTBC's ability to structurally change its genome. In this article, we have de novo assembled 110 clinical genomes (the largest de novo assembled set to date) and performed a pangenomic analysis. Our pangenome provides structural variation-based hypotheses for novel mechanisms of immune evasion and antibiotic resistance through gene dosing that can compromise molecular diagnostics and lead to further emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Monica E. Espinoza
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
| | - Ashley M. Swing
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
- San Diego State University/University of California, San Diego | Joint Doctoral Program in Public Health (Global Health), San Diego, California, USA
| | - Afif Elghraoui
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
- Department of Electrical and Computer Engineering, San Diego State University, San Diego, California, USA
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, California, USA
| | - Samuel J. Modlin
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
| | - Faramarz Valafar
- Laboratory for Pathogenesis of Clinical Drug Resistance and Persistence, San Diego State University, San Diego, California, USA
| |
Collapse
|
2
|
Lepe BA, Zheng CR, Leddy OK, Allsup BL, Solomon SL, Bryson BD. Protease shaving of Mycobacterium tuberculosis facilitates vaccine antigen discovery and delivery of novel cargoes to the Mtb surface. Microbiol Spectr 2025; 13:e0227724. [PMID: 39688428 PMCID: PMC11792546 DOI: 10.1128/spectrum.02277-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Tuberculosis (TB) is the leading cause of infectious disease death and lacks a vaccine capable of protecting adults from pulmonary TB. The bacterial surface is a critical interface that shapes host-pathogen interactions. Several knowledge gaps persist in our understanding of Mycobacterium tuberculosis (Mtb)-host interactions that may be addressed by an improved understanding of the Mtb surface proteome, including the identification of novel vaccine targets as well as developing new approaches to interrogate host-pathogen interactions. Here, we sought to expand our understanding of the Mtb surface proteome in service of these knowledge gaps by adapting protease shaving protocols for multiplexed quantitative mass spectrometry. Pairing quantitative mass spectrometry with the construction of validation strains, we revealed several novel Mtb proteins on the Mtb surface largely derived from the PE/PPE class of Mtb proteins, including PPE18, a component of a leading Mtb vaccine candidate. We next exploited the localization of PPE18 to decorate the Mtb surface with heterologous proteins. Together, these studies reveal potential novel targets for new Mtb vaccines as well as facilitate new approaches to study difficult-to-study cellular compartments during bacterial growth and infection.IMPORTANCEThe surface of a bacterial pathogen is a critical interface between the bacterium and the immune system. A better understanding of this interface would facilitate the discovery of new vaccine targets, new virulence proteins, and enable new technologies that modify the bacterial surface. In this study, we established a multiplexed and quantitative biochemical strategy to study the surface of Mycobacterium tuberculosis (Mtb) and identified new vaccine targets. We furthermore established design rules for new technologies aimed at modifying the composition of the bacterial surface. Specifically, we achieved a biological milestone that has not been rigorously reported previously, which is the successful modification of the Mtb surface with a non-native protein.
Collapse
Affiliation(s)
- Bianca A. Lepe
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, Massachusetts, USA
| | - Christine R. Zheng
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, Massachusetts, USA
| | - Owen K. Leddy
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA
| | - Benjamin L. Allsup
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, Massachusetts, USA
| | - Sydney L. Solomon
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, Massachusetts, USA
| | - Bryan D. Bryson
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Davies-Bolorunduro OF, Jaemsai B, Ruangchai W, Noppanamas T, Boonbangyang M, Bodharamik T, Sawaengdee W, Mahasirimongkol S, Palittapongarnpim P. Analysis of complete genomes of Mycobacterium tuberculosis sublineage 2.1 (Proto-Beijing) revealed the presence of three pe_pgrs3-pe_pgrs4-like genes. Sci Rep 2024; 14:30702. [PMID: 39730410 DOI: 10.1038/s41598-024-79351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/08/2024] [Indexed: 12/29/2024] Open
Abstract
Mycobacterium tuberculosis Complex (MTBC), the etiological agent of tuberculosis (TB), demonstrates considerable genotypic diversity with distinct geographic distributions and variable virulence profiles. The pe-ppe gene family is especially noteworthy for its extensive variability and roles in host immune response modulation and virulence enhancement. We sequenced an Mtb genotype L2.1 isolate from Chiangrai, Northern Thailand, using second and third-generation sequencing technologies. Comparative genomic analysis with two additional L2.1 isolates and two L2.2.AA3 (Asia Ancestral 3 Beijing) isolates revealed significant pe-ppe gene variations. Notably, all L2.1 isolates harbored three copies of pe_pgrs3-pe_pgrs4-like genes (pe_pgrs3*, pe_pgrs4*, and pe_pgrs4), different from L2.2.AA3 and H37Rv strains. Additionally, ppe53 was duplicated in all but H37Rv, and ppe50 was deleted in L2.1 isolates, contrasting with an extended ppe50 in an L2.2 isolate (Mtb 18b), which contains an additional SVP motif. Complete deletion of ppe66 and loss of wag22 were observed in L2.1 isolates. These findings highlight the high structural variability of the pe-ppe gene family, emphasizing its complex roles in Mtb-host immune interactions. This genetic complexity offers potentially critical insights into mycobacterial pathogenesis, with significant implications for vaccine development and diagnostics.
Collapse
Affiliation(s)
- Olabisi Flora Davies-Bolorunduro
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
- Floret Center for Advanced Genomics and Bioinformatics Research, Lagos, Nigeria
| | - Bharkbhoom Jaemsai
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Wuthiwat Ruangchai
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Thanakron Noppanamas
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Manon Boonbangyang
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Thavin Bodharamik
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Waritta Sawaengdee
- Department of Medical Sciences, Medical Life Science Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Surakameth Mahasirimongkol
- Department of Medical Sciences, Medical Life Science Institute, Ministry of Public Health, Nonthaburi, Thailand
| | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
| |
Collapse
|
4
|
Lepe BA, Zheng CR, Leddy OK, Allsup BL, Solomon SL, Bryson BD. Protease shaving of Mycobacterium tuberculosis facilitates vaccine antigen discovery and delivery of novel cargoes to the Mtb surface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601718. [PMID: 39005324 PMCID: PMC11245043 DOI: 10.1101/2024.07.02.601718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of infectious disease death and lacks a vaccine capable of protecting adults from pulmonary TB. Studies have shown that Mtb uses a variety of mechanisms to evade host immunity. Secreted Mtb proteins such as Type VII secretion system substrates have been characterized for their ability to modulate anti-Mtb immunity; however, studies of other pathogens such as Salmonella Typhi and Staphylococcus aureus have revealed that outer membrane proteins can also interact with the innate and adaptive immune system. The Mtb outer membrane proteome has received relatively less attention due to limited techniques available to interrogate this compartment. We filled this gap by deploying protease shaving and quantitative mass spectrometry to identify Mtb outer membrane proteins which serve as nodes in the Mtb-host interaction network. These analyses revealed several novel Mtb proteins on the Mtb surface largely derived from the PE/PPE class of Mtb proteins, including PPE18, a component of a leading Mtb vaccine candidate. We next exploited the localization of PPE18 to decorate the Mtb surface with heterologous proteins and deliver these surface-engineered Mtb to the phagosome. Together, these studies reveal potential novel targets for new Mtb vaccines as well as facilitate new approaches to study difficult to study cellular compartments during infection.
Collapse
Affiliation(s)
- Bianca A. Lepe
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| | - Christine R. Zheng
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| | - Owen K. Leddy
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, USA
| | - Benjamin L. Allsup
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| | - Sydney L. Solomon
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| | - Bryan D. Bryson
- Department of Biological Engineering, MIT, Cambridge, USA
- Ragon Institute of Mass General, Harvard, and MIT, Cambridge, USA
| |
Collapse
|
5
|
Veerapandian R, Gadad SS, Jagannath C, Dhandayuthapani S. Live Attenuated Vaccines against Tuberculosis: Targeting the Disruption of Genes Encoding the Secretory Proteins of Mycobacteria. Vaccines (Basel) 2024; 12:530. [PMID: 38793781 PMCID: PMC11126151 DOI: 10.3390/vaccines12050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB), a chronic infectious disease affecting humans, causes over 1.3 million deaths per year throughout the world. The current preventive vaccine BCG provides protection against childhood TB, but it fails to protect against pulmonary TB. Multiple candidates have been evaluated to either replace or boost the efficacy of the BCG vaccine, including subunit protein, DNA, virus vector-based vaccines, etc., most of which provide only short-term immunity. Several live attenuated vaccines derived from Mycobacterium tuberculosis (Mtb) and BCG have also been developed to induce long-term immunity. Since Mtb mediates its virulence through multiple secreted proteins, these proteins have been targeted to produce attenuated but immunogenic vaccines. In this review, we discuss the characteristics and prospects of live attenuated vaccines generated by targeting the disruption of the genes encoding secretory mycobacterial proteins.
Collapse
Affiliation(s)
- Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX 77030, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
6
|
Luo G, Zeng D, Liu J, Li D, Takiff HE, Song S, Gao Q, Yan B. Temporal and cellular analysis of granuloma development in mycobacterial infected adult zebrafish. J Leukoc Biol 2024; 115:525-535. [PMID: 37982587 DOI: 10.1093/jleuko/qiad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023] Open
Abstract
Because granulomas are a hallmark of tuberculosis pathogenesis, the study of the dynamic changes in their cellular composition and morphological character can facilitate our understanding of tuberculosis pathogenicity. Adult zebrafish infected with Mycobacterium marinum form granulomas that are similar to the granulomas in human patients with tuberculosis and therefore have been used to study host-mycobacterium interactions. Most studies of zebrafish granulomas, however, have focused on necrotic granulomas, while a systematic description of the different stages of granuloma formation in the zebrafish model is lacking. Here, we characterized the stages of granulomas in M. marinum-infected zebrafish, including early immune cell infiltration, nonnecrotizing granulomas, and necrotizing granulomas, using corresponding samples from patients with pulmonary tuberculosis as references. We combined hematoxylin and eosin staining and in situ hybridization to identify the different immune cell types and follow their spatial distribution in the different stages of granuloma development. The macrophages in zebrafish granulomas were shown to belong to distinct subtypes: epithelioid macrophages, foamy macrophages, and multinucleated giant cells. By defining the developmental stages of zebrafish granulomas and the spatial distribution of the different immune cells they contain, this work provides a reference for future studies of mycobacterial granulomas and their immune microenvironments.
Collapse
Affiliation(s)
- Geyang Luo
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity and Shanghai Public Health Clinical Center, Fudan University, 130 Dongan Rd., Xuhui District, 200032 Shanghai, People's Republic of China
| | - Dong Zeng
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| | - Jianxin Liu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
- School of Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai JiaoTong University, 639 Manufacturing Bureau Rd., Huangpu District, 200011 Shanghai, People's Republic of China
| | - Duoduo Li
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| | - Howard E Takiff
- Instituto Venezolano de Investigaciones Científicas, Centro de Microbiología y Biología Celular, Caracas, 1020A, Venezuela
| | - Shu Song
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity and Shanghai Public Health Clinical Center, Fudan University, 130 Dongan Rd., Xuhui District, 200032 Shanghai, People's Republic of China
| | - Bo Yan
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Rd., Jinshan District, 201508 Shanghai, People's Republic of China
| |
Collapse
|
7
|
Guo F, Wei J, Song Y, Li B, Qian Z, Wang X, Wang H, Xu T. Immunological effects of the PE/PPE family proteins of Mycobacterium tuberculosis and related vaccines. Front Immunol 2023; 14:1255920. [PMID: 37841250 PMCID: PMC10569470 DOI: 10.3389/fimmu.2023.1255920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb), and its incidence and mortality are increasing. The BCG vaccine was developed in the early 20th century. As the most widely administered vaccine in the world, approximately 100 million newborns are vaccinated with BCG every year, which has saved tens of millions of lives. However, due to differences in region and race, the average protective rate of BCG in preventing tuberculosis in children is still not high in some areas. Moreover, because the immune memory induced by BCG will weaken with the increase of age, it is slightly inferior in preventing adult tuberculosis, and BCG revaccination cannot reduce the incidence of tuberculosis again. Research on the mechanism of Mtb and the development of new vaccines against TB are the main strategies for preventing and treating TB. In recent years, Pro-Glu motif-containing (PE) and Pro-Pro-Glu motif-containing (PPE) family proteins have been found to have an increasingly important role in the pathogenesis and chronic protracted infection observed in TB. The development and clinical trials of vaccines based on Mtb antigens are in progress. Herein, we review the immunological effects of PE/PPE proteins and the development of common PE/PPE vaccines.
Collapse
Affiliation(s)
- Fangzheng Guo
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
| | - Jing Wei
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
| | - Yamin Song
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
| | - Baiqing Li
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical College, Bengbu, China
| | - Zhongqing Qian
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical College, Bengbu, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Bengbu Medical College, Bengbu, China
| | - Hongtao Wang
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Immunology, School of Laboratory, Bengbu Medical College, Bengbu, China
| | - Tao Xu
- Research Center of Laboratory, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases , Bengbu Medical College, Bengbu, China
- Department of Clinical Laboratory, School of Laboratory, Bengbu Medical College, Bengbu, China
| |
Collapse
|
8
|
Qin Y, Chen J, Xu K, Lu Y, Xu F, Shi J. Triad3A involved in the regulation of endotoxin tolerance and mycobactericidal activity through the NFκB-nitric oxide pathway. Immun Inflamm Dis 2023; 11:e925. [PMID: 37506157 PMCID: PMC10363814 DOI: 10.1002/iid3.925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/18/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Sepsis is characterized by an endotoxin tolerance phenotype that occurs in the stage of infection. Persistent bacterial infection can lead to immune cell exhaustion. Triad3A, an E3 ubiquitin ligase, negatively regulates its activation by TLR4. However, the effect of Triad3A on endotoxin tolerance and bactericidal ability in the state of endotoxin tolerance remains unclear. METHODS Using single dose LPS and repeated LPS stimulated macrophage cell lines at indicated times, we investigated miR-191, Tirad3A, TRAF3, TLR4, p-P65, TNF-α, IL-1β, and iNOS expression, the effect of miR-191 on Triad3A and TRAF3, gene loss-of-function analyses, the effect of Triad3A on TLR4, p-P65, cytokine, and mycobactericidal activity in endotoxin tolerant cells infected with Mycobacterium marinum. RESULTS Here we found that Triad3A is involved in regulating endotoxin tolerance. Our result also displayed that miR-191 expression is downregulated in macrophages in the state of endotoxin tolerance. miR-191 can directly bind to Triad3A and TRAF3. Additionally, knockdown of Triad3A can reverse the effect of decreasing TNF-α and IL-1β in endotoxin tolerant macrophages. Furthermore, we demonstrated that the TLR4-NF-κB-NO pathway was associated with Triad3A and responsible for the killing of intracellular mycobacteria in a tuberculosis sepsis model. CONCLUSIONS These results provide new insight into the mechanisms of Triad3A induced tolerogenic phenotype in macrophages, which can help the better comprehension of the pathogenesis involved in septic shock with infection of Mycobacterium tuberculosis, and suggest that Triad3A may be a potential drug target for the treatment of severe septic tuberculosis.
Collapse
Affiliation(s)
- Yongwei Qin
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu, China
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Jinliang Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Kuang Xu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Yang Lu
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Feifan Xu
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
9
|
Li W, Yan Z, Zhang N, Zhang Z, Xiang X. Novel role of PE_PGRS47 in the alteration of mycobacterial cell wall integrity and drug resistance. Arch Microbiol 2023; 205:174. [PMID: 37022460 DOI: 10.1007/s00203-023-03515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023]
Abstract
The proline-glutamic acid and proline-proline-glutamic acid (PE/PPE) family of proteins is widespread in pathogenic mycobacteria and plays different roles in mycobacterial physiology. While several PE/PPE family proteins have been studied, the exact function of most PE/PPE proteins in the physiology of Mycobacterium tuberculosis (Mtb) remains unknown. PE_PGRS47 belongs to the PE/PPE family of proteins reported to help Mtb evade protective host immune responses. In this study, we demonstrate a novel role of PE_PGRS47. Heterologous expression of the pe_pgrs47 gene in a non-pathogenic Mycobacterium smegmatis, intrinsically deficient of PE_PGRS protein, exhibits modulated colony morphology and cell wall lipid profile leading to a marked susceptibility to multiple antibiotics and environmental stressors. Using ethidium bromide/Nile red uptake assays, Mycobacterium smegmatis expressing PE_PGRS47 showed higher cell wall permeability than the control strain. Overall, these data suggested that PE_PGRS47 is cell surface exposed and influences cell wall integrity and the formation of mycobacterial colonies, ultimately potentiating the efficacy of lethal stresses against mycobacteria.
Collapse
Affiliation(s)
- Wu Li
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, People's Republic of China.
| | - Zifei Yan
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, People's Republic of China
| | - Nan Zhang
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, People's Republic of China
| | - Zhiyong Zhang
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, 641100, Sichuan, People's Republic of China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
10
|
D'Souza C, Kishore U, Tsolaki AG. The PE-PPE Family of Mycobacterium tuberculosis: Proteins in Disguise. Immunobiology 2023; 228:152321. [PMID: 36805109 DOI: 10.1016/j.imbio.2022.152321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis has thrived in parallel with humans for millennia, and despite our efforts, M. tuberculosis continues to plague us, currently infecting a third of the world's population. The success of M. tuberculosis has recently been attributed, in part, to the PE-PPE family; a unique collection of 168 proteins fundamentally involved in the pathogenesis of M. tuberculosis. The PE-PPE family proteins have been at the forefront of intense research efforts since their discovery in 1998 and whilst our knowledge and understanding has significantly advanced over the last two decades, many important questions remain to be elucidated. This review consolidates and examines the vast body of existing literature regarding the PE-PPE family proteins, with respect to the latest developments in elucidating their evolution, structure, subcellular localisation, function, and immunogenicity. This review also highlights significant inconsistencies and contradictions within the field. Additionally, possible explanations for these knowledge gaps are explored. Lastly, this review poses many important questions, which need to be addressed to complete our understanding of the PE-PPE family, as well as highlighting the challenges associated with studying this enigmatic family of proteins. Further research into the PE-PPE family, together with technological advancements in genomics and proteomics, will undoubtedly improve our understanding of the pathogenesis of M. tuberculosis, as well as identify key targets/candidates for the development of novel drugs, diagnostics, and vaccines.
Collapse
Affiliation(s)
- Christopher D'Souza
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anthony G Tsolaki
- Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom.
| |
Collapse
|
11
|
Li W, Deng W, Zhang N, Peng H, Xu Y. Mycobacterium tuberculosis Rv2387 Facilitates Mycobacterial Survival by Silencing TLR2/p38/JNK Signaling. Pathogens 2022; 11:pathogens11090981. [PMID: 36145413 PMCID: PMC9504853 DOI: 10.3390/pathogens11090981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can evade antimicrobial immunity and persist within macrophages by interfering with multiple host cellular functions through its virulence factors, causing latent tuberculosis. The Rv2387 protein has been identified as a putative effector that potentially participates in Mtb pathogenicity. To explore the role of the Rv2387 protein in host–mycobacteria interactions, we established recombinant M. smegmatis strains and RAW264.7 cell lines that stably express the Rv2387 protein. We found that this protein suppresses mycobacteria infection-induced macrophage apoptosis by inactivating caspase-3/-8, thus facilitating the intracellular survival of mycobacteria. In addition, Rv2387 inhibits the production of inflammatory cytokines in macrophages by specifically suppressing TLR2-dependent stimulation of p38 and JNK MAPK pathways. Moreover, we further determined that the Rv2387 protein conferred a growth advantage over recombinant M. smegmatis and suppressed the inflammatory response in a mouse infection model. Overall, these data suggested that Rv2387 facilitates mycobacteria to escape host immunity and might be an essential virulence factor in Mtb.
Collapse
Affiliation(s)
- Wu Li
- The Joint Center for Infection and Immunity, Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
- Correspondence: (W.L.); (Y.X.)
| | - Wanyan Deng
- The Joint Center for Infection and Immunity, Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nan Zhang
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Huijuan Peng
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Yi Xu
- The Joint Center for Infection and Immunity, Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (W.L.); (Y.X.)
| |
Collapse
|
12
|
WhiB4 Is Required for the Reactivation of Persistent Infection of Mycobacterium marinum in Zebrafish. Microbiol Spectr 2022; 10:e0044321. [PMID: 35266819 PMCID: PMC9045381 DOI: 10.1128/spectrum.00443-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Granulomas are the pathological hallmark of tuberculosis (TB). In individuals with latent TB infection, Mycobacterium tuberculosis cells reside within granulomas in a nonreplicating dormant state, and a portion of them will develop active TB. Little is known on the bacterial mechanisms/factors involved in this process. In this study, we found that WhiB4, an oxygen sensor and a transcription factor, plays a critical role in disease progression and reactivation of Mycobacterium marinum (M. marinum) infection in zebrafish. We show that the whiB4::Tn mutant of M. marinum caused persistent infection in adult zebrafish, which is characterized by the lower but stable bacterial loads, constant number of nonnecrotized granulomas in fewer organs, and reduced inflammation compared to those of zebrafish infected with the wild-type bacteria or the complemented strain. The mutant bacteria in zebrafish were also less responsive to antibiotic treatments. Moreover, the whiB4::Tn mutant was defective in resuscitation from hypoxia-induced dormancy and the DosR regulon was dysregulated in the mutant. Taken together, our results suggest that WhiB4 is a major driver of reactivation from persistent infection. IMPORTANCE About one-quarter of the world’s population has latent TB infection, and 5 to 10% of those individuals will fall ill with TB. Our finding suggests that WhiB4 is an attractive target for the development of novel therapeutics, which may help to prevent the reactivation of latent infection, thereby reducing the incidences of active TB.
Collapse
|
13
|
Peng Z, Yue Y, Xiong S. Mycobacterial PPE36 Modulates Host Inflammation by Promoting E3 Ligase Smurf1-Mediated MyD88 Degradation. Front Immunol 2022; 13:690667. [PMID: 35237255 PMCID: PMC8882603 DOI: 10.3389/fimmu.2022.690667] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) PPE36, a cell-wall-associated protein, is highly specific and conserved for the Mtb complex group. Although PPE36 has been proven essential for iron utilization, little is known about it in regulating host immune responses. Here we exhibited that PPE36 was preferentially enriched in Mtb virulent strains and could efficiently inhibit host inflammatory responses and increase bacterial loads in infected macrophages and mice. In exploring the underlying mechanisms, we found that PPE36 could robustly inhibit the activation of inflammatory NF-κB and MAPK (Erk, p38, and Jnk) pathways by promoting E3 ligase Smurf1-mediated ubiquitination and proteasomal degradation of MyD88 protein. Our research revealed a previously unknown function of PPE36 on modulating host immune responses and provided some clues to the development of novel tuberculosis treatment strategies based on immune regulation.
Collapse
Affiliation(s)
- Zhangli Peng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
14
|
The Mycobacterium tuberculosis PE_PGRS Protein Family Acts as an Immunological Decoy to Subvert Host Immune Response. Int J Mol Sci 2022; 23:ijms23010525. [PMID: 35008950 PMCID: PMC8745494 DOI: 10.3390/ijms23010525] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins perform multiple functions that intensify the virulence competence of M.tb majorly by modulating immune responses, thereby affecting immune mediated clearance of the pathogen. The highly repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding of how these proteins subvert the host immunological machinery may add to the current knowledge about M.tb virulence and pathogenesis. This can help in redirecting our strategies for tackling M.tb infections.
Collapse
|
15
|
Sharma S, Sharma M. Proline-Glutamate/Proline-Proline-Glutamate (PE/PPE) proteins of Mycobacterium tuberculosis: The multifaceted immune-modulators. Acta Trop 2021; 222:106035. [PMID: 34224720 DOI: 10.1016/j.actatropica.2021.106035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022]
Abstract
The PE/PPE proteins encoded by seven percent (7%) of Mycobacterium tuberculosis (Mtb) genome are the chief constituents to pathogen's virulence reservoir. The fact that these genes have evolved along ESX secretory system in pathogenic Mtb strains make their investigation very intriguing. There is lot of speculation about the prominent role of these proteins at host pathogen interface and in disease pathogenesis. Nevertheless, the exact function of PE/PPE proteins still remains a mystery which calls for further research targeting these proteins. This article is an effort to document all the facts known so far with regard to these unique proteins which involves their origin, evolution, transcriptional control, and most important their role as host immune-modulators. Our understanding strongly points towards the versatile nature of these PE/PPE proteins as Mtb's host immune sensors and as decisive factors in shaping the outcome of infection. Further investigation on these proteins will surely pave way for newer and effective vaccines and therapeutics to control Tuberculosis (TB).
Collapse
Affiliation(s)
- Sadhna Sharma
- DS Kothari Central Interdisciplinary Research Centre and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| | - Monika Sharma
- DS Kothari Central Interdisciplinary Research Centre and Department of Zoology, Miranda House, University of Delhi, Delhi 110007, India.
| |
Collapse
|
16
|
Lagune M, Petit C, Sotomayor FV, Johansen MD, Beckham KSH, Ritter C, Girard-Misguich F, Wilmanns M, Kremer L, Maurer FP, Herrmann JL. Conserved and specialized functions of Type VII secretion systems in non-tuberculous mycobacteria. MICROBIOLOGY-SGM 2021; 167. [PMID: 34224347 DOI: 10.1099/mic.0.001054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-tuberculous mycobacteria (NTM) are a large group of micro-organisms comprising more than 200 individual species. Most NTM are saprophytic organisms and are found mainly in terrestrial and aquatic environments. In recent years, NTM have been increasingly associated with infections in both immunocompetent and immunocompromised individuals, prompting significant efforts to understand the diverse pathogenic and signalling traits of these emerging pathogens. Since the discovery of Type VII secretion systems (T7SS), there have been significant developments regarding the role of these complex systems in mycobacteria. These specialised systems, also known as Early Antigenic Secretion (ESX) systems, are employed to secrete proteins across the inner membrane. They also play an essential role in virulence, nutrient uptake and conjugation. Our understanding of T7SS in mycobacteria has significantly benefited over the last few years, from the resolution of ESX-3 structure in Mycobacterium smegmatis, to ESX-5 structures in Mycobacterium xenopi and Mycobacterium tuberculosis. In addition, ESX-4, considered until recently as a non-functional system in both pathogenic and non-pathogenic mycobacteria, has been proposed to play an important role in the virulence of Mycobacterium abscessus; an increasingly recognized opportunistic NTM causing severe lung diseases. These major findings have led to important new insights into the functional mechanisms of these biological systems, their implication in virulence, nutrient acquisitions and cell wall shaping, and will be discussed in this review.
Collapse
Affiliation(s)
- Marion Lagune
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180, Montigny-Le-Bretonneux, France
| | - Cecile Petit
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Flor Vásquez Sotomayor
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Matt D Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France.,Present address: Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, NSW, Australia
| | - Kathrine S H Beckham
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Christina Ritter
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180, Montigny-Le-Bretonneux, France
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany.,University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France.,INSERM, IRIM, 34293 Montpellier, France
| | - Florian P Maurer
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.,Institute of Medical Microbiology, Virology and Hospital Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180, Montigny-Le-Bretonneux, France.,APHP, GHU Paris-Saclay, Hôpital Raymond Poincaré, Service de Microbiologie, Garches, France
| |
Collapse
|
17
|
Khan MT, Ali S, Khan AS, Ali A, Khan A, Kaushik AC, Irfan M, Chinnasamy S, Zhang S, Zhang YJ, Cui Z, Wei AJ, Wang Y, Zhao M, Liu K, Wang H, Zeb MT, Wei DQ. Insight into the drug resistance whole genome of Mycobacterium tuberculosis isolates from Khyber Pakhtunkhwa, Pakistan. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 92:104861. [PMID: 33862292 DOI: 10.1016/j.meegid.2021.104861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Whole genome sequencing (WGS) is one of the most reliable methods for detection of drug resistance, genetic diversity in other virulence factor and also evolutionary dynamics of Mycobacterium tuberculosis complex (MTBC). First-line anti-tuberculosis drugs are the major weapons against Mycobacterium tuberculosis (MTB). However, the emergence of drug resistance remained a major obstacle towards global tuberculosis (TB) control program 2030, especially in high burden countries including Pakistan. To overcome the resistance and design potent drugs, genomic variations in drugs targets as well as in the virulence and evolutionary factors might be useful for better understanding and designing potential inhibitors. Here we aimed to find genomic variations in the first-line drugs targets, along with other virulence and evolutionary factors among the circulating isolates in Khyber Pakhtunkhwa, Pakistan. Samples were collected and drug susceptibility testing (DST) was performed as per WHO standard. The resistance samples were subjected to WGS. Among the five whole genome sequences, three samples (NCBI BioProject Accession: PRJNA629298, PRJNA629388) harbored 1997, 1162, and 2053 mutations. Some novel mutations have been detected in drugs targets. Similarly, numerous novel variants have also been detected in virulency and evolutionary factors, PE, PPE, and secretory system of MTB isolates. Exploring the genomic variations among the circulating isolates in geographical specific locations might be useful for future drug designing. To the best of our knowledge, this is the first study that provides useful data regarding the insight genomic variations in virulency, evolutionary factors including ESX and PE/PPE as well as drug targets, for better understanding and management of TB in a WHO declared high burden country.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sajid Ali
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Anwar Sheed Khan
- Department of Microbiology, Kohat University of Science and Technology and Provincial Tuberculosis Reference Laboratory, Peshawar, Pakistan.
| | - Arif Ali
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Abbas Khan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China.
| | | | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
| | - Sathishkumar Chinnasamy
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Shulin Zhang
- Department of Immunology and Microbiology, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Yu-Juan Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing, China.
| | - Zhilei Cui
- Zhilei Cui, Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Amie Jinghua Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Yanjie Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Mingzhu Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Kejia Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Heng Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Muhammad Tariq Zeb
- Khyber Medical University and Senior Research Officer, In-charge Genomic Laboratory, Veterinary Research Institute, Peshawar 25000, Pakistan
| | - Dong Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
18
|
Gallant J, Heunis T, Beltran C, Schildermans K, Bruijns S, Mertens I, Bitter W, Sampson SL. PPE38-Secretion-Dependent Proteins of M. tuberculosis Alter NF-kB Signalling and Inflammatory Responses in Macrophages. Front Immunol 2021; 12:702359. [PMID: 34276695 PMCID: PMC8284050 DOI: 10.3389/fimmu.2021.702359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
It was previously shown that secretion of PE-PGRS and PPE-MPTR proteins is abolished in clinical M. tuberculosis isolates with a deletion in the ppe38-71 operon, which is associated with increased virulence. Here we investigate the proteins dependent on PPE38 for their secretion and their role in the innate immune response using temporal proteomics and protein turnover analysis in a macrophage infection model. A decreased pro-inflammatory response was observed in macrophages infected with PPE38-deficient M. tuberculosis CDC1551 as compared to wild type bacteria. We could show that dampening of the pro-inflammatory response is associated with activation of a RelB/p50 pathway, while the canonical inflammatory pathway is active during infection with wild type M. tuberculosis CDC1551. These results indicate a molecular mechanism by which M. tuberculosis PE/PPE proteins controlled by PPE38 have an effect on modulating macrophage responses through NF-kB signalling.
Collapse
Affiliation(s)
- James Gallant
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Section Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tiaan Heunis
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Caroline Beltran
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - Sven Bruijns
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Medical Microbiology and Infection Control, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Samantha L. Sampson
- Department of Science and Technology/National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
19
|
Feng S, Hong Z, Zhang G, Li J, Tian GB, Zhou H, Huang X. Mycobacterium PPE31 Contributes to Host Cell Death. Front Cell Infect Microbiol 2021; 11:629836. [PMID: 33928042 PMCID: PMC8078103 DOI: 10.3389/fcimb.2021.629836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/23/2021] [Indexed: 12/03/2022] Open
Abstract
Genome scale mutagenesis identifies many genes required for mycobacterial infectivity and survival, but their contributions and mechanisms of action within the host are poorly understood. Using CRISPR interference, we created a knockdown of ppe31Mm gene in Mycobacterium marinum (M. marinum), which reduced the resistance to acid medium. To further explore the function of PPE31, the ppe31 mutant strain was generated in M. marinum and Mycobacterium tuberculosis (M. tuberculosis), respectively. Macrophages infected with the ppe31Mm mutant strain caused a reduced inflammatory mediator expressions. In addition, macrophages infected with M. marinum Δppe31Mm had decreased host cell death dependent on JNK signaling. Consistent with these results, deletion of ppe31Mtb from M. tuberculosis increased the sensitivity to acid medium and reduced cell death in macrophages. Furthermore, we demonstrate that both ppe31 mutants from M. marinum and M. tuberculosis resulted in reduced survival in macrophages, and the survivability of M. marinum was deceased in zebrafish due to loss of ppe31Mm. Our findings confirm that PPE31 as a virulence associated factor that modulates innate immune responses to mycobacterial infection.
Collapse
Affiliation(s)
- Siyuan Feng
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhongsi Hong
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China
| | - Guoliang Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jiachen Li
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guo-Bao Tian
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Haibo Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Xi Huang
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-sen University, Zhuhai, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.,The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China.,Sino-French Hoffmann Institute of Immunology, College of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Fevereiro J, Fraga AG, Pedrosa J. Genetics in the Host-Mycobacterium ulcerans interaction. Immunol Rev 2021; 301:222-241. [PMID: 33682158 DOI: 10.1111/imr.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Buruli ulcer is an emerging infectious disease associated with high morbidity and unpredictable outbreaks. It is caused by Mycobacterium ulcerans, a slow-growing pathogen evolutionarily shaped by the acquisition of a plasmid involved in the production of a potent macrolide-like cytotoxin and by genome rearrangements and downsizing. These events culminated in an uncommon infection pattern, whereby M. ulcerans is both able to induce the initiation of the inflammatory cascade and the cell death of its proponents, as well as to survive within the phagosome and in the extracellular milieu. In such extreme conditions, the host is sentenced to rely on a highly orchestrated genetic landscape to be able to control the infection. We here revisit the dynamics of M. ulcerans infection, drawing parallels from other mycobacterioses and integrating the most recent knowledge on its evolution and pathogenicity in its interaction with the host immune response.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
21
|
Tkachenko AG, Kashevarova NM, Sidorov RY, Nesterova LY, Akhova AV, Tsyganov IV, Vaganov VY, Shipilovskikh SA, Rubtsov AE, Malkov AV. A synthetic diterpene analogue inhibits mycobacterial persistence and biofilm formation by targeting (p)ppGpp synthetases. Cell Chem Biol 2021; 28:1420-1432.e9. [PMID: 33621482 DOI: 10.1016/j.chembiol.2021.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 01/23/2023]
Abstract
Bacterial persistence coupled with biofilm formation is directly associated with failure of antibiotic treatment of tuberculosis. We have now identified 4-(4,7-DiMethyl-1,2,3,4-tetrahydroNaphthalene-1-yl)Pentanoic acid (DMNP), a synthetic diterpene analogue, as a lead compound that was capable of suppressing persistence and eradicating biofilms in Mycobacterium smegmatis. By using two reciprocal experimental approaches - ΔrelMsm and ΔrelZ gene knockout mutations versus relMsm and relZ overexpression technique - we showed that both RelMsm and RelZ (p)ppGpp synthetases are plausible candidates for serving as targets for DMNP. In vitro, DMNP inhibited (p)ppGpp-synthesizing activity of purified RelMsm in a concentration-dependent manner. These findings, supplemented by molecular docking simulation, suggest that DMNP targets the structural sites shared by RelMsm, RelZ, and presumably by a few others as yet unidentified (p)ppGpp producers, thereby inhibiting persister cell formation and eradicating biofilms. Therefore, DMNP may serve as a promising lead for development of antimycobacterial drugs.
Collapse
Affiliation(s)
- Alexander G Tkachenko
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Goleva 13, Perm, 614081, Perm Krai, Russia; Perm State University, Bukireva 15, Perm, 614990, Perm Krai, Russia.
| | - Natalya M Kashevarova
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Goleva 13, Perm, 614081, Perm Krai, Russia
| | - Roman Yu Sidorov
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Goleva 13, Perm, 614081, Perm Krai, Russia; Perm State University, Bukireva 15, Perm, 614990, Perm Krai, Russia
| | - Larisa Yu Nesterova
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Goleva 13, Perm, 614081, Perm Krai, Russia; Perm State University, Bukireva 15, Perm, 614990, Perm Krai, Russia
| | - Anna V Akhova
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Goleva 13, Perm, 614081, Perm Krai, Russia; Perm State University, Bukireva 15, Perm, 614990, Perm Krai, Russia
| | - Ivan V Tsyganov
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Goleva 13, Perm, 614081, Perm Krai, Russia; Perm State University, Bukireva 15, Perm, 614990, Perm Krai, Russia
| | | | | | | | - Andrei V Malkov
- Department of Chemistry, Loughborough University Address: University Road, Loughborough, Leicestershire LE11 3TU, UK.
| |
Collapse
|
22
|
Qian J, Chen R, Wang H, Zhang X. Role of the PE/PPE Family in Host-Pathogen Interactions and Prospects for Anti-Tuberculosis Vaccine and Diagnostic Tool Design. Front Cell Infect Microbiol 2020; 10:594288. [PMID: 33324577 PMCID: PMC7726347 DOI: 10.3389/fcimb.2020.594288] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
The pe/ppe genes are found in pathogenic, slow-growing Mycobacterium tuberculosis and other M. tuberculosis complex (MTBC) species. These genes are considered key factors in host-pathogen interactions. Although the function of most PE/PPE family proteins remains unclear, accumulating evidence suggests that this family is involved in M. tuberculosis infection. Here, we review the role of PE/PPE proteins, which are believed to be linked to the ESX system function. Further, we highlight the reported functions of PE/PPE proteins, including their roles in host cell interaction, immune response regulation, and cell fate determination during complex host-pathogen processes. Finally, we propose future directions for PE/PPE protein research and consider how the current knowledge might be applied to design more specific diagnostics and effective vaccines for global tuberculosis control.
Collapse
Affiliation(s)
- Jianing Qian
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Run Chen
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Xuelian Zhang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Ji X, Zhang X, Sun L, Hou X, Song J, Tan X, Song H, Qiu X, Li M, Tang L, Han L, Li Z. Mce1C and Mce1D facilitate N. farcinica invasion of host cells and suppress immune responses by inhibiting innate signaling pathways. Sci Rep 2020; 10:14908. [PMID: 32913259 PMCID: PMC7484815 DOI: 10.1038/s41598-020-71860-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/06/2020] [Indexed: 11/22/2022] Open
Abstract
The mammalian cell entry (Mce) family of proteins consists of invasin-like membrane-associated proteins. The roles of Mce1C and Mce1D proteins in host–pathogen interactions have not been investigated. In this study, we demonstrate that Mce1C and Mce1D protein is localized in the cell wall fraction of N. farcinica. Both N. farcinica Mce1C and Mce1D proteins are expressed at the level of protein and mRNA and elicit antibody responses during infection. Mce1C and Mce1D facilitate the internalization of Escherichia coli expressing Mce1C protein or latex beads coated with Mce1D protein by HeLa cells, respectively. We further demonstrate that Mce1C and Mce1D can suppress the secretion of the proinflammatory factors TNF-α and IL-6 in macrophages infected with Mycobacterium smegmatis expressing Mce1C or Mce1D and promote the survival of M. smegmatis expressing Mce1C or Mce1D in macrophages. In addition, Mce1C and Mce1D supress the activation of the NF-κB and MAPK signaling pathways by blocking the phosphorylation of AKT, P65, ERK1/2, JNK, or P38 in macrophages. These findings suggest that Mce1C and Mce1D proteins facilitate N. farcinica invasion of HeLa cells and suppress host innate immune responses by manipulating NF-κB and MAPK signaling pathways, which may provide a target for N. farcinica treatment.
Collapse
Affiliation(s)
- Xingzhao Ji
- Shandong Academy of Clinical Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.,State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Xiujuan Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lina Sun
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Xuexin Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Jingdong Song
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoluo Tan
- Chenzhou Center for Disease Control and Prevention, Chenzhou, China
| | - Han Song
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Xiaotong Qiu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Minghui Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Lu Tang
- First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lichao Han
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road Changping District, Beijing, 102206, China.
| |
Collapse
|
24
|
Mycobacterium tuberculosis Rv3717 enhances the survival of Mycolicibacterium smegmatis by inhibiting host innate immune and caspase-dependent apoptosis. INFECTION GENETICS AND EVOLUTION 2020; 84:104412. [PMID: 32531516 DOI: 10.1016/j.meegid.2020.104412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 02/03/2023]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (M. tuberculosis) infection remains a serious public threat despite decades of creative endeavors. There are few reports on the roles of M. tuberculosis enzymes involved in cell envelope biosynthesis in pathogen survival and persistence. M. tuberculosis Rv3717 encodes N-acetylmuramoyl-l-alanine amidase, a cell-wall hydrolase that hydrolyzes the bond between N-acetylmuramic acid and l-alanine in cell-wall peptidoglycan. In this paper, we demonstrated the Rv3717 promoted the survival of Mycolicibacterium smegmatis(M. smegmatis) within macrophages. More importantly, we demonstrated that this effect is because MS_Rv3717 reduces the release of host pro-inflammatory cytokines such as IL-1β, IL-6, IL-12 p40, TNF-α, and increased transcription of anti-inflammatory cytokine IL-10. At the same time, MS_Rv3717 inhibits apoptosis by inhibiting the activation of Caspase-3/9, reducing the host's elimination of M. smegmatis. Finally, from a bacterial perspective, we found Rv3717 decreased the survival of M. smegmatis under stresses such as SDS and low pH. This is the first report of the involvement of Mycobacterium cell envelope biosynthetic enzyme in host-pathogen interaction.
Collapse
|
25
|
Nfa34810 Facilitates Nocardia farcinica Invasion of Host Cells and Stimulates Tumor Necrosis Factor Alpha Secretion through Activation of the NF-κB and Mitogen-Activated Protein Kinase Pathways via Toll-Like Receptor 4. Infect Immun 2020; 88:IAI.00831-19. [PMID: 31964749 PMCID: PMC7093121 DOI: 10.1128/iai.00831-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/06/2020] [Indexed: 11/21/2022] Open
Abstract
The mechanism underlying the pathogenesis of Nocardia is not fully known. The Nfa34810 protein of Nocardia farcinica has been predicted to be a virulence factor. However, relatively little is known regarding the interaction of Nfa34810 with host cells, specifically invasion and innate immune activation. In this study, we aimed to determine the role of recombinant Nfa34810 during infection. We demonstrated that Nfa34810 is an immunodominant protein located in the cell wall. The mechanism underlying the pathogenesis of Nocardia is not fully known. The Nfa34810 protein of Nocardia farcinica has been predicted to be a virulence factor. However, relatively little is known regarding the interaction of Nfa34810 with host cells, specifically invasion and innate immune activation. In this study, we aimed to determine the role of recombinant Nfa34810 during infection. We demonstrated that Nfa34810 is an immunodominant protein located in the cell wall. Nfa34810 protein was able to facilitate the uptake and internalization of latex beads coated with Nfa34810 protein into HeLa cells. Furthermore, the deletion of the nfa34810 gene in N. farcinica attenuated the ability of the bacteria to infect both HeLa and A549 cells. Moreover, stimulation with Nfa34810 triggered macrophages to produce tumor necrosis factor alpha (TNF-α), and it also activated mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling pathways by inducing the phosphorylation of ERK1/2, p38, JNK, p65, and AKT in macrophages. Specific inhibitors of ERK1/2, JNK, and NF-κB significantly reduced the expression of TNF-α, which demonstrated that Nfa34810-mediated TNF-α production was dependent upon the activation of these kinases. We further found that neutralizing antibodies against Toll-like receptor 4 (TLR4) significantly inhibited TNF-α secretion. Taken together, our results indicated that Nfa34810 is a virulence factor of N. farcinica and plays an important role during infection. Nfa34810-induced production of TNF-α in macrophages also involves ERK, JNK, and NF-κB via the TLR4 pathway.
Collapse
|
26
|
Liu DQ, Zhang JL, Pan ZF, Mai JT, Mei HJ, Dai Y, Zhang L, Wang QZ. Over-expression of Tgs1 in Mycobacterium marinum enhances virulence in adult zebrafish. Int J Med Microbiol 2019; 310:151378. [PMID: 31757695 DOI: 10.1016/j.ijmm.2019.151378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 09/28/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), can persist in the host for decades without causing TB symptoms and can cause a latent infection, which is an intricate challenge of current TB control. The DosR regulon, which contains approximately 50 genes, is crucial in the non-replicating persistence of Mtb. tgs1 is one of the most powerfully induced genes in this regulon during Mtb non-replicating persistence. The gene encodes a triacyl glycerol synthase catalyzing synthesis of triacyl glycerol (TAG), which is proposed as an energy source during bacilli persistence. Here, western blotting showed that the Tgs1 protein was upregulated in clinical Mtb strains. To detect its physiological effects on mycobacterium, we constructed serial recombinant M. marinum including over-expressed Tgs1(Tgs1-H), reduced-expressed Tgs1(Tgs1-L), and wild type M. marinum strains as controls. Tgs1 over-expression did not influence M. marinum growth under aerobic shaking and in hypoxic cultures, while growth advantages were observed at an early stage under nutrient starvation. Transmission electron microscopy revealed more lipid droplets in Tgs1-H than the other two strains; the droplets filled the cytoplasm. Two-dimensional thin-layer chromatography revealed more phosphatidyl-myo-inositol mannosides in the Tgs1-H cell wall. To assess the virulence of recombinant M. marinum in the natural host, adult zebrafish were infected with Tgs1-H or wild type strains. Hypervirulence of Tgs1-H was characterized by markedly increased bacterial load and early death of adult zebrafish. Remarkably, zebrafish infected with Tgs1-H developed necrotizing granulomas much more rapidly and in higher amounts, which facilitated mycobacterial replication and dissemination among organs and eventual tissue destruction in zebrafish. RNA sequencing analysis showed Tgs1-H induced 13 genes differentially expressed under aerobiosis. Among them, PE_PGRS54 (MMAR_5307),one of the PE_PGRS family of antigens, was markedly up-regulated, while 110 coding genes were down-regulated in Tgs1-L.The 110 genes included 22 member genes of the DosR regulon. The collective results indicate an important role for the Tgs1 protein of M. marinumin progression of infection in the natural host. Tgs1 signaling may be involved in a previously unknown behavior of M. marinum under hypoxia/aerobiosis.
Collapse
Affiliation(s)
- Ding-Qian Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China; Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jun-Li Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Zhi-Fen Pan
- The Tuberculosis Division of the First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Jun-Tao Mai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Heng-Jun Mei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Yue Dai
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China.
| | | |
Collapse
|
27
|
Tong J, Liu Q, Wu J, Jiang Y, Takiff HE, Gao Q. Mycobacterium tuberculosis strains of the modern Beijing sublineage excessively accumulate triacylglycerols in vitro. Tuberculosis (Edinb) 2019; 120:101892. [PMID: 31783320 DOI: 10.1016/j.tube.2019.101892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis (Mtb) strains of modern Beijing sublineage appear to be more transmissible and cause more severe disease than strains of other sublineages, but the responsible pathogenic mechanisms remain unclear. We previously identified genetic changes that are specific for the modern Beijing sublineage, and here we characterize the lipidome and transcriptome differences between modern and ancient Beijing sublineages. We report that modern Beijing strains accumulated 2.89 (95%CI: 2.05-3.73) times more triacylglycerol (TAG) than ancient Beijing strains in vitro. We also observed that modern Beijing strains had a 2.64-fold (95%CI: 1.29-4.00) upregulation of tgs2 (annotated as TAG synthetase 2), whose role in TAG accumulation was further confirmed in Mycobacterium marinum (Mm). Because TAG serves as a crucial carbon source and reservoir of free fatty acids, the results suggest that the excessive accumulation of TAG might fuel the growth of modern Beijing strains after infection and lead to rapid development of disease.
Collapse
Affiliation(s)
- Jingfeng Tong
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Shenzhen Center for Chronic Disease Control, Shenzhen, 518000, China
| | - Qingyun Liu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Shenzhen Center for Chronic Disease Control, Shenzhen, 518000, China
| | - Jie Wu
- Department of Tuberculosis Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Yuan Jiang
- Department of Tuberculosis Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China
| | - Howard E Takiff
- Integrated Mycobacterial Pathogenomics Unit, Institut Pasteur, Paris, France; Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200032, China; Shenzhen Center for Chronic Disease Control, Shenzhen, 518000, China.
| |
Collapse
|
28
|
Chiner-Oms Á, Comas I. Large genomics datasets shed light on the evolution of the Mycobacterium tuberculosis complex. INFECTION GENETICS AND EVOLUTION 2019; 72:10-15. [DOI: 10.1016/j.meegid.2019.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 01/21/2023]
|
29
|
PE17 protein from Mycobacterium tuberculosis enhances Mycobacterium smegmatis survival in macrophages and pathogenicity in mice. Microb Pathog 2019; 126:63-73. [DOI: 10.1016/j.micpath.2018.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 01/26/2023]
|
30
|
Gong Z, Kuang Z, Li H, Li C, Ali MK, Huang F, Li P, Li Q, Huang X, Ren S, Li J, Xie J. Regulation of host cell pyroptosis and cytokines production by Mycobacterium tuberculosis effector PPE60 requires LUBAC mediated NF-κB signaling. Cell Immunol 2018; 335:41-50. [PMID: 30415762 DOI: 10.1016/j.cellimm.2018.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/13/2018] [Accepted: 10/30/2018] [Indexed: 10/28/2022]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis infection, remains a global public health threat. The success of M. tuberculosis largely contributes to its manipulation of host cell fate. The role of M. tuberculosis PE/PPE family effectors in the host destiny was intensively explored. In this study, the role of PPE60 (Rv3478) was characterized by using Rv3478 recombinant M. smegmatis. PPE60 can promote host cell pyroptosis via caspases/NLRP3/gasdermin. The production of pro-inflammatory cytokines, such as IL-1β, IL-6, IL-12p40 and TNF-α was altered by PPE60. We found that LUBAC was involved in PPE60-elicited NF-κB signaling by using Linear Ubiquitin Chain Assembly Complex (LUBAC)-specific inhibitor gliotoxin. The PPE60 recombinant M. smegmatis survival rate within macrophages is increased, as well as elevated resistance to stresses such as low pH, surface stresses and antibiotics exposure. For a first time it is firstly reported that M. tuberculosis effector PPE60 can modulate the host cell fate via LUBAC-mediated NF-κB signaling.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhongmei Kuang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China; Institute of Chengdu Medical College, School of Laboratory Medicine, No 783 Xindu Avenue, Chengdu, Sichuan 610083, China
| | - Chunyan Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Md Kaisar Ali
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Fujing Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ping Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Qiming Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xue Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Sai Ren
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jiang Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
31
|
The Mycobacterium tuberculosis protein Rv2387 is involved in cell wall remodeling and susceptibility to acidic conditions. Biochem Biophys Res Commun 2018; 503:625-630. [PMID: 29902462 DOI: 10.1016/j.bbrc.2018.06.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 11/22/2022]
Abstract
The distinctive cell walls of mycobacteria are characteristic features of these bacteria. Individual cell wall components influence diverse mycobacterial phenotypes, such as colony morphology, virulence and stress resistance. To investigate the role of the hypothetical protein Rv2387, we constructed a Mycobacterium smegmatis strain that heterologously expressed this ORF, and we observed that the M. smegmatis strain expressing Rv2387 exhibited altered colony morphology and cell wall lipid composition, leading to a marked decrease in the resistance against acidic conditions. This study demonstrates that due to its impact on cell wall remodeling, Rv2387 might play an important role in mycobacterial physiology.
Collapse
|
32
|
Zondervan NA, van Dam JCJ, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int J Mol Sci 2018; 19:E347. [PMID: 29364195 PMCID: PMC5855569 DOI: 10.3390/ijms19020347] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging. In order to develop novel intervention strategies, detailed understanding of the molecular mechanisms behind the success of this pathogen is required. Here, we review recent literature to provide a systems level overview of the molecular and cellular components involved in divalent metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis: immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview of these components and their regulation. Our analysis identified a single regulatory cascade for these three virulence strategies that respond to limited availability of divalent metals in the phagosome.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
33
|
Ates LS, Dippenaar A, Ummels R, Piersma SR, van der Woude AD, van der Kuij K, Le Chevalier F, Mata-Espinosa D, Barrios-Payán J, Marquina-Castillo B, Guapillo C, Jiménez CR, Pain A, Houben ENG, Warren RM, Brosch R, Hernández-Pando R, Bitter W. Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis. Nat Microbiol 2018; 3:181-188. [DOI: 10.1038/s41564-017-0090-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/29/2017] [Indexed: 12/30/2022]
|
34
|
Protective Vaccine Efficacy of the Complete Form of PPE39 Protein from Mycobacterium tuberculosis Beijing/K Strain in Mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00219-17. [PMID: 28877927 DOI: 10.1128/cvi.00219-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/24/2017] [Indexed: 11/20/2022]
Abstract
The aim of this study was to evaluate the protective efficacy of MTBK_24820, a complete form of PPE39 protein derived from a predominant Beijing/K strain of Mycobacterium tuberculosis in South Korea. Mice were immunized with MTKB_24820, M. bovis Bacilli Calmette-Guérin (BCG), or adjuvant prior to a high-dosed Beijing/K strain aerosol infection. After 4 and 9 weeks, bacterial loads were determined and histopathologic and immunologic features in the lungs and spleens of the M. tuberculosis-infected mice were analyzed. Putative immunogenic T-cell epitopes were examined using synthetic overlapping peptides. Successful immunization of MTBK_24820 in mice was confirmed by increased IgG responses (P < 0.05) and recalled gamma interferon (IFN-γ), interleukin-2 (IL-2), IL-6, and IL-17 responses (P < 0.05 or P < 0.01) to MTBK_24820. After challenge with the Beijing/K strain, an approximately 0.5 to 1.0 log10 reduction in CFU in lungs and fewer lung inflammation lesions were observed in MTBK_24820-immunized mice compared to those for control mice. Moreover, MTBK_24820 immunization elicited significantly higher numbers of CD4+ T cells producing protective cytokines, such as IFN-γ and IL-17, in lungs and spleens (P < 0.01) and CD4+ multifunctional T cells producing IFN-γ, tumor necrosis factor alpha (TNF-α), and/or IL-17 (P < 0.01) than in control mice, suggesting protection comparable to that of BCG against the hypervirulent Beijing/K strain. The dominant immunogenic T-cell epitopes that induced IFN-γ production were at the N terminus (amino acids 85 to 102 and 217 to 234). Its vaccine potential, along with protective immune responses in vivo, may be informative for vaccine development, particularly in regions where the M. tuberculosis Beijing/K-strain is frequently isolated from TB patients.
Collapse
|
35
|
Yang G, Luo T, Sun C, Yuan J, Peng X, Zhang C, Zhai X, Bao L. PPE27 in Mycobacterium smegmatis Enhances Mycobacterial Survival and Manipulates Cytokine Secretion in Mouse Macrophages. J Interferon Cytokine Res 2017; 37:421-431. [PMID: 28829246 DOI: 10.1089/jir.2016.0126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Guoping Yang
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, China
| | - Tao Luo
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, China
| | - Changfeng Sun
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, China
| | - Jinning Yuan
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, China
| | - Xuan Peng
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, China
| | - Chunxi Zhang
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, China
| | - Xiaoqian Zhai
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, China
| | - Lang Bao
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Mycobacterium tuberculosis PPE44 (Rv2770c) is involved in response to multiple stresses and promotes the macrophage expression of IL-12 p40 and IL-6 via the p38, ERK, and NF-κB signaling axis. Int Immunopharmacol 2017; 50:319-329. [DOI: 10.1016/j.intimp.2017.06.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/11/2017] [Accepted: 06/26/2017] [Indexed: 11/19/2022]
|
37
|
Inhibitors of Mycobacterium marinum virulence identified in a Dictyostelium discoideum host model. PLoS One 2017; 12:e0181121. [PMID: 28727774 PMCID: PMC5519057 DOI: 10.1371/journal.pone.0181121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis remains one of the major threats to public health worldwide. Given the prevalence of multi drug resistance (MDR) in Mycobacterium tuberculosis strains, there is a strong need to develop new anti-mycobacterial drugs with modes of action distinct from classical antibiotics. Inhibitors of mycobacterial virulence might target new molecular processes and may represent a potential new therapeutic alternative. In this study, we used a Dictyostelium discoideum host model to assess virulence of Mycobacterium marinum and to identify compounds inhibiting mycobacterial virulence. Among 9995 chemical compounds, we selected 12 inhibitors of mycobacterial virulence that do not inhibit mycobacterial growth in synthetic medium. Further analyses revealed that 8 of them perturbed functions requiring an intact mycobacterial cell wall such as sliding motility, bacterial aggregation or cell wall permeability. Chemical analogs of two compounds were analyzed. Chemical modifications altered concomitantly their effect on sliding motility and on mycobacterial virulence, suggesting that the alteration of the mycobacterial cell wall caused the loss of virulence. We characterized further one of the selected compounds and found that it inhibited the ability of mycobacteria to replicate in infected cells. Together these results identify new antimycobacterial compounds that represent new tools to unravel the molecular mechanisms controlling mycobacterial pathogenicity. The isolation of compounds with anti-virulence activity is the first step towards developing new antibacterial treatments.
Collapse
|
38
|
Ru H, Liu X, Lin C, Yang J, Chen F, Sun R, Zhang L, Liu J. The Impact of Genome Region of Difference 4 (RD4) on Mycobacterial Virulence and BCG Efficacy. Front Cell Infect Microbiol 2017. [PMID: 28642843 PMCID: PMC5462905 DOI: 10.3389/fcimb.2017.00239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Comparative genome analyses have revealed a number of regions of difference (RD) among mycobacterial species. The functional consequences of most of these genome variations have not been studied. RD4, which encompasses Rv1506c-Rv1516c of Mycobacterium tuberculosis (M. tb) H37Rv, is absent in the closely related Mycobacterium bovis and M. bovis Bacille Calmette-Guérin (BCG). On the other hand, we previously found that Mycobacterium marinum has an extended RD4 which includes a number of genes involved in the biosynthesis of lipooligosaccharides (LOSs). As such, there appears to be a gradual decay of RD4 in mycobacterial genomes in the order of M. marinum, M. tb, and M. bovis (including BCG). To understand the potential effect of RD4 on mycobacterial virulence, in this study, we cloned the entire (Rv1501-1516c) and partial (Rv1501-1508c) RD4 into an integrating vector. These constructs were introduced to M. bovis BCG and M. marinum and the virulence of the RD4 knock-in strains were evaluated in the SCID mice and zebrafish infection models, respectively. BCG containing the entire RD4 exhibited similar levels of virulence to the parental strain but BCG containing partial RD4 (Rv1501-Rv1508c) was more attenuated. Similarly, zebrafish infection experiments showed that addition of partial RD4 also appeared to attenuate the virulence of M. marinum. However, M. marinum containing entire RD4 was more virulent than the wild type strain. Interestingly, BCG strains containing the entire or partial RD4 exhibited better protection of zebrafish against M. marinum challenge than the parental BCG. Taken together, our data suggest that RD4 plays a role in mycobacterial virulence and that RD4 knock-in BCG strains confer improved protection. Our study has provided new insights into the biological function of RD4 and evolution of mycobacterial genomes.
Collapse
Affiliation(s)
- Huanwei Ru
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Xiaojia Liu
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Chen Lin
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Jingyan Yang
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Fuzeng Chen
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Ruifeng Sun
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Fudan UniversityShanghai, China.,Shanghai Engineering Research Center of Industrial MicroorganismsShanghai, China
| | - Jun Liu
- State Key Laboratory of Genetic Engineering, School of Life Science, Institute of Genetics, Fudan UniversityShanghai, China.,Department of Molecular Genetics, University of TorontoToronto, ON, Canada
| |
Collapse
|
39
|
WhiB4 Regulates the PE/PPE Gene Family and is Essential for Virulence of Mycobacterium marinum. Sci Rep 2017; 7:3007. [PMID: 28592799 PMCID: PMC5462746 DOI: 10.1038/s41598-017-03020-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/18/2017] [Indexed: 11/18/2022] Open
Abstract
During the course of infection, pathogenic mycobacteria including Mycobacterium tuberculosis (M. tb) encounter host environments of variable oxygen tension, ranging from the hypoxic center of granulomas to the most oxygenated region in the lung cavities. Mycobacterial responses to changes of oxygen tension are critically related to infection outcomes, such as latency and reactivation. WhiB4 is an iron-sulfur containing transcription factor that is highly sensitive to oxygen exposure. In this study, we found that WhiB4 of Mycobacterium marinum (M. marinum), a pathogenic mycobacterial species that is closely related to M. tb, is required for its virulence. M. marinum ΔwhiB4 exhibited defective intracellular replication in macrophages and diminished virulence in zebrafish. Histology analysis revealed that the host had successfully controlled ΔwhiB4 bacteria, forming well-organized granulomas. RNA-seq analysis identified a large number of pe/ppe genes that were regulated by WhiB4, which provides an explanation for the essential role of WhiB4 in M. marinum virulence. Several antioxidant enzymes were also upregulated in ΔwhiB4, supporting its role in modulation of oxidative stress response. Taken together, we have provided new insight into and proposed a model to explain the physiological role of WhiB4.
Collapse
|
40
|
Mycobacterium tuberculosis PPE25 and PPE26 proteins expressed in Mycobacterium smegmatis modulate cytokine secretion in mouse macrophages and enhance mycobacterial survival. Res Microbiol 2017; 168:234-243. [DOI: 10.1016/j.resmic.2016.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 11/23/2022]
|
41
|
Meng L, Tong J, Wang H, Tao C, Wang Q, Niu C, Zhang X, Gao Q. PPE38 Protein of Mycobacterium tuberculosis Inhibits Macrophage MHC Class I Expression and Dampens CD8 + T Cell Responses. Front Cell Infect Microbiol 2017; 7:68. [PMID: 28348981 PMCID: PMC5346565 DOI: 10.3389/fcimb.2017.00068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/22/2017] [Indexed: 12/23/2022] Open
Abstract
Suppression of CD8+ T cell activation is a critical mechanism used by Mycobacterium tuberculosis (MTB) to escape protective host immune responses. PPE38 belongs to the unique PPE family of MTB and in our previous study, PPE38 protein was speculated to participate in manipulating macrophage MHC class I pathway. To test this hypothesis, the function of mycobacterial PPE38 protein was assessed here using macrophage and mouse infection models. Decreased amount of MHC class I was observed on the surface of macrophages infected with PPE38-expressing mycobacteria. The transcript of genes encoding MHC class I was also inhibited by PPE38. After infection of C57BL/6 mice with Mycobacterium smegmatis expressing PPE38 (Msmeg-PPE38), decreased number of CD8+ T cells was found in spleen, liver, and lungs through immunohistochemical analysis, comparing to the control strain harboring empty vector (Msmeg-V). Consistently, flow cytometry assay showed that fewer effector/memory CD8+ T cells (CD44highCD62Llow) were activated in spleen from Msmeg-PPE38 infected mice. Moreover, Msmeg-PPE38 confers a growth advantage over Msmeg-V in C57BL/6 mice, indicating an effect of PPE38 to favor mycobacterial persistence in vivo. Overall, this study shows a unique biological function of PPE38 protein to facilitate mycobacteria to escape host immunity, and provides hints for TB vaccine development.
Collapse
Affiliation(s)
- Lu Meng
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University Shanghai, China
| | - Jingfeng Tong
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University Shanghai, China
| | - Hui Wang
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan UniversityShanghai, China; The State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen UniversityGuangdong, China
| | - Chengwu Tao
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences Shanghai, China
| | - Qinglan Wang
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University Shanghai, China
| | - Chen Niu
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University Shanghai, China
| | - Xiaoming Zhang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences Shanghai, China
| | - Qian Gao
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University Shanghai, China
| |
Collapse
|
42
|
Delogu G, Brennan MJ, Manganelli R. PE and PPE Genes: A Tale of Conservation and Diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:191-207. [PMID: 29116636 DOI: 10.1007/978-3-319-64371-7_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PE and PPE are two large families of proteins typical of mycobacteria whose structural genes in the Mycobacterium tuberculosis complex (MTBC) occupy about 7% of the total genome. The most ancestral PE and PPE proteins are expressed by genes that belong to the same operon and in most cases are found inserted in the esx clusters, encoding a type VII secretion system. Duplication and expansion of pe and ppe genes, coupled with intragenomic and intergenomic recombination events, led to the emergence of the polymorphic pe_pgrs and ppe_mptr genes in the MTBC genome. The role and function of these proteins, and particularly of the polymorphic subfamilies, remains elusive, although it is widely accepted that PE and PPE proteins may represent a specialized collection used by MTBC to interact with the complex host immune system of mammals. In this chapter, we summarize what has been discovered since the identification of these genes in 1998, focusing on M. tuberculosis genetic variability, host-pathogen interaction and TB pathogenesis.
Collapse
Affiliation(s)
- Giovanni Delogu
- Institute of Microbiology, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy.
| | | | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121, Padua, Italy
| |
Collapse
|
43
|
Kim YS, Yang CS, Nguyen LT, Kim JK, Jin HS, Choe JH, Kim SY, Lee HM, Jung M, Kim JM, Kim MH, Jo EK, Jang JC. Mycobacterium abscessus ESX-3 plays an important role in host inflammatory and pathological responses during infection. Microbes Infect 2016; 19:5-17. [PMID: 27637463 DOI: 10.1016/j.micinf.2016.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/02/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022]
Abstract
Mycobacterial ESX systems are often related to pathogenesis during infection. However, little is known about the function of ESX systems of Mycobacterium abscessus (Mab). This study focuses on the Mab ESX-3 cluster, which contains major genes such as esxH (Rv0288, low molecular weight protein antigen 7; CFP-7) and esxG (Rv0287, ESAT-6 like protein). An esx-3 (MAB 2224c-2234c)-deletional mutant of Mab (Δesx) was constructed and used to infect murine and human macrophages. We then investigated whether Mab Δesx modulated innate host immune responses in macrophages. Mab Δesx infection resulted in less pathological and inflammatory responses. Additionally, Δesx resulted in significantly decreased activation of inflammatory signaling and cytokine production in macrophages compared to WT. Moreover, recombinant EsxG·EsxH (rEsxGH) proteins encoded by the ESX-3 region showed synergistic enhancement of inflammatory cytokine generation in macrophages infected with Δesx. Taken together, our data suggest that Mab ESX-3 plays an important role in inflammatory and pathological responses during Mab infection.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan 426-791, South Korea
| | - Loi T Nguyen
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Hyo Sun Jin
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Jin Ho Choe
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Soo Yeon Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Hye-Mi Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Mingyu Jung
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Jin-Man Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Myung Hee Kim
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Ji-Chan Jang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Molecular Mechanism of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, South Korea.
| |
Collapse
|
44
|
Sayes F, Pawlik A, Frigui W, Gröschel MI, Crommelynck S, Fayolle C, Cia F, Bancroft GJ, Bottai D, Leclerc C, Brosch R, Majlessi L. CD4+ T Cells Recognizing PE/PPE Antigens Directly or via Cross Reactivity Are Protective against Pulmonary Mycobacterium tuberculosis Infection. PLoS Pathog 2016; 12:e1005770. [PMID: 27467705 PMCID: PMC4965174 DOI: 10.1371/journal.ppat.1005770] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/27/2016] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), possesses at least three type VII secretion systems, ESX-1, -3 and -5 that are actively involved in pathogenesis and host-pathogen interaction. We recently showed that an attenuated Mtb vaccine candidate (Mtb Δppe25-pe19), which lacks the characteristic ESX-5-associated pe/ppe genes, but harbors all other components of the ESX-5 system, induces CD4+ T-cell immune responses against non-esx-5-associated PE/PPE protein homologs. These T cells strongly cross-recognize the missing esx-5-associated PE/PPE proteins. Here, we characterized the fine composition of the functional cross-reactive Th1 effector subsets specific to the shared PE/PPE epitopes in mice immunized with the Mtb Δppe25-pe19 vaccine candidate. We provide evidence that the Mtb Δppe25-pe19 strain, despite its significant attenuation, is comparable to the WT Mtb strain with regard to: (i) its antigenic repertoire related to the different ESX systems, (ii) the induced Th1 effector subset composition, (iii) the differentiation status of the Th1 cells induced, and (iv) its particular features at stimulating the innate immune response. Indeed, we found significant contribution of PE/PPE-specific Th1 effector cells in the protective immunity against pulmonary Mtb infection. These results offer detailed insights into the immune mechanisms underlying the remarkable protective efficacy of the live attenuated Mtb Δppe25-pe19 vaccine candidate, as well as the specific potential of PE/PPE proteins as protective immunogens. Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, is one of the most widely spread human pathogens, responsible for more than 9.6 million of new tuberculosis cases and 1.5 million deaths, annually. The resurgence of pulmonary tuberculosis in immuno-compromised patients, including HIV-co-infected populations, and increasing spread of drug-resistant Mtb strains are worrying. Given the estimated 2 billion cases of latent Mtb infections and the only partial efficacy of the unique, currently available tuberculosis-vaccine Mycobacterium bovis BCG (Bacille Calmette-Guerin) it is necessary to develop improved vaccines. Here, we demonstrate that the host cellular immunity, mediated by CD4+ T lymphocytes, specific to the “PE/PPE” families of mycobacterial antigens, contribute to the protection against Mtb-induced disease. We revealed the fine composition of the PE/PPE-specific T cells by characterizing their effector functions and differentiation status. We previously described a live attenuated mycobacterial strain as a vaccine candidate that is able to induce such CD4+ T cells and which displays particular properties at stimulating the cells of the innate immune system. These responses play a central role in the initiation of the host defense and in the protection against tuberculosis. Our results pave the way for further development of candidates in preclinical models of anti-tuberculosis vaccination.
Collapse
Affiliation(s)
- Fadel Sayes
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - Alexandre Pawlik
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - Wafa Frigui
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - Matthias I. Gröschel
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - Samuel Crommelynck
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - Catherine Fayolle
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris, France
- INSERM U1041, Paris, France
| | - Felipe Cia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Daria Bottai
- University of Pisa, Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Pisa, Italy
| | - Claude Leclerc
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Paris, France
- INSERM U1041, Paris, France
| | - Roland Brosch
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
| | - Laleh Majlessi
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, Paris, France
- * E-mail:
| |
Collapse
|
45
|
Tong J, Meng L, Wang X, Liu L, Lyu L, Wang C, Li Y, Gao Q, Yang C, Niu C. The FBPase Encoding Gene glpX Is Required for Gluconeogenesis, Bacterial Proliferation and Division In Vivo of Mycobacterium marinum. PLoS One 2016; 11:e0156663. [PMID: 27233038 PMCID: PMC4883791 DOI: 10.1371/journal.pone.0156663] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/17/2016] [Indexed: 01/12/2023] Open
Abstract
Lipids have been identified as important carbon sources for Mycobacterium tuberculosis (Mtb) to utilize in vivo. Thus gluconeogenesis bears a key role for Mtb to survive and replicate in host. A rate-limiting enzyme of gluconeogenesis, fructose 1, 6-bisphosphatase (FBPase) is encoded by the gene glpX. The functions of glpX were studied in M. marinum, a closely related species to Mtb. The glpX deletion strain (ΔglpX) displayed altered gluconeogenesis, attenuated virulence, and altered bacterial proliferation. Metabolic profiles indicate an accumulation of the FBPase substrate, fructose 1, 6-bisphosphate (FBP) and altered gluconeogenic flux when ΔglpX is cultivated in a gluconeogenic carbon substrate, acetate. In both macrophages and zebrafish, the proliferation of ΔglpX was halted, resulting in dramatically attenuated virulence. Intracellular ΔglpX exhibited an elongated morphology, which was also observed when ΔglpX was grown in a gluconeogenic carbon source. This elongated morphology is also supported by the observation of unseparated multi-nucleoid cell, indicating that a complete mycobacterial division in vivo is correlated with intact gluconeogenesis. Together, our results indicate that glpX has essential functions in gluconeogenesis, and plays an indispensable role in bacterial proliferation in vivo and virulence of M. marinum.
Collapse
Affiliation(s)
- Jingfeng Tong
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lu Meng
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Xinwei Wang
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Lixia Liu
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liangdong Lyu
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chuan Wang
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang Li
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qian Gao
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Chen Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (CY); (CN)
| | - Chen Niu
- MOE & MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- * E-mail: (CY); (CN)
| |
Collapse
|
46
|
Li H, Li Q, Yu Z, Zhou M, Xie J. Mycobacterium tuberculosis PE13 (Rv1195) manipulates the host cell fate via p38-ERK-NF-κB axis and apoptosis. Apoptosis 2016; 21:795-808. [DOI: 10.1007/s10495-016-1249-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Inhibition of IFN-γ-Induced Nitric Oxide Dependent Antimycobacterial Activity by miR-155 and C/EBPβ. Int J Mol Sci 2016; 17:535. [PMID: 27070591 PMCID: PMC4848991 DOI: 10.3390/ijms17040535] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/25/2016] [Accepted: 04/01/2016] [Indexed: 12/16/2022] Open
Abstract
miR-155 (microRNA-155) is an important non-coding RNA in regulating host crucial biological regulators. However, its regulatory function in mycobacterium infection remains unclear. Our study demonstrates that miR-155 expression is significantly increased in macrophages after Mycobacterium marinum (M.m) infection. Transfection with anti-miR-155 enhances nitric oxide (NO) synthesis and decreases the mycobacterium burden, and vice versa, in interferon γ (IFN-γ) activated macrophages. More importantly, miR-155 can directly bind to the 3'UTR of CCAAT/enhancer binding protein β (C/EBPβ), a positive transcriptional regulator of nitric oxide synthase (NOS2), and regulate C/EBPβ expression negatively. Knockdown of C/EBPβ inhibit the production of nitric oxide synthase and promoted mycobacterium survival. Collectively, these data suggest that M.m-induced upregulation of miR-155 downregulated the expression of C/EBPβ, thus decreasing the production of NO and promoting mycobacterium survival, which may provide an insight into the function of miRNA in subverting the host innate immune response by using mycobacterium for its own profit. Understanding how miRNAs partly regulate microbicidal mechanisms may represent an attractive way to control tuberculosis infectious.
Collapse
|
48
|
Chen YY, Yang FL, Wu SH, Lin TL, Wang JT. Mycobacterium marinum mmar_2318 and mmar_2319 are Responsible for Lipooligosaccharide Biosynthesis and Virulence Toward Dictyostelium. Front Microbiol 2016; 6:1458. [PMID: 26779131 PMCID: PMC4703794 DOI: 10.3389/fmicb.2015.01458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/04/2015] [Indexed: 12/15/2022] Open
Abstract
Resistance to phagocyte killing is an important virulence factor in mycobacteria. Dictyostelium has been used to study the interaction between phagocytes and bacteria, given its similarity to the mammalian macrophage. Here, we investigated the genes responsible for virulence to Dictyostelium by screening 1728 transposon mutants of the Mycobacterium marinum NTUH-M6094 strain. A total of 30 mutants that permissive for Dictyostelium growth were identified. These mutants revealed interruptions in 20 distinct loci. Of the 20 loci, six genes (losA, mmar_2318, mmar_2319, wecE, mmar_2323 and mmar_2353) were located in the lipooligosaccharide (LOS) synthesis cluster. LOS are antigenic glycolipids and the core LOS structure from LOS-I to LOS-IV have been reported to exist in M. marinum. Two-dimensional thin-layer chromatography (2D-TLC) glycolipid profiles revealed that deletion of mmar_2318 or mmar_2319 resulted in the accumulation of LOS-III and deficiency of LOS-IV. Deletion and complementation of mmar_2318 or mmar_2319 confirmed that these genes both contributed to virulence toward Dictyostelium but not entry and replication inside Dictyostelium. Co-incubation with a murine macrophage cell line J774a.1 or PMA-induced human monocytic cell line THP-1 demonstrated that mmar_2318 or mmar_2319 deletion mutant could grow in macrophages, and their initial entry rate was not affected in J774a.1 but significantly increased in THP-1. In conclusion, although mmar_2319 has been reported to involve LOS biosynthesis in a previous study, we identified a new gene, mmar_2318 that is also involved in the biosynthesis of LOS. Deletion of mmar_2318 or mmar_2319 both exhibits reduction of virulence toward Dictyostelium and increased entry into THP-1 cells.
Collapse
Affiliation(s)
- Yi-Yin Chen
- Department of Microbiology, National Taiwan University College of Medicine Taipei, Taiwan
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica Taipei, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of MedicineTaipei, Taiwan; Department of Internal Medicine, National Taiwan University HospitalTaipei, Taiwan
| |
Collapse
|
49
|
Majlessi L, Prados-Rosales R, Casadevall A, Brosch R. Release of mycobacterial antigens. Immunol Rev 2015; 264:25-45. [PMID: 25703550 DOI: 10.1111/imr.12251] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mycobacterium tuberculosis has evolved from a Mycobacterium canettii-like progenitor pool into one of the most successful and widespread human pathogens. The pathogenicity of M. tuberculosis is linked to its ability to secrete/export/release selected mycobacterial proteins, and it is also established that active release of mycobacterial antigens is a prerequisite for strong immune recognition. Recent research has enabled mycobacterial secretion systems and vesicle-based release of mycobacterial antigens to be elucidated, which together with host-related specificities constitute key variables that determine the outcome of infection. Here, we discuss recently discovered, novel aspects on the nature and the regulation of antigen release of the tuberculosis agent with particular emphasis on the biological characterization of mycobacteria-specific ESX/type VII secretion systems and their secreted proteins, belonging to the Esx, PE, and PPE categories. The importance of specific mycobacterial antigen release is probably best exemplified by the striking differences observed between the cellular events during infection with the ESX-1-deficient, attenuated Mycobacterium bovis BCG compared to the virulent M. tuberculosis, which are clearly important for design of more specific diagnostics and more efficient vaccines.
Collapse
Affiliation(s)
- Laleh Majlessi
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | | | | | | |
Collapse
|
50
|
Luo H, Zeng J, Huang Q, Liu M, Abdalla AE, Xie L, Wang H, Xie J. Mycobacterium tuberculosisRv1265 promotes mycobacterial intracellular survival and alters cytokine profile of the infected macrophage. J Biomol Struct Dyn 2015; 34:585-99. [DOI: 10.1080/07391102.2015.1046935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|