1
|
A primary Chlamydia trachomatis genital infection of rhesus macaques identifies new immunodominant B-cell antigens. PLoS One 2021; 16:e0250317. [PMID: 33886668 PMCID: PMC8061917 DOI: 10.1371/journal.pone.0250317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/05/2021] [Indexed: 01/09/2023] Open
Abstract
To identify immunodominant antigens that elicit a humoral immune response following a primary and a secondary genital infection, rhesus monkeys were inoculated cervically with Chlamydia trachomatis serovar D. Serum samples were collected and probed with a protein microarray expressing 864/894 (96.4%) of the open reading frames of the C. trachomatis serovar D genome. The antibody response to the primary infection was analyzed in 72 serum samples from 12 inoculated monkeys. The following criteria were utilized to identify immunodominant antigens: proteins found to be recognized by at least 75% (9/12) of the infected monkeys with at least 15% elevations in signal intensity from week 0 to week 8 post infection. All infected monkeys developed Chlamydia specific serum antibodies. Eight proteins satisfied the selection criteria for immunodominant antigens: CT242 (OmpH-like protein), CT541 (mip), CT681 (ompA), CT381 (artJ), CT443 (omcB), CT119 (incA), CT486 (fliY), and CT110 (groEL). Of these, three antigens, CT119, CT486 and CT381, were not previously identified as immunodominant antigens using non-human primate sera. Following the secondary infection, the antibody responses to the eight immunodominant antigens were analyzed and found to be quite different in intensity and duration to the primary infection. In conclusion, these eight immunodominant antigens can now be tested for their ability to identify individuals with a primary C. trachomatis genital infection and to design vaccine strategies to protect against a primary infection with this pathogen.
Collapse
|
2
|
Lu C, Sun Z, Chen H, Chen L, Zhu C, Chen C, Li C, Peng B, Zhong G. Proteome array of antibody responses to Chlamydia trachomatis infection in nonhuman primates. Life Sci 2020; 248:117444. [PMID: 32084433 DOI: 10.1016/j.lfs.2020.117444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 11/29/2022]
Abstract
AIMS Nonhuman primates have been used to investigate pathogenic mechanisms and evaluate immune responses following Chlamydia trachomatis inoculation. This study aimed to systemically profile antibody responses to C. trachomatis infection in nonhuman primates. MATERIALS AND METHODS Sera were obtained from 4 pig-tailed and 8 long-tailed macaques which were intravaginally or ocularly infected with live C. trachomatis organisms, and analyzed by C. trachomatis proteome array of antigens. KEY FINDINGS The sera from 12 macaques recognized total 172 C. trachomatis antigens. While 84 antigens were recognized by pig-tailed macaques intravaginally infected with serovar D strain, 125 antigens were recognized by long-tailed macaques ocularly infected with serovar A, and 37 antigens were recognized by both. Ocular inoculation with virulent A2497 strain induced antibodies to more antigens. Among the antigens uniquely recognized by A2497 strain infected macaques, outer membrane complex B antigen (OmcB) induced robust antibody response. Although macaques infected by less virulent A/HAR-13 strain failed to develop antibodies to OmcB, reinfection by A2497 strain induced high levels of antibodies to OmcB. SIGNIFICANCE Proteome array has revealed a correlation of chlamydial infection invasiveness with chlamydial antigen immunogenicity, and identified antibody responses to OmcB potentially as biomarkers for invasive infection with C. trachomatis.
Collapse
Affiliation(s)
- Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Zhenjie Sun
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Hui Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Lili Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Chaoqun Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Changqing Li
- Nanyue Biopharmaceutical Co. Ltd., Hunan Province Innovative Training Base for Postgraduates, University of South China and Nanyue Biopharmaceutical Co. Ltd., Hengyang, Hunan 421001, China
| | - Bo Peng
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China; Department of Pathology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Guangming Zhong
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
3
|
Cossé MM, Barta ML, Fisher DJ, Oesterlin LK, Niragire B, Perrinet S, Millot GA, Hefty PS, Subtil A. The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces Chlamydia trachomatis Infectivity and Growth. Front Cell Infect Microbiol 2018; 8:145. [PMID: 29868501 PMCID: PMC5962693 DOI: 10.3389/fcimb.2018.00145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Invasion of epithelial cells by the obligate intracellular bacterium Chlamydia trachomatis results in its enclosure inside a membrane-bound compartment termed an inclusion. The bacterium quickly begins manipulating interactions between host intracellular trafficking and the inclusion interface, diverging from the endocytic pathway and escaping lysosomal fusion. We have identified a previously uncharacterized protein, CT622, unique to the Chlamydiaceae, in the absence of which most bacteria failed to establish a successful infection. CT622 is abundant in the infectious form of the bacteria, in which it associates with CT635, a putative novel chaperone protein. We show that CT622 is translocated into the host cytoplasm via type three secretion throughout the developmental cycle of the bacteria. Two separate domains of roughly equal size have been identified within CT622 and a 1.9 Å crystal structure of the C-terminal domain has been determined. Genetic disruption of ct622 expression resulted in a strong bacterial growth defect, which was due to deficiencies in proliferation and in the generation of infectious bacteria. Our results converge to identify CT622 as a secreted protein that plays multiple and crucial roles in the initiation and support of the C. trachomatis growth cycle. They reveal that genetic disruption of a single effector can deeply affect bacterial fitness.
Collapse
Affiliation(s)
- Mathilde M Cossé
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France.,Collège Doctoral, Sorbonne Université, Paris, France
| | - Michael L Barta
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Derek J Fisher
- Department of Microbiology, Southern Illinois University, Carbondale, IL, United States
| | - Lena K Oesterlin
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique UMR 144, Molecular Mechanisms of Intracellular Transport, Paris, France
| | - Béatrice Niragire
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France
| | - Stéphanie Perrinet
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France
| | - Gaël A Millot
- Institut Pasteur-Bioinformatics and Biostatistics Hub-C3BI, USR3756 IP Centre National de la Recherche Scientifique, Paris, France
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Agathe Subtil
- Unité de Biologie Cellulaire de l'Infection Microbienne, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France
| |
Collapse
|
4
|
Elevated serum antibody against Schistosoma japonicum HSP60 as a promising biomarker for liver pathology in schistosomiasis. Sci Rep 2017; 7:7765. [PMID: 28798366 PMCID: PMC5552731 DOI: 10.1038/s41598-017-08283-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 07/07/2017] [Indexed: 12/15/2022] Open
Abstract
The pathology associated with Schistosoma japonicum (S. japonicum) infection in humans is attributed to parasite egg-induced granulomatous inflammation and fibrosis in the host liver. Currently, a marker that is reliable, cheap, less device-dependent, and can be easily and repeatedly used on a large scale to monitor the progression of liver pathology in schistosomiasis japonica endemic areas is lacking. The levels of serum S. japonicum heat shock protein 60 (SjHSP60)-specific IgG and its subtype antibodies in animals (mice and rabbits) or patients with schistosomiasis were measured by ELISA. Liver pathologies in mice and rabbits were evaluated by gross pathology and histopathology, and hepatic fibrosis in patients was examined with ultrasound imaging. The results revealed that the titers of the total IgG and subtype IgG1 anti-SjHSP60 antibodies were positively correlated with the severity of liver pathology after S. japonicum infection. Our findings indicate that the SjHSP60 IgG and IgG1 antibody levels can be used as potential candidate biomarkers for evaluation of liver pathology in schistosomiasis; however, validation remains to be explored in further work.
Collapse
|
5
|
Wang S, Guo R, Guo YL, Shao LL, Liu Y, Wei SJ, Liu YJ, Liu QZ. Biological effects of chlamydiaphage phiCPG1 capsid protein Vp1 on chlamydia trachomatis in vitro and in vivo. ACTA ACUST UNITED AC 2017; 37:115-121. [PMID: 28224434 DOI: 10.1007/s11596-017-1704-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/20/2016] [Indexed: 12/22/2022]
Abstract
The researches on chlamydia in recent years show that chlamydia bacteriophage may be a potential and effective means to solve the clinical infection of chlamydia trachomatis (Ct). We investigated the biological effect of chlamydiaphage phiCPG1 capsid protein Vp1 on Ct both in McCoy cells and genital tract of mice. Different concentrations of Vp1 were co-incubated with Ct E serotype strain in McCoy cells. Female BALB/c mice were used to establish Ct E strain-induced urogenital infection model. They were randomly divided into five groups and given different treatments on the fifth day after Ct inoculation. Animals in groups 1 and 2 were given 30 μL different concentrations of Vp1 in the genital tract respectively, those in group 3 were intramuscularly injected with 30 μL Vp1, those in the infected group did not receive any intervention, and those in the control group received 30 μL PBS in the genital tract. The vaginal discharge was collected to identify the live chlamydia by cell culture and gene fragment by real time PCR different days after infection. Inhibition rate of 100 μg/mL and 50 μg/mL Vp1 proteins against Ct E strain in the McCoy cell cultures was 91% and 79% respectively. The number of intracellular Ct inclusion in the McCoy cells co-cultured with vaginal discharge of group 1 and group 2 was less than in the infected group, and that in group 1 was less than in group 2, on the 7th day after Ct inoculation. Real-time PCR showed that chlamydia concentration of the vaginal discharge in group 2 was lower than in the infected group, and that in group 1 was lower than in group 2 on the 10th day. It was suggested that Vp1 capsid proteins had inhibitory effect on the proliferation of Ct serovar E strain in cell culture and mouse genital tract.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Dermatology and Venereology, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Dermatology, Tangshan Gongren Hospital, Tangshan, 063000, China
| | - Rui Guo
- Department of Dermatology and Venereology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yuan-Li Guo
- Department of Dermatology and Venereology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Li-Li Shao
- Department of Dermatology and Venereology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yang Liu
- Department of Anesthesiology, Kailuan General Hospital, Tangshan, 063000, China
| | - Shi-Juan Wei
- Department of Dermatology and Venereology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yuan-Jun Liu
- Department of Dermatology and Venereology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Quan-Zhong Liu
- Department of Dermatology and Venereology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
6
|
Tifrea DF, Barta ML, Pal S, Hefty PS, de la Maza LM. Computational modeling of TC0583 as a putative component of the Chlamydia muridarum V-type ATP synthase complex and assessment of its protective capabilities as a vaccine antigen. Microbes Infect 2016; 18:245-53. [PMID: 26706820 PMCID: PMC7064150 DOI: 10.1016/j.micinf.2015.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/05/2015] [Accepted: 12/01/2015] [Indexed: 11/27/2022]
Abstract
Numerous Chlamydia trachomatis proteins have been identified as potential subunit vaccines, of which the major outer-membrane protein (MOMP) has, so far, proven the most efficacious. Recently, subunit A of the V-type ATP synthase (ATPase; TC0582) complex was shown to elicit partial protection against infection. Computational modeling of a neighboring gene revealed a novel subunit of the V-type ATPase (TC0583). To determine if this newly identified subunit could induce protection and/or enhance the partial protection provided by subunit A alone, challenge studies were performed using a combination of these recombinant proteins. The TC0583 subunit alone and concurrently with TC0582, was used to vaccinate BALB/c mice utilizing CpG-1826 and Montanide ISA 720 VG as adjuvants. Vaccinated animals were challenged intranasally with Chlamydia muridarum and the course of the infection was followed. Mice immunized with individual antigens showed minimal alleviation of body weight reduction; however, mice immunized with TC0583 and TC0582 in combination, displayed weight loss levels close to those observed with MOMP. Importantly, immunization with a combination of recombinant subunit proteins reduced chlamydial inclusion forming units by approximately a log-fold. These protection levels support that, these highly conserved Chlamydia proteins, in combination with other antigens, may serve as potential vaccine candidates.
Collapse
Affiliation(s)
- Delia F Tifrea
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - Michael L Barta
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Haworth Hall RM 8051, Lawrence, KS 66045, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave, Haworth Hall RM 8051, Lawrence, KS 66045, USA
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, Irvine, CA 92697-4800, USA.
| |
Collapse
|
7
|
Sun X, Yang Z, Zhang H, Dai J, Chen J, Tang L, Rippentrop S, Xue M, Zhong G, Wu G. Chlamydia muridarum induction of glandular duct dilation in mice. Infect Immun 2015; 83:2327-37. [PMID: 25824829 PMCID: PMC4432733 DOI: 10.1128/iai.00154-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/20/2015] [Indexed: 12/19/2022] Open
Abstract
Although Chlamydia-induced hydrosalpinx in women and mice has been used as a surrogate marker for tubal infertility, the medical relevance of nontubal pathologies, such as uterine horn dilation, developed in mice following chlamydial infection remains unclear. We now report that the uterine horn dilation correlates with glandular duct dilation detected microscopically following Chlamydia muridarum infection. The dilated glandular ducts pushed the uterine horn lumen to closure or dilation and even broke through the myometrium to develop extrusion outside the uterine horn. The severity scores of uterine horn dilation observed macroscopically correlated well with the number of cross sections of the dilated glandular ducts counted under microscopy. Chlamydial infection was detected in the glandular epithelial cells, potentially leading to inflammation and dilation of the glandular ducts. Direct delivery of C. muridarum into the mouse uterus increased both uterine horn/glandular duct dilation and hydrosalpinx. However, the chlamydial plasmid, which is essential for the induction of hydrosalpinx, was not required for the induction of uterine horn/glandular duct dilation. Screening 12 strains of mice for uterine horn dilation following C. muridarum infection revealed that B10.D2, C57BL/10J, and C57BL/6J mice were most susceptible, followed by BALB/cJ and A/J mice. Deficiency in host genes involved in immune responses failed to significantly alter the C. muridarum induction of uterine horn dilation. Nevertheless, the chlamydial induction of uterine horn/glandular duct dilation may be used to evaluate plasmid-independent pathogenicity of Chlamydia in susceptible mice.
Collapse
Affiliation(s)
- Xin Sun
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA Department of Obstetrics and Gynecology, 3rd Xiangya Hospital, Central South University of China, Changsha, Hunan, People's Republic of China
| | - Zhangsheng Yang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Hongbo Zhang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA Department of Pathology, 2nd Xiangya Hospital, Central South University of China, Changsha, Hunan, People's Republic of China
| | - Jin Dai
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jianlin Chen
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA Department of Obstetrics and Gynecology, 2nd Xiangya Hospital, Central South University of China, Changsha, Hunan, People's Republic of China
| | - Lingli Tang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA Department of Clinical Diagnosis, 2nd Xiangya Hospital, Central South University of China, Changsha, Hunan, People's Republic of China
| | - Sheena Rippentrop
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Min Xue
- Department of Obstetrics and Gynecology, 3rd Xiangya Hospital, Central South University of China, Changsha, Hunan, People's Republic of China
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ganqiu Wu
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA Department of Histology and Embryology, Xiangya School of Medicine, Central South University of China, Changsha, Hunan, People's Republic of China
| |
Collapse
|
8
|
Zuo QF, Cai CZ, Ding HL, Wu Y, Yang LY, Feng Q, Yang HJ, Wei ZB, Zeng H, Zou QM. Identification of the immunodominant regions of Staphylococcus aureus fibronectin-binding protein A. PLoS One 2014; 9:e95338. [PMID: 24736634 PMCID: PMC3988184 DOI: 10.1371/journal.pone.0095338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/26/2014] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus is an opportunistic bacterial pathogen responsible for a diverse spectrum of human diseases and a leading cause of nosocomial and community-acquired infections. Development of a vaccine against this pathogen is an important goal. The fibronectin binding protein A (FnBPA) of S. aureus is one of multifunctional ‘microbial surface components recognizing adhesive matrix molecules' (MSCRAMMs). It is one of the most important adhesin molecules involved in the initial adhesion steps of S. aureus infection. It has been studied as potential vaccine candidates. However, FnBPA is a high-molecular-weight protein of 106 kDa and difficulties in achieving its high-level expression in vitro limit its vaccine application in S. aureus infection diseases control. Therefore, mapping the immunodominant regions of FnBPA is important for developing polyvalent subunit fusion vaccines against S. aureus infections. In the present study, we cloned and expressed the N-terminal and C-terminal of FnBPA. We evaluated the immunogenicity of the two sections of FnBPA and the protective efficacy of the two truncated fragments vaccines in a murine model of systemic S. aureus infection. The results showed recombinant truncated fragment F130-500 had a strong immunogenicity property and survival rates significantly increased in the group of mice immunized with F130-500 than the control group. We futher identified the immunodominant regions of FnBPA. The mouse antisera reactions suggest that the region covering residues 110 to 263 (F1B110-263) is highly immunogenic and is the immunodominant regions of FnBPA. Moreover, vaccination with F1B110-263 can generate partial protection against lethal challenge with two different S. aureus strains and reduced bacterial burdens against non-lethal challenge as well as that immunization with F130-500. This information will be important for further developing anti- S. aureus polyvalent subunit fusion vaccines.
Collapse
Affiliation(s)
- Qian-Fei Zuo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Chang-Zhi Cai
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Hong-Lei Ding
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Yi Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Liu-Yang Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Qiang Feng
- Department of Biological Engineering and Chemical Engineering, Chongqing University of Education, Chongqing, PR China
| | - Hui-Jie Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Zhen-Bo Wei
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
- * E-mail: (HZ); (QMZ)
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
- * E-mail: (HZ); (QMZ)
| |
Collapse
|
9
|
Divergent outcomes following transcytosis of IgG targeting intracellular and extracellular chlamydial antigens. Immunol Cell Biol 2014; 92:417-26. [PMID: 24445600 DOI: 10.1038/icb.2013.110] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 12/12/2022]
Abstract
Antibodies can have a protective but non-essential role in natural chlamydial infections dependent on antigen specificity and antibody isotype. IgG is the dominant antibody in both male and female reproductive tract mucosal secretions, and is bi-directionally trafficked across epithelia by the neonatal Fc receptor (FcRn). Using pH-polarized epididymal epithelia grown on Transwells, IgG specifically targeted at an extracellular chlamydial antigen; the major outer membrane protein (MOMP), enhanced uptake and translocation of infection at pH 6-6.5 but not at neutral pH. This was dependent on FcRn expression. Conversely, FcRn-mediated transport of IgG targeting the intracellular chlamydial inclusion membrane protein A (IncA), induced aberrant inclusion morphology, recruited autophagic proteins independent of lysosomes and significantly reduced infection. Challenge of female mice with MOMP-specific IgG-opsonized Chlamydia muridarum delayed infection clearance but exacerbated oviduct occlusion. In male mice, MOMP-IgG elicited by immunization afforded no protection against testicular chlamydial infection, whereas the transcytosis of IncA-IgG significantly reduced testicular chlamydial burden. Together these data show that the protective and pathological effects of IgG are dependent on FcRn-mediated transport as well as the specificity of IgG for intracellular or extracellular antigens.
Collapse
|
10
|
Tang L, Yang Z, Zhang H, Zhou Z, Arulanandam B, Baseman J, Zhong G. Induction of protective immunity against Chlamydia muridarum intracervical infection in DBA/1j mice. Vaccine 2013; 32:1407-13. [PMID: 24188757 DOI: 10.1016/j.vaccine.2013.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/25/2013] [Accepted: 10/03/2013] [Indexed: 12/22/2022]
Abstract
We previously reported that intracervical inoculation with Chlamydia muridarum induced hydrosalpinx in DBA/1j mice, but intravaginal inoculation failed to do so. In the current study, we found unexpectedly that intrabursal inoculation of live chlamydial organisms via the oviduct failed to induce significant hydrosalpinx. We further tested whether primary infection via intravaginal or intrabursal inoculation could induce protective immunity against hydrosalpinx following intracervical challenge infection. Mice infected intravaginally with C. muridarum were fully protected from developing hydrosalpinx, while intrabursal inoculation offered partial protection. We then compared immune responses induced by the two genital tract inoculations. Both inoculations induced high IFNγ and IL-17 T cell responses although the ratio of IgG2a versus IgG1 in intravaginally infected mice was significantly higher than in mice infected intrabursally. When the antigen-specificities of antibody responses were compared, both groups of mice dominantly recognized 24 C. muridarum antigens, while each group preferentially recognized unique sets of antigens. Thus, we have demonstrated that intrabursal inoculation is neither effective for causing hydrosalpinx nor efficient in inducing protective immunity in DBA/1j mice. Intravaginal immunization, in combination with intracervical challenge infection in DBA/1j mice, can be a useful model for understanding mechanisms of chlamydial pathogenicity and protective immunity.
Collapse
Affiliation(s)
- Lingli Tang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Clinic Laboratory, Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd., Changsha, Hunan 410011, China
| | - Zhangsheng Yang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Hongbo Zhang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Zhiguang Zhou
- Department of Clinic Laboratory, Second Xiangya Hospital, Central South University, 139 Renmin Middle Rd., Changsha, Hunan 410011, China
| | - Bernard Arulanandam
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Joel Baseman
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
11
|
Cheng C, Jain P, Pal S, Tifrea D, Sun G, Teng AA, Liang X, Felgner PL, de la Maza LM. Assessment of the role in protection and pathogenesis of the Chlamydia muridarum V-type ATP synthase subunit A (AtpA) (TC0582). Microbes Infect 2013; 16:123-133. [PMID: 24161793 DOI: 10.1016/j.micinf.2013.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 11/16/2022]
Abstract
A novel Chlamydia muridarum antigen (TC0582) was used to vaccinate BALB/c mice. Mice were also immunized with other components of the ATP synthase complex (TC0580, TC0581, and TC0584), or with the major outer membrane protein (MOMP). TC0582 was also formulated in combination with TC0580, TC0581 or MOMP. TC0582 alone, or in combination with the other antigens, elicited strong Chlamydia-specific humoral and cellular immune responses. Vaccinated animals were challenged intranasally and the course of the infection was followed for 10 days. Based on percentage change in body weight, lung weight, and number of Chlamydia inclusion forming units recovered from the lungs, mice immunized with TC0582, TC0581 or MOMP, as single antigens, showed significant protection. Mice immunized with combinations of two antigens were also protected but the level of protection was not additive. TC0582 has sequence homology with the eukaryotic ATP synthase subunit A (AtpA). Therefore, to determine if immunization with TC0582, or with Chlamydia, elicited antibodies that cross-reacted with the mouse AtpA, the two proteins were printed on a microarray. Sera from mice immunized with TC0582 and/or live Chlamydia, strongly reacted with TC0582 but did not recognize the mouse AtpA. In conclusion, TC0582 may be considered as a Chlamydia vaccine candidate.
Collapse
Affiliation(s)
- Chunmei Cheng
- Department of Pathology and Laboratory Medicine Medical Sciences I, Room D440 University of California, Irvine Irvine, California 92697-4800
| | - Pooja Jain
- Department of Pathology and Laboratory Medicine Medical Sciences I, Room D440 University of California, Irvine Irvine, California 92697-4800
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine Medical Sciences I, Room D440 University of California, Irvine Irvine, California 92697-4800
| | - Delia Tifrea
- Department of Pathology and Laboratory Medicine Medical Sciences I, Room D440 University of California, Irvine Irvine, California 92697-4800
| | - Guifeng Sun
- Department of Pathology and Laboratory Medicine Medical Sciences I, Room D440 University of California, Irvine Irvine, California 92697-4800
| | - Andy A Teng
- ImmPORT Therapeutics, Inc./Antigen Discovery Inc. 1 Technology Dr., Suite E309 Irvine, CA 92618
| | - Xiaowu Liang
- ImmPORT Therapeutics, Inc./Antigen Discovery Inc. 1 Technology Dr., Suite E309 Irvine, CA 92618
| | - Philip L Felgner
- ImmPORT Therapeutics, Inc./Antigen Discovery Inc. 1 Technology Dr., Suite E309 Irvine, CA 92618.,Department of Medicine 3052 Hewitt Hall University of California, Irvine Irvine, California 92697-4068
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine Medical Sciences I, Room D440 University of California, Irvine Irvine, California 92697-4800
| |
Collapse
|
12
|
Gondek DC, Olive AJ, Stary G, Starnbach MN. CD4+ T cells are necessary and sufficient to confer protection against Chlamydia trachomatis infection in the murine upper genital tract. THE JOURNAL OF IMMUNOLOGY 2012; 189:2441-9. [PMID: 22855710 DOI: 10.4049/jimmunol.1103032] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chlamydia trachomatis infection is the most common bacterial sexually transmitted disease in the United States. Chlamydia infections that ascend to the upper genital tract can persist, trigger inflammation, and result in serious sequelae such as infertility. However, mouse models in which the vaginal vault is inoculated with C. trachomatis do not recapitulate the course of human disease. These intravaginal infections of the mouse do not ascend efficiently to the upper genital tract, do not cause persistent infection, do not induce significant inflammation, and do not induce significant CD4⁺ T cell infiltration. In this article, we describe a noninvasive transcervical infection model in which we bypass the cervix and directly inoculate C. trachomatis into the uterus. We show that direct C. trachomatis infection of the murine upper genital tract stimulates a robust Chlamydia-specific CD4⁺ T cell response that is both necessary and sufficient to clear infection and provide protection against reinfection.
Collapse
Affiliation(s)
- David C Gondek
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
13
|
Mapping immunodominant antigens and H-2-linked antibody responses in mice urogenitally infected with Chlamydia muridarum. Microbes Infect 2012; 14:659-65. [PMID: 22421110 DOI: 10.1016/j.micinf.2012.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 01/07/2023]
Abstract
To identify immunodominant antigens and MHC-restricted antibody responses, seven different strains of mice were intravaginally infected with Chlamydia muridarum and compared for antibody responses to 257 C. muridarum proteins. The 7 strains of mice recognized a total of 109 proteins as antigens, of which, 5 antigens (TC0660, TC0727, TC0828, TC0726 & TC0268) were each recognized by 60% or more mice from each mouse strain and thus designated as immunodominant antigens. Furthermore, antibody responses to 19 other antigens displayed strong associations with mouse H-2 haplotypes, including 6 antigens (TC0480, TC0912, TC0229, TCA04, TC0289 & TC0892) whose antibody responses were linked to H-2(b), 8 (TC0035, TC0387, TC0052, TC0781, TC0373, TC0117, TC0066 & TC0396) to H-2(d) and 5 (TC0512, TC0177, TC0589, TC0794 & TC0596) to H-2(k) haplotypes respectively. Interestingly, H-2(b) was negatively associated with antibody responses to most of the antigens that were positively linked to H-2(d) or H-2(k) haplotypes. These results by mapping Chlamydia trachomatis antigens commonly recognized by mice with different strain background and H-2 genes and revealing antigen association with H-2 haplotypes have provided important information for developing chlamydial subunit vaccines and understanding chlamydial pathogenesis.
Collapse
|