1
|
Arya A, Chaudhry S, Yadav K, Tamang S, Meena SS, Matlani M, Pande V, Singh V. Screening Clinical, Laboratory and Host Markers for Diagnosis of Disease Severity in Plasmodium vivax Clinical Samples. Indian J Microbiol 2024; 64:1278-1289. [PMID: 39282159 PMCID: PMC11399495 DOI: 10.1007/s12088-024-01324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/07/2024] [Indexed: 09/18/2024] Open
Abstract
Malaria is one of the most infectious disease that affects lives of million people throughout the world. Recently, there are several reports which indicate Plasmodium vivax (P. vivax) causing severe disease in infected patients from different parts of the world. For P. vivax disease severity, the data related to immunological and inflammatory status in human host is very limited. In the present study clinical parameters, cytokine profile and integrin gene were analyzed in P. vivax clinical patients. A total of 169 P. vivax samples were collected and categorized into severe vivax malaria (SVM; n = 106) and non-severe vivax malaria (NSVM; n = 63) according to WHO severity criteria. We measured host biomarker levels of interferon (IFN-γ), superoxide dismutase (SOD-1), interleukins viz. (IL-6, IL-10), and tumor necrosis factor (TNF-α) in patient plasma samples by ELISA for pro- and anti-inflammatory cytokines in severe malaria. Host integrin gene was genotyped using PCR assay. In our study, thrombocytopenia and anemia were major symptoms in severe P. vivax patients. In analyzed SVM and NSVM groups a significant increase in cytokine levels (IL-10, IL-6, and TNF-α) and anti-oxidant enzyme SOD-1 was found. Our study results also showed a higher pro-inflammatory (TNF-α, IL-6 and IFN-γ) to anti-inflammatory (IL-10) cytokine ratio in severe vivax patients. Integrin gene showed no mutation with respect to thrombocytopenic patients among clinically defined groups. It was observed that severe vivax cases had increased cytokine levels irrespective of age and sex of the patients along with thrombocytopenia and other clinical manifestations. The results of current findings could serve as baseline data for evaluating severe malaria parameters during P. vivax infections and will help in developing an effective biomarker for diagnosis. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01324-4.
Collapse
Affiliation(s)
- Aditi Arya
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, New Delhi, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand 263001 India
| | - Shewta Chaudhry
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, New Delhi, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand 263001 India
| | - Karmveer Yadav
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Suman Tamang
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Shyam Sundar Meena
- Department of Pediatrics VMMC, Safdarjung Hospital Campus, New Delhi, India
| | - Monika Matlani
- Department of Microbiology, VMMC, Safdarjung Hospital Campus, New Delhi, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand 263001 India
| | - Vineeta Singh
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh India
| |
Collapse
|
2
|
Ramos S, Jeney V, Figueiredo A, Paixão T, Sambo MR, Quinhentos V, Martins R, Gouveia Z, Carlos AR, Ferreira A, Pais TF, Lainé H, Faísca P, Rebelo S, Cardoso S, Tolosano E, Penha-Gonçalves C, Soares MP. Targeting circulating labile heme as a defense strategy against malaria. Life Sci Alliance 2024; 7:e202302276. [PMID: 38307624 PMCID: PMC10837040 DOI: 10.26508/lsa.202302276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
Severe presentations of malaria emerge as Plasmodium (P.) spp. parasites invade and lyse red blood cells (RBC), producing extracellular hemoglobin (HB), from which labile heme is released. Here, we tested whether scavenging of extracellular HB and/or labile heme, by haptoglobin (HP) and/or hemopexin (HPX), respectively, counter the pathogenesis of severe presentations of malaria. We found that circulating labile heme is an independent risk factor for cerebral and non-cerebral presentations of severe P. falciparum malaria in children. Labile heme was negatively correlated with circulating HP and HPX, which were, however, not risk factors for severe P. falciparum malaria. Genetic Hp and/or Hpx deletion in mice led to labile heme accumulation in plasma and kidneys, upon Plasmodium infection This was associated with higher incidence of mortality and acute kidney injury (AKI) in ageing but not adult Plasmodium-infected mice, and was corroborated by an inverse correlation between heme and HPX with serological markers of AKI in P. falciparum malaria. In conclusion, HP and HPX act in an age-dependent manner to prevent the pathogenesis of severe presentation of malaria in mice and presumably in humans.
Collapse
Affiliation(s)
- Susana Ramos
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Tiago Paixão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Maria Rosário Sambo
- Hospital Pediátrico David Bernardino, Luanda, Angola
- Faculdade de Medicina, Universidade Agostinho Neto, Luanda, Angola
| | - Vatúsia Quinhentos
- Hospital Pediátrico David Bernardino, Luanda, Angola
- Faculdade de Medicina, Universidade Agostinho Neto, Luanda, Angola
| | - Rui Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Ana Ferreira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Hugo Lainé
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Pedro Faísca
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Sofia Rebelo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Emanuela Tolosano
- Department Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | | |
Collapse
|
3
|
Isik Uslu N, Derinbay Ekici O, Ceylan O. Evaluation of Oxidative Status, Cytokines, Acute Phase Proteins and Cardiac Damage Markers in Sheep Naturally Infected with Babesia ovis. Acta Parasitol 2023; 68:762-768. [PMID: 37589881 DOI: 10.1007/s11686-023-00708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE Babesiosis is a tick-borne disease caused by protozoon species in the Babesia genus of the Babesiadae family. The systemic inflammatory response induced by infection is considered to be an important feature of the pathophysiology of ovine babesiosis. In this study, it was aimed to determine serum oxidative status, levels of some cytokines, acute phase proteins and heart damage markers in babesiosis infection. MATERIALS AND METHODS A sample of 40 sheep was used for this purpose, of which 20 were healthy and 20 were infected with Babesia ovis. Babesia infection was diagnosed from Giemsa-stained peripheral blood smears. Infection was also confirmed by the polymerase chain reaction (PCR). Sera from blood samples was tested for oxidative stress parameters (malondialdehyde [MDA], total antioxidant status [TAS], superoxide dismutase [SOD], catalase [CAT] and glutathione peroxidase [GPx]), cytokines (interleukins IL-6, IL-1β, IL-10, tumour necrosis factor α (TNF-α) and interferon-ϒ [IFN-ϒ]), acute-phase proteins (C-reactive protein [CRP], serum amyloid A [SAA] and haptoglobin [Hp]) and specific (troponin I [cTnI], creatine kinase-MB [CK-MB]) and nonspecific (lactate dehydrogenase [LDH], aspartate transaminase [AST]) cardiac damage markers. RESULTS MDA, SOD, CAT, Hp, TAS, IL-6, IL-10, TNF-α, IL-1β, INF-γ, AST, LDH, CK-MB mass and troponin I values were higher in the patient group than in the healthy group (P < 0.05). However, there was not found to be a statistical difference between the healthy and patient groups in terms of GPx, SAA and CRP values (P > 0.05). CONCLUSIONS It can be stated that serum levels of oxidative stress, some acute phase proteins and cardiac damage markers may increase in naturally infected sheep with babesiosis.
Collapse
Affiliation(s)
- Nermin Isik Uslu
- Department of Parasitology, Faculty of Veterinary Medicine, University of Selcuk, 42130, Konya, Turkey.
| | - Ozlem Derinbay Ekici
- Department of Parasitology, Faculty of Veterinary Medicine, University of Selcuk, 42130, Konya, Turkey
| | - Onur Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, University of Selcuk, 42130, Konya, Turkey
| |
Collapse
|
4
|
Nguyen ST, Du D, Wychrij D, Cain MD, Wu Q, Klein RS, Russo I, Goldberg DE. Histidine-rich protein II nanoparticle delivery of heme iron load drives endothelial inflammation in cerebral malaria. Proc Natl Acad Sci U S A 2023; 120:e2306318120. [PMID: 37307435 PMCID: PMC10293821 DOI: 10.1073/pnas.2306318120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Histidine-rich protein II (HRPII) is secreted by Plasmodium falciparum during the blood stage of malaria infection. High plasma levels of HRPII are associated with cerebral malaria, a severe and highly fatal complication of malaria. HRPII has been shown to induce vascular leakage, the hallmark of cerebral malaria, in blood-brain barrier (BBB) and animal models. We have discovered an important mechanism for BBB disruption that is driven by unique features of HRPII. By characterizing serum from infected patients and HRPII produced by P. falciparum parasites in culture, we found that HRPII exists in large multimeric particles of 14 polypeptides that are richly laden with up to 700 hemes per particle. Heme loading of HRPII is required for efficient binding and internalization via caveolin-mediated endocytosis in hCMEC/D3 cerebral microvascular endothelial cells. Upon acidification of endolysosomes, two-thirds of the hemes are released from acid-labile binding sites and metabolized by heme oxygenase 1, generating ferric iron and reactive oxygen species. Subsequent activation of the NLRP3 inflammasome and IL-1β secretion resulted in endothelial leakage. Inhibition of these pathways with heme sequestration, iron chelation, or anti-inflammatory drugs protected the integrity of the BBB culture model from HRPII:heme. Increased cerebral vascular permeability was seen after injection of young mice with heme-loaded HRPII (HRPII:heme) but not with heme-depleted HRPII. We propose that during severe malaria infection, HRPII:heme nanoparticles in the bloodstream deliver an overwhelming iron load to endothelial cells to cause vascular inflammation and edema. Disrupting this process is an opportunity for targeted adjunctive therapies to reduce the morbidity and mortality of cerebral malaria.
Collapse
Affiliation(s)
- Suong T. Nguyen
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO63110
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel Du
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel Wychrij
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Matthew D. Cain
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Qingping Wu
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Robyn S. Klein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Ilaria Russo
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel E. Goldberg
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
5
|
Hamilton F, Mitchell R, Cunnington A, Ghazal P, Timpson NJ. HMOX1 STR polymorphism and malaria: an analysis of a large clinical dataset. Malar J 2022; 21:342. [PMID: 36397106 PMCID: PMC9670449 DOI: 10.1186/s12936-022-04352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Inducible expression of heme oxygenase-1 (encoded by the gene HMOX1) may determine protection from heme released during malaria infections. A variable length, short tandem GT(n) repeat (STR) in HMOX1 that may influence gene expression has been associated with outcomes of human malaria in some studies. In this study, an analysis of the association between variation at the STR in HMOX1 on severe malaria and severe malaria subtypes is presented in a large, prospectively collected dataset (MalariaGEN). METHODS The HMOX1 STR was imputed using a recently developed reference haplotype panel designed for STRs. The STR was classified by total length and split into three alleles based on an observed trimodal distribution of repeat lengths. Logistic regression was used to assess the association between this repeat on cases of severe malaria and severe malaria subtypes (cerebral malaria and severe malarial anaemia). Individual analyses were performed for each MalariaGEN collection site and combined for meta-analysis. One site (Kenya), had detailed clinical metadata, allowing the assessment of the effect of the STR on clinical variables (e.g. parasite count, platelet count) and regression analyses were performed to investigate whether the STR interacted with any clinical variables. RESULTS Data from 17,960 participants across 11 collection sites were analysed. In logistic regression, there was no strong evidence of association between STR length and severe malaria (Odds Ratio, OR: 0.96, 95% confidence intervals 0.91-1.02 per ten GT(n) repeats), although there did appear to be an association at some sites (e.g., Kenya, OR 0.90, 95% CI 0.82-0.99). There was no evidence of an interaction with any clinical variables. CONCLUSIONS Meta-analysis suggested that increasing HMOX1 STR length is unlikely to be reliably associated with severe malaria. It cannot be ruled out that repeat length may alter risk in specific populations, although whether this is due to chance variation, or true variation due to underlying biology (e.g., gene vs environment interaction) remains unanswered.
Collapse
Affiliation(s)
- Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK.
- Infection Sciences, North Bristol NHS Trust, Bristol, England, UK.
| | - Ruth Mitchell
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Aubrey Cunnington
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Peter Ghazal
- System Immunity Research Institute, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield Grove, Bristol, BS8 2BN, UK
| |
Collapse
|
6
|
Hamilton FW, Somers J, Mitchell RE, Ghazal P, Timpson NJ. HMOX1 genetic polymorphisms and outcomes in infectious disease: A systematic review. PLoS One 2022; 17:e0267399. [PMID: 35551540 PMCID: PMC9098073 DOI: 10.1371/journal.pone.0267399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Heme-oxygenase 1 (HMOX1) is a critical stress response gene that catalyzes the multistep oxidation of heme. A GT(n) repeat of variable length in the promoter in has been associated with a wide range of human diseases, including infections. This paper aims to summarise and systematically review associations between the length of the HMOX1 GT(n) promoter and infectious disease in humans. METHODS A search using relevant terms was performed in PubMED and EMBASE through to 15/01/21 identifying all research that studied an association between the HMOX1 GT(n) repeat polymorphism and the incidence and/or outcome of any human infectious disease. Citations were screened for additional studies. Potential studies were screened for inclusion by two authors. Data was extracted on allele frequency, genotype, strength of association, mechanism of genotyping, and potential biases. A narrative review was performed across each type of infection. RESULTS 1,533 studies were identified in the search, and one via citation screening. Sixteen studies were ultimately included, seven in malaria, three in HIV, three in sepsis, and one each in pneumonia, hepatitis C, and acute respiratory distress syndrome (ARDS). Sample sizes for nearly all studies were small (biggest study, n = 1,646). Allelic definition was different across all included studies. All studies were at some risk of bias. In malaria, three studies suggested that longer alleles were associated with reduced risk of severe malaria, particularly malaria-induced renal dysfunction, with four studies identifying a null association. In sepsis, two studies suggested an association with longer alleles and better outcomes. CONCLUSIONS Despite the importance of HMOX1 in survival from infection, and the association between repeat length and gene expression, the clinical data supporting an association between repeat length and incidence and/or outcome of infection remain inconclusive.
Collapse
Affiliation(s)
- Fergus W. Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Infection Sciences, North Bristol NHS Trust, Bristol, United Kingdom
| | - Julia Somers
- Knight Cancer Research Building, Oregon Health and Sciences University, Portland, Oregon, United States of America
| | - Ruth E. Mitchell
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Peter Ghazal
- System Immunity Research Institute, Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Heme oxygenase-1, carbon monoxide, and malaria – The interplay of chemistry and biology. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Costa Silva RCM, Correa LHT. Heme Oxygenase 1 in Vertebrates: Friend and Foe. Cell Biochem Biophys 2021; 80:97-113. [PMID: 34800278 DOI: 10.1007/s12013-021-01047-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
HO-1 is the inducible form of the enzyme heme-oxygenase. HO-1 catalyzes heme breakdown, reducing the levels of this important oxidant molecule and generating antioxidant, anti-inflammatory, and anti-apoptotic byproducts. Thus, HO-1 has been described as an important stress response mechanism during both physiologic and pathological processes. Interestingly, some findings are demonstrating that uncontrolled levels of HO-1 byproducts can be associated with cell death and tissue destruction as well. Furthermore, HO-1 can be located in the nucleus, influencing gene transcription, cellular proliferation, and DNA repair. Here, we will discuss several studies that approach HO-1 effects as a protective or detrimental mechanism in different pathological conditions. In this sense, as the major organs of vertebrates will deal specifically with distinct types of stresses, we discuss the HO-1 role in each of them, exposing the contradictions associated with HO-1 expression after different insults and circumstances.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Leonardo Holanda Travassos Correa
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Vinhaes CL, Carmo TA, Queiroz ATL, Fukutani KF, Araújo-Pereira M, Arriaga MB, Lacerda MVG, Barral-Netto M, Andrade BB. Dissecting disease tolerance in Plasmodium vivax malaria using the systemic degree of inflammatory perturbation. PLoS Negl Trop Dis 2021; 15:e0009886. [PMID: 34727121 PMCID: PMC8589215 DOI: 10.1371/journal.pntd.0009886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/12/2021] [Accepted: 10/08/2021] [Indexed: 01/18/2023] Open
Abstract
Homeostatic perturbation caused by infection fosters two major defense strategies, resistance and tolerance, which promote the host's survival. Resistance relates to the ability of the host to restrict the pathogen load. Tolerance minimizes collateral tissue damage without directly affecting pathogen fitness. These concepts have been explored mechanistically in murine models of malaria but only superficially in human disease. Indeed, individuals infected with Plasmodium vivax may present with asymptomatic malaria, only mild symptoms, or be severely ill. We and others have reported a diverse repertoire of immunopathological events that potentially underly susceptibility to disease severity in vivax malaria. Nevertheless, the combined epidemiologic, clinical, parasitological, and immunologic features associated with defining the disease outcomes are still not fully understood. In the present study, we perform an extensive outlining of cytokines and inflammatory proteins in plasma samples from a cohort of individuals from the Brazilian Amazon infected with P. vivax and presenting with asymptomatic (n = 108) or symptomatic (n = 134) disease (106 with mild presentation and 28 with severe malaria), as well as from uninfected endemic controls (n = 128) to elucidate these gaps further. We employ highly multidimensional Systems Immunology analyses using the molecular degree of perturbation to reveal nuances of a unique profile of systemic inflammation and imbalanced immune activation directly linked to disease severity as well as with other clinical and epidemiologic characteristics. Additionally, our findings reveal that the main factor associated with severe cases of P. vivax infection was the number of symptoms, despite of a lower global inflammatory perturbation and parasitemia. In these participants, the number of symptoms directly correlated with perturbation of markers of inflammation and tissue damage. On the other hand, the main factor associated with non-severe infections was the parasitemia values, that correlated only with perturbation of inflammatory markers, such as IL-4 and IL-1β, with a relatively lower number of symptoms. These observations suggest that some persons present severe vivax regardless of pathogen burden and global inflammatory perturbation. Such patients are thus little tolerant to P. vivax infection and show higher susceptibility to disrupt homeostasis and consequently exhibit more clinical manifestations. Other persons are capable to tolerate higher parasitemia with lower inflammatory perturbation and fewer symptoms, developing non-severe malaria. The analytical approach presented here has capability to define in more details the determinants of disease tolerance in vivax malaria.
Collapse
Affiliation(s)
- Caian L. Vinhaes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| | - Thomas A. Carmo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Curso de Medicina, Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - Artur T. L. Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | - Kiyoshi F. Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Curso de Medicina, Centro Universitário Facultade de Tecnologia e Ciências (UniFTC), Salvador, Brazil
| | - Mariana Araújo-Pereira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Faculdade de Medicina, Salvador, Brazil
| | - María B. Arriaga
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Faculdade de Medicina, Salvador, Brazil
| | - Marcus V. G. Lacerda
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Manoel Barral-Netto
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Faculdade de Medicina, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia, Instituto de Investigação em Imunologia, São Paulo, Brazil
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
- Curso de Medicina, Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
- Curso de Medicina, Centro Universitário Facultade de Tecnologia e Ciências (UniFTC), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Faculdade de Medicina, Salvador, Brazil
- * E-mail:
| |
Collapse
|
10
|
Bezerra OCDL, Alvarado-Arnez LE, Mabunda N, Salomé G, de Sousa A, Kehdy FDSG, Sales-Marques C, Manta FSDN, Andrade RM, Ferreira LP, Leal-Calvo T, Cardoso CC, Nunes K, Gouveia MH, Mbulaiteve SM, Yeboah ED, Hsing A, Latini ACP, Leturiondo AL, Rodrigues FDC, Noronha AB, Ferreira CDO, Talhari C, Rêgo JL, Castellucci LCDC, Tarazona-Santos E, de Carvalho EF, Meyer D, Pinheiro RO, Jani IV, Pacheco AG, Moraes MO. Putative pathogen-selected polymorphisms in the PKLR gene are associated with mycobacterial susceptibility in Brazilian and African populations. PLoS Negl Trop Dis 2021; 15:e0009434. [PMID: 34449765 PMCID: PMC8396769 DOI: 10.1371/journal.pntd.0009434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/03/2021] [Indexed: 01/19/2023] Open
Abstract
Pyruvate kinase (PK), encoded by the PKLR gene, is a key player in glycolysis controlling the integrity of erythrocytes. Due to Plasmodium selection, mutations for PK deficiency, which leads to hemolytic anemia, are associated with resistance to malaria in sub-Saharan Africa and with susceptibility to intracellular pathogens in experimental models. In this case-control study, we enrolled 4,555 individuals and investigated whether PKLR single nucleotide polymorphisms (SNPs) putatively selected for malaria resistance are associated with susceptibility to leprosy across Brazil (Manaus-North; Salvador-Northeast; Rondonópolis-Midwest and Rio de Janeiro-Southeast) and with tuberculosis in Mozambique. Haplotype T/G/G (rs1052176/rs4971072/rs11264359) was associated with leprosy susceptibility in Rio de Janeiro (OR = 2.46, p = 0.00001) and Salvador (OR = 1.57, p = 0.04), and with tuberculosis in Mozambique (OR = 1.52, p = 0.07). This haplotype downregulates PKLR expression in nerve and skin, accordingly to GTEx, and might subtly modulate ferritin and haptoglobin levels in serum. Furthermore, we observed genetic signatures of positive selection in the HCN3 gene (xpEHH>2 -recent selection) in Europe but not in Africa, involving 6 SNPs which are PKLR/HCN3 eQTLs. However, this evidence was not corroborated by the other tests (FST, Tajima's D and iHS). Altogether, we provide evidence that a common PKLR locus in Africans contribute to mycobacterial susceptibility in African descent populations and also highlight, for first, PKLR as a susceptibility gene for leprosy and TB.
Collapse
Affiliation(s)
| | - Lucia Elena Alvarado-Arnez
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- National Research Coordination, Franz Tamayo University (UNIFRAZ), Cochabamba, Bolivia
| | - Nédio Mabunda
- Laboratory of Molecular Virology, Instituto Nacional de Saúde, Maputo, Mozambique
| | - Graça Salomé
- Medical Faculty, Eduardo Mondlane University, Maputo, Mozambique
| | - Amina de Sousa
- Laboratory of Molecular Virology, Instituto Nacional de Saúde, Maputo, Mozambique
| | | | - Carolinne Sales-Marques
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Cellular Biology and Genetics, Federal University of Alagoas, Arapiraca, Brazil
| | | | | | | | - Thyago Leal-Calvo
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Cynthia Chester Cardoso
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelly Nunes
- Laboratory of Evolutionary Genetics and Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mateus H. Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sam M. Mbulaiteve
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Ann Hsing
- Stanford Cancer Institute, Stanford University, Stanford, California, United States of America
| | | | | | | | | | | | - Carolina Talhari
- Laboratory of Molecular Biology, Alfredo da Matta Foundation, Manaus, Brazil
| | - Jamile Leão Rêgo
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador, Brazil
| | | | - Eduardo Tarazona-Santos
- Departament of Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Diogo Meyer
- Laboratory of Evolutionary Genetics and Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Ilesh V. Jani
- Laboratory of Molecular Virology, Instituto Nacional de Saúde, Maputo, Mozambique
| | | | | |
Collapse
|
11
|
Nakasone R, Ashina M, Abe S, Tanimura K, Van Rostenberghe H, Fujioka K. The Role of Heme Oxygenase-1 Promoter Polymorphisms in Perinatal Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3520. [PMID: 33805292 PMCID: PMC8037596 DOI: 10.3390/ijerph18073520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/19/2022]
Abstract
Heme oxygenase (HO) is the rate-limiting enzyme in the heme catabolic pathway, which degrades heme into equimolar amounts of carbon monoxide, free iron, and biliverdin. Its inducible isoform, HO-1, has multiple protective functions, including immune modulation and pregnancy maintenance, showing dynamic alteration during perinatal periods. As its contribution to the development of perinatal complications is speculated, two functional polymorphisms of the HMOX1 gene, (GT)n repeat polymorphism (rs3074372) and A(-413)T single nucleotide polymorphism (SNP) (rs2071746), were studied for their association with perinatal diseases. We systematically reviewed published evidence on HMOX1 polymorphisms in perinatal diseases and clarified their possible significant contribution to neonatal jaundice development, presumably due to their direct effect of inducing HO enzymatic activity in the bilirubin-producing pathway. However, the role of these polymorphisms seems limited for other perinatal complications such as bronchopulmonary dysplasia. We speculate that this is because the antioxidant or anti-inflammatory effect is not directly mediated by HO but by its byproducts, resulting in a milder effect. For better understanding, subtyping each morbidity by the level of exposure to causative environmental factors, simultaneous analysis of both polymorphisms, and the unified definition of short and long alleles in (GT)n repeats based on transcriptional capacity should be further investigated.
Collapse
Affiliation(s)
- Ruka Nakasone
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (R.N.); (M.A.); (S.A.)
| | - Mariko Ashina
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (R.N.); (M.A.); (S.A.)
| | - Shinya Abe
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (R.N.); (M.A.); (S.A.)
| | - Kenji Tanimura
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Hans Van Rostenberghe
- Department of Paediatrics, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (R.N.); (M.A.); (S.A.)
| |
Collapse
|
12
|
Amaral EP, Vinhaes CL, Oliveira-de-Souza D, Nogueira B, Akrami KM, Andrade BB. The Interplay Between Systemic Inflammation, Oxidative Stress, and Tissue Remodeling in Tuberculosis. Antioxid Redox Signal 2021; 34:471-485. [PMID: 32559410 PMCID: PMC8020551 DOI: 10.1089/ars.2020.8124] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Excessive and prolonged proinflammatory responses are associated with oxidative stress, which is commonly observed during chronic tuberculosis (TB). Such condition favors tissue destruction and consequently bacterial spread. A tissue remodeling program is also triggered in chronically inflamed sites, facilitating a wide spectrum of clinical manifestations. Recent Advances: Since persistent and exacerbated oxidative stress responses have been associated with severe pathology, a number of studies have suggested that the inhibition of this augmented stress response by improving host antioxidant status may represent a reasonable strategy to ameliorate tissue damage in TB. Critical Issues: This review summarizes the interplay between oxidative stress, systemic inflammation and tissue remodeling, and its consequences in promoting TB disease. We emphasize the most important mechanisms associated with stress responses that contribute to the progression of TB. We also point out important host immune components that may influence the exacerbation of cellular stress and the subsequent tissue injury. Future Directions: Further research should reveal valuable targets for host-directed therapy of TB, preventing development of severe immunopathology and disease progression. Antioxid. Redox Signal. 34, 471-485.
Collapse
Affiliation(s)
- Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Caian L Vinhaes
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
| | - Deivide Oliveira-de-Souza
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
| | - Betania Nogueira
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Kevan M Akrami
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil.,Division of Infectious Diseases and Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, California, USA
| | - Bruno B Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil.,Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| |
Collapse
|
13
|
Esmaeilnejad B, Rajabi S, Tavassoli M, Rashnavadi M, Seif F, Aligolzadeh A, Khoshnejad A. Evaluation of inflammatory biomarkers in goats naturally infected with Babesia ovis. Parasitol Res 2020; 119:4151-4158. [PMID: 32715343 DOI: 10.1007/s00436-020-06829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
This study was designed to evaluate the effects of Babesia ovis infection on concentrations of some essential acute phase proteins (APPs) including albumin, fibrinogen, serum amyloid A, haptoglobin, and ceruloplasmin as well as total, protein-binding, and lipid-binding sialic acids (TSA, PBSA, and LBSA) and two crucial cytokines including interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). Some hematological parameters also were evaluated. Furthermore, any probable correlation among the APPs, SAs, IFN-γ, and TNF-α was calculated. A total of 420 Marghoz and Raeini goats with the ages of 1-3 years old from the north and northwest of Iran were examined, and 17 goats confirmed to be infected with B. ovis by both routine microscopic examination of blood films and molecular assays. As the control, 17 healthy goats were included. The results revealed a significant decrease (P < 0.05) in erythrocyte count, hemoglobin level, and pack cell volume as well as a nonsignificant increase in white blood cell count in the diseased animals compared with the control. Additionally, all the APPs, SAs, and cytokines were remarkably higher in the infected animals than the uninfected ones, except for albumin, which was significantly lower. Moreover, a strong and positive correlation was detected among the parameters mentioned above, except for albumin, which was inversely correlated with the other parameters. In conclusion, B. ovis infection is associated with the induction of severe inflammatory reactions in goats, and both SA and APP are significantly involved in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Bijan Esmaeilnejad
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Sepideh Rajabi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mousa Tavassoli
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | | | - Armin Aligolzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ali Khoshnejad
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
14
|
Odedra A, Webb L, Marquart L, Britton LJ, Chalon S, Moehrle JJ, Anstey NM, William T, Grigg MJ, Lalloo DG, Barber BE, McCarthy JS. Liver Function Test Abnormalities in Experimental and Clinical Plasmodium vivax Infection. Am J Trop Med Hyg 2020; 103:1910-1917. [PMID: 32815508 PMCID: PMC7646782 DOI: 10.4269/ajtmh.20-0491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Liver transaminase elevations after treatment in malaria volunteer infection studies (VISs) have raised safety concerns. We investigated transaminase elevations from two human Plasmodium vivax VISs where subjects were treated with chloroquine (n = 24) or artefenomel (n = 8) and compared them with studies in Thailand (n = 41) and Malaysia (n = 76). In the VISs, alanine transaminase (ALT) increased to ≥ 2.5 × upper limit of normal (ULN) in 11/32 (34%) volunteers, peaking 5–8 days post-treatment. Transaminase elevations were asymptomatic, were not associated with elevated bilirubin, and resolved by day 42. The risk of an ALT ≥ 2.5 × ULN increased more than 4-fold (odds ratio [OR] 4.28; 95% CI: 1.26–14.59; P = 0.02) for every log10 increase in the parasite clearance burden (PCB), defined as the log-fold reduction in parasitemia 24 hours post-treatment. Although an elevated ALT ≥ 2.5 × ULN was more common after artefenomel than after chloroquine (5/8 [63%] versus 6/24 [25%]; OR 5.0; 95% CI: 0.91–27.47; P = 0.06), this risk disappeared when corrected for PCB. Peak ALT also correlated with peak C-reactive protein (R = 0.44; P = 0.012). Elevations in ALT (≥ 2.5 × ULN) were less common in malaria-endemic settings, occurring in 1/41 (2.5%) Thai patients treated with artefenomel, and in none of 76 Malaysians treated with chloroquine or artemisinin combination therapy. Post-treatment transaminase elevations are common in experimental P. vivax infection but do not appear to impact on participant safety. Although the mechanism of these changes remains uncertain, host inflammatory response to parasite clearance may be contributory.
Collapse
Affiliation(s)
- Anand Odedra
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lachlan Webb
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Laurence J Britton
- School of Medicine, The University of Queensland, Brisbane, Australia.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia
| | | | | | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Timothy William
- Gleneagles Hospital, Kota Kinabalu, Malaysia.,Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Malaysia
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - David G Lalloo
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | |
Collapse
|
15
|
Lwanira CN, Kironde F, Swedberg G. Haptoglobin gene diversity and incidence of uncomplicated malaria among children in Iganga, Uganda. Malar J 2020; 19:435. [PMID: 33243242 PMCID: PMC7690179 DOI: 10.1186/s12936-020-03515-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/19/2020] [Indexed: 11/15/2022] Open
Abstract
Background Haptoglobin (Hp) is an acute phase protein that takes part in systemic regulation of haem during Plasmodium falciparum infections. Numerous genotypes of haptoglobin have been reported in malaria endemic populations. In this study, the relationship between haptoglobin genotypes and incidence of uncomplicated malaria in a cohort of children living in a malaria-endemic area of Uganda was determined. Methods This is an extension of a longitudinal study comprising of 423 children aged between six months and nine years, who were actively followed up for one year. Malaria episodes occurring in the cohort children were detected and the affected children treated with national policy drug regimen. Haptoglobin genotypes were determined by an allele-specific PCR method and their frequencies were calculated. A multivariate negative binomial regression model was used to estimate the impact of haptoglobin genotypes on incidence of uncomplicated malaria in the children’s cohort. In all statistical tests, a P–value of < 0.05 was considered as significant. Results The prevalence of the Hp 1–1, Hp 2–1 and Hp 2–2 genotypes in the children’s cohort was 41%, 36.2% and 22.9%, respectively. The overall frequency for the Hp 1 allele was 59%, while Hp 2 allele occurred at a frequency of 41%. After adjustment of incidence rates for age, insecticide treated bed net (ITN) use and malaria history, the incidence of uncomplicated malaria for children carrying the Hp 2–2 genotype and those with the Hp 2–1 genotype was statistically similar (P = 0.41). Also, no difference in the incidence of uncomplicated malaria was observed between children carrying the Hp 1–1 genotype and those having the Hp 2–1 genotype (P = 0.84) or between Hp 2–2 Vs Hp 1–1 genotypes (P = 0.50). Conclusions This study showed that the Hp 1–1 and Hp 2–1 genotypes each occur in nearly 4 in 10 children and the Hp 2–2 genotype occurs in 2 of every 10 children. No association with incidence of uncomplicated malaria was found. Additional studies of influence of haptoglobin genotypes on P. falciparum malaria severity are needed to understand the role of these genotypes in malarial protection.
Collapse
Affiliation(s)
- Catherine N Lwanira
- School of Biomedical Sciences, College of Health Sciences, Makerere University, PO Box 7072, Kampala, Uganda. .,Department of Biochemistry, Uganda Christian University School of Medicine, PO BOX 4, Mukono, Uganda.
| | - Fred Kironde
- School of Biomedical Sciences, College of Health Sciences, Makerere University, PO Box 7072, Kampala, Uganda.,Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda (IUIU), Kampala Campus, Uganda
| | - Göte Swedberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Kumar V, Ray S, Aggarwal S, Biswas D, Jadhav M, Yadav R, Sabnis SV, Banerjee S, Talukdar A, Kochar SK, Shetty S, Sehgal K, Patankar S, Srivastava S. Multiplexed quantitative proteomics provides mechanistic cues for malaria severity and complexity. Commun Biol 2020; 3:683. [PMID: 33204009 PMCID: PMC7672109 DOI: 10.1038/s42003-020-01384-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Management of severe malaria remains a critical global challenge. In this study, using a multiplexed quantitative proteomics pipeline we systematically investigated the plasma proteome alterations in non-severe and severe malaria patients. We identified a few parasite proteins in severe malaria patients, which could be promising from a diagnostic perspective. Further, from host proteome analysis we observed substantial modulations in many crucial physiological pathways, including lipid metabolism, cytokine signaling, complement, and coagulation cascades in severe malaria. We propose that severe manifestations of malaria are possibly underpinned by modulations of the host physiology and defense machinery, which is evidently reflected in the plasma proteome alterations. Importantly, we identified multiple blood markers that can effectively define different complications of severe falciparum malaria, including cerebral syndromes and severe anemia. The ability of our identified blood markers to distinguish different severe complications of malaria may aid in developing new clinical tests for monitoring malaria severity.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sandipan Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shalini Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Manali Jadhav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Radha Yadav
- Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sanjeev V Sabnis
- Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Soumaditya Banerjee
- Medicine Department, Medical College Hospital Kolkata, 88, College Street, Kolkata, 700073, India
| | - Arunansu Talukdar
- Medicine Department, Medical College Hospital Kolkata, 88, College Street, Kolkata, 700073, India
| | - Sanjay K Kochar
- Department of Medicine, Malaria Research Centre, S.P. Medical College, Bikaner, 334003, India
| | - Suvin Shetty
- Dr. L H Hiranandani Hospital, Mumbai, 400076, India
| | | | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
17
|
Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163 + Macrophages in Inflammatory and Malignant Diseases. Int J Mol Sci 2020; 21:E5497. [PMID: 32752088 PMCID: PMC7432735 DOI: 10.3390/ijms21155497] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
The macrophage is a key cell in the pro- and anti-inflammatory response including that of the inflammatory microenvironment of malignant tumors. Much current drug development in chronic inflammatory diseases and cancer therefore focuses on the macrophage as a target for immunotherapy. However, this strategy is complicated by the pleiotropic phenotype of the macrophage that is highly responsive to its microenvironment. The plasticity leads to numerous types of macrophages with rather different and, to some extent, opposing functionalities, as evident by the existence of macrophages with either stimulating or down-regulating effect on inflammation and tumor growth. The phenotypes are characterized by different surface markers and the present review describes recent progress in drug-targeting of the surface marker CD163 expressed in a subpopulation of macrophages. CD163 is an abundant endocytic receptor for multiple ligands, quantitatively important being the haptoglobin-hemoglobin complex. The microenvironment of inflammation and tumorigenesis is particular rich in CD163+ macrophages. The use of antibodies for directing anti-inflammatory (e.g., glucocorticoids) or tumoricidal (e.g., doxorubicin) drugs to CD163+ macrophages in animal models of inflammation and cancer has demonstrated a high efficacy of the conjugate drugs. This macrophage-targeting approach has a low toxicity profile that may highly improve the therapeutic window of many current drugs and drug candidates.
Collapse
Affiliation(s)
- Maria K. Skytthe
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Jonas Heilskov Graversen
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
| | - Søren K. Moestrup
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (M.K.S.); (S.K.M.)
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
18
|
Silva RCMC, Travassos LH, Paiva CN, Bozza MT. Heme oxygenase-1 in protozoan infections: A tale of resistance and disease tolerance. PLoS Pathog 2020; 16:e1008599. [PMID: 32692767 PMCID: PMC7373268 DOI: 10.1371/journal.ppat.1008599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Heme oxygenase (HO-1) mediates the enzymatic cleavage of heme, a molecule with proinflammatory and prooxidant properties. HO-1 activity deeply impacts host capacity to tolerate infection through reduction of tissue damage or affecting resistance, the ability of the host to control pathogen loads. In this Review, we will discuss the contribution of HO-1 in different and complex protozoan infections, such as malaria, leishmaniasis, Chagas disease, and toxoplasmosis. The complexity of these infections and the pleiotropic effects of HO-1 constitute an interesting area of study and an opportunity for drug development.
Collapse
Affiliation(s)
- Rafael C. M. C. Silva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Leonardo H. Travassos
- Laboratório de Imunoreceptores e Sinalização, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia N. Paiva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo T. Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
19
|
di Masi A, De Simone G, Ciaccio C, D'Orso S, Coletta M, Ascenzi P. Haptoglobin: From hemoglobin scavenging to human health. Mol Aspects Med 2020; 73:100851. [PMID: 32660714 DOI: 10.1016/j.mam.2020.100851] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Haptoglobin (Hp) belongs to the family of acute-phase plasma proteins and represents the most important plasma detoxifier of hemoglobin (Hb). The basic Hp molecule is a tetrameric protein built by two α/β dimers. Each Hp α/β dimer is encoded by a single gene and is synthesized as a single polypeptide. Following post-translational protease-dependent cleavage of the Hp polypeptide, the α and β chains are linked by disulfide bridge(s) to generate the mature Hp protein. As human Hp gene is characterized by two common Hp1 and Hp2 alleles, three major genotypes can result (i.e., Hp1-1, Hp2-1, and Hp2-2). Hp regulates Hb clearance from circulation by the macrophage-specific receptor CD163, thus preventing Hb-mediated severe consequences for health. Indeed, the antioxidant and Hb binding properties of Hp as well as its ability to stimulate cells of the monocyte/macrophage lineage and to modulate the helper T-cell type 1 and type 2 balance significantly associate with a variety of pathogenic disorders (e.g., infectious diseases, diabetes, cardiovascular diseases, and cancer). Alternative functions of the variants Hp1 and Hp2 have been reported, particularly in the susceptibility and protection against infectious (e.g., pulmonary tuberculosis, HIV, and malaria) and non-infectious (e.g., diabetes, cardiovascular diseases and obesity) diseases. Both high and low levels of Hp are indicative of clinical conditions: Hp plasma levels increase during infections, inflammation, and various malignant diseases, and decrease during malnutrition, hemolysis, hepatic disease, allergic reactions, and seizure disorders. Of note, the Hp:Hb complexes display heme-based reactivity; in fact, they bind several ferrous and ferric ligands, including O2, CO, and NO, and display (pseudo-)enzymatic properties (e.g., NO and peroxynitrite detoxification). Here, genetic, biochemical, biomedical, and biotechnological aspects of Hp are reviewed.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Silvia D'Orso
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146, Roma, Italy.
| |
Collapse
|
20
|
Farag AGA, El Askary SA, Fathy WM, Elbassal F, Azzam AA, Tayel NR, Abdul Karim SS, Shehata WA. Relationship Between sCD163 and mCD163 and Their Implication in the Detection and Typing of Leprosy. Clin Cosmet Investig Dermatol 2020; 13:379-389. [PMID: 32581565 PMCID: PMC7276209 DOI: 10.2147/ccid.s240420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/17/2020] [Indexed: 11/23/2022]
Abstract
Background Leprosy is a chronic contagious disease caused by Mycobacterium lepraea. CD163 is a monocyte trans-membrane glycoprotein receptor (mCD163) that sheds from the cell surface and circulates as a soluble (serum) form (sCD163). Changes in the mCD163 and sCD163 levels could mirror the categorization of inflammatory procedure, demonstrating a possible use of CD163 as a diagnostic indicator of inflammation. Objective To investigate the possible role of CD163 (sCD163 and mCD163) in leprosy pathogenesis and to assess whether CD163 is a helpful inflammatory marker of leprosy development and typing. Patients and Methods This case control study included 70 leprosy patients and 30 healthy controls. Leprosy patients were classified according to the Madrid criteria (1953) into: tuberculoid leprosy (TT), border-line leprosy (BL), and lepromatous leprosy (LL). For all participants, complete blood count (CBC), serum CD163 using ELISA and monocytes positive for CD163 using flow cytometry were done. Results Leprosy patients had significantly low WBCs and platelet counts (p<0.001) and had significantly higher sCD163 (p=0.025) and mCD163 (p=0.042) that were highest in LL followed by BL, then TT patients (p<0.001). There was a significant positive correlation between mCD163 and sCD163 levels in leprosy patients (r=0.896, p<0.001). ROC analysis revealed a significant role of serum sCD163 and of mCD163 positive monocytes in the detection (p<0.001) and typing of leprosy (p=0.002 and p<0.001, respectively). Conclusion Both sCD163 and mCD163 positive monocytes may have an active role in leprosy pathogenesis. They could be potential biomarkers for leprosy detection and typing.
Collapse
Affiliation(s)
- Azza Gaber Antar Farag
- Dermatology, Andrology & STDs Department, Faculty of Medicine, Menoufia University, Al Menoufia, Egypt
| | - Shymaa A El Askary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Menoufia University, Minufya, Egypt
| | - Waleed M Fathy
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Minufya, Egypt
| | - Fathia Elbassal
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Minufya, Egypt
| | - Ayman Ali Azzam
- Clinical Biochemistry Department, National Liver Institute, Menoufia University, Minufya, Egypt
| | - Nermin Reda Tayel
- Department of Molecular Diagnostics and Therapeutics, Genetic Engineering Biotechnology Research Institute, Sadat City, Egypt
| | | | - Wafaa Ahmed Shehata
- Dermatology, Andrology & STDs Department, Faculty of Medicine, Menoufia University, Al Menoufia, Egypt
| |
Collapse
|
21
|
Merchant R, Doctor P, Varaiya A. Molecular basis of susceptibility and protection from microbial infections. CLINICAL MOLECULAR MEDICINE 2020:403-421. [DOI: 10.1016/b978-0-12-809356-6.00023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Penha-Gonçalves C. Genetics of Malaria Inflammatory Responses: A Pathogenesis Perspective. Front Immunol 2019; 10:1771. [PMID: 31417551 PMCID: PMC6682681 DOI: 10.3389/fimmu.2019.01771] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
Abstract
Despite significant progress in combating malaria in recent years the burden of severe disease and death due to Plasmodium infections remains a global public health concern. Only a fraction of infected people develops severe clinical syndromes motivating a longstanding search for genetic determinants of malaria severity. Strong genetic effects have been repeatedly ascribed to mutations and allelic variants of proteins expressed in red blood cells but the role of inflammatory response genes in disease pathogenesis has been difficult to discern. We revisited genetic evidence provided by inflammatory response genes that have been repeatedly associated to malaria, namely TNF, NOS2, IFNAR1, HMOX1, TLRs, CD36, and CD40LG. This highlighted specific genetic variants having opposing roles in the development of distinct malaria clinical outcomes and unveiled diverse levels of genetic heterogeneity that shaped the complex association landscape of inflammatory response genes with malaria. However, scrutinizing genetic effects of individual variants corroborates a pathogenesis model where pro-inflammatory genetic variants acting in early infection stages contribute to resolve infection but at later stages confer increased vulnerability to severe organ dysfunction driven by tissue inflammation. Human genetics studies are an invaluable tool to find genes and molecular pathways involved in the inflammatory response to malaria but their precise roles in disease pathogenesis are still unexploited. Genome editing in malaria experimental models and novel genotyping-by-sequencing techniques are promising approaches to delineate the relevance of inflammatory response gene variants in the natural history of infection thereby will offer new rational angles on adjuvant therapeutics for prevention and clinical management of severe malaria.
Collapse
|
23
|
Cruz LAB, Moraes MOA, Queiroga-Barros MR, Fukutani KF, Barral-Netto M, Andrade BB. Chronic hepatitis B virus infection drives changes in systemic immune activation profile in patients coinfected with Plasmodium vivax malaria. PLoS Negl Trop Dis 2019; 13:e0007535. [PMID: 31233500 PMCID: PMC6611654 DOI: 10.1371/journal.pntd.0007535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/05/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Plasmodium vivax and Hepatitis B virus (HBV) are globally outspread in similar geographic regions. The concurrence of both infections and its association with some degree of protection against symptomatic and/or severe vivax malaria has been already described. Nevertheless, data on how host response to both pathogens undermines the natural progression of the malarial infection are scarce. Here, a large cohort of vivax malaria and HBV patients is retrospectively analyzed in an attempt to depict how inflammatory characteristics could be potentially related to the protection to severe malaria in coinfection. METHODS A retrospective analysis of a databank containing 601 individuals from the Brazilian Amazon, including 179 symptomatic P. vivax monoinfected patients, 145 individuals with asymptomatic P. vivax monoinfection, 28 P. vivax-HBV coinfected patients, 29 HBV monoinfected subjects and 165 healthy controls, was performed. Data on plasma levels of multiple chemokines, cytokines, acute phase proteins, hepatic enzymes, bilirubin and creatinine were analyzed to describe and compare biochemical profiles associated to each type of infection. RESULTS Coinfected individuals predominantly presented asymptomatic malaria, referred increased number of previous malaria episodes than symptomatic vivax-monoinfected patients, and were predominantly younger than asymptomatic vivax-monoinfected individuals. Coinfection was hallmarked by substantially elevated concentrations of interleukin (IL)-10 and heightened levels of C-C motif chemokine ligand (CCL)2. Correlation matrices showed that coinfected individuals presented a distinct biomarker profile when compared to asymptomatic or symptomatic P. vivax patients, or HBV-monoinfected individuals. Parasitemia could distinguish coinfected from symptomatic or asymptomatic P. vivax-monoinfected patients. HBV viremia was associated to distinct inflammatory profiles in HBV-monoinfected and coinfected patients. CONCLUSION The findings demonstrate a distinct inflammatory profile in coinfected patients, with characteristics associated with immune responses to both pathogens. These host responses to P. vivax and HBV, in conjunction, could be potentially associated, if not mainly responsible, for the protection against symptomatic vivax malaria.
Collapse
Affiliation(s)
- Luís A. B. Cruz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Brazil
| | - Marina O. A. Moraes
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - Matheus R. Queiroga-Barros
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - Kiyoshi F. Fukutani
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - Manoel Barral-Netto
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Universidade Federal da Bahia, Faculdade de Medicina, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia, Instituto de Investigação em Imunologia, São Paulo, Brazil
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| |
Collapse
|
24
|
Abah SE, Burté F, Marquet S, Brown BJ, Akinkunmi F, Oyinloye G, Afolabi NK, Omokhodion S, Lagunju I, Shokunbi WA, Wahlgren M, Dessein H, Argiro L, Dessein AJ, Noyvert B, Hunt L, Elgar G, Sodeinde O, Holder AA, Fernandez-Reyes D. Low plasma haptoglobin is a risk factor for life-threatening childhood severe malarial anemia and not an exclusive consequence of hemolysis. Sci Rep 2018; 8:17527. [PMID: 30510258 PMCID: PMC6277387 DOI: 10.1038/s41598-018-35944-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Severe Malarial Anemia (SMA), a life-threatening childhood Plasmodium falciparum malaria syndrome requiring urgent blood transfusion, exhibits inflammatory and hemolytic pathology. Differentiating between hypo-haptoglobinemia due to hemolysis or that of genetic origin is key to understand SMA pathogenesis. We hypothesized that while malaria-induced hypo-haptoglobinemia should reverse at recovery, that of genetic etiology should not. We carried-out a case-control study of children living under hyper-endemic holoendemic malaria burden in the sub-Saharan metropolis of Ibadan, Nigeria. We show that hypo-haptoglobinemia is a risk factor for childhood SMA and not solely due to intravascular hemolysis from underlying schizogony. In children presenting with SMA, hypo-haptoglobinemia remains through convalescence to recovery suggesting a genetic cause. We identified a haptoglobin gene variant, rs12162087 (g.-1203G > A, frequency = 0.67), to be associated with plasma haptoglobin levels (p = 8.5 × 10-6). The Homo-Var:(AA) is associated with high plasma haptoglobin while the reference Homo-Ref:(GG) is associated with hypo-haptoglobinemia (p = 2.3 × 10-6). The variant is associated with SMA, with the most support for a risk effect for Homo-Ref genotype. Our insights on regulatory haptoglobin genotypes and hypo-haptoglobinemia suggest that haptoglobin screening could be part of risk-assessment algorithms to prevent rapid disease progression towards SMA in regions with no-access to urgent blood transfusion where SMA accounts for high childhood mortality rates.
Collapse
Affiliation(s)
- Samuel Eneọjọ Abah
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Florence Burté
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Sandrine Marquet
- Aix-Marseille University, Inserm GIMP, Labex ParaFrap, Marseille, 13385, France
- Aix-Marseille University, Inserm Laboratoire TAGC/U1090, Marseille, 13288, France
| | - Biobele J Brown
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Francis Akinkunmi
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Gbeminiyi Oyinloye
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Nathaniel K Afolabi
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Samuel Omokhodion
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Ikeoluwa Lagunju
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Wuraola A Shokunbi
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Haematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Mats Wahlgren
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hélia Dessein
- Aix-Marseille University, Inserm GIMP, Labex ParaFrap, Marseille, 13385, France
| | - Laurent Argiro
- Aix-Marseille University, Inserm GIMP, Labex ParaFrap, Marseille, 13385, France
| | - Alain J Dessein
- Aix-Marseille University, Inserm GIMP, Labex ParaFrap, Marseille, 13385, France
| | - Boris Noyvert
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Lilian Hunt
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Greg Elgar
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Olugbemiro Sodeinde
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Computer Science, Faculty of Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Anthony A Holder
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Delmiro Fernandez-Reyes
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.
- Department of Computer Science, Faculty of Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
25
|
Luz NF, DeSouza-Vieira T, De Castro W, Vivarini AC, Pereira L, França RR, Silveira-Mattos PS, Costa DL, Teixeira C, Meneses C, Boaventura VS, de Oliveira CI, Lopes UG, Aronson N, Andrade BB, Brodskyn CI, Valenzuela JG, Kamhawi S, Borges VM. Lutzomyia longipalpis Saliva Induces Heme Oxygenase-1 Expression at Bite Sites. Front Immunol 2018; 9:2779. [PMID: 30546363 PMCID: PMC6279893 DOI: 10.3389/fimmu.2018.02779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
Sand flies bite mammalian hosts to obtain a blood meal, driving changes in the host inflammatory response that support the establishment of Leishmania infection. This effect is partially attributed to components of sand fly saliva, which are able to recruit and activate leukocytes. Our group has shown that heme oxygenase-1 (HO-1) favors Leishmania survival in infected cells by reducing inflammatory responses. Here, we show that exposure to sand fly bites is associated with induction of HO-1 in vivo. Histopathological analyses of skin specimens from human volunteers experimentally exposed to sand fly bites revealed that HO-1 and Nrf2 are produced at bite sites in the skin. These results were recapitulated in mice ears injected with a salivary gland sonicate (SGS) or exposed to sand fly bites, indicating that vector saliva may be a key factor in triggering HO-1 expression. Resident skin macrophages were the main source HO-1 at 24–48 h after bites. Additionally, assays in vivo after bites and in vitro after stimulation with saliva both demonstrated that HO-1 production by macrophages was Nrf2-dependent. Collectively, our data demonstrates that vector saliva induces early HO-1 production at the bite sites, representing a major event associated with establishment of naturally-transmitted Leishmania infections.
Collapse
Affiliation(s)
- Nivea F Luz
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil
| | - Thiago DeSouza-Vieira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Waldione De Castro
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Aislan Carvalho Vivarini
- Laboratory of Molecular Parasitology, Center of Health Science, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lais Pereira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Riam Rocha França
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Paulo S Silveira-Mattos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Diego L Costa
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Viviane S Boaventura
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Camila I de Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Ulisses Gazos Lopes
- Laboratory of Molecular Parasitology, Center of Health Science, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Naomi Aronson
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Bruno B Andrade
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Fundação José Silveira, Salvador, Brazil
| | - Claudia I Brodskyn
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Valeria M Borges
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
26
|
Pereira MLM, Marinho CRF, Epiphanio S. Could Heme Oxygenase-1 Be a New Target for Therapeutic Intervention in Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome? Front Cell Infect Microbiol 2018; 8:161. [PMID: 29868517 PMCID: PMC5964746 DOI: 10.3389/fcimb.2018.00161] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/26/2018] [Indexed: 01/17/2023] Open
Abstract
Malaria is a serious disease and was responsible for 429,000 deaths in 2015. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the main clinical complications of severe malaria; it is characterized by a high mortality rate and can even occur after antimalarial treatment when parasitemia is not detected. Rodent models of ALI/ARDS show similar clinical signs as in humans when the rodents are infected with murine Plasmodium. In these models, it was shown that the induction of the enzyme heme oxygenase 1 (HO-1) is protective against severe malaria complications, including cerebral malaria and ALI/ARDS. Increased lung endothelial permeability and upregulation of VEGF and other pro-inflammatory cytokines were found to be associated with malaria-associated ALI/ARDS (MA-ALI/ARDS), and both were reduced after HO-1 induction. Additionally, mice were protected against MA-ALI/ARDS after treatment with carbon monoxide- releasing molecules or with carbon monoxide, which is also released by the HO-1 activity. However, high HO-1 levels in inflammatory cells were associated with the respiratory burst of neutrophils and with an intensification of inflammation during episodes of severe malaria in humans. Here, we review the main aspects of HO-1 in malaria and ALI/ARDS, presenting the dual role of HO-1 and possibilities for therapeutic intervention by modulating this important enzyme.
Collapse
Affiliation(s)
- Marcelo L M Pereira
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudio R F Marinho
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sabrina Epiphanio
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Distinct inflammatory profile underlies pathological increases in creatinine levels associated with Plasmodium vivax malaria clinical severity. PLoS Negl Trop Dis 2018; 12:e0006306. [PMID: 29596409 PMCID: PMC5875744 DOI: 10.1371/journal.pntd.0006306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/08/2018] [Indexed: 11/22/2022] Open
Abstract
Background Although Plasmodium vivax infection is a frequent cause of malaria worldwide, severe presentations have been more regularly described only in recent years. In this setting, despite clinical descriptions of multi-organ involvement, data associating it with kidney dysfunction are relatively scarce. Here, renal dysfunction is retrospectively analyzed in a large cohort of vivax malaria patients with an attempt to dissect its association with disease severity and mortality, and to determine the role of inflammation in its progression. Methods A retrospective analysis of a databank containing 572 individuals from the Brazilian Amazon, including 179 patients with P. vivax monoinfection (161 symptomatic malaria, 12 severe non-lethal malaria, and 6 severe lethal disease) and 165 healthy controls, was performed. Data on levels of cytokines, chemokines, C-reactive protein (CRP), fibrinogen, creatinine, hepatic enzymes, bilirubin levels, free heme, and haptoglobin were analyzed to depict and compare profiles from patients per creatinine levels. Results Elevated creatinine levels were found predominantly in women. Vivax malaria severity was highly associated with abnormal creatinine increases, and nonsurvivors presented the highest values of serum creatinine. Indication of kidney dysfunction was not associated with parasitemia levels. IFN-γ/IL-10 ratio and CRP values marked the immune biosignature of vivax malaria patients, and could distinguish subjects with elevated creatinine levels who did not survive from those who did. Patients with elevated serum creatinine or severe vivax malaria displayed indication of cholestasis. Biomarkers of hemolysis did not follow increases in serum creatinine. Conclusion These findings reinforce the hypothesis that renal dysfunction is a key component in P. vivax malaria associated with clinical severity and mortality, possibly through intense inflammation and immune imbalance. Our study argues for systematic evaluation of kidney function as part of the clinical assessment in vivax malaria patients, and warrants additional studies in experimental models for further mechanism investigations. Severe clinical presentations of Plasmodium vivax malaria are not completely understood. Multi-organ involvement is described in severe vivax cases, however data associating it with kidney dysfunction are relatively scarce, in part because the clinical signs only appear late during kidney injury. We analyzed biomarkers of renal function in groups of patients from the Brazilian Amazon with different presentations of vivax malaria to determine its associations with disease progression. Inflammatory biomarkers were also analyzed to assess inflammation related to kidney dysfunction. The results indicate that severe disease presentation in these patients was associated with abnormal serum creatinine elevations and exacerbated systemic inflammatory response. The highest levels of creatinine were observed in nonsurvivors. Biomarkers of hemolysis did not directly follow increases in serum creatinine. These readouts suggest that kidney dysfunction probably influences vivax malaria severity and mortality. As P. vivax is a widely distributed species of Plasmodium in the world, and severe cases are increasingly being reported, it is important to better understand the role of kidney injury in these presentations, especially considering that it may affect clinical outcomes.
Collapse
|
28
|
Awasthi G, Tyagi S, Kumar V, Patel SK, Rojh D, Sakrappanavar V, Kochar SK, Talukdar A, Samanta B, Das A, Srivastava S, Patankar S. A Proteogenomic Analysis of Haptoglobin in Malaria. Proteomics Clin Appl 2017; 12:e1700077. [PMID: 28960920 DOI: 10.1002/prca.201700077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/08/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Gauri Awasthi
- Molecular Parasitology Lab; Department of Biosciences and Bioengineering; IIT Bombay; Mumbai Maharashtra India
| | - Suchi Tyagi
- National Institute of Malaria Research; Field Unit, Civil Hospital; Nadiad Gujarat India
| | - Vipin Kumar
- Proteomics Lab; Department of Biosciences and Bioengineering; IIT Bombay; Mumbai Maharashtra India
| | - Sandip Kumar Patel
- Proteomics Lab; Department of Biosciences and Bioengineering; IIT Bombay; Mumbai Maharashtra India
| | | | - Vijeth Sakrappanavar
- Department of Medicine; Basaveshwara Medical College and Hospital; Chitradurga Karnataka India
| | | | - Arunansu Talukdar
- Medicine Department; Medical College Hospital Kolkata; Kolkata West Bengal India
| | - Biaus Samanta
- Medicine Department; Medical College Hospital Kolkata; Kolkata West Bengal India
| | - Aparup Das
- ICMR-National Institute for research in Tribal Health; Jabalpur Madhya Pradesh India
| | - Sanjeeva Srivastava
- Proteomics Lab; Department of Biosciences and Bioengineering; IIT Bombay; Mumbai Maharashtra India
| | - Swati Patankar
- Molecular Parasitology Lab; Department of Biosciences and Bioengineering; IIT Bombay; Mumbai Maharashtra India
| |
Collapse
|
29
|
Immenschuh S, Vijayan V, Janciauskiene S, Gueler F. Heme as a Target for Therapeutic Interventions. Front Pharmacol 2017; 8:146. [PMID: 28420988 PMCID: PMC5378770 DOI: 10.3389/fphar.2017.00146] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/07/2017] [Indexed: 12/30/2022] Open
Abstract
Heme is a complex of iron and the tetrapyrrole protoporphyrin IX with essential functions in aerobic organisms. Heme is the prosthetic group of hemoproteins such as hemoglobin and myoglobin, which are crucial for reversible oxygen binding and transport. By contrast, high levels of free heme, which may occur in various pathophysiological conditions, are toxic via pro-oxidant, pro-inflammatory and cytotoxic effects. The toxicity of heme plays a major role for the pathogenesis of prototypical hemolytic disorders including sickle cell disease and malaria. Moreover, there is increasing appreciation that detrimental effects of heme may also be critically involved in diseases, which usually are not associated with hemolysis such as severe sepsis and atherosclerosis. In mammalians homeostasis of heme and its potential toxicity are primarily controlled by two physiological systems. First, the scavenger protein hemopexin (Hx) non-covalently binds extracellular free heme with high affinity and attenuates toxicity of heme in plasma. Second, heme oxygenases (HOs), in particular the inducible HO isozyme, HO-1, can provide antioxidant cytoprotection via enzymatic degradation of intracellular heme. This review summarizes current knowledge on the pathophysiological role of heme for various diseases as demonstrated in experimental animal models and in humans. The functional significance of Hx and HOs for the regulation of heme homeostasis is highlighted. Finally, the therapeutic potential of pharmacological strategies that apply Hx and HO-1 in various clinical settings is discussed.
Collapse
Affiliation(s)
- Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical SchoolHannover, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical SchoolHannover, Germany
| | | | - Faikah Gueler
- Department of Nephrology, Hannover Medical SchoolHannover, Germany
| |
Collapse
|
30
|
T cell subtypes and reciprocal inflammatory mediator expression differentiate P. falciparum memory recall responses in asymptomatic and symptomatic malaria patients in southeastern Haiti. PLoS One 2017; 12:e0174718. [PMID: 28369062 PMCID: PMC5378365 DOI: 10.1371/journal.pone.0174718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/14/2017] [Indexed: 12/20/2022] Open
Abstract
Asymptomatic Plasmodium falciparum infection is responsible for maintaining malarial disease within human populations in low transmission countries such as Haiti. Investigating differential host immune responses to the parasite as a potential underlying mechanism could help provide insight into this highly complex phenomenon and possibly identify asymptomatic individuals. We performed a cross-sectional analysis of individuals who were diagnosed with malaria in Sud-Est, Haiti by comparing the cellular and humoral responses of both symptomatic and asymptomatic subjects. Plasma samples were analyzed with a P. falciparum protein microarray, which demonstrated serologic reactivity to 3,877 P. falciparum proteins of known serologic reactivity; however, no antigen-antibody reactions delineating asymptomatics from symptomatics were identified. In contrast, differences in cellular responses were observed. Flow cytometric analysis of patient peripheral blood mononuclear cells co-cultured with P. falciparum infected erythrocytes demonstrated a statistically significant increase in the proportion of T regulatory cells (CD4+ CD25+ CD127-), and increases in unique populations of both NKT-like cells (CD3+ CD8+ CD56+) and CD8mid T cells in asymptomatics compared to symptomatics. Also, CD38+/HLA-DR+ expression on γδ T cells, CD8mid (CD56-) T cells, and CD8mid CD56+ NKT-like cells decreased upon exposure to infected erythrocytes in both groups. Cytometric bead analysis of the co-culture supernatants demonstrated an upregulation of monocyte-activating chemokines/cytokines in asymptomatics, while immunomodulatory soluble factors were elevated in symptomatics. Principal component analysis of these expression values revealed a distinct clustering of individual responses within their respective phenotypic groups. This is the first comprehensive investigation of immune responses to P. falciparum in Haiti, and describes unique cell-mediated immune repertoires that delineate individuals into asymptomatic and symptomatic phenotypes. Future investigations using large scale biological data sets analyzing multiple components of adaptive immunity, could collectively define which cellular responses and molecular correlates of disease outcome are malaria region specific, and which are truly generalizable features of asymptomatic Plasmodium immunity, a research goal of critical priority.
Collapse
|
31
|
Silva RLL, Santos MB, Almeida PLS, Barros TS, Magalhães L, Cazzaniga RA, Souza PRM, Luz NF, França-Costa J, Borges VM, Lima-Junior DS, Lipscomb MW, Duthie MS, Reed SG, Almeida RP, Jesus AR. sCD163 levels as a biomarker of disease severity in leprosy and visceral leishmaniasis. PLoS Negl Trop Dis 2017; 11:e0005486. [PMID: 28355218 PMCID: PMC5386291 DOI: 10.1371/journal.pntd.0005486] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 04/10/2017] [Accepted: 03/13/2017] [Indexed: 01/10/2023] Open
Abstract
Background CD163, receptor for the haptoglobin–hemoglobin complex, is expressed on monocytes/macrophages and neutrophils. A soluble form of CD163 (sCD163) has been associated with the M2 macrophage phenotype, and M2 macrophages have been shown to down-modulate inflammatory responses. In particular, previous studies have shown that M2 is closely associated with the most severe clinical presentation of leprosy (i.e. lepromatous leprosy (LL)), as well as tuberculosis. We hypothesized that sCD163 correlates with severity of diseases caused by intracellular pathogens. Methodology/Principal findings To assess this hypothesis, sCD163 levels were measured in the serum of leprosy and visceral leishmaniasis (VL) patients stratified by severity of the clinical presentation. sCD163 levels were significantly higher in patients with these diseases than those observed in healthy control individuals. Further analyses on infection and disease status of leprosy and VL patients revealed a clear association of sCD163 levels with clinical parameters of disease severity. In vitro culture assays revealed that Leishmania infection induced CD163 expression on the surface of both monocyte/macrophages and neutrophils, suggesting these cells as possible sources of sCD163. FACS analyses shows that the cells expressing CD163 produces both TNF-α and IL-4. Conclusions/Significance Taken together, our results reveal sCD163 as a potential biomarker of severity of diseases caused by intracellular pathogens M. leprae and Leishmania spp. and have a modulatory role, with a mix of an inflammatory property induced by TNF-α release, but that potentially induces an anti-inflammatory T cell response, related to IL-4 release. Visceral leishmaniasis (VL) is a systemic, and most severe form of leishmaniasis. Soluble CD163 (sCD163) levels can serve as biomarker for disease severity in several inflammatory disorders. However, no linkage has been reported for its relationship with Leishmania infections. We now demonstrate, for the first time, that sCD163 is increased in VL patients, and its presence is directly correlated to clinical parameters of disease severity. In vitro infection of monocyte-derived macrophages and neutrophils with L. infantum and L. amazonensis induces, while BCG reduce the expression of CD163 on macrophage surface Furthermore, presence of sCD163 is reduced during clinical improvements. Taken together, results reveal an important role for sCD163 in immune modulation during disease progression, and suggest a potential role as biomarker for determining disease severity and clearance.
Collapse
Affiliation(s)
- Ricardo Luís Louzada Silva
- Laboratório de Biologia Molecular–Hospital Universitário–Universidade Federal de Sergipe–Aracaju—Brazil
- Departamento de Educação em Saúde de Lagarto–Universidade Federal de Sergipe–Lagarto–Brazil
| | - Marcio B. Santos
- Laboratório de Biologia Molecular–Hospital Universitário–Universidade Federal de Sergipe–Aracaju—Brazil
- Departamento de Educação em Saúde de Lagarto–Universidade Federal de Sergipe–Lagarto–Brazil
| | - Priscila L. S. Almeida
- Laboratório de Biologia Molecular–Hospital Universitário–Universidade Federal de Sergipe–Aracaju—Brazil
- Departamento de Educação em Saúde de Lagarto–Universidade Federal de Sergipe–Lagarto–Brazil
| | - Thayse S. Barros
- Laboratório de Biologia Molecular–Hospital Universitário–Universidade Federal de Sergipe–Aracaju—Brazil
| | - Lucas Magalhães
- Laboratório de Biologia Molecular–Hospital Universitário–Universidade Federal de Sergipe–Aracaju—Brazil
| | - Rodrigo A. Cazzaniga
- Laboratório de Biologia Molecular–Hospital Universitário–Universidade Federal de Sergipe–Aracaju—Brazil
| | - Patrícia R. M. Souza
- Laboratório de Biologia Molecular–Hospital Universitário–Universidade Federal de Sergipe–Aracaju—Brazil
- Departamento de Educação em Saúde de Lagarto–Universidade Federal de Sergipe–Lagarto–Brazil
| | - Nívea F. Luz
- Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Jaqueline França-Costa
- Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Valeria M. Borges
- Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Djalma S. Lima-Junior
- Departamento de Bioquímica e Imunologia–Faculdade de Medicina de Ribeirão Preto–Universidade de São Paulo–Ribeirão Preto–Brazil
| | - Michael W. Lipscomb
- Department of Biology, Howard University, Washington–DC–United States of America
| | - Malcolm S. Duthie
- Infectious Diseases Research Institute (IDRI)–Seattle–WA–United States of America
| | - Steven G. Reed
- Infectious Diseases Research Institute (IDRI)–Seattle–WA–United States of America
| | - Roque Pacheco Almeida
- Laboratório de Biologia Molecular–Hospital Universitário–Universidade Federal de Sergipe–Aracaju—Brazil
| | - Amélia Ribeiro Jesus
- Laboratório de Biologia Molecular–Hospital Universitário–Universidade Federal de Sergipe–Aracaju—Brazil
- * E-mail:
| |
Collapse
|
32
|
Thongdee P, Na-Bangchang K. The role of heme-oxygenase-1 in pathogenesis of cerebral malaria in the co-culture model of human brain microvascular endothelial cell and ITG Plasmodium falciparum-infected red blood cells. ASIAN PAC J TROP MED 2017; 10:20-24. [PMID: 28107860 DOI: 10.1016/j.apjtm.2016.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/29/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE To investigate the role of human host heme-oxygenase-1 (HO-1) in pathogenesis of cerebral malaria in the in vitro model. METHODS The effect of human host HO-1 [human brain microvascular endothelial cell (HBMEC)] on hemoglobin degradation in the co-culture model of HBMEC and ITG Plasmodium falciparum-infected red cells (iRBC) through measurement of the enzymatic products iron and bilirubin. RESULTS Following exposure to the HO-1 inducer CoPPIX at all concentrations, the HBMEC cells apoptosis occurred, which could be prominently observed at 15 μM of 3 h exposure. In contrast, there was no significant change in the morphology in the non-exposed iRBC at all concentrations and exposure time. This observation was in agreement with the levels of the enzymatic degradation products iron and bilirubin, of which the highest levels (106.03 and 1753.54% of baseline level, respectively) were observed at 15 μM vs. 20 μM at 3 h vs. 24 h exposure. For the effect of the HO-1 inhibitor ZnPPIX, HBMEC cell morphology was mostly unchanged, but significant inhibitory effect on cell apoptosis was seen at 10 μM for the exposure period of 3 h (37.17% of baseline level). The degree of the inhibitory effect as reflected by the level of iron produced was not clearly observed (highest effect at 10 μM and 3 h exposure). CONCLUSIONS Results provide at least in part, insight into the contribution of HO-1 on CM pathogenesis and need to be confirmed in animal model.
Collapse
Affiliation(s)
- Pimwan Thongdee
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathumthani, Thailand.
| |
Collapse
|
33
|
Possible role of PGD2 in malaria infections. ASIAN PAC J TROP MED 2016; 9:856-859. [PMID: 27633298 DOI: 10.1016/j.apjtm.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/16/2016] [Accepted: 07/01/2016] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To preliminarily investigate the possible role of prostaglandin D2 (PGD2) in malaria infections. METHODS Blood and urinary samples (n = 120 each) were collected from Thai patients with Plasmodium falciparum (P. falciparum) with moderate (n = 26) and high (n = 4) parasitemia, patients with Plasmodium vivax (P. vivax) (n = 30), patients with fever associated with other infections (n = 30), and healthy subjects (n = 30). PGD2 concentrations in plasma and urinary samples of healthy subjects, patients with fever associated with other infections and patients with malaria were determined using Prostaglandin D2-MOX express EIA kit (Cayman Chemical, USA). RESULTS The possible association between PGD2 and malaria infections is clearly demonstrated with PGD2 concentration in urine. The urinary PGD2 concentrations were relatively high (about 5-fold) in patients with P. falciparum with moderate parasitemia and P. vivax infections compared with other groups. Furthermore, the concentration in patients with P. falciparum with moderate parasitemia and P. vivax infection were significantly higher than that in healthy subjects and patients with fever associated with other infections. CONCLUSIONS Urinary PGD2 concentrations may offer a more dependable and useful tool for predicting malaria severity. Confirmation is this preliminary finding is required with a larger sample size.
Collapse
|
34
|
Weinberg JB, Volkheimer AD, Rubach MP, Florence SM, Mukemba JP, Kalingonji AR, Langelier C, Chen Y, Bush M, Yeo TW, Granger DL, Anstey NM, Mwaikambo ED. Monocyte polarization in children with falciparum malaria: relationship to nitric oxide insufficiency and disease severity. Sci Rep 2016; 6:29151. [PMID: 27385484 PMCID: PMC4935839 DOI: 10.1038/srep29151] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/15/2016] [Indexed: 12/23/2022] Open
Abstract
We earlier established that nitric oxide (NO) is protective against severe malaria and that arginine and NO levels are reduced in malaria patients. We now show that an M2-like blood monocyte phenotype is significantly associated with hypoargininemia, NO insufficiency, and disease severity in Tanzanian children with falciparum malaria. Compared to control children (n = 106), children with moderately severe (n = 77) and severe falciparum malaria (n = 129) had significantly higher mononuclear cell arginase 1 mRNA, protein, and enzyme activity; lower NOS2 mRNA; lower plasma arginine; and higher plasma IL-10, IL-13, and IL-4. In addition, monocyte CD206 and CD163 and plasma soluble CD163 were elevated. Multivariate logistic regression analysis revealed a significant correlation of risk of severe malaria with both plasma IL-10 and soluble CD163 levels. Monocyte M2 skewing likely contributes to NO bioinsufficiency in falciparum malaria in children. Treatments that reverse the M2 polarization may have potential as adjunctive treatment for malaria.
Collapse
Affiliation(s)
- J Brice Weinberg
- Duke University and V.A. Medical Centers, Durham, North Carolina, USA
| | | | - Matthew P Rubach
- Duke University and V.A. Medical Centers, Durham, North Carolina, USA
| | | | | | | | | | - Youwei Chen
- Duke University and V.A. Medical Centers, Durham, North Carolina, USA
| | - Margaret Bush
- Duke University and V.A. Medical Centers, Durham, North Carolina, USA
| | - Tsin W Yeo
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Donald L Granger
- University of Utah and V.A. Medical Centers, Salt Lake City, Utah, USA
| | - Nicholas M Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | |
Collapse
|
35
|
Ab-Rahman HA, Rahim H, AbuBakar S, Wong PF. Macrophage Activation Syndrome-Associated Markers in Severe Dengue. Int J Med Sci 2016; 13:179-86. [PMID: 26941578 PMCID: PMC4773282 DOI: 10.7150/ijms.13680] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/05/2016] [Indexed: 12/18/2022] Open
Abstract
Hemophagocytosis, a phenomenon of which activated macrophages phagocytosed hematopoietic elements was reportedly observed in severe dengue patients. In the present study, we investigated whether markers of macrophage activation syndrome (MAS) can be used as differential diagnostic markers of severe dengue. Two hundred and eight confirmed dengue patients were recruited for the study. Sandwich ELISA was used to determine serum ferritin, soluble CD163 (sCD163), and soluble CD25 (sCD25) levels. The population of circulating CD163 (mCD163) monocytes was determined using flow cytometry. Receiver operating characteristic (ROC) analysis was plotted to determine the predictive validity of the biomarkers. Serum ferritin and sCD163 were found significantly increased in severe dengue patients compared to dengue fever patients (P = 0.003). A fair area under ROC curves (AUC) at 0.72 with a significant P value of 0.004 was observed for sCD163. sCD25 and mCD163 levels were not significantly different between severe dengue and dengue fever patients. Our findings suggest that in addition to serum ferritin, sCD163 can differentiate severe dengue from that of dengue fever patients. Hence, sCD163 level can be considered for use as a predictive marker for impending severe dengue.
Collapse
Affiliation(s)
- Hasliana Azrah Ab-Rahman
- 1. Tropical Infectious Disease Research & Education Centre (TIDREC), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia;; 2. Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hafiz Rahim
- 4. Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- 1. Tropical Infectious Disease Research & Education Centre (TIDREC), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia;; 2. Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- 3. Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Elphinstone RE, Riley F, Lin T, Higgins S, Dhabangi A, Musoke C, Cserti-Gazdewich C, Regan RF, Warren HS, Kain KC. Dysregulation of the haem-haemopexin axis is associated with severe malaria in a case-control study of Ugandan children. Malar J 2015; 14:511. [PMID: 26691827 PMCID: PMC4687388 DOI: 10.1186/s12936-015-1028-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/02/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Malaria is associated with haemolysis and the release of plasma haem. Plasma haem can cause endothelial injury and organ dysfunction, and is normally scavenged by haemopexin to limit toxicity. It was hypothesized that dysregulation of the haem-haemopexin pathway contributes to severe and fatal malaria infections. METHODS Plasma levels of haemin (oxidized haem), haemopexin, haptoglobin, and haemoglobin were quantified in a case-control study of Ugandan children with Plasmodium falciparum malaria. Levels at presentation were compared in children with uncomplicated malaria (UM; n = 29), severe malarial anaemia (SMA; n = 27) or cerebral malaria (CM; n = 31), and evaluated for utility in predicting fatal (n = 19) vs non-fatal (n = 39) outcomes in severe disease. A causal role for haemopexin was assessed in a pre-clinical model of experimental cerebral malaria (ECM), following disruption of mouse haemopexin gene (hpx). Analysis was done using Kruskall Wallis tests, Mann-Whitney tests, log-rank tests for survival, and repeated measures ANOVA. RESULTS In Ugandan children presenting with P. falciparum malaria, haemin levels were higher and haemopexin levels were lower in SMA and CM compared to children with UM (haemin, p < 0.01; haemopexin, p < 0.0001). Among all cases of severe malaria, elevated levels of haemin and cell-free haemoglobin at presentation were associated with subsequent mortality (p < 0.05). Compared to ECM-resistant BALB/c mice, susceptible C57BL/6 mice had lower circulating levels of haemopexin (p < 0.01), and targeted deletion of the haemopexin gene, hpx, resulted in increased mortality compared to their wild type littermates (p < 0.05). CONCLUSIONS These data indicate that plasma levels of haemin and haemopexin measured at presentation correlate with malaria severity and levels of haemin and cell-free haemoglobin predict outcome in paediatric severe malaria. Mechanistic studies in the ECM model support a causal role for the haem-haemopexin axis in ECM pathobiology.
Collapse
Affiliation(s)
- Robyn E Elphinstone
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,Tropical Disease Unit, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Frank Riley
- Infectious Disease Unit, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.
| | - Tian Lin
- Infectious Disease Unit, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.
| | - Sarah Higgins
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,Tropical Disease Unit, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Aggrey Dhabangi
- Makerere University College of Health Sciences, Kampala, Uganda.
| | - Charles Musoke
- Makerere University College of Health Sciences, Kampala, Uganda.
| | - Christine Cserti-Gazdewich
- Laboratory Medicine Program (Transfusion Medicine), University Health Network/University of Toronto, Toronto, ON, Canada.
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| | - H Shaw Warren
- Infectious Disease Unit, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.
| | - Kevin C Kain
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,Tropical Disease Unit, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
37
|
Mendonça VRD, Barral-Netto M. Immunoregulation in human malaria: the challenge of understanding asymptomatic infection. Mem Inst Oswaldo Cruz 2015; 110:945-55. [PMID: 26676319 PMCID: PMC4708013 DOI: 10.1590/0074-02760150241] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/23/2015] [Indexed: 12/21/2022] Open
Abstract
Asymptomatic Plasmodium infection carriers represent a major threat
to malaria control worldwide as they are silent natural reservoirs and do not seek
medical care. There are no standard criteria for
asymptomaticPlasmodium infection; therefore, its diagnosis relies
on the presence of the parasite during a specific period of symptomless infection.
The antiparasitic immune response can result in reducedPlasmodium
sp. load with control of disease manifestations, which leads to asymptomatic
infection. Both the innate and adaptive immune responses seem to play major roles in
asymptomatic Plasmodiuminfection; T regulatory cell activity
(through the production of interleukin-10 and transforming growth factor-β) and
B-cells (with a broad antibody response) both play prominent roles. Furthermore,
molecules involved in the haem detoxification pathway (such as haptoglobin and haeme
oxygenase-1) and iron metabolism (ferritin and activated c-Jun N-terminal kinase)
have emerged in recent years as potential biomarkers and thus are helping to unravel
the immune response underlying asymptomatic Plasmodium infection.
The acquisition of large data sets and the use of robust statistical tools, including
network analysis, associated with well-designed malaria studies will likely help
elucidate the immune mechanisms responsible for asymptomatic infection.
Collapse
Affiliation(s)
- Vitor R de Mendonça
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
| |
Collapse
|
38
|
Soares MP, Weiss G. The Iron age of host-microbe interactions. EMBO Rep 2015; 16:1482-500. [PMID: 26474900 DOI: 10.15252/embr.201540558] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/23/2015] [Indexed: 12/25/2022] Open
Abstract
Microbes exert a major impact on human health and disease by either promoting or disrupting homeostasis, in the latter instance leading to the development of infectious diseases. Such disparate outcomes are driven by the ever-evolving genetic diversity of microbes and the countervailing host responses that minimize their pathogenic impact. Host defense strategies that limit microbial pathogenicity include resistance mechanisms that exert a negative impact on microbes, and disease tolerance mechanisms that sustain host homeostasis without interfering directly with microbes. While genetically distinct, these host defense strategies are functionally integrated, via mechanisms that remain incompletely defined. Here, we explore the general principles via which host adaptive responses regulating iron (Fe) metabolism impact on resistance and disease tolerance to infection.
Collapse
Affiliation(s)
| | - Günter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University, Innsbruck, Austria
| |
Collapse
|
39
|
Andrade BB, Pavan Kumar N, Amaral EP, Riteau N, Mayer-Barber KD, Tosh KW, Maier N, Conceição EL, Kubler A, Sridhar R, Banurekha VV, Jawahar MS, Barbosa T, Manganiello VC, Moss J, Fontana JR, Marciano BE, Sampaio EP, Olivier KN, Holland SM, Jackson SH, Moayeri M, Leppla S, Sereti I, Barber DL, Nutman TB, Babu S, Sher A. Heme Oxygenase-1 Regulation of Matrix Metalloproteinase-1 Expression Underlies Distinct Disease Profiles in Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2015; 195:2763-73. [PMID: 26268658 DOI: 10.4049/jimmunol.1500942] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/15/2015] [Indexed: 01/19/2023]
Abstract
Pulmonary tuberculosis (TB) is characterized by oxidative stress and lung tissue destruction by matrix metalloproteinases (MMPs). The interplay between these distinct pathological processes and the implications for TB diagnosis and disease staging are poorly understood. Heme oxygenase-1 (HO-1) levels were previously shown to distinguish active from latent TB, as well as successfully treated Mycobacterium tuberculosis infection. MMP-1 expression is also associated with active TB. In this study, we measured plasma levels of these two important biomarkers in distinct TB cohorts from India and Brazil. Patients with active TB expressed either very high levels of HO-1 and low levels of MMP-1 or the converse. Moreover, TB patients with either high HO-1 or MMP-1 levels displayed distinct clinical presentations, as well as plasma inflammatory marker profiles. In contrast, in an exploratory North American study, inversely correlated expression of HO-1 and MMP-1 was not observed in patients with other nontuberculous lung diseases. To assess possible regulatory interactions in the biosynthesis of these two enzymes at the cellular level, we studied the expression of HO-1 and MMP-1 in M. tuberculosis-infected human and murine macrophages. We found that infection of macrophages with live virulent M. tuberculosis is required for robust induction of high levels of HO-1 but not MMP-1. In addition, we observed that CO, a product of M. tuberculosis-induced HO-1 activity, inhibits MMP-1 expression by suppressing c-Jun/AP-1 activation. These findings reveal a mechanistic link between oxidative stress and tissue remodeling that may find applicability in the clinical staging of TB patients.
Collapse
Affiliation(s)
- Bruno B Andrade
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; Unidade de Medicina Investigativa, Laboratório Integrado de Microbiologia e Imunorregulação, Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil;
| | - Nathella Pavan Kumar
- National Institutes of Health, International Center for Excellence in Research, Chennai 600031, India; National Institute for Research in Tuberculosis, Chennai 600031, India
| | - Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nicolas Riteau
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Katrin D Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kevin W Tosh
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nolan Maier
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Elisabete L Conceição
- Unidade de Medicina Investigativa, Laboratório Integrado de Microbiologia e Imunorregulação, Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
| | - Andre Kubler
- Department of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | - Theolis Barbosa
- Unidade de Medicina Investigativa, Laboratório Integrado de Microbiologia e Imunorregulação, Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil
| | - Vincent C Manganiello
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Joseph R Fontana
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Beatriz E Marciano
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Elizabeth P Sampaio
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kenneth N Olivier
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sharon H Jackson
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Irini Sereti
- Clinical and Molecular Retrovirology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daniel L Barber
- T-Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Thomas B Nutman
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Subash Babu
- National Institutes of Health, International Center for Excellence in Research, Chennai 600031, India; Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
40
|
Hansson HH, Maretty L, Balle C, Goka BQ, Luzon E, Nkrumah FN, Schousboe ML, Rodrigues OP, Bygbjerg IC, Kurtzhals JAL, Alifrangis M, Hempel C. Polymorphisms in the Haem Oxygenase-1 promoter are not associated with severity of Plasmodium falciparum malaria in Ghanaian children. Malar J 2015; 14:153. [PMID: 25888733 PMCID: PMC4396170 DOI: 10.1186/s12936-015-0668-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/25/2015] [Indexed: 11/10/2022] Open
Abstract
Background Haem oxygenase-1 (HO-1) catabolizes haem and has both cytotoxic and cytoprotective effects. Polymorphisms in the promoter of the Haem oxygenase-1 (HMOX1) gene encoding HO-1 have been associated with several diseases including severe malaria. The objective of this study was to determine the allele and genotype frequencies of two single nucleotide polymorphisms; A(−413)T and G(−1135)A, and a (GT)n repeat length polymorphism in the HMOX1 promoter in paediatric malaria patients and controls to determine possible associations with malaria disease severity. Methods Study participants were Ghanaian children (n=296) admitted to the emergency room at the Department of Child Health, Korle-Bu Teaching Hospital, Accra, Ghana during the malaria season from June to August in 1995, 1996 and 1997, classified as having uncomplicated malaria (n=101) or severe malaria (n=195; defined as severe anaemia (n=63) or cerebral malaria (n=132)). Furthermore, 287 individuals without a detectable Plasmodium infection or asymptomatic carriers of the parasite were enrolled as controls. Blood samples from participants were extracted for DNA and allele and genotype frequencies were determined with allele-specific PCR, restriction fragment length analysis and microsatellite analysis. Results The number of (GT)n repeats in the study participants varied between 21 and 46 with the majority of alleles having lengths of 26 (8.1%), 29/30 (13.2/17.9%) and 39/40 (8.0/13.8%) repeats, and was categorized into short, medium and long repeats. The (−413)T allele was very common (69.8%), while the (−1135)A allele was present in only 17.4% of the Ghanaian population. The G(−1135)A locus was excluded from further analysis after failing the Hardy-Weinberg equilibrium test. No significant differences in allele or genotype distribution of the A(−413)T and (GT)n repeat polymorphisms were found between the controls and the malaria patients, or between the disease groups, for any of the analysed polymorphisms and no associations with malaria severity were found. Conclusion These results contribute to the understanding of the role of HMOX1/HO-1. This current study did not find any evidence of association between HMOX1 promoter polymorphisms and malaria susceptibility or severe malaria and hence contradicts previous findings. Further studies are needed to fully elucidate the relationship between HMOX1 polymorphisms and malarial disease.
Collapse
Affiliation(s)
- Helle H Hansson
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Lasse Maretty
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Christina Balle
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Bamenla Q Goka
- Department of Child Health, Korle Bu Teaching Hospital, PO Box KB 77, Korle Bu, Accra, Ghana.
| | - Elisa Luzon
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Francis N Nkrumah
- Noguchi Memorial Institute for Medical Research, PO Box LG 581, Legon, Ghana.
| | - Mette L Schousboe
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Onike P Rodrigues
- Department of Child Health, Korle Bu Teaching Hospital, PO Box KB 77, Korle Bu, Accra, Ghana.
| | - Ib Christian Bygbjerg
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Jørgen A L Kurtzhals
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Michael Alifrangis
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Casper Hempel
- Centre for Medical Parasitology at Department of Immunology & Microbiology, University of Copenhagen, Østerfarimagsgade 5, Building 22-23, 1014, Copenhagen K., Denmark. .,Department of Clinical Microbiology and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| |
Collapse
|
41
|
Ambegaokar SS, Kolson DL. Heme oxygenase-1 dysregulation in the brain: implications for HIV-associated neurocognitive disorders. Curr HIV Res 2015; 12:174-88. [PMID: 24862327 PMCID: PMC4155834 DOI: 10.2174/1570162x12666140526122709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 12/17/2022]
Abstract
Heme oxygenase-1 (HO-1) is a highly inducible and ubiquitous cellular enzyme that subserves cytoprotective responses to toxic insults, including inflammation and oxidative stress. In neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and multiple sclerosis, HO-1 expression is increased, presumably reflecting an endogenous neuroprotective response against ongoing cellular injury. In contrast, we have found that in human immunodeficiency virus (HIV) infection of the brain, which is also associated with inflammation, oxidative stress and neurodegeneration, HO-1 expression is decreased, likely reflecting a unique role for HO-1 deficiency in neurodegeneration pathways activated by HIV infection. We have also shown that HO-1 expression is significantly suppressed by HIV replication in cultured macrophages which represent the primary cellular reservoir for HIV in the brain. HO-1 deficiency is associated with release of neurotoxic levels of glutamate from both HIV-infected and immune-activated macrophages; this glutamate-mediated neurotoxicity is suppressed by pharmacological induction of HO-1 expression in the macrophages. Thus, HO-1 induction could be a therapeutic strategy for neuroprotection against HIV infection and other neuroinflammatory brain diseases. Here, we review various stimuli and signaling pathways regulating HO-1 expression in macrophages, which could promote neuronal survival through HO-1-modulation of endogenous antioxidant and immune modulatory pathways, thus limiting the oxidative stress that can promote HIV disease progression in the CNS. The use of pharmacological inducers of endogenous HO-1 expression as potential adjunctive neuroprotective therapeutics in HIV infection is also discussed.
Collapse
Affiliation(s)
| | - Dennis L Kolson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 280 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Kanchan K, Jha P, Pati SS, Mohanty S, Mishra SK, Sharma SK, Awasthi S, Venkatesh V, Habib S. Interferon-γ (IFNG) microsatellite repeat and single nucleotide polymorphism haplotypes of IFN-α receptor (IFNAR1) associated with enhanced malaria susceptibility in Indian populations. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 29:6-14. [PMID: 25445652 DOI: 10.1016/j.meegid.2014.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/22/2014] [Accepted: 10/29/2014] [Indexed: 01/06/2023]
Abstract
Pro-inflammatory cytokines IFNγ and IFNα function through their cellular receptors IFNγR1 and IFNαR1, respectively to mediate immune processes during malaria infection. A total of 21 SNPs, 2 ins/del polymorphisms and a microsatellite repeat, selected on the basis of their reported association with infectious diseases including malaria in world populations, were analysed for association with Plasmodium falciparum malaria susceptibility in a case-control study with adult patients and ethnically-matched controls drawn from a disease meso- to hyperendemic and a nonendemic region of India. Among the five IFNG SNPs tested, an intron 3 and a 3'UTR SNP associated with disease in the endemic region. In addition, large (CA)n repeats of IFNG intron 1 associated with protection from severe malaria in the endemic region (severe vs. control, odds ratio=0.21, 95% CI=0.08-0.52, P=1.3 × 10(-4)). The TA11CAG haplotype (rs2069705 T/C, rs2430561 A/T, rs3138557 (CA)n, rs2069718 T/C, rs2069727 A/G, rs2069728 G/A) carrying a short CA11 repeat also exhibited very strong association with severe malaria, particularly in the endemic region (severe vs. control, OR=14.56, 95% CI=3.39-85.81, P=3 × 10(-5)). One SNP each from the IFNA8 and IFNA17 of IFNA gene cluster had a protective effect in the non-endemic region but not in the endemic region. A promoter and an intron 2 SNP of IFNAR1 were risk factors for disease and the IFNAR1 haplotype GCCAGG (rs2843710 C/G, rs2850015 C/T, +6993 C/T, rs2243594 A/G, rs1012335 G/C, rs2257167 G/C) carrying both the risk alleles strikingly associated with disease manifestation in the endemic region (severe vs. control, OR=27.14, 95% CI=3.12-1254, P=2 × 10(-5); non-severe vs. control, OR=61.87, 95% CI=10.08-2521, P=1 × 10(-8)). The data indicates dissimilar contribution of cytokine and cytokine receptor variants to disease in populations residing in areas of differential malaria endemicity.
Collapse
Affiliation(s)
- Kanika Kanchan
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Pankaj Jha
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | | - Surya K Sharma
- National Institute of Malaria Research, New Delhi, India
| | | | | | - Saman Habib
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
43
|
Elevated soluble CD163 plasma levels are associated with disease severity in patients with hemorrhagic fever with renal syndrome. PLoS One 2014; 9:e112127. [PMID: 25392926 PMCID: PMC4230986 DOI: 10.1371/journal.pone.0112127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/13/2014] [Indexed: 01/09/2023] Open
Abstract
Background Hantaan virus is a major zoonotic pathogen that causesing hemorrhagic fever with renal syndrome (HFRS). Although HFRS pathogenesis has not been entirely elucidated, the importance of host-related immune responses in HFRS pathogenesis has been widely recognized. CD163, a monocyte and macrophage-specific scavenger receptor that plays a vital function in the hosts can reduce inflammation, is shed during activation as soluble CD163 (sCD163). The aim of this study was to investigate the pathological significance of sCD163 in patients with HFRS. Methods Blood samples were collected from 81 hospitalized patients in Tangdu Hospital from October 2011 to January 2014 and from 15 healthy controls. The sCD163 plasma levels were measured using a sandwich ELISA, and the relationship between sCD163 and disease severity was analyzed. Furthermore, CD163 expression in 3 monocytes subset was analyzed by flow cytometry. Results The results demonstrated that sCD163 plasma levels during the HFRS acute phase were significantly higher in patients than during the convalescent stage and the levels in the healthy controls (P<0.0001). The sCD163 plasma levels in the severe/critical group were higher than those in the mild/moderate group during the acute (P<0.0001). A Spearman correlation analysis indicated that the sCD163 levels were positively correlated with white blood cell, serum creatine, blood urea nitrogen levels, while they were negatively correlated with blood platelet levels in the HFRS patients. The monocyte subsets were significantly altered during the acute stage. Though the CD163 expression levels within the monocyte subsets were increased during the acute stage, the highest CD163 expression level was observed in the CD14++CD16+ monocytes when compared with the other monocyte subsets. Conclusion sCD163 may be correlated with disease severity and the disease progression in HFRS patients; however, the underlying mechanisms should be explored further.
Collapse
|
44
|
Mendonça VRR, Souza LCL, Garcia GC, Magalhães BML, Lacerda MVG, Andrade BB, Gonçalves MS, Barral-Netto M. DDX39B (BAT1), TNF and IL6 gene polymorphisms and association with clinical outcomes of patients with Plasmodium vivax malaria. Malar J 2014; 13:278. [PMID: 25038626 PMCID: PMC4112608 DOI: 10.1186/1475-2875-13-278] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DDX39B (BAT1) encodes an RNA helicase known to regulate expression of TNF and IL-6. Elevated levels of these two cytokines are associated with increased severity of clinical malaria. The aim of this study was to investigate the relationship between single nucleotide polymorphisms (SNPs) in the DDX39B, TNF and IL6 genes and the clinical outcomes of patients with Plasmodium vivax malaria. METHODS Cross-sectional investigations were carried out in two regions of the Brazilian Amazon where several studies on the pathogenesis of vivax malaria had been performed. Individuals were categorized according to infection status as well as clinical presentation into the following groups: uninfected, asymptomatic infection, mild infection, or complicated infection. Polymorphisms were identified using PCR restriction fragment-length polymorphism analysis and the restriction enzymes NlaIII or NcoI. The plasma levels of cytokines were determined using ELISA. RESULTS The G allele of DDX39B-22C > G was associated with absent or decreased manifestations of malaria and the C allele was a risk factor for disease complications. Study participants heterozygous for TNF-308 (GA) and DDX39B-348 (CT) had higher TNF levels than wild-type participants. Haplotypes that included DDX39B (-22C > G and -348C > T) and TNF polymorphisms were not directly associated with mild or complicated malaria infections; however, haplotypes AGC, ACC, GGT, AGT and ACT were associated with increased TNF levels. Participants with genotype combinations GC/CC/GG/GG and GG/CT/GG/GG (DDX39B-22/DDX39B-348/TNF-308/IL6-176) had decreased and increased risk of mild malaria, respectively, compared with asymptomatic and uninfected participants. GC/CC/GG/GG was linked to decreased TNF and IL-6 levels. CONCLUSIONS This is the first study to describe patients with DDX39B and IL6 SNPs who had vivax malaria. These findings support the postulation that a set of mutations in immune-related genes is associated with inflammatory mediators and the clinical outcomes of patients with malaria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Manoel Barral-Netto
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.
| |
Collapse
|
45
|
Zhang G, Skorokhod OA, Khoo SK, Aguilar R, Wiertsema S, Nhabomba AJ, Marrocco T, McNamara-Smith M, Manaca MN, Barbosa A, Quintó L, Hayden CM, Goldblatt J, Guinovart C, Alonso PL, Dobaño C, Schwarzer E, LeSouëf PN. Plasma advanced oxidative protein products are associated with anti-oxidative stress pathway genes and malaria in a longitudinal cohort. Malar J 2014; 13:134. [PMID: 24693973 PMCID: PMC4230024 DOI: 10.1186/1475-2875-13-134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/27/2014] [Indexed: 01/05/2023] Open
Abstract
Background Advanced oxidation protein products (AOPP) are newly identified efficient oxidative stress biomarkers. In a longitudinal birth cohort the effects were investigated of genetic polymorphisms in five oxidative pathway genes on AOPP levels. Methods This study is part of a three-arm randomized, double-blind, placebo-controlled trial. Three hundred and twelve children were included in the present study with AOPP levels measured at 2.5, 5.5, 10.5, 15 and 24 months of age. Twelve polymorphisms were genotyped in five oxidative stress pathway genes: glutathione reductase (GSR), glutamylcysteine synthetase (GCLC), glutathione S-transferase (GST) P1, haem oxygenase 1 (HMOX1) and superoxide dismutase 2 (SOD2) in 298 children. There were 284 children assessed for anaemia and clinical malaria infection at the age of 24 months. Results Two principal components (PCA1 and PCA2) were derived from the AOPP levels measured at the five time points. PCA1 was significantly associated with anaemia (p = 0.0002), and PCA2 with clinical malaria infection (p = 0.047). In the K-Means Cluster Analysis based on levels of AOPP, children were clustered into two groups: Group A (lower AOPP levels) and Group B (higher AOPP levels). The cluster membership was significantly associated with anaemia (p =0.003) as well as with the GSR RS3594 polymorphism (p = 0.037). Mixed linear regression analyses found that the single nucleotide polymorphisms GCLC RS10948751 and HMOX1 RS17885925 were significantly associated with AOPP levels (p = 0.030 and p = 0.027, respectively). Conclusion Plasma AOPP levels were predictive for anaemia and oxidative stress markers for clinical malaria infection in two year old children. Several polymorphisms in GCLC, GSR and HMOX1 genes were associated with oxidative stress status of these children.
Collapse
Affiliation(s)
- Guicheng Zhang
- School of Paediatrics and Child Health, University of Western Australia, c/o 100 Roberts Rd, Subiaco, WA 6008 Perth, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Atkinson SH, Uyoga SM, Nyatichi E, Macharia AW, Nyutu G, Ndila C, Kwiatkowski DP, Rockett KA, Williams TN. Epistasis between the haptoglobin common variant and α+thalassemia influences risk of severe malaria in Kenyan children. Blood 2014; 123:2008-16. [PMID: 24478401 PMCID: PMC3968387 DOI: 10.1182/blood-2013-10-533489] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/21/2014] [Indexed: 11/20/2022] Open
Abstract
Haptoglobin (Hp) scavenges free hemoglobin following malaria-induced hemolysis. Few studies have investigated the relationship between the common Hp variants and the risk of severe malaria, and their results are inconclusive. We conducted a case-control study of 996 children with severe Plasmodium falciparum malaria and 1220 community controls and genotyped for Hp, hemoglobin (Hb) S heterozygotes, and α(+)thalassemia. Hb S heterozygotes and α(+)thalassemia homozygotes were protected from severe malaria (odds ratio [OR], 0.12; 95% confidence interval [CI], 0.07-0.18 and OR, 0.69; 95% CI, 0.53-0.91, respectively). The risk of severe malaria also varied by Hp genotype: Hp2-1 was associated with the greatest protection against severe malaria and Hp2-2 with the greatest risk. Meta-analysis of the current and published studies suggests that Hp2-2 is associated with increased risk of severe malaria compared with Hp2-1. We found a significant interaction between Hp genotype and α(+)thalassemia in predicting risk of severe malaria: Hp2-1 in combination with heterozygous or homozygous α(+)thalassemia was associated with protection from severe malaria (OR, 0.73; 95% CI, 0.54-0.99 and OR, 0.48; 95% CI, 0.32-0.73, respectively), but α(+)thalassemia in combination with Hp2-2 was not protective. This epistatic interaction together with varying frequencies of α(+)thalassemia across Africa may explain the inconsistent relationship between Hp genotype and malaria reported in previous studies.
Collapse
Affiliation(s)
- Sarah H Atkinson
- Department of Paediatrics, Oxford University Hospitals National Health Service Trust, University of Oxford, and
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Perdijk O, Arama C, Giusti P, Maiga B, Troye-Blomberg M, Dolo A, Doumbo O, Persson JO, Boström S. Haptoglobin phenotype prevalence and cytokine profiles during Plasmodium falciparum infection in Dogon and Fulani ethnic groups living in Mali. Malar J 2013; 12:432. [PMID: 24274254 PMCID: PMC4225596 DOI: 10.1186/1475-2875-12-432] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/22/2013] [Indexed: 11/24/2022] Open
Abstract
Background The Fulani are known to have a lower parasitaemia and less clinical episodes of malaria as compared to the Dogon sympatric ethnic group, living in Mali. Higher circulating malaria-specific antibody titers and increased pro-inflammatory cytokine levels have been shown in Fulani individuals. Several studies have tried to link haptoglobin (Hp) phenotypes with susceptibility to malaria, but without consensus. This study investigated the role of Hp phenotypes and cytokine levels in Dogon and Fulani during asymptomatic Plasmodium falciparum infection. Methods Two different cohorts were combined in this study: a 2008 cohort with 77 children aged between two and ten years and a 2001 cohort, with 82 children and adults, aged between 11 and 68 years. Hp phenotypes in plasma were measured by Western Blot. Circulating levels of sCD163, IL-6, IL-10, IFN-γ and TNF were measured by ELISA. Multiple regression analysis was performed to associate Hp phenotypes with cytokine profiles. In addition, in vitro stimulation of peripheral blood mononuclear cells (PBMCs) with Hp:Hb complexes was performed and cytokine release in corresponding supernatants were measured using cytometric bead array. Results The results revealed a higher Hp2-2 phenotype prevalence in the Fulani. The Hp2-2 phenotype was associated with a higher susceptibility to P. falciparum infection in Dogon, but not in Fulani. In concordance with previous studies, Fulani showed increased inflammatory mediators (IL-6, IFN-γ) and additionally also increased sCD163 levels compared to Dogon, irrespective of infection. Furthermore, infected individuals showed elevated sCD163 levels compared to uninfected individuals, in both Fulani and Dogon. Multiple regression analysis revealed that the Hp1-1 phenotype was associated with higher levels of TNF and IFN-γ, as compared to the Hp2-2 phenotype. In vitro stimulation of PBMCs with Hb:Hp1-1 complexes resulted in a pro-inflammatory cytokine profile, whilst stimulation with Hb:Hp2-2 complexes showed a more balanced profile. Conclusions Ethnicity might be an important confounder on the Hp phenotype-dependent susceptibility to malaria and future studies could consider taking this into account when designing new immunological studies. Although, the relatively small sample size used in this study warrens for precautions in the interpretation of the data and these findings should ideally be validated in a bigger cohort.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu M, Wilson NO, Hibbert JM, Stiles JK. STAT3 regulates MMP3 in heme-induced endothelial cell apoptosis. PLoS One 2013; 8:e71366. [PMID: 23967200 PMCID: PMC3742773 DOI: 10.1371/journal.pone.0071366] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 06/30/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We have previously reported that free Heme generated during experimental cerebral malaria (ECM) in mice, is central to the pathogenesis of fatal ECM. Heme-induced up-regulation of STAT3 and CXCL10 promotes whereas up-regulation of HO-1 prevents brain tissue damage in ECM. We have previously demonstrated that Heme is involved in the induction of apoptosis in vascular endothelial cells. In the present study, we further tested the hypothesis that Heme reduces blood-brain barrier integrity during ECM by induction of apoptosis of brain vascular endothelial cells through STAT3 and its target gene matrix metalloproteinase three (MMP3) signaling. METHODS Genes associated with the JAK/STAT3 signaling pathway induced upon stimulation by Heme treatment, were assessed using real time RT(2) Profile PCR arrays. A human MMP3 promoter was cloned into a luciferase reporter plasmid, pMMP3, and its activity was examined following exposure to Heme treatment by a luciferase reporter gene assay. In order to determine whether activated nuclear protein STAT3 binds to the MMP3 promoter and regulates MMP3 gene, we conducted a ChIP analysis using Heme-treated and untreated human brain microvascular endothelial cells (HBVEC), and determined mRNA and protein expression levels of MMP3 using qRT-PCR and Western blot. Apoptosis in HBVEC treated with Heme was evaluated by MTT and TUNEL assay. RESULTS The results show that (1) Heme activates a variety of JAK/STAT3 downstream pathways in HBVEC. STAT3 targeted genes such as MMP3 and C/EBPb (Apoptosis-related genes), are up regulated in HBVEC treated with Heme. (2) Heme-induced HBVEC apoptosis via activation of STAT3 as well as its downstream signaling molecule MMP3 and upregulation of CXCL10 and HO-1 expressions. (3) Phosphorylated STAT3 binds to the MMP3 promoter in HBVEC cells, STAT3 transcribed MMP3 and induced MMP3 protein expression in HBVEC cells. CONCLUSIONS Activated STAT3 binds to the MMP3 promoter region and regulates MMP3 in Heme-induced endothelial cell apoptosis.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (ML); (JKS)
| | - Nana O. Wilson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Jacqueline M. Hibbert
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Jonathan K. Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (ML); (JKS)
| |
Collapse
|
49
|
The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:523652. [PMID: 23781295 PMCID: PMC3678498 DOI: 10.1155/2013/523652] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 12/30/2022]
Abstract
The haptoglobin- (Hp-) CD163-heme oxygenase-1 (HO-1) pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb)/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex in macrophages followed by lysosomal Hp-Hb breakdown and HO-1-catalyzed conversion of heme into the metabolites carbon monoxide (CO), biliverdin, and iron. The plasma concentration of Hp is a limiting factor as evident during accelerated hemolysis, where the Hp depletion may cause serious Hb-induced toxicity and put pressure on backup protecting systems such as the hemopexin-CD91-HO pathway. The Hp-CD163-HO-1 pathway proteins are regulated by the acute phase mediator interleukin-6 (IL-6), but other regulatory factors indicate that this upregulation is a counteracting anti-inflammatory response during inflammation. The heme metabolites including bilirubin converted from biliverdin have overall an anti-inflammatory effect and thus reinforce the anti-inflammatory efficacy of the Hp-CD163-HO-1 pathway. Future studies of animal models of inflammation should further define the importance of the pathway in the anti-inflammatory response.
Collapse
|
50
|
Chua CLL, Brown GV, Hamilton JA, Molyneux ME, Rogerson SJ, Boeuf P. Soluble CD163, a product of monocyte/macrophage activation, is inversely associated with haemoglobin levels in placental malaria. PLoS One 2013; 8:e64127. [PMID: 23717548 PMCID: PMC3661483 DOI: 10.1371/journal.pone.0064127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/09/2013] [Indexed: 01/14/2023] Open
Abstract
In Plasmodium falciparum malaria, activation of monocytes and macrophages (monocytes/macrophages) can result in the production of various inflammatory mediators that contribute to immunopathology. Soluble CD163 (sCD163) is a specific marker of monocyte/macrophage activation typically found at increased levels during various inflammatory conditions and can be associated with poor clinical outcomes. To better understand the relationships between levels of sCD163 and clinical parameters in women with placental malaria, we measured plasma sCD163 levels in maternal peripheral and placental blood compartments at delivery and determined their correlations with birth weight and maternal haemoglobin concentrations. sCD163 levels were negatively correlated with birth weight only in the placental compartment (r = -0.145, p = 0.03) and were inversely correlated with maternal haemoglobin concentrations, both in peripheral blood (r = -0.238, p = 0.0004) and in placental blood (r = -0.259, p = 0.0001). These inverse relationships suggest a potential role for monocyte/macrophage activation in the pathogenesis of malaria in pregnancy, particularly in relation to malaria-associated anaemia.
Collapse
MESH Headings
- Adolescent
- Adult
- Antigens, CD/blood
- Antigens, Differentiation, Myelomonocytic/blood
- Biomarkers/blood
- Cohort Studies
- Female
- Hemoglobins/analysis
- Humans
- Macrophage Activation
- Malaria, Falciparum/blood
- Malaria, Falciparum/complications
- Malaria, Falciparum/diagnosis
- Malaria, Falciparum/immunology
- Monocytes/immunology
- Pregnancy
- Pregnancy Complications, Parasitic/blood
- Pregnancy Complications, Parasitic/diagnosis
- Pregnancy Complications, Parasitic/immunology
- Receptors, Cell Surface/blood
- Young Adult
Collapse
Affiliation(s)
- Caroline Lin Lin Chua
- Department of Medicine-Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|