1
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
2
|
Degabriel M, Valeva S, Boisset S, Henry T. Pathogenicity and virulence of Francisella tularensis. Virulence 2023; 14:2274638. [PMID: 37941380 PMCID: PMC10653695 DOI: 10.1080/21505594.2023.2274638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Tularaemia is a zoonotic disease caused by the Gram-negative bacterium, Francisella tularensis. Depending on its entry route into the organism, F. tularensis causes different diseases, ranging from life-threatening pneumonia to less severe ulceroglandular tularaemia. Various strains with different geographical distributions exhibit different levels of virulence. F. tularensis is an intracellular bacterium that replicates primarily in the cytosol of the phagocytes. The main virulence attribute of F. tularensis is the type 6 secretion system (T6SS) and its effectors that promote escape from the phagosome. In addition, F. tularensis has evolved a peculiar envelope that allows it to escape detection by the immune system. In this review, we cover tularaemia, different Francisella strains, and their pathogenicity. We particularly emphasize the intracellular life cycle, associated virulence factors, and metabolic adaptations. Finally, we present how F. tularensis largely escapes immune detection to be one of the most infectious and lethal bacterial pathogens.
Collapse
Affiliation(s)
- Manon Degabriel
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Stanimira Valeva
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Sandrine Boisset
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
- Univ. Grenoble Alpes, CHU Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| |
Collapse
|
3
|
Guo Y, Mao R, Xie Q, Cheng X, Xu T, Wang X, Du Y, Qi X. Francisella novicida Mutant XWK4 Triggers Robust Inflammasome Activation Favoring Infection. Front Cell Dev Biol 2021; 9:743335. [PMID: 34869331 PMCID: PMC8637620 DOI: 10.3389/fcell.2021.743335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial infection tendentiously triggers inflammasome activation, whereas the roles of inflammasome activation in host defense against diverse infections remain unclear. Here, we identified that an ASC-dependent inflammasome activation played opposite roles in host defense against Francisella novicida wild-type (WT) U112 and mutant strain XWK4. Comparing with U112, XWK4 infection induced robust cytokine production, ASC-dependent inflammasome activation, and pyroptosis. Both AIM2 and NLRP3 were involved and played independent roles in XWK4-induced inflammasome activation. Type II interferon was partially required for XWK4-triggered inflammasome activation, which was different from type I interferon dependency in U112-induced inflammasome activation. Distinct from F. novicida U112 and Acinetobacter baumannii infection, Asc-/- mice were more resistant than WT mice response to XWK4 infection by limiting bacterial burden in vivo. The excessive inflammasome activation triggered by XWK4 infection caused dramatical cell death and pathological damage. Our study offers novel insights into mechanisms of inflammasome activation in host defense and provides potential therapeutic approach against bacterial infections and inflammatory diseases.
Collapse
Affiliation(s)
- Yu Guo
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Rudi Mao
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingqing Xie
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaojie Cheng
- Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yan Du
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Xiaopeng Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Key Laboratory for Experimental Teratology of the Ministry of Education, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Type VI Secretion System and Its Effectors PdpC, PdpD, and OpiA Contribute to Francisella Virulence in Galleria mellonella Larvae. Infect Immun 2021; 89:e0057920. [PMID: 33875476 PMCID: PMC8208517 DOI: 10.1128/iai.00579-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis causes the deadly zoonotic disease tularemia in humans and is able to infect a broad range of organisms including arthropods, which are thought to play a major role in Francisella transmission. However, while mammalian in vitro and in vivo infection models are widely used to investigate Francisella pathogenicity, a detailed characterization of the major Francisella virulence factor, a noncanonical type VI secretion system (T6SS), in an arthropod in vivo infection model is missing. Here, we use Galleria mellonella larvae to analyze the role of the Francisella T6SS and its corresponding effectors in F. tularensis subsp. novicida virulence. We report that G. mellonella larvae killing depends on the functional T6SS and infectious dose. In contrast to other mammalian in vivo infection models, even one of the T6SS effectors PdpC, PdpD, or OpiA is sufficient to kill G. mellonella larvae, while sheath recycling by ClpB is dispensable. We further demonstrate that treatment by polyethylene glycol (PEG) activates Francisella T6SS in liquid culture and that this is independent of the response regulator PmrA. PEG-activated IglC secretion is dependent on T6SS structural component PdpB but independent of putative effectors PdpC, PdpD, AnmK, OpiB1, OpiB2, and OpiB3. The results of larvae infection and secretion assay suggest that AnmK, a putative T6SS component with unknown function, interferes with OpiA-mediated toxicity but not with general T6SS activity. We establish that the easy-to-use G. mellonella larvae infection model provides new insights into the function of T6SS and pathogenesis of Francisella.
Collapse
|
5
|
Abstract
Spikes in rickettsioses occur as deforestation, urbanization, and homelessness increase human exposure to blood-feeding arthropods. Still, effective Rickettsia vaccines remain elusive. Species of Rickettsia (Alphaproteobacteria: Rickettsiales) are obligate intracellular parasites of a wide range of eukaryotes, with recognized arthropod-borne human pathogens belonging to the transitional group (TRG), typhus group (TG), and spotted fever group (SFG) rickettsiae. Growing in the host cytosol, rickettsiae pilfer numerous metabolites to make a typical Gram-negative bacterial cell envelope. The O-antigen of rickettsial lipopolysaccharide (LPS) is immunogenic and has been shown to tether the S-layer to the rickettsial surface; however, little is known about the structure and immunogenicity of the Rickettsia lipid A moiety. The structure of lipid A, the membrane anchor of LPS, affects the ability of this molecule to interact with components of the host innate immune system, specifically the MD-2/TLR4 receptor complex. To dissect the host responses that can occur during Rickettsia in vitro and in vivo infection, structural analysis of Rickettsia lipid A is needed. Lipid A was extracted from four Rickettsia species and structurally analyzed. R. akari (TRG), R. typhi (TG), and R. montanensis (SFG) produced a similar structure, whereas R. rickettsii (SFG) altered the length of a secondary acyl group. While all structures have longer acyl chains than known highly inflammatory hexa-acylated lipid A structures, the R. rickettsii modification should differentially alter interactions with the hydrophobic internal pocket in MD2. The significance of these characteristics toward inflammatory potential as well as membrane dynamics between arthropod and vertebrate cellular environments warrants further investigation. Our work adds lipid A to the secretome and O-antigen as variable factors possibly correlating with phenotypically diverse rickettsioses. IMPORTANCE Spikes in rickettsioses occur as deforestation, urbanization, and homelessness increase human exposure to blood-feeding arthropods. Still, effective Rickettsia vaccines remain elusive. Recent studies have determined that Rickettsia lipopolysaccharide anchors the protective S-layer to the bacterial surface and elicits bactericidal antibodies. Furthermore, growing immunological evidence suggests vertebrate sensors (MD-2/TLR4 and noncanonical inflammasome) typically triggered by the lipid A portion of lipopolysaccharide are activated during Rickettsia infection. However, the immunopotency of Rickettsia lipid A is unknown due to poor appreciation for its structure. We determined lipid A structures for four distinct rickettsiae, revealing longer acyl chains relative to highly inflammatory bacterial lipid A. Surprisingly, lipid A of the Rocky Mountain spotted fever agent deviates in structure from other rickettsiae. Thus, lipid A divergence may contribute to variable disease phenotypes, sounding an alarm for determining its immunopotency and possible utility (i.e., as an adjuvant or anti-inflammatory) for development of more prudent rickettsiacidal therapies.
Collapse
|
6
|
Microbial Lipid A Remodeling Controls Cross-Presentation Efficiency and CD8 T Cell Priming by Modulating Dendritic Cell Function. Infect Immun 2021; 89:IAI.00335-20. [PMID: 33257533 DOI: 10.1128/iai.00335-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
The majority of Gram-negative bacteria elicit a potent immune response via recognition of lipid A expressed on the outer bacterial membrane by the host immune receptor Toll-like receptor 4 (TLR4). However, some Gram-negative bacteria evade detection by TLR4 or alter the outcome of TLR4 signaling by modification of lipid A species. Although the role of lipid A modifications on host innate immunity has been examined in some detail, it is currently unclear how lipid A remodeling influences host adaptive immunity. One prototypic Gram-negative bacterium that modifies its lipid A structure is Porphyromonas gingivalis, an anaerobic pathobiont that colonizes the human periodontium and induces chronic low-grade inflammation that is associated with periodontal disease as well as a number of systemic inflammatory disorders. P. gingivalis produces dephosphorylated and deacylated lipid A structures displaying altered activities at TLR4. Here, we explored the functional role of P. gingivalis lipid A modifications on TLR4-dependent innate and adaptive immune responses in mouse bone marrow-derived dendritic cells (BMDCs). We discovered that lipid A 4'-phosphate removal is required for P. gingivalis to evade BMDC-dependent proinflammatory cytokine responses and markedly limits the bacterium's capacity to induce beta interferon (IFN-β) production. In addition, lipid A 4'-phosphatase activity prevents canonical bacterium-induced delay in antigen degradation, which leads to inefficient antigen cross-presentation and a failure to cross-prime CD8 T cells specific for a P. gingivalis-associated antigen. We propose that lipid A modifications produced by this bacterium alter host TLR4-dependent adaptive immunity to establish chronic infections associated with a number of systemic inflammatory disorders.
Collapse
|
7
|
Zamyatina A, Heine H. Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Front Immunol 2020; 11:585146. [PMID: 33329561 PMCID: PMC7732686 DOI: 10.3389/fimmu.2020.585146] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
The innate immune response to lipopolysaccharide is essential for host defense against Gram-negative bacteria. In response to bacterial infection, the TLR4/MD-2 complex that is expressed on the surface of macrophages, monocytes, dendritic, and epithelial cells senses picomolar concentrations of endotoxic LPS and triggers the production of various pro-inflammatory mediators. In addition, LPS from extracellular bacteria which is either endocytosed or transfected into the cytosol of host cells or cytosolic LPS produced by intracellular bacteria is recognized by cytosolic proteases caspase-4/11 and hosts guanylate binding proteins that are involved in the assembly and activation of the NLRP3 inflammasome. All these events result in the initiation of pro-inflammatory signaling cascades directed at bacterial eradication. However, TLR4-mediated signaling and caspase-4/11-induced pyroptosis are largely involved in the pathogenesis of chronic and acute inflammation. Both extra- and intracellular LPS receptors-TLR4/MD-2 complex and caspase-4/11, respectively-are able to directly bind the lipid A motif of LPS. Whereas the structural basis of lipid A recognition by the TLR4 complex is profoundly studied and well understood, the atomic mechanism of LPS/lipid A interaction with caspase-4/11 is largely unknown. Here we describe the LPS-induced TLR4 and caspase-4/11 mediated signaling pathways and their cross-talk and scrutinize specific structural features of the lipid A motif of diverse LPS variants that have been reported to activate caspase-4/11 or to induce caspase-4/11 mediated activation of NLRP3 inflammasome (either upon transfection of LPS in vitro or upon infection of cell cultures with intracellular bacteria or by LPS as a component of the outer membrane vesicles). Generally, inflammatory caspases show rather similar structural requirements as the TLR4/MD-2 complex, so that a "basic" hexaacylated bisphosphorylated lipid A architecture is sufficient for activation. However, caspase-4/11 can sense and respond to much broader variety of lipid A variants compared to the very "narrow" specificity of TLR4/MD-2 complex as far as the number and the length of lipid chains attached at the diglucosamine backbone of lipid A is concerned. Besides, modification of the lipid A phosphate groups with positively charged appendages such as phosphoethanolamine or aminoarabinose could be essential for the interaction of lipid A/LPS with inflammatory caspases and related proteins.
Collapse
Affiliation(s)
- Alla Zamyatina
- Institute of Organic Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Holger Heine
- Research Group Innate Immunity, Research Center Borstel—Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Disease (DZL), Borstel, Germany
| |
Collapse
|
8
|
Oh C, Verma A, Aachoui Y. Caspase-11 Non-canonical Inflammasomes in the Lung. Front Immunol 2020; 11:1895. [PMID: 32973786 PMCID: PMC7472987 DOI: 10.3389/fimmu.2020.01895] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
The airway epithelium and underlying innate immune cells comprise the first line of host defense in the lung. They recognize pathogen-associated molecular patterns (PAMPs) using membrane-bound receptors, as well as cytosolic receptors such as inflammasomes. Inflammasomes activate inflammatory caspases, which in turn process and release the inflammatory cytokines IL-1β and IL-18. Additionally, inflammasomes trigger a form of lytic cell death termed pyroptosis. One of the most important inflammasomes at the host-pathogen interface is the non-canonical caspase-11 inflammasome that responds to LPS in the cytosol. Caspase-11 is important in defense against Gram-negative pathogens, and can drive inflammatory diseases such as LPS-induced sepsis. However, pathogens can employ evasive strategies to minimize or evade host caspase-11 detection. In this review, we present a comprehensive overview of the function of the non-canonical caspase-11 inflammasome in sensing of cytosolic LPS, and its mechanism of action with particular emphasis in the role of caspase-11 in the lung. We also explore some of the strategies pathogens use to evade caspase-11.
Collapse
Affiliation(s)
- Changhoon Oh
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ambika Verma
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Youssef Aachoui
- Department of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Responses, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
9
|
Outer Membrane Lipid Secretion and the Innate Immune Response to Gram-Negative Bacteria. Infect Immun 2020; 88:IAI.00920-19. [PMID: 32253250 DOI: 10.1128/iai.00920-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer that consists of inner leaflet phospholipids and outer leaflet lipopolysaccharides (LPS). The asymmetric character and unique biochemistry of LPS molecules contribute to the OM's ability to function as a molecular permeability barrier that protects the bacterium against hazards in the environment. Assembly and regulation of the OM have been extensively studied for understanding mechanisms of antibiotic resistance and bacterial defense against host immunity; however, there is little knowledge on how Gram-negative bacteria release their OMs into their environment to manipulate their hosts. Discoveries in bacterial lipid trafficking, OM lipid homeostasis, and host recognition of microbial patterns have shed new light on how microbes secrete OM vesicles (OMVs) to influence inflammation, cell death, and disease pathogenesis. Pathogens release OMVs that contain phospholipids, like cardiolipins, and components of LPS molecules, like lipid A endotoxins. These multiacylated lipid amphiphiles are molecular patterns that are differentially detected by host receptors like the Toll-like receptor 4/myeloid differentiation factor 2 complex (TLR4/MD-2), mouse caspase-11, and human caspases 4 and 5. We discuss how lipid ligands on OMVs engage these pattern recognition receptors on the membranes and in the cytosol of mammalian cells. We then detail how bacteria regulate OM lipid asymmetry, negative membrane curvature, and the phospholipid-to-LPS ratio to control OMV formation. The goal is to highlight intersections between OM lipid regulation and host immunity and to provide working models for how bacterial lipids influence vesicle formation.
Collapse
|
10
|
Mass Spectrometry-based Structural Analysis and Systems Immunoproteomics Strategies for Deciphering the Host Response to Endotoxin. J Mol Biol 2018; 430:2641-2660. [PMID: 29949751 DOI: 10.1016/j.jmb.2018.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
One cause of sepsis is systemic maladaptive immune response of the host to bacteria and specifically, to Gram-negative bacterial outer-membrane glycolipid lipopolysaccharide (LPS). On the host myeloid cell surface, proinflammatory LPS activates the innate immune system via Toll-like receptor-4/myeloid differentiation factor-2 complex. Intracellularly, LPS is also sensed by the noncanonical inflammasome through caspase-11 in mice and 4/5 in humans. The minimal functional determinant for innate immune activation is the membrane anchor of LPS called lipid A. Even subtle modifications to the lipid A scaffold can enable, diminish, or abolish immune activation. Bacteria are known to modify their LPS structure during environmental stress and infection of hosts to alter cellular immune phenotypes. In this review, we describe how mass spectrometry-based structural analysis of endotoxin helped uncover major determinations of molecular pathogenesis. Through characterization of LPS modifications, we now better understand resistance to antibiotics and cationic antimicrobial peptides, as well as how the environment impacts overall endotoxin structure. In addition, mass spectrometry-based systems immunoproteomics approaches can assist in elucidating the immune response against LPS. Many regulatory proteins have been characterized through proteomics and global/targeted analysis of protein modifications, enabling the discovery and characterization of novel endotoxin-mediated protein translational modifications.
Collapse
|
11
|
Mass spectrometry analysis of intact Francisella bacteria identifies lipid A structure remodeling in response to acidic pH stress. Biochimie 2017; 141:16-20. [DOI: 10.1016/j.biochi.2017.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/09/2017] [Indexed: 11/18/2022]
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
13
|
A spontaneous mutation in kdsD, a biosynthesis gene for 3 Deoxy-D-manno-Octulosonic Acid, occurred in a ciprofloxacin resistant strain of Francisella tularensis and caused a high level of attenuation in murine models of tularemia. PLoS One 2017; 12:e0174106. [PMID: 28328947 PMCID: PMC5362203 DOI: 10.1371/journal.pone.0174106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Francisella tularensis, a gram-negative facultative intracellular bacterial pathogen, is the causative agent of tularemia and able to infect many mammalian species, including humans. Because of its ability to cause a lethal infection, low infectious dose, and aerosolizable nature, F. tularensis subspecies tularensis is considered a potential biowarfare agent. Due to its in vitro efficacy, ciprofloxacin is one of the antibiotics recommended for post-exposure prophylaxis of tularemia. In order to identify therapeutics that will be efficacious against infections caused by drug resistant select-agents and to better understand the threat, we sought to characterize an existing ciprofloxacin resistant (CipR) mutant in the Schu S4 strain of F. tularensis by determining its phenotypic characteristics and sequencing the chromosome to identify additional genetic alterations that may have occurred during the selection process. In addition to the previously described genetic alterations, the sequence of the CipR mutant strain revealed several additional mutations. Of particular interest was a frameshift mutation within kdsD which encodes for an enzyme necessary for the production of 3-Deoxy-D-manno-Octulosonic Acid (KDO), an integral component of the lipopolysaccharide (LPS). A kdsD mutant was constructed in the Schu S4 strain. Although it was not resistant to ciprofloxacin, the kdsD mutant shared many phenotypic characteristics with the CipR mutant, including growth defects under different conditions, sensitivity to hydrophobic agents, altered LPS profiles, and attenuation in multiple models of murine tularemia. This study demonstrates that the KdsD enzyme is essential for Francisella virulence and may be an attractive therapeutic target for developing novel medical countermeasures.
Collapse
|
14
|
Chou AY, Kennett NJ, Melillo AA, Elkins KL. Murine survival of infection with Francisella novicida and protection against secondary challenge is critically dependent on B lymphocytes. Microbes Infect 2016; 19:91-100. [PMID: 27965147 DOI: 10.1016/j.micinf.2016.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/13/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022]
Abstract
Respiratory infection of mice with Francisella novicida has recently been used as a model for the highly virulent human pathogen Francisella tularensis. Similar to F. tularensis, even small doses of F. novicida administered by respiratory routes are lethal for inbred laboratory mice. This feature obviously limits study of infection-induced immunity. Parenteral sublethal infections of mice with F. novicida are feasible, but the resulting immune responses are incompletely characterized. Here we use parenteral intradermal (i.d.) and intraperitoneal (i.p.) F. novicida infections of C57BL/6J mice to determine the role of B cells in controlling primary and secondary F. novicida infections. Despite developing comparable levels of F. novicida-primed T cells, B cell knockout mice were much more susceptible to both primary i.d. infection and secondary i.p. challenge than wild type (normal) C57BL/6J mice. Transfer of F. novicida-immune sera to either wild type C57BL/6J mice or to B cell knockout mice did not appreciably impact survival of subsequent lethal F. novicida challenge. However, F. novicida-immune mice that were depleted of T cells after priming but just before challenge survived and cleared secondary i.p. F. novicida challenge. Collectively these results indicate that B cells, if not serum antibodies, play a major role in controlling F. novicida infections in mice.
Collapse
Affiliation(s)
- Alicia Y Chou
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD 20852, United States
| | - Nikki J Kennett
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD 20852, United States
| | - Amanda A Melillo
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD 20852, United States
| | - Karen L Elkins
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD 20852, United States.
| |
Collapse
|
15
|
Liu L, Li Y, Wang X, Guo W. A phosphoethanolamine transferase specific for the 4′-phosphate residue of Cronobacter sakazakii
lipid A. J Appl Microbiol 2016; 121:1444-1456. [DOI: 10.1111/jam.13280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/29/2022]
Affiliation(s)
- L. Liu
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi China
- School of Biotechnology; Jiangnan University; Wuxi China
| | - Y. Li
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi China
| | - X. Wang
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi China
- School of Biotechnology; Jiangnan University; Wuxi China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi China
| | - W. Guo
- School of Biotechnology; Jiangnan University; Wuxi China
| |
Collapse
|
16
|
Garrett TA. Major roles for minor bacterial lipids identified by mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1319-1324. [PMID: 27760388 DOI: 10.1016/j.bbalip.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 01/31/2023]
Abstract
Mass spectrometry of lipids, especially those isolated from bacteria, has ballooned over the past two decades, affirming in the process the complexity of the lipidome. With this has come the identification of new and interesting lipid structures. Here is an overview of several novel lipids, from both Gram-negative and Gram-positive bacteria with roles in health and disease, whose structural identification was facilitated using mass spectrometry. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.
Collapse
Affiliation(s)
- Teresa A Garrett
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, United States.
| |
Collapse
|
17
|
Qi X, Man SM, Malireddi RKS, Karki R, Lupfer C, Gurung P, Neale G, Guy CS, Lamkanfi M, Kanneganti TD. Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection. J Exp Med 2016; 213:2081-97. [PMID: 27551156 PMCID: PMC5030800 DOI: 10.1084/jem.20151938] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Lysosomal cathepsins regulate an exquisite range of biological functions, and their deregulation is associated with inflammatory, metabolic, and degenerative diseases in humans. In this study, we identified a key cell-intrinsic role for cathepsin B as a negative feedback regulator of lysosomal biogenesis and autophagy. Mice and macrophages lacking cathepsin B activity had increased resistance to the cytosolic bacterial pathogen Francisella novicida Genetic deletion or pharmacological inhibition of cathepsin B down-regulated mechanistic target of rapamycin activity and prevented cleavage of the lysosomal calcium channel TRPML1. These events drove transcription of lysosomal and autophagy genes via transcription factor EB, which increased lysosomal biogenesis and activation of autophagy initiation kinase ULK1 for clearance of the bacteria. Our results identified a fundamental biological function of cathepsin B in providing a checkpoint for homeostatic maintenance of lysosome populations and basic recycling functions in the cell.
Collapse
Affiliation(s)
- Xiaopeng Qi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Si Ming Man
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | | | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Christopher Lupfer
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Mohamed Lamkanfi
- Inflammation Research Center, VIB, B-9052 Zwijnaarde-Ghent, Belgium Department of Internal Medicine, Ghent University, B-9000 Ghent, Belgium
| | | |
Collapse
|
18
|
Polyphosphate kinases modulate Campylobacter jejuni outer membrane constituents and alter its capacity to invade and survive in intestinal epithelial cells in vitro. Emerg Microbes Infect 2015; 4:e77. [PMID: 26714783 PMCID: PMC4715166 DOI: 10.1038/emi.2015.77] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022]
Abstract
Campylobacter jejuni is the most prevalent cause of bacterial gastroenteritis worldwide. Polyphosphate kinases 1 and 2 (PPK1 and PPK2) regulate several cellular processes, including the biosynthesis of the bacterial cell wall. Despite their importance, whether PPK1 and PPK2 modulate the composition of C. jejuni outer membrane constituents (OMCs) and consequently impact its interaction with host cells remains unknown. Our comparative analysis between C. jejuni wild type, Δppk1, and Δppk2 strains showed qualitative and quantitative differences in the total OMC composition among these strains. Importantly, these OMC variations observed on the C. jejuni polyphosphate kinase mutants are directly related to their capacity to invade, survive, and alter the immune response of intestinal epithelial cells in vitro. Specifically, sub-fractionation of the C. jejuni OMC indicated that OMC proteins are uniquely associated with bacterial invasion, whereas C. jejuni OMC proteins, lipids, and lipoglycans are all associated with C. jejuni intracellular survival. This study provides new insights regarding the function of polyphosphate kinases and their role in C. jejuni infection.
Collapse
|
19
|
Rowe HM, Huntley JF. From the Outside-In: The Francisella tularensis Envelope and Virulence. Front Cell Infect Microbiol 2015; 5:94. [PMID: 26779445 PMCID: PMC4688374 DOI: 10.3389/fcimb.2015.00094] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Francisella tularensis is a highly-infectious bacterium that causes the rapid, and often lethal disease, tularemia. Many studies have been performed to identify and characterize the virulence factors that F. tularensis uses to infect a wide variety of hosts and host cell types, evade immune defenses, and induce severe disease and death. This review focuses on the virulence factors that are present in the F. tularensis envelope, including capsule, LPS, outer membrane, periplasm, inner membrane, secretion systems, and various molecules in each of aforementioned sub-compartments. Whereas, no single bacterial molecule or molecular complex single-handedly controls F. tularensis virulence, we review here how diverse bacterial systems work in conjunction to subvert the immune system, attach to and invade host cells, alter phagosome/lysosome maturation pathways, replicate in host cells without being detected, inhibit apoptosis, and induce host cell death for bacterial release and infection of adjacent cells. Given that the F. tularensis envelope is the outermost layer of the bacterium, we highlight herein how many of these molecules directly interact with the host to promote infection and disease. These and future envelope studies are important to advance our collective understanding of F. tularensis virulence mechanisms and offer targets for future vaccine development efforts.
Collapse
Affiliation(s)
- Hannah M Rowe
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Jason F Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| |
Collapse
|
20
|
Modification of the 1-Phosphate Group during Biosynthesis of Capnocytophaga canimorsus Lipid A. Infect Immun 2015; 84:550-61. [PMID: 26644381 PMCID: PMC4730577 DOI: 10.1128/iai.01006-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/27/2015] [Indexed: 11/20/2022] Open
Abstract
Capnocytophaga canimorsus, a commensal bacterium of dog's mouth flora causing severe infections in humans after dog bites or scratches, has a lipopolysaccharide (LPS) (endotoxin) with low-inflammatory lipid A. In particular, it contains a phosphoethanolamine (P-Etn) instead of a free phosphate group at the C-1 position of the lipid A backbone, usually present in highly toxic enterobacterial Gram-negative lipid A. Here we show that the C. canimorsus genome comprises a single operon encoding a lipid A 1-phosphatase (LpxE) and a lipid A 1 P-Etn transferase (EptA). This suggests that lipid A is modified during biosynthesis after completing acylation of the backbone by removal of the 1-phosphate and subsequent addition of an P-Etn group. As endotoxicity of lipid A is known to depend largely on the degree of unsubstituted or unmodified phosphate residues, deletion of lpxE or eptA led to mutants lacking the P-Etn group, with consequently increased endotoxicity and decreased resistance to cationic antimicrobial peptides (CAMP). Consistent with the proposed sequential biosynthetic mechanism, the endotoxicity and CAMP resistance of a double deletion mutant of lpxE-eptA was similar to that of a single lpxE mutant. Finally, the proposed enzymatic activities of LpxE and EptA based on sequence similarity could be successfully validated by mass spectrometry (MS)-based analysis of lipid A isolated from the corresponding deletion mutant strains.
Collapse
|
21
|
Zariri A, van der Ley P. Biosynthetically engineered lipopolysaccharide as vaccine adjuvant. Expert Rev Vaccines 2015; 14:861-76. [PMID: 25797360 DOI: 10.1586/14760584.2015.1026808] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lipopolysaccharide (LPS), a dominant component of the Gram-negative bacterial outer membrane, is a strong activator of the innate immune system, and thereby an important determinant in the adaptive immune response following bacterial infection. This adjuvant activity can be harnessed following immunization with bacteria-derived vaccines that naturally contain LPS, and when LPS or molecules derived from it are added to purified vaccine antigens. However, the downside of the strong biological activity of LPS is its ability to contribute to vaccine reactogenicity. Modification of the LPS structure allows triggering of a proper immune response needed in a vaccine against a particular pathogen while at the same time lowering its toxicity. Extensive modifications to the basic structure are possible by using our current knowledge of bacterial genes involved in LPS biosynthesis and modification. This review focuses on biosynthetic engineering of the structure of LPS and implications of these modifications for generation of safe adjuvants.
Collapse
Affiliation(s)
- Afshin Zariri
- Institute for Translational Vaccinology (InTraVacc), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | | |
Collapse
|
22
|
Characterization of tetratricopeptide repeat-like proteins in Francisella tularensis and identification of a novel locus required for virulence. Infect Immun 2014; 82:5035-48. [PMID: 25245806 DOI: 10.1128/iai.01620-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Francisella tularensis is a highly infectious bacterium that causes the potentially lethal disease tularemia. This extremely virulent bacterium is able to replicate in the cytosolic compartments of infected macrophages. To invade macrophages and to cope with their intracellular environment, Francisella requires multiple virulence factors, which are still being identified. Proteins containing tetratricopeptide repeat (TPR)-like domains seem to be promising targets to investigate, since these proteins have been reported to be directly involved in virulence-associated functions of bacterial pathogens. Here, we studied the role of the FTS_0201, FTS_0778, and FTS_1680 genes, which encode putative TPR-like proteins in Francisella tularensis subsp. holarctica FSC200. Mutants defective in protein expression were prepared by TargeTron insertion mutagenesis. We found that the locus FTS_1680 and its ortholog FTT_0166c in the highly virulent Francisella tularensis type A strain SchuS4 are required for proper intracellular replication, full virulence in mice, and heat stress tolerance. Additionally, the FTS_1680-encoded protein was identified as a membrane-associated protein required for full cytopathogenicity in macrophages. Our study thus identifies FTS_1680/FTT_0166c as a new virulence factor in Francisella tularensis.
Collapse
|
23
|
Wang X, Quinn PJ, Yan A. Kdo2 -lipid A: structural diversity and impact on immunopharmacology. Biol Rev Camb Philos Soc 2014; 90:408-27. [PMID: 24838025 PMCID: PMC4402001 DOI: 10.1111/brv.12114] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
Abstract
3-deoxy-d-manno-octulosonic acid-lipid A (Kdo2-lipid A) is the essential component of lipopolysaccharide in most Gram-negative bacteria and the minimal structural component to sustain bacterial viability. It serves as the active component of lipopolysaccharide to stimulate potent host immune responses through the complex of Toll-like-receptor 4 (TLR4) and myeloid differentiation protein 2. The entire biosynthetic pathway of Escherichia coli Kdo2-lipid A has been elucidated and the nine enzymes of the pathway are shared by most Gram-negative bacteria, indicating conserved Kdo2-lipid A structure across different species. Yet many bacteria can modify the structure of their Kdo2-lipid A which serves as a strategy to modulate bacterial virulence and adapt to different growth environments as well as to avoid recognition by the mammalian innate immune systems. Key enzymes and receptors involved in Kdo2-lipid A biosynthesis, structural modification and its interaction with the TLR4 pathway represent a clear opportunity for immunopharmacological exploitation. These include the development of novel antibiotics targeting key biosynthetic enzymes and utilization of structurally modified Kdo2-lipid A or correspondingly engineered live bacteria as vaccines and adjuvants. Kdo2-lipid A/TLR4 antagonists can also be applied in anti-inflammatory interventions. This review summarizes recent knowledge on both the fundamental processes of Kdo2-lipid A biosynthesis, structural modification and immune stimulation, and applied research on pharmacological exploitations of these processes for therapeutic development.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | | | | |
Collapse
|
24
|
Abstract
Human and mouse alkaline phosphatases (AP) are encoded by a multigene family expressed ubiquitously in multiple tissues. Gene knockout (KO) findings have helped define some of the precise exocytic functions of individual isozymes in bone, teeth, the central nervous system, and in the gut. For instance, deficiency in tissue-nonspecific alkaline phosphatase (TNAP) in mice (Alpl (-/-) mice) and humans leads to hypophosphatasia (HPP), an inborn error of metabolism characterized by epileptic seizures in the most severe cases, caused by abnormal metabolism of pyridoxal-5'-phosphate (the predominant form of vitamin B6) and by hypomineralization of the skeleton and teeth featuring rickets and early loss of teeth in children or osteomalacia and dental problems in adults caused by accumulation of inorganic pyrophosphate (PPi). Enzyme replacement therapy with mineral-targeting TNAP prevented all the manifestations of HPP in mice, and clinical trials with this protein therapeutic are showing promising results in rescuing life-threatening HPP in infants. Conversely, TNAP induction in the vasculature during generalized arterial calcification of infancy (GACI), type II diabetes, obesity, and aging can cause medial vascular calcification. TNAP inhibitors, discussed extensively in this book, are in development to prevent pathological arterial calcification. The brush border enzyme intestinal alkaline phosphatase (IAP) plays an important role in fatty acid (FA) absorption, in protecting gut barrier function, and in determining the composition of the gut microbiota via its ability to dephosphorylate lipopolysaccharide (LPS). Knockout mice (Akp3 (-/-)) deficient in duodenal-specific IAP (dIAP) become obese, and develop hyperlipidemia and hepatic steatosis when fed a high-fat diet (HFD). These changes are accompanied by upregulation in the jejunal-ileal expression of the Akp6 IAP isozyme (global IAP, or gIAP) and concomitant upregulation of FAT/CD36, a phosphorylated fatty acid translocase thought to play a role in facilitating the transport of long-chain fatty acids into cells. gIAP, but not dIAP, is able to modulate the phosphorylation status of FAT/CD36. dIAP, even though it is expressed in the duodenum, is shed into the gut lumen and is active in LPS dephosphorylation throughout the gut lumen and in the feces. Akp3 (-/-) mice display gut dysbiosis and are more prone to dextran sodium sulfate-induced colitis than wild-type mice. Of relevance, oral administration of recombinant calf IAP prevents the dysbiosis and protects the gut from chronic colitis. Analogous to the role of IAP in the gut, TNAP expression in the liver may have a proactive role from bacterial endotoxin insult. Finally, more recent studies suggest that neuronal death in Alzheimer's disease may also be associated with TNAP function on certain brain-specific phosphoproteins. This review recounts the established roles of TNAP and IAP and briefly discusses new areas of investigation related to multisystemic functions of these isozymes.
Collapse
|
25
|
Jones BD, Faron M, Rasmussen JA, Fletcher JR. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front Cell Infect Microbiol 2014; 4:32. [PMID: 24639953 PMCID: PMC3945745 DOI: 10.3389/fcimb.2014.00032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
Over the last decade, studies on the virulence of the highly pathogenic intracellular bacterial pathogen Francisella tularensis have increased dramatically. The organism produces an inert LPS, a capsule, escapes the phagosome to grow in the cytosol (FPI genes mediate phagosomal escape) of a variety of host cell types that include epithelial, endothelial, dendritic, macrophage, and neutrophil. This review focuses on the work that has identified and characterized individual virulence factors of this organism and we hope to highlight how these factors collectively function to produce the pathogenic strategy of this pathogen. In addition, several recent studies have been published characterizing F. tularensis mutants that induce host immune responses not observed in wild type F. tularensis strains that can induce protection against challenge with virulent F. tularensis. As more detailed studies with attenuated strains are performed, it will be possible to see how host models develop acquired immunity to Francisella. Collectively, detailed insights into the mechanisms of virulence of this pathogen are emerging that will allow the design of anti-infective strategies.
Collapse
Affiliation(s)
- Bradley D Jones
- Department of Microbiology, The University of Iowa Carver College of Medicine Iowa City, IA, USA ; The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA ; The Midwest Regional Center for Excellence in Biodefense and Emerging Infectious Disease Research, Washington University St. Louis, MO, USA
| | - Matthew Faron
- The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Jed A Rasmussen
- Department of Microbiology, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Joshua R Fletcher
- The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
26
|
Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 2013; 341:1250-3. [PMID: 24031018 DOI: 10.1126/science.1240988] [Citation(s) in RCA: 990] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inflammatory caspases, such as caspase-1 and -11, mediate innate immune detection of pathogens. Caspase-11 induces pyroptosis, a form of programmed cell death, and specifically defends against bacterial pathogens that invade the cytosol. During endotoxemia, however, excessive caspase-11 activation causes shock. We report that contamination of the cytoplasm by lipopolysaccharide (LPS) is the signal that triggers caspase-11 activation in mice. Specifically, caspase-11 responds to penta- and hexa-acylated lipid A, whereas tetra-acylated lipid A is not detected, providing a mechanism of evasion for cytosol-invasive Francisella. Priming the caspase-11 pathway in vivo resulted in extreme sensitivity to subsequent LPS challenge in both wild-type and Tlr4-deficient mice, whereas Casp11-deficient mice were relatively resistant. Together, our data reveal a new pathway for detecting cytoplasmic LPS.
Collapse
Affiliation(s)
- Jon A Hagar
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
27
|
Barker JH, Kaufman JW, Zhang DS, Weiss JP. Metabolic labeling to characterize the overall composition of Francisella lipid A and LPS grown in broth and in human phagocytes. Innate Immun 2013; 20:88-103. [PMID: 23729477 DOI: 10.1177/1753425913485308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A hallmark of Francisella tularensis, a highly virulent Gram-negative bacterium, is an unusual LPS that possesses both structural heterogeneity and characteristics that may contribute to innate immune evasion. However, none of the methods yet employed has been sufficient to determine the overall LPS composition of Francisella. We now demonstrate that metabolic labeling of francisellae with [(14)C]acetate, combined with fractionation of [(14)C]acetate-labeled lipids by ethanol precipitation rather than hot phenol-water extraction, permits a more sensitive and quantitative appraisal of overall compositional heterogeneity in lipid A and LPS. The majority of lipid A of different francisellae strains grown in diverse bacteriologic media and within human phagocytes accumulated as very hydrophobic species, including free lipid A, with <10% of the lipid A molecules substituted with O-Ag polysaccharides. The spectrum of lipid A and LPS species varied in a medium- and strain-dependent fashion, and growth in THP-1 cells yielded lipid A species that were not present in the same bacteria grown in brain heart infusion broth. In summary, metabolic labeling with [(14)C]acetate greatly facilitates assessment of the effect of genotypic and/or environmental variables on the synthesis and accumulation of lipid A and LPS by Francisella, including during growth within the cytosol of infected host cells.
Collapse
Affiliation(s)
- Jason H Barker
- 1Inflammation Program and Department of Medicine, University of Iowa and Veterans Affairs Medical Center, IA, USA
| | | | | | | |
Collapse
|
28
|
Bowen WS, Gandhapudi SK, Kolb JP, Mitchell TC. Immunopharmacology of Lipid A Mimetics. ADVANCES IN PHARMACOLOGY 2013; 66:81-128. [DOI: 10.1016/b978-0-12-404717-4.00003-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|