1
|
Bourgouin C, Puchot N, Paul R. [To stick or not to stick: A Plasmodium falciparum adaptive strategy to persist during the dry season]. Med Sci (Paris) 2022; 38:9-12. [PMID: 35060875 DOI: 10.1051/medsci/2021230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Catherine Bourgouin
- Unité de Génétique fonctionnelle des maladies infectieuses, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
| | - Nicolas Puchot
- Unité de Génétique fonctionnelle des maladies infectieuses, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
| | - Richard Paul
- Unité de Génétique fonctionnelle des maladies infectieuses, Institut Pasteur, CNRS UMR 2000, 75015 Paris, France
| |
Collapse
|
2
|
Baptista BO, de Souza ABL, Riccio EKP, Bianco-Junior C, Totino PRR, Martins da Silva JH, Theisen M, Singh SK, Amoah LE, Ribeiro-Alves M, Souza RM, Lima-Junior JC, Daniel-Ribeiro CT, Pratt-Riccio LR. Naturally acquired antibody response to a Plasmodium falciparum chimeric vaccine candidate GMZ2.6c and its components (MSP-3, GLURP, and Pfs48/45) in individuals living in Brazilian malaria-endemic areas. Malar J 2022; 21:6. [PMID: 34983540 PMCID: PMC8729018 DOI: 10.1186/s12936-021-04020-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Background The GMZ2.6c malaria vaccine candidate is a multi-stage Plasmodium falciparum chimeric protein which contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, a fusion protein of GLURP and MSP-3, that has been shown to be well tolerated, safe and immunogenic in clinical trials performed in a malaria-endemic area of Africa. However, there is no data available on the antigenicity or immunogenicity of GMZ2.6c in humans. Considering that circulating parasites can be genetically distinct in different malaria-endemic areas and that host genetic factors can influence the immune response to vaccine antigens, it is important to verify the antigenicity, immunogenicity and the possibility of associated protection in individuals living in malaria-endemic areas with different epidemiological scenarios. Herein, the profile of antibody response against GMZ2.6c and its components (MSP-3, GLURP and Pfs48/45) in residents of the Brazilian Amazon naturally exposed to malaria, in areas with different levels of transmission, was evaluated. Methods This study was performed using serum samples from 352 individuals from Cruzeiro do Sul and Mâncio Lima, in the state of Acre, and Guajará, in the state of Amazonas. Specific IgG, IgM, IgA and IgE antibodies and IgG subclasses were detected by Enzyme-Linked Immunosorbent Assay. Results The results showed that GMZ2.6c protein was widely recognized by naturally acquired antibodies from individuals of the Brazilian endemic areas with different levels of transmission. The higher prevalence of individuals with antibodies against GMZ2.6c when compared to its individual components may suggest an additive effect of GLURP, MSP-3, and Pfs48/45 when inserted in a same construct. Furthermore, naturally malaria-exposed individuals predominantly had IgG1 and IgG3 cytophilic anti-GMZ2.6c antibodies, an important fact considering that the acquisition of anti-malaria protective immunity results from a delicate balance between cytophilic/non-cytophilic antibodies. Interestingly, anti-GMZ2.6c antibodies seem to increase with exposure to malaria infection and may contribute to parasite immunity. Conclusions The data showed that GMZ2.6c protein is widely recognized by naturally acquired antibodies from individuals living in malaria-endemic areas in Brazil and that these may contribute to parasite immunity. These data highlight the importance of GMZ2.6c as a candidate for an anti-malarial vaccine. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04020-6.
Collapse
Affiliation(s)
- Barbara Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Ana Beatriz Lopes de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Evelyn Kety Pratt Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Cesare Bianco-Junior
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | | | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susheel Kumar Singh
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Linda Eva Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Marcelo Ribeiro-Alves
- Laboratório de Pesquisa Clínica em DST e AIDS, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Rodrigo Medeiros Souza
- Laboratório de Doenças Infecciosas na Amazônia Ocidental, Universidade Federal do Acre, Acre, Brazil
| | | | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brazil.
| |
Collapse
|
3
|
Kearney EA, Agius PA, Chaumeau V, Cutts JC, Simpson JA, Fowkes FJI. Anopheles salivary antigens as serological biomarkers of vector exposure and malaria transmission: A systematic review with multilevel modelling. eLife 2021; 10:e73080. [PMID: 34939933 PMCID: PMC8860437 DOI: 10.7554/elife.73080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Background Entomological surveillance for malaria is inherently resource-intensive and produces crude population-level measures of vector exposure which are insensitive in low-transmission settings. Antibodies against Anopheles salivary proteins measured at the individual level may serve as proxy biomarkers for vector exposure and malaria transmission, but their relationship is yet to be quantified. Methods A systematic review of studies measuring antibodies against Anopheles salivary antigens (PROSPERO: CRD42020185449). Multilevel modelling (to account for multiple study-specific observations [level 1], nested within study [level 2], and study nested within country [level 3]) estimated associations between seroprevalence with Anopheles human biting rate (HBR) and malaria transmission measures. Results From 3981 studies identified in literature searches, 42 studies across 16 countries were included contributing 393 study-specific observations of anti-Anopheles salivary antibodies determined in 42,764 samples. A positive association between HBR (log transformed) and seroprevalence was found; overall a twofold (100% relative) increase in HBR was associated with a 23% increase in odds of seropositivity (OR: 1.23, 95% CI: 1.10-1.37; p<0.001). The association between HBR and Anopheles salivary antibodies was strongest with concordant, rather than discordant, Anopheles species. Seroprevalence was also significantly positively associated with established epidemiological measures of malaria transmission: entomological inoculation rate, Plasmodium spp. prevalence, and malarial endemicity class. Conclusions Anopheles salivary antibody biomarkers can serve as a proxy measure for HBR and malaria transmission, and could monitor malaria receptivity of a population to sustain malaria transmission. Validation of Anopheles species-specific biomarkers is important given the global heterogeneity in the distribution of Anopheles species. Salivary biomarkers have the potential to transform surveillance by replacing impractical, inaccurate entomological investigations, especially in areas progressing towards malaria elimination. Funding Australian National Health and Medical Research Council, Wellcome Trust.
Collapse
Affiliation(s)
- Ellen A Kearney
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
| | - Paul A Agius
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourneAustralia
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol UniversityMae SotThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Julia C Cutts
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Department of Medicine at the Doherty Institute, The University of MelbourneMelbourneAustralia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
| | - Freya JI Fowkes
- The McFarlane Burnet Institute of Medical Research and Public HealthMelbourneAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneAustralia
- Department of Epidemiology and Preventive Medicine, Monash UniversityMelbourneAustralia
| |
Collapse
|
4
|
Demarta-Gatsi C, Mécheri S. Vector saliva controlled inflammatory response of the host may represent the Achilles heel during pathogen transmission. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200155. [PMID: 34035796 PMCID: PMC8128132 DOI: 10.1590/1678-9199-jvatitd-2020-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infection with vector-borne pathogens starts with the inoculation of these pathogens during blood feeding. In endemic regions, the population is regularly bitten by naive vectors, implicating a permanent stimulation of the immune system by the vector saliva itself (pre-immune context). Comparatively, the number of bites received by exposed individuals from non-infected vectors is much higher than the bites from infected ones. Therefore, vector saliva and the immunological response in the skin may play an important role, so far underestimated, in the establishment of anti-pathogen immunity in endemic areas. Hence, the parasite biology and the disease pathogenesis in “saliva-primed” and “saliva-unprimed” individuals must be different. This integrated view on how the pathogen evolves within the host together with vector salivary components, which are known to be endowed with a variety of pharmacological and immunological properties, must remain the focus of any investigational study dealing with vector-borne diseases. Considering this three-way partnership, the host skin (immune system), the pathogen, and the vector saliva, the approach that consists in the validation of vector saliva as a source of molecular entities with anti-disease vaccine potential has been recently a subject of active and fruitful investigation. As an example, the vaccination with maxadilan, a potent vasodilator peptide extracted from the saliva of the sand fly Lutzomyia longipalpis, was able to protect against infection with various leishmanial parasites. More interestingly, a universal mosquito saliva vaccine that may potentially protect against a range of mosquito-borne infections including malaria, dengue, Zika, chikungunya and yellow fever. In this review, we highlight the key role played by the immunobiology of vector saliva in shaping the outcome of vector-borne diseases and discuss the value of studying diseases in the light of intimate cross talk among the pathogen, the vector saliva, and the host immune mechanisms.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France.,Medicines for Malaria Venture (MMV), Geneva, Switzerland.,Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - Salah Mécheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France
| |
Collapse
|
5
|
Merrick CJ. Hypnozoites in Plasmodium: Do Parasites Parallel Plants? Trends Parasitol 2020; 37:273-282. [PMID: 33257270 DOI: 10.1016/j.pt.2020.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
The phenomenon of relapsing malaria has been recognised for centuries. It is caused in humans by the parasite species Plasmodium vivax and Plasmodium ovale, which can arrest growth at an early, asymptomatic stage as hypnozoites inside liver cells. These dormant parasites can remain quiescent for months or years, then reactivate causing symptomatic malaria. The dynamics of hypnozoite dormancy and reactivation are well documented but the molecular basis remains a complete mystery. Here, I observe that the process has striking parallels with plant vernalisation, whereby plants remain dormant through the winter before flowering in spring. Vernalisation is thoroughly studied in several plant species and its mechanisms are known in exquisite detail. Vernalisation may thus provide a useful framework for interrogating hypnozoite biology.
Collapse
Affiliation(s)
- Catherine J Merrick
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|
6
|
Slater HC, Ross A, Felger I, Hofmann NE, Robinson L, Cook J, Gonçalves BP, Björkman A, Ouedraogo AL, Morris U, Msellem M, Koepfli C, Mueller I, Tadesse F, Gadisa E, Das S, Domingo G, Kapulu M, Midega J, Owusu-Agyei S, Nabet C, Piarroux R, Doumbo O, Doumbo SN, Koram K, Lucchi N, Udhayakumar V, Mosha J, Tiono A, Chandramohan D, Gosling R, Mwingira F, Sauerwein R, Paul R, Riley EM, White NJ, Nosten F, Imwong M, Bousema T, Drakeley C, Okell LC. The temporal dynamics and infectiousness of subpatent Plasmodium falciparum infections in relation to parasite density. Nat Commun 2019; 10:1433. [PMID: 30926893 PMCID: PMC6440965 DOI: 10.1038/s41467-019-09441-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/07/2019] [Indexed: 02/08/2023] Open
Abstract
Malaria infections occurring below the limit of detection of standard diagnostics are common in all endemic settings. However, key questions remain surrounding their contribution to sustaining transmission and whether they need to be detected and targeted to achieve malaria elimination. In this study we analyse a range of malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections. Asymptomatically infected individuals have lower parasite densities on average in low transmission settings compared to individuals in higher transmission settings. In cohort studies, subpatent infections are found to be predictive of future periods of patent infection and in membrane feeding studies, individuals infected with subpatent asexual parasite densities are found to be approximately a third as infectious to mosquitoes as individuals with patent (asexual parasite) infection. These results indicate that subpatent infections contribute to the infectious reservoir, may be long lasting, and require more sensitive diagnostics to detect them in lower transmission settings. The role of subpatent infections for malaria transmission and elimination is unclear. Here, Slater et al. analyse several malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections.
Collapse
Affiliation(s)
- Hannah C Slater
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK.
| | - Amanda Ross
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland.,University of Basel, Basel, 4001, Switzerland
| | - Ingrid Felger
- University of Basel, Basel, 4001, Switzerland.,Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland
| | - Natalie E Hofmann
- University of Basel, Basel, 4001, Switzerland.,Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, 4002, Switzerland
| | - Leanne Robinson
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea.,Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, VIC, Australia.,Medical Biology, University of Melbourne, Melbourne, 3010, VIC, Australia.,Disease Elimination, Burnet Institute, Melbourne, 3004, VIC, Australia
| | - Jackie Cook
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Anders Björkman
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Andre Lin Ouedraogo
- Département de Sciences Biomédicales, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208, Burkina Faso.,Institute for Disease Modeling, Intellectual Ventures, Bellevue, 98005, Washington, USA
| | - Ulrika Morris
- Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Mwinyi Msellem
- Department of Training and Research, Mnazi Mmoja Hospital, Zanzibar, Tanzania
| | - Cristian Koepfli
- Population Health and Immunity Division, Walter and Eliza Hall Institute, Melbourne, 3052, Victoria, Australia.,Department of Biological Sciences, University of Notre Dame, Indiana, 46556, USA
| | - Ivo Mueller
- Division of Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, VIC, Australia.,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, 75015, France.,Medical Biology, University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Fitsum Tadesse
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, 6525, The Netherlands.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia.,Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Smita Das
- Diagnostics Program, PATH, Seattle, Washington, 98121, United States of America
| | - Gonzalo Domingo
- Diagnostics Program, PATH, Seattle, Washington, 98121, United States of America
| | - Melissa Kapulu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya, Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Janet Midega
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya, Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Seth Owusu-Agyei
- Institute of Health, University of Health and Allied Sciences, Hohoe, PMB 31, Ghana
| | - Cécile Nabet
- Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP- HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, 75646, France
| | - Renaud Piarroux
- Sorbonne Université, INSERM, Institut Pierre-Louis d'Epidémiologie et de Santé Publique, AP- HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, Paris, 75646, France
| | - Ogobara Doumbo
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Safiatou Niare Doumbo
- Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali
| | - Kwadwo Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Naomi Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, 30030, GA, United States of America
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, 30030, GA, United States of America
| | - Jacklin Mosha
- National Institute for Medical Research, Mwanza Medical Research Centre, Mwanza, Tanzania
| | - Alfred Tiono
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208, Burkina Faso
| | - Daniel Chandramohan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco, San Francisco, 94158, CA, United States
| | - Felista Mwingira
- Biological Sciences Department, Dar es Salaam University College of Education, P. O. Box 2329, Dar es Salaam, Tanzania
| | - Robert Sauerwein
- Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, 6525, The Netherlands
| | - Richard Paul
- Institut Pasteur de Dakar, Laboratoire d'Entomologie Médicale, Dakar, Senegal
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.,Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, 6525, The Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Lucy C Okell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
7
|
Pigeault R, Caudron Q, Nicot A, Rivero A, Gandon S. Timing malaria transmission with mosquito fluctuations. Evol Lett 2018; 2:378-389. [PMID: 30283689 PMCID: PMC6122125 DOI: 10.1002/evl3.61] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Temporal variations in the activity of arthropod vectors can dramatically affect the epidemiology and evolution of vector‐borne pathogens. Here, we explore the “Hawking hypothesis”, which states that these pathogens may evolve the ability to time investment in transmission to match the activity of their vectors. First, we use a theoretical model to identify the conditions promoting the evolution of time‐varying transmission strategies in pathogens. Second, we experimentally test the “Hawking hypothesis” by monitoring the within‐host dynamics of Plasmodium relictum throughout the acute and the chronic phases of the bird infection. We detect a periodic increase of parasitemia and mosquito infection in the late afternoon that coincides with an increase in the biting activity of its natural vector. We also detect a positive effect of mosquito bites on Plasmodium replication in the birds both in the acute and in the chronic phases of the infection. This study highlights that Plasmodium parasites use two different strategies to increase the match between transmission potential and vector availability. We discuss the adaptive nature of these unconditional and plastic transmission strategies with respect to the time scale and the predictability of the fluctuations in the activity of the vector.
Collapse
Affiliation(s)
- Romain Pigeault
- MIVEGEC (UMR CNRS 5290); University of Montpellier; Montpellier France
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| | | | - Antoine Nicot
- CEFE (UMR CNRS 5175); University of Montpellier; Montpellier France
| | - Ana Rivero
- MIVEGEC (UMR CNRS 5290); University of Montpellier; Montpellier France
| | - Sylvain Gandon
- CEFE (UMR CNRS 5175); University of Montpellier; Montpellier France
| |
Collapse
|
8
|
Sandeu MM, Bayibéki AN, Tchioffo MT, Abate L, Gimonneau G, Awono-Ambéné PH, Nsango SE, Diallo D, Berry A, Texier G, Morlais I. Do the venous blood samples replicate malaria parasite densities found in capillary blood? A field study performed in naturally-infected asymptomatic children in Cameroon. Malar J 2017; 16:345. [PMID: 28818084 PMCID: PMC5561596 DOI: 10.1186/s12936-017-1978-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 08/07/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The measure of new drug- or vaccine-based approaches for malaria control is based on direct membrane feeding assays (DMFAs) where gametocyte-infected blood samples are offered to mosquitoes through an artificial feeder system. Gametocyte donors are identified by the microscopic detection and quantification of malaria blood stages on blood films prepared using either capillary or venous blood. However, parasites are known to sequester in the microvasculature and this phenomenon may alter accurate detection of parasites in blood films. The blood source may then impact the success of mosquito feeding experiments and investigations are needed for the implementation of DMFAs under natural conditions. METHODS Thick blood smears were prepared from blood obtained from asymptomatic children attending primary schools in the vicinity of Mfou (Cameroon) over four transmission seasons. Parasite densities were determined microscopically from capillary and venous blood for 137 naturally-infected gametocyte carriers. The effect of the blood source on gametocyte and asexual stage densities was then assessed by fitting cumulative link mixed models (CLMM). DMFAs were performed to compare the infectiousness of gametocytes from the different blood sources to mosquitoes. RESULTS Prevalence of Plasmodium falciparum asexual stages among asymptomatic children aged from 4 to 15 years was 51.8% (2116/4087). The overall prevalence of P. falciparum gametocyte carriage was 8.9% and varied from one school to another. No difference in the density of gametocyte and asexual stages was found between capillary and venous blood. Attempts to perform DMFAs with capillary blood failed. CONCLUSIONS Plasmodium falciparum malaria parasite densities do not differ between capillary and venous blood in asymptomatic subjects for both gametocyte and trophozoite stages. This finding suggests that the blood source should not interfere with transmission efficiency in DMFAs.
Collapse
Affiliation(s)
- Maurice M. Sandeu
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, BP288, Yaoundé, Cameroon
| | - Albert N. Bayibéki
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, BP288, Yaoundé, Cameroon
| | - Majoline T. Tchioffo
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, BP288, Yaoundé, Cameroon
- UMR MIVEGEC, Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex, France
| | - Luc Abate
- UMR MIVEGEC, Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex, France
| | - Geoffrey Gimonneau
- UMR MIVEGEC, Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex, France
| | - Parfait H. Awono-Ambéné
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, BP288, Yaoundé, Cameroon
| | - Sandrine E. Nsango
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, BP288, Yaoundé, Cameroon
- Université de Douala, Faculté de Médecine et des Sciences Pharmaceutiques, BP2701 Douala, Cameroon
| | - Diadier Diallo
- PATH Malaria Vaccine Initiative, Washington, DC 20001 USA
| | - Antoine Berry
- Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, CNRS, UMR5282, Université de Toulouse III, BP 3028, 31024 Toulouse Cedex 03, France
- Centre Hospitalier Universitaire de Toulouse, TSA 40031, 31059 Toulouse, France
| | - Gaétan Texier
- Centre d’épidémiologie et de santé publique des armées, 111 avenue de la Corse, BP40026, 13568 Marseille Cedex 02, France
- UMR 912-SESSTIM-INSERM/IRD, Université Aix-Marseille, 27 bd Jean Moulin, 13385 Marseille Cedex 05, France
| | - Isabelle Morlais
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale, BP288, Yaoundé, Cameroon
- UMR MIVEGEC, Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex, France
| |
Collapse
|
9
|
Gadalla AAH, Schneider P, Churcher TS, Nassir E, Abdel-Muhsin AMA, Ranford-Cartwright LC, Reece SE, Babiker HA. Associations between Season and Gametocyte Dynamics in Chronic Plasmodium falciparum Infections. PLoS One 2016; 11:e0166699. [PMID: 27870874 PMCID: PMC5117706 DOI: 10.1371/journal.pone.0166699] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 11/02/2016] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION In a markedly seasonal malaria setting, the transition from the transmission-free dry season to the transmission season depends on the resurgence of the mosquito population following the start of annual rains. The sudden onset of malaria outbreaks at the start of the transmission season suggests that parasites persist during the dry season and respond to either the reappearance of vectors, or correlated events, by increasing the production of transmission stages. Here, we investigate whether Plasmodium falciparum gametocyte density and the correlation between gametocyte density and parasite density show seasonal variation in chronic (largely asymptomatic) carriers in eastern Sudan. MATERIALS AND METHODS We recruited and treated 123 malaria patients in the transmission season 2001. We then followed them monthly during four distinct consecutive epidemiological seasons: transmission season 1, transmission-free season, pre-clinical period, and transmission season 2. In samples collected from 25 participants who fulfilled the selection criteria of the current analysis, we used quantitative PCR (qPCR) and RT-qPCR to quantify parasite and gametocyte densities, respectively. RESULTS AND DISCUSSION We observed a significant increase in gametocyte density and a significantly steeper positive correlation between gametocyte density and total parasite density during the pre-clinical period compared to the preceding transmission-free season. However, there was no corresponding increase in the density or prevalence of total parasites or gametocyte prevalence. The increase in gametocyte production during the pre-clinical period supports the hypothesis that P. falciparum may respond to environmental cues, such as mosquito biting, to modulate its transmission strategy. Thus, seasonal changes may be important to ignite transmission in unstable-malaria settings.
Collapse
Affiliation(s)
- Amal A. H. Gadalla
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Department of Molecular Epidemiology, Tropical Medicine Research Institute, National Centre for Research, Khartoum, Sudan
| | - Petra Schneider
- Institutes of Evolution, Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas S. Churcher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Elkhansaa Nassir
- Medicinal and Aromatic Plants Research Institute and Traditional Medicine, National Centre for Research, Khartoum, Sudan
| | | | - Lisa C. Ranford-Cartwright
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah E. Reece
- Institutes of Evolution, Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Hamza A. Babiker
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Institutes of Evolution, Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Londono-Renteria B, Cardenas JC, Troupin A, Colpitts TM. Natural Mosquito-Pathogen Hybrid IgG4 Antibodies in Vector-Borne Diseases: A Hypothesis. Front Immunol 2016; 7:380. [PMID: 27746778 PMCID: PMC5040711 DOI: 10.3389/fimmu.2016.00380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/08/2016] [Indexed: 12/24/2022] Open
Abstract
Chronic exposure to antigens may favor the production of IgG4 antibodies over other antibody types. Recent studies have shown that up to a 30% of normal human IgG4 is bi-specific and is able to recognize two antigens of different nature. A requirement for this specificity is the presence of both eliciting antigens in the same time and at the same place where the immune response is induced. During transmission of most vector-borne diseases, the pathogen is delivered to the vertebrate host along with the arthropod saliva during blood feeding and previous studies have shown the existence of IgG4 antibodies against mosquito salivary allergens. However, there is very little ongoing research or information available regarding IgG4 bi-specificity with regard to infectious disease, particularly during immune responses to vector-borne diseases, such as malaria, filariasis, or dengue virus infection. Here, we provide background information and present our hypothesis that IgG4 may not only be a useful tool to measure exposure to infected mosquito bites, but that these bi-specific antibodies may also play an important role in modulation of the immune response against malaria and other vector-borne diseases in endemic settings.
Collapse
Affiliation(s)
- Berlin Londono-Renteria
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Jenny C Cardenas
- Clinical Laboratory, Hospital Los Patios , Los Patios , Colombia
| | - Andrea Troupin
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Tonya M Colpitts
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine , Columbia, SC , USA
| |
Collapse
|
11
|
Herrant M, Loucoubar C, Boufkhed S, Bassène H, Sarr FD, Baril L, Mercereau-Puijalon O, Mécheri S, Sakuntabhai A, Paul R. Risk factors associated with asthma, atopic dermatitis and rhinoconjunctivitis in a rural Senegalese cohort. Allergy Asthma Clin Immunol 2015; 11:24. [PMID: 26306096 PMCID: PMC4547418 DOI: 10.1186/s13223-015-0090-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022] Open
Abstract
Background The World Allergy Organization estimates that 40 % of the world’s population is affected by allergic diseases. The International Study of Asthma and Allergies in Childhood has completed Phase III and it has now become clear that these diseases have increased in developing countries, especially Africa, where prevalence rates were formerly low. Despite an increase in studies in Africa, few sub-Saharan West African countries are represented; the focus has remained on urban populations and little attention has been paid to rural sub-Saharan Africa. Methods We performed an allergy survey in a birth cohort of children aged less than 15 years in rural Senegal and implemented an ISAAC questionnaire. We carried out a complete blood count and serological analyses for IgE levels against common allergens and mosquito saliva. Results The prevalence rates of asthma, rhinoconjunctivitis (RC) and
atopic dermatitis (AD) were 12.8, 12.5 and 12.2 % respectively. Specific IgE (sIgE) levels against mosquito spp. salivary gland antigens were significantly associated with AD; sIgE levels against selected true grasses (Poaceae) were significantly associated with RC. sIgE levels against house dust mite spp. were not associated with asthma, but were significantly correlated with mosquito IgE levels. Such cross-reactivity may blur the association between HDM sIgE and asthma. Consumption of seafood, storing whey cream, using plant fibre bedding and presence of carpet were significantly associated with increased risk of RC. The association of seafood may be the result of histamine intoxication from molluscs prepared by putrefaction. Cat presence and dog contact were associated with increased risk of asthma. Cow contact was associated with increased risk of AD. Conclusions Our allergy study in rural West Africa revealed lower prevalence rates than the majority of African urban settings. Although several associated known risk factors were identified, there were associations specific to the region. The identification of probable artefactual dietary phenomena is a challenge for robust diagnosis of allergic disease. The association AD with mosquito saliva, a common allergen in rural settings, warrants specific attention. Further studies in rural Africa are needed to address the aetiology of allergy in a non-urban environment. Electronic supplementary material The online version of this article (doi:10.1186/s13223-015-0090-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magali Herrant
- Institut Pasteur, Unité de la Génétique Fonctionnelle des Maladies Infectieuses, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.,Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 75724 Paris Cedex 15, France.,Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Cheikh Loucoubar
- Institut Pasteur, Unité de la Génétique Fonctionnelle des Maladies Infectieuses, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.,Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 75724 Paris Cedex 15, France.,Institut Pasteur de Dakar, Group of Biostatistics, Bioinformatics and Modeling, Dakar, Senegal
| | - Sabah Boufkhed
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Hubert Bassène
- Institut de Recherche pour le Développement (IRD), Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, URMITE CNRS-IRD 198 UMR 6236, Dakar, Senegal
| | - Fatoumata Diene Sarr
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Laurence Baril
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | | | - Salaheddine Mécheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasite, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.,Centre National de la Recherche Scientifique, Unité de Recherche Associée 2581, 75724 Paris Cedex 15, France
| | - Anavaj Sakuntabhai
- Institut Pasteur, Unité de la Génétique Fonctionnelle des Maladies Infectieuses, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.,Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 75724 Paris Cedex 15, France
| | - Richard Paul
- Institut Pasteur, Unité de la Génétique Fonctionnelle des Maladies Infectieuses, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.,Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, 75724 Paris Cedex 15, France
| |
Collapse
|
12
|
Ouédraogo AL, Gonçalves BP, Gnémé A, Wenger EA, Guelbeogo MW, Ouédraogo A, Gerardin J, Bever CA, Lyons H, Pitroipa X, Verhave JP, Eckhoff PA, Drakeley C, Sauerwein R, Luty AJF, Kouyaté B, Bousema T. Dynamics of the Human Infectious Reservoir for Malaria Determined by Mosquito Feeding Assays and Ultrasensitive Malaria Diagnosis in Burkina Faso. J Infect Dis 2015; 213:90-9. [PMID: 26142435 DOI: 10.1093/infdis/jiv370] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/26/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Plasmodium falciparum gametocytes are essential for malaria transmission. Malaria control measures that aim at reducing transmission require an accurate characterization of the human infectious reservoir. METHODS We longitudinally determined human infectiousness to mosquitoes and P. falciparum carriage by an ultrasensitive RNA-based diagnostics in 130 randomly selected inhabitants of an endemic area. RESULTS At least 1 mosquito was infected by 32.6% (100 of 307) of the blood samples; in total, 7.6% of mosquitoes (916 of 12 079) were infected. The proportion of infectious individuals and infected mosquitoes were negatively associated with age and positively with asexual parasites (P < .001). Human infectiousness was higher at the start of the wet season and subsequently declined at the peak of the wet season (adjusted odds ratio, 0.52; P = .06) and in the dry season (0.23; P < .001). Overall, microscopy-negative individuals were responsible for 28.7% of infectious individuals (25 of 87) and 17.0% of mosquito infections (145 of 855). CONCLUSIONS Our study reveals that the infectious reservoir peaks at the start of the wet season, with prominent roles for infections in children and submicroscopic infections. These findings have important consequences for strategies and the timing of interventions, which need to include submicroscopic infections and be implemented in the dry season.
Collapse
Affiliation(s)
- André Lin Ouédraogo
- Institute for Disease Modeling, Bellevue, Washington Département de Sciences Biomédicales, Centre National de Recherche et de Formation sur le Paludisme
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Awa Gnémé
- Département de Sciences Biomédicales, Centre National de Recherche et de Formation sur le Paludisme Université de Ouagadougou
| | | | - Moussa W Guelbeogo
- Département de Sciences Biomédicales, Centre National de Recherche et de Formation sur le Paludisme
| | - Amathe Ouédraogo
- Département de Sciences Biomédicales, Centre National de Recherche et de Formation sur le Paludisme
| | | | | | - Hil Lyons
- Institute for Disease Modeling, Bellevue, Washington
| | - Xavier Pitroipa
- Département de Sciences Biomédicales, Centre National de Recherche et de Formation sur le Paludisme Africa Indoor Residual Spraying, Abt Associates, Madagascar
| | - Jan Peter Verhave
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adrian J F Luty
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands Institut de Recherche pour le Développement, Mère et Enfant Face aux Infections Tropicales Faculté de Pharmacie, Sorbonne Paris Cité, Université Paris Descartes, France
| | - Bocar Kouyaté
- Département de Sciences Biomédicales, Centre National de Recherche et de Formation sur le Paludisme Ministère de la Santé, Ouagadougou, Burkina Faso
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, United Kingdom Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
McDowell MA. Vector-transmitted disease vaccines: targeting salivary proteins in transmission (SPIT). Trends Parasitol 2015; 31:363-72. [PMID: 26003330 DOI: 10.1016/j.pt.2015.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 12/25/2022]
Abstract
More than half the population of the world is at risk for morbidity and mortality from vector-transmitted diseases, and emerging vector-transmitted infections are threatening new populations. Rising insecticide resistance and lack of efficacious vaccines highlight the need for novel control measures. One such approach is targeting the vector-host interface by incorporating vector salivary proteins in anti-pathogen vaccines. Debate remains about whether vector saliva exposure exacerbates or protects against more severe clinical manifestations, induces immunity through natural exposure or extends to all vector species and associated pathogens. Nevertheless, exploiting this unique biology holds promise as a viable strategy for the development of vaccines against vector-transmitted diseases.
Collapse
Affiliation(s)
- Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
14
|
Grant AV, Roussilhon C, Paul R, Sakuntabhai A. The genetic control of immunity to Plasmodium infection. BMC Immunol 2015; 16:14. [PMID: 25887595 PMCID: PMC4374205 DOI: 10.1186/s12865-015-0078-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/20/2015] [Indexed: 12/17/2022] Open
Abstract
Background Malaria remains a major worldwide public health problem with ~207 million cases and ~627,000 deaths per year, mainly affecting children under five years of age in Africa. Recent efforts at elaborating a genetic architecture of malaria have focused on severe malaria, leading to the identification of two new genes and confirmation of previously known variants in HBB, ABO and G6PD, by exploring the whole human genome in genome-wide association (GWA) studies. Molecular pathways controlling phenotypes representing effectiveness of host immunity, notably parasitemia and IgG levels, are of particular interest given the current lack of an efficacious vaccine and the need for new treatment options. Results We propose a global causal framework of malaria phenotypes implicating progression from the initial infection with Plasmodium spp. to the development of the infection through liver and blood-stage multiplication cycles (parasitemia as a quantitative trait), to clinical malaria attack, and finally to severe malaria. Genetic polymorphism may control any of these stages, such that preceding stages act as mediators of subsequent stages. A biomarker of humoral immunity, IgG levels, can also be integrated into the framework, potentially mediating the impact of polymorphism by limiting parasitemia levels. Current knowledge of the genetic basis of parasitemia levels and IgG levels is reviewed through key examples including the hemoglobinopathies, showing that the protective effect of HBB variants on malaria clinical phenotypes may partially be mediated through parasitemia and cytophilic IgG levels. Another example is the IgG receptor FcγRIIa, encoded by FCGR2A, such that H131 homozygotes displayed higher IgG2 levels and were protective against high parasitemia and onset of malaria symptoms as shown in a causal diagram. Conclusions We thus underline the value of parasitemia and IgG levels as phenotypes in the understanding of the human genetic architecture of malaria, and the need for applying GWA approaches to these phenotypes.
Collapse
Affiliation(s)
- Audrey V Grant
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France. .,Centre National de la Recherche Scientifique, URA3012, Paris, France.
| | - Christian Roussilhon
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France. .,Centre National de la Recherche Scientifique, URA3012, Paris, France.
| | - Richard Paul
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France. .,Centre National de la Recherche Scientifique, URA3012, Paris, France.
| | - Anavaj Sakuntabhai
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France. .,Centre National de la Recherche Scientifique, URA3012, Paris, France.
| |
Collapse
|
15
|
Ockenfels B, Michael E, McDowell MA. Meta-analysis of the effects of insect vector saliva on host immune responses and infection of vector-transmitted pathogens: a focus on leishmaniasis. PLoS Negl Trop Dis 2014; 8:e3197. [PMID: 25275509 PMCID: PMC4183472 DOI: 10.1371/journal.pntd.0003197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022] Open
Abstract
A meta-analysis of the effects of vector saliva on the immune response and progression of vector-transmitted disease, specifically with regard to pathology, infection level, and host cytokine levels was conducted. Infection in the absence or presence of saliva in naïve mice was compared. In addition, infection in mice pre-exposed to uninfected vector saliva was compared to infection in unexposed mice. To control for differences in vector and pathogen species, mouse strain, and experimental design, a random effects model was used to compare the ratio of the natural log of the experimental to the control means of the studies. Saliva was demonstrated to enhance pathology, infection level, and the production of Th2 cytokines (IL-4 and IL-10) in naïve mice. This effect was observed across vector/pathogen pairings, whether natural or unnatural, and with single salivary proteins used as a proxy for whole saliva. Saliva pre-exposure was determined to result in less severe leishmaniasis pathology when compared with unexposed mice infected either in the presence or absence of sand fly saliva. The results of further analyses were not significant, but demonstrated trends toward protection and IFN-γ elevation for pre-exposed mice. Arthropod vectors transmit a wide variety of diseases resulting in substantial human morbidity and economic costs worldwide. When hematophagous arthropods blood feed, they release saliva into the host. This saliva elicits a strong immune response and has recently been a focus for vaccine research. There is evidence that the saliva enhances infection in naïve hosts, but that prior exposure to saliva results in less severe infection. This analysis endeavored to determine whether there was a statistically significant enhancement or protective effect with regard to saliva exposure and the progression of disease, and to determine the underlying immune mechanism driving these effects. We found that saliva does indeed enhance infection levels of vector-transmitted pathogens and leishmaniasis pathology in naïve mice and elevates Th2 cytokine levels (IL-4 and IL-10). We also determined that pre-exposure to saliva results in less severe pathology of experimental leishmaniasis in mice. These results are important for vaccine trials and vector control programs, though more studies are needed with regard to pre-exposure.
Collapse
Affiliation(s)
- Brittany Ockenfels
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Edwin Michael
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
16
|
Cornet S, Nicot A, Rivero A, Gandon S. Evolution of Plastic Transmission Strategies in Avian Malaria. PLoS Pathog 2014; 10:e1004308. [PMID: 25210974 PMCID: PMC4161439 DOI: 10.1371/journal.ppat.1004308] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 07/02/2014] [Indexed: 01/26/2023] Open
Abstract
Malaria parasites have been shown to adjust their life history traits to changing environmental conditions. Parasite relapses and recrudescences—marked increases in blood parasite numbers following a period when the parasite was either absent or present at very low levels in the blood, respectively—are expected to be part of such adaptive plastic strategies. Here, we first present a theoretical model that analyses the evolution of transmission strategies in fluctuating seasonal environments and we show that relapses may be adaptive if they are concomitant with the presence of mosquitoes in the vicinity of the host. We then experimentally test the hypothesis that Plasmodium parasites can respond to the presence of vectors. For this purpose, we repeatedly exposed birds infected by the avian malaria parasite Plasmodium relictum to the bites of uninfected females of its natural vector, the mosquito Culex pipiens, at three different stages of the infection: acute (∼34 days post infection), early chronic (∼122 dpi) and late chronic (∼291 dpi). We show that: (i) mosquito-exposed birds have significantly higher blood parasitaemia than control unexposed birds during the chronic stages of the infection and that (ii) this translates into significantly higher infection prevalence in the mosquito. Our results demonstrate the ability of Plasmodium relictum to maximize their transmission by adopting plastic life history strategies in response to the availability of insect vectors. Seasonal fluctuations in the environment affect dramatically the abundance of insect species. These fluctuations have important consequences for the transmission of vector-borne diseases. Here we contend that malaria parasites may have evolved plastic transmission strategies as an adaptation to the fluctuations in mosquito densities. First, our theoretical analysis identifies the conditions for the evolution of such plastic transmission strategies. Second, we show that in avian malaria Plasmodium parasites have the ability to increase transmission after being bitten by uninfected Culex mosquitoes. This demonstrates the ability of Plasmodium parasites to adopt plastic transmission strategies and challenges our understanding of malaria epidemiology.
Collapse
Affiliation(s)
- Stéphane Cornet
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR CNRS 5175 - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR CNRS 5290-IRD 224-UM1-UM2, Montpellier, France
| | - Antoine Nicot
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR CNRS 5175 - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR CNRS 5290-IRD 224-UM1-UM2, Montpellier, France
| | - Ana Rivero
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR CNRS 5290-IRD 224-UM1-UM2, Montpellier, France
| | - Sylvain Gandon
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR CNRS 5175 - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France
- * E-mail:
| |
Collapse
|
17
|
VOGT-GEISSE KATIA, LORENZO CHRISTINA, FENG ZHILAN. IMPACT OF AGE-DEPENDENT RELAPSE AND IMMUNITY ON MALARIA DYNAMICS. J BIOL SYST 2014. [DOI: 10.1142/s0218339013400019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An age-structured mathematical model for malaria is presented. The model explicitly includes the human and mosquito populations, structured by chronological age of humans. The infected human population is divided into symptomatic infectious, asymptomatic infectious and asymptomatic chronic infected individuals. The original partial differential equation (PDE) model is reduced to an ordinary differential equation (ODE) model with multiple age groups coupled by aging. The basic reproduction number [Formula: see text] is derived for the PDE model and the age group model in the case of general n age groups. We assume that infectiousness of chronic infected individuals gets triggered by bites of even susceptible mosquitoes. Our analysis points out that this assumption contributes greatly to the [Formula: see text] expression and therefore needs to be further studied and understood. Numerical simulations for n = 2 age groups and a sensitivity/uncertainty analysis are presented. Results suggest that it is important not only to consider asymptomatic infectious individuals as a hidden cause for malaria transmission, but also asymptomatic chronic infections (>60%), which often get neglected due to undetectable parasite loads. These individuals represent an important reservoir for future human infectiousness. By considering age-dependent immunity types, the model helps generate insight into effective control measures, by targeting age groups in an optimal way.
Collapse
Affiliation(s)
- KATIA VOGT-GEISSE
- Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907, USA
| | - CHRISTINA LORENZO
- Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907, USA
| | - ZHILAN FENG
- Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907, USA
| |
Collapse
|
18
|
Herrant M, Loucoubar C, Bassène H, Gonçalves B, Boufkhed S, Diene Sarr F, Fontanet A, Tall A, Baril L, Mercereau-Puijalon O, Mécheri S, Sakuntabhai A, Paul R. Asthma and atopic dermatitis are associated with increased risk of clinical Plasmodium falciparum malaria. BMJ Open 2013; 3:bmjopen-2013-002835. [PMID: 23883878 PMCID: PMC3731724 DOI: 10.1136/bmjopen-2013-002835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES To assess the impact of atopy and allergy on the risk of clinical malaria. DESIGN A clinical and immunological allergy cross-sectional survey in a birth cohort of 175 children from 1 month to 14 years of age followed for up to 15 years in a longitudinal open cohort study of malaria in Senegal. Malaria incidence data were available for 143 of these children (aged 4 months to 14 years of age) for up to 15 years. Mixed-model regression analysis was used to determine the impact of allergy status on malaria incidence, adjusting for age, gender, sickle-cell trait and force of infection. MAIN OUTCOME MEASURES Asthma, allergic rhinoconjunctivitis and atopic dermatitis status, the number of clinical Plasmodium falciparum malaria episodes since birth and associated parasite density. RESULTS 12% of the children were classified as asthmatic and 10% as having atopic dermatitis. These groups had respectively a twofold (OR 2.12 95%; CI 1.46 to 3.08; p=8×10(-5)) and threefold (OR 3.15; 1.56 to 6.33; p=1.3×10(-3)) increase in the risk of clinical P falciparum malaria once older than the age of peak incidence of clinical malaria (3-4 years of age). They also presented with higher P falciparum parasite densities (asthma: mean 105.3 parasites/μL±SE 41.0 vs 51.3±9.7; p=6.2×10(-3). Atopic dermatitis: 135.4±70.7 vs 52.3±11.0; p=0.014). There was no effect of allergy on the number of non-malaria clinical presentations. Individuals with allergic rhinoconjunctivitis did not have an increased risk of clinical malaria nor any difference in parasite densities. CONCLUSIONS These results demonstrate that asthma and atopic dermatitis delay the development of clinical immunity to P falciparum. Despite the encouraging decrease in malaria incidence rates in Africa, a significant concern is the extent to which the increase in allergy will exacerbate the burden of malaria. Given the demonstrated antiparasitic effect of antihistamines, administration to atopic children will likely reduce the burden of clinical malaria in these children, increase the efficacy of first-line treatment antimalarials and alleviate the non-infectious consequences of atopy.
Collapse
Affiliation(s)
- Magali Herrant
- Institut Pasteur, Unité de la Génétique Fonctionnelle des Maladies Infectieuses, CNRS URA3012, Paris, France
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Cheikh Loucoubar
- Institut Pasteur, Unité de la Génétique Fonctionnelle des Maladies Infectieuses, CNRS URA3012, Paris, France
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
- INSERM, U946, Genetic Variation and Human Diseases Unit,Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Hubert Bassène
- Institut de Recherche pour le Développement (IRD), Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, URMITE CNRS-IRD 198 UMR 6236, Dakar, Sénégal
| | - Bronner Gonçalves
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Sabah Boufkhed
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Fatoumata Diene Sarr
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Arnaud Fontanet
- Institut Pasteur, Unité d'Epidémiologie des Maladies Emergentes, Paris, France
- Conservatoire National des Arts et Métiers, Paris, France
| | - Adama Tall
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | - Laurence Baril
- Institut Pasteur de Dakar, Unité d'Epidémiologie des Maladies Infectieuses, Dakar, Senegal
| | | | - Salaheddine Mécheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasite, Paris, France
- Centre National de la Recherche Scientifique, Unité de Recherche Associée 2581, Paris, France
| | - Anavaj Sakuntabhai
- Institut Pasteur, Unité de la Génétique Fonctionnelle des Maladies Infectieuses, CNRS URA3012, Paris, France
- Complex Systems Group, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Richard Paul
- Institut Pasteur, Unité de la Génétique Fonctionnelle des Maladies Infectieuses, CNRS URA3012, Paris, France
| |
Collapse
|