1
|
Characterizing the Contributions of Various Clostridium perfringens Enterotoxin Properties to In Vivo and In Vitro Permeability Effects. mSphere 2022; 7:e0027622. [PMID: 36069435 PMCID: PMC9599344 DOI: 10.1128/msphere.00276-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Clostridium perfringens enterotoxin (CPE) is thought to cause lethal enterotoxemia when absorbed from the intestinal lumen into the circulation. CPE action sequentially involves receptor-binding, oligomerization into a prepore, and pore formation. To explore the mechanistic basis by which CPE alters permeability, this study tested the permeability effects of several recombinant CPE (rCPE) species: rCPE and rCPEC186A (which form pores), rC-CPE and rCPED48A (which bind to receptors but cannot oligomerize), rCPEC186A/F91C (which binds and oligomerizes without pore formation), and rCPEY306A/L315A (which has poor receptor-binding ability). On Caco-2 cells, i) only rCPE and rCPEC186A were cytotoxic; ii) rCPE and rCPEC186A affected transepithelial resistance (TEER) and 4 kDa fluorescent dextran (FD4) transit more quickly than binding-capable, but noncytotoxic, rCPE variants; whereas iii) rCPEY306A/L315A did not affect TEER or FD4 transit. Using mouse intestinal loops, rCPE (but not noncytotoxic rC-CPE, rCPED48A or rCPEY306A/L315A) was lethal and caused intestinal histologic damage within 4 h. After 2 h of treatment, rCPE was more strongly absorbed into the serum than those noncytotoxic rCPE species but by 4 h rC-CPE and rCPED48A became absorbed similarly as rCPE, while rCPEY306A/L315A absorption remained low. This increased rC-CPE and rCPED48A absorption from 2 to 4 h did not involve a general intestinal permeability increase because Evans Blue absorption from the intestines did not increase between 2 and 4 h of treatment with rC-CPE or rCPED48A. Collectively, these results indicate that CPE receptor binding is sufficient to slowly affect permeability, but CPE-induced cytotoxicity is necessary for rapid permeability changes and lethality. IMPORTANCE Clostridium perfringens enterotoxin (CPE) causes lethal enterotoxemia when absorbed from the intestines into the bloodstream. Testing recombinant CPE (rCPE) or rCPE variants impaired for various specific steps in CPE action showed that full CPE-induced cytotoxicity causes rapid Caco-2 monolayer permeability alterations, as well as enterotoxemic lethality and rapid CPE absorption in mouse small intestinal loops. However, receptor binding-capable, but noncytotoxic, rCPE variants did cause slow-developing in vitro and in vivo permeability effects. Absorption of binding-capable, noncytotoxic rCPE variants from the intestines did not correlate with general intestinal permeability alterations, suggesting that CPE binding can induce its own uptake. These findings highlight the importance of binding and, especially, cytotoxicity for CPE absorption during enterotoxemia and may assist development of permeability-altering rCPE variants for translational purposes.
Collapse
|
2
|
Abstract
C. perfringens type F strains are a common cause of food poisoning and antibiotic-associated diarrhea. Type F strain virulence requires production of C. perfringens enterotoxin (CPE). In Caco-2 cells, high CPE concentrations cause necrosis while low enterotoxin concentrations induce apoptosis. The current study determined that receptor-interacting serine/threonine-protein kinases 1 and 3 are involved in both CPE-induced apoptosis and necrosis in Caco-2 cells, while mixed-lineage kinase domain-like pseudokinase (MLKL) oligomerization is involved in CPE-induced necrosis, thereby indicating that this form of CPE-induced cell death involves necroptosis. High CPE concentrations also caused necroptosis in T84 and Vero cells. Calpain activation was identified as a key intermediate for CPE-induced necroptosis. These results suggest inhibitors of RIP1, RIP3, MLKL oligomerization, or calpain are useful therapeutics against CPE-mediated diseases. Clostridium perfringens type F strains cause gastrointestinal disease when they produce a pore-forming toxin named C. perfringens enterotoxin (CPE). In human enterocyte-like Caco-2 cells, low CPE concentrations cause caspase-3-dependent apoptosis, while high CPE concentrations cause necrosis. Since necrosis or apoptosis sometimes involves receptor-interacting serine/threonine-protein kinase-1 or 3 (RIP1 or RIP3), this study examined whether those kinases are important for CPE-induced apoptosis or necrosis. Highly specific RIP1 or RIP3 inhibitors reduced both CPE-induced apoptosis and necrosis in Caco-2 cells. Those findings suggested that the form of necrosis induced by treating Caco-2 cells with high CPE concentrations involves necroptosis, which was confirmed when high, but not low, CPE concentrations were shown to induce oligomerization of mixed-lineage kinase domain-like pseudokinase (MLKL), a key late step in necroptosis. Furthermore, an MLKL oligomerization inhibitor reduced cell death caused by high, but not low, CPE concentrations. Supporting RIP1 and RIP3 involvement in CPE-induced necroptosis, inhibitors of those kinases also reduced MLKL oligomerization during treatment with high CPE concentrations. Calpain inhibitors similarly blocked MLKL oligomerization induced by high CPE concentrations, implicating calpain activation as a key intermediate in initiating CPE-induced necroptosis. In two other CPE-sensitive cell lines, i.e., Vero cells and human enterocyte-like T84 cells, low CPE concentrations also caused primarily apoptosis/late apoptosis, while high CPE concentrations mainly induced necroptosis. Collectively, these results establish that high, but not low, CPE concentrations cause necroptosis and suggest that RIP1, RIP3, MLKL, or calpain inhibitors can be explored as potential therapeutics against CPE effects in vivo.
Collapse
|
3
|
Potential Therapeutic Effects of Mepacrine against Clostridium perfringens Enterotoxin in a Mouse Model of Enterotoxemia. Infect Immun 2019; 87:IAI.00670-18. [PMID: 30642896 DOI: 10.1128/iai.00670-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/06/2019] [Indexed: 01/06/2023] Open
Abstract
Clostridium perfringens enterotoxin (CPE) is a pore-forming toxin that causes the symptoms of common bacterial food poisoning and several non-foodborne human gastrointestinal diseases, including antibiotic-associated diarrhea and sporadic diarrhea. In some cases, CPE-mediated disease can be very severe or fatal due to the involvement of enterotoxemia. Therefore, the development of potential therapeutics against CPE action during enterotoxemia is warranted. Mepacrine, an acridine derivative drug with broad-spectrum effects on pores and channels in mammalian membranes, has been used to treat protozoal intestinal infections in human patients. A previous study showed that the presence of mepacrine inhibits CPE-induced pore formation and activity in enterocyte-like Caco-2 cells, reducing the cytotoxicity caused by this toxin in vitro Whether mepacrine is similarly protective against CPE action in vivo has not been tested. When the current study evaluated whether mepacrine protects against CPE-induced death and intestinal damage using a murine ligated intestinal loop model, mepacrine protected mice from the enterotoxemic lethality caused by CPE. This protection was accompanied by a reduction in the severity of intestinal lesions induced by the toxin. Mepacrine did not reduce CPE pore formation in the intestine but inhibited absorption of the toxin into the blood of some mice. Protection from enterotoxemic death correlated with the ability of this drug to reduce CPE-induced hyperpotassemia. These in vivo findings, coupled with previous in vitro studies, support mepacrine as a potential therapeutic against CPE-mediated enterotoxemic disease.
Collapse
|
4
|
Abstract
In humans and livestock, Clostridium perfringens is an important cause of intestinal infections that manifest as enteritis, enterocolitis, or enterotoxemia. This virulence is largely related to the toxin-producing ability of C. perfringens. This article primarily focuses on the C. perfringens type F strains that cause a very common type of human food poisoning and many cases of nonfoodborne human gastrointestinal diseases. The enteric virulence of type F strains is dependent on their ability to produce C. perfringens enterotoxin (CPE). CPE has a unique amino acid sequence but belongs structurally to the aerolysin pore-forming toxin family. The action of CPE begins with binding of the toxin to claudin receptors, followed by oligomerization of the bound toxin into a prepore on the host membrane surface. Each CPE molecule in the prepore then extends a beta-hairpin to form, collectively, a beta-barrel membrane pore that kills cells by increasing calcium influx. The cpe gene is typically encoded on the chromosome of type F food poisoning strains but is encoded by conjugative plasmids in nonfoodborne human gastrointestinal disease type F strains. During disease, CPE is produced when C. perfringens sporulates in the intestines. Beyond type F strains, C. perfringens type C strains producing beta-toxin and type A strains producing a toxin named CPILE or BEC have been associated with human intestinal infections. C. perfringens is also an important cause of enteritis, enterocolitis, and enterotoxemia in livestock and poultry due to intestinal growth and toxin production.
Collapse
|
5
|
The Potential Therapeutic Agent Mepacrine Protects Caco-2 Cells against Clostridium perfringens Enterotoxin Action. mSphere 2017; 2:mSphere00352-17. [PMID: 28875177 PMCID: PMC5577654 DOI: 10.1128/msphere.00352-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) causes the gastrointestinal (GI) symptoms of a common bacterial food poisoning and several nonfoodborne human GI diseases. A previous study showed that, via an undetermined mechanism, the presence of mepacrine blocks CPE-induced electrophysiologic activity in artificial membranes. The current study now demonstrates that mepacrine also inhibits CPE-induced cytotoxicity in human enterocyte-like Caco-2 cells and that mepacrine does not directly inactivate CPE. Instead, this drug reduces both CPE pore formation and CPE pore activity in Caco-2 cells. These results suggest mepacrine as a therapeutic candidate for treating CPE-mediated GI diseases. Clostridium perfringens enterotoxin (CPE) causes the diarrhea associated with a common bacterial food poisoning and many antibiotic-associated diarrhea cases. The severity of some CPE-mediated disease cases warrants the development of potential therapeutics. A previous study showed that the presence of mepacrine inhibited CPE-induced electrophysiology effects in artificial lipid bilayers lacking CPE receptors. However, that study did not assess whether mepacrine inactivates CPE or, instead, inhibits a step in CPE action. Furthermore, CPE action in host cells is complex, involving the toxin binding to receptors, receptor-bound CPE oligomerizing into a prepore on the membrane surface, and β-hairpins in the CPE prepore inserting into the membrane to form a pore that induces cell death. Therefore, the current study evaluated the ability of mepacrine to protect cells from CPE. This drug was found to reduce CPE-induced cytotoxicity in Caco-2 cells. This protection did not involve mepacrine inactivation of CPE, indicating that mepacrine affects one or more steps in CPE action. Western blotting then demonstrated that mepacrine decreases CPE pore levels in Caco-2 cells. This mepacrine-induced reduction in CPE pore levels did not involve CPE binding inhibition but rather an increase in CPE monomer dissociation due to mepacrine interactions with Caco-2 membranes. In addition, mepacrine was also shown to inhibit CPE pores when already present in Caco-2 cells. These in vitro studies, which identified two mepacrine-sensitive steps in CPE-induced cytotoxicity, add support to further testing of the therapeutic potential of mepacrine against CPE-mediated disease. IMPORTANCEClostridium perfringens enterotoxin (CPE) causes the gastrointestinal (GI) symptoms of a common bacterial food poisoning and several nonfoodborne human GI diseases. A previous study showed that, via an undetermined mechanism, the presence of mepacrine blocks CPE-induced electrophysiologic activity in artificial membranes. The current study now demonstrates that mepacrine also inhibits CPE-induced cytotoxicity in human enterocyte-like Caco-2 cells and that mepacrine does not directly inactivate CPE. Instead, this drug reduces both CPE pore formation and CPE pore activity in Caco-2 cells. These results suggest mepacrine as a therapeutic candidate for treating CPE-mediated GI diseases.
Collapse
|
6
|
Shrestha A, Uzal FA, McClane BA. The interaction of Clostridium perfringens enterotoxin with receptor claudins. Anaerobe 2016; 41:18-26. [PMID: 27090847 DOI: 10.1016/j.anaerobe.2016.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 01/30/2023]
Abstract
Clostridium perfringens enterotoxin (CPE) has significant medical importance due to its involvement in several common human gastrointestinal diseases. This 35 kDa single polypeptide toxin consists of two domains: a C-terminal domain involved in receptor binding and an N-terminal domain involved in oligomerization, membrane insertion and pore formation. The action of CPE starts with its binding to receptors, which include certain members of the claudin tight junction protein family; bound CPE then forms a series of complexes, one of which is a pore that causes the calcium influx responsible for host cell death. Recent studies have revealed that CPE binding to claudin receptors involves interactions between the C-terminal CPE domain and both the 1st and 2nd extracellular loops (ECL-1 and ECL-2) of claudin receptors. Of particular importance for this binding is the docking of ECL-2 into a pocket present in the C-terminal domain of the toxin. This increased understanding of CPE interactions with claudin receptors is now fostering the development of receptor decoy therapeutics for CPE-mediated gastrointestinal disease, reagents for cancer therapy/diagnoses and enhancers of drug delivery.
Collapse
Affiliation(s)
- Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory, San Bernadino Branch, School of Veterinary Medicine, University of California-Davis, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Clostridium perfringens Enterotoxin: Action, Genetics, and Translational Applications. Toxins (Basel) 2016; 8:toxins8030073. [PMID: 26999202 PMCID: PMC4810218 DOI: 10.3390/toxins8030073] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 12/21/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) is responsible for causing the gastrointestinal symptoms of several C. perfringens food- and nonfood-borne human gastrointestinal diseases. The enterotoxin gene (cpe) is located on either the chromosome (for most C. perfringens type A food poisoning strains) or large conjugative plasmids (for the remaining type A food poisoning and most, if not all, other CPE-producing strains). In all CPE-positive strains, the cpe gene is strongly associated with insertion sequences that may help to assist its mobilization and spread. During disease, CPE is produced when C. perfringens sporulates in the intestines, a process involving several sporulation-specific alternative sigma factors. The action of CPE starts with its binding to claudin receptors to form a small complex; those small complexes then oligomerize to create a hexameric prepore on the membrane surface. Beta hairpin loops from the CPE molecules in the prepore assemble into a beta barrel that inserts into the membrane to form an active pore that enhances calcium influx, causing cell death. This cell death results in intestinal damage that causes fluid and electrolyte loss. CPE is now being explored for translational applications including cancer therapy/diagnosis, drug delivery, and vaccination.
Collapse
|
8
|
Cysteine-scanning mutagenesis supports the importance of Clostridium perfringens enterotoxin amino acids 80 to 106 for membrane insertion and pore formation. Infect Immun 2012; 80:4078-88. [PMID: 22966051 DOI: 10.1128/iai.00069-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) causes the gastrointestinal symptoms of the second most common bacterial food-borne illness. Previous studies suggested that a region named TM1, which has amphipathic characteristics and spans from amino acids 81 to 106 of the native CPE protein, forms a β-hairpin involved in β-barrel pore formation. To further explore the potential role of TM1 in pore formation, the single Cys naturally present in CPE at residue 186 was first altered to alanine by mutagenesis; the resultant rCPE variant, named C186A, was shown to retain cytotoxic properties. Cys-scanning mutagenesis was then performed in which individual Cys mutations were introduced into each TM1 residue of the C186A variant. When those Cys variants were characterized, three variants were identified that exhibit reduced cytotoxicity despite possessing binding and oligomerization abilities similar to those of the C186A variant from which they were derived. Pronase challenge experiments suggested that the reduced cytotoxicity of those two Cys variants, i.e., the F91C and F95C variants, which model to the tip of the β-hairpin, was attributable to a lessened ability of these variants to insert into membranes after oligomerization. In contrast, another Cys variant, i.e., the G103C variant, with impaired cytotoxicity apparently inserted into membranes after oligomerization but could not form a pore with a fully functional channel. Collectively, these results support the TM1 region forming a β-hairpin as an important step in CPE insertion and pore formation. Furthermore, this work identifies the first amino acid residues specifically involved in those two steps in CPE action.
Collapse
|
9
|
Kitadokoro K, Nishimura K, Kamitani S, Fukui-Miyazaki A, Toshima H, Abe H, Kamata Y, Sugita-Konishi Y, Yamamoto S, Karatani H, Horiguchi Y. Crystal structure of Clostridium perfringens enterotoxin displays features of beta-pore-forming toxins. J Biol Chem 2011; 286:19549-55. [PMID: 21489981 DOI: 10.1074/jbc.m111.228478] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) is a cause of food poisoning and is considered a pore-forming toxin, which damages target cells by disrupting the selective permeability of the plasma membrane. However, the pore-forming mechanism and the structural characteristics of the pores are not well documented. Here, we present the structure of CPE determined by x-ray crystallography at 2.0 Å. The overall structure of CPE displays an elongated shape, composed of three distinct domains, I, II, and III. Domain I corresponds to the region that was formerly referred to as C-CPE, which is responsible for binding to the specific receptor claudin. Domains II and III comprise a characteristic module, which resembles those of β-pore-forming toxins such as aerolysin, C. perfringens ε-toxin, and Laetiporus sulfureus hemolytic pore-forming lectin. The module is mainly made up of β-strands, two of which span its entire length. Domain II and domain III have three short β-strands each, by which they are distinguished. In addition, domain II has an α-helix lying on the β-strands. The sequence of amino acids composing the α-helix and preceding β-strand demonstrates an alternating pattern of hydrophobic residues that is characteristic of transmembrane domains forming β-barrel-made pores. These structural features imply that CPE is a β-pore-forming toxin. We also hypothesize that the transmembrane domain is inserted into the membrane upon the buckling of the two long β-strands spanning the module, a mechanism analogous to that of the cholesterol-dependent cytolysins.
Collapse
Affiliation(s)
- Kengo Kitadokoro
- Graduate School of Science and Technology, Department of Biomolecular Engineering, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kimura J, Abe H, Kamitani S, Toshima H, Fukui A, Miyake M, Kamata Y, Sugita-Konishi Y, Yamamoto S, Horiguchi Y. Clostridium perfringens enterotoxin interacts with claudins via electrostatic attraction. J Biol Chem 2009; 285:401-8. [PMID: 19903817 DOI: 10.1074/jbc.m109.051417] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE), a causative agent of food poisoning, is a pore-forming toxin disrupting the selective permeability of the plasma membrane of target cells, resulting in cell death. We previously identified claudin as the cell surface receptor for CPE. Claudin, a component of tight junctions, is a tetratransmembrane protein and constitutes a large family of more than 20 members, not all of which serve as the receptor for CPE. The mechanism by which the toxin distinguishes the sensitive claudins is unknown. In this study, we localized the region of claudin responsible for interaction with CPE to the C-terminal part of the second extracellular loop and found that the isoelectric point of this region in sensitive claudins was higher than insensitive claudins. Amino acid substitutions to lower the pI resulted in reduced sensitivity to CPE among sensitive claudins, whereas substitutions to raise the pI endowed CPE-insensitive claudins with sensitivity. The steric structure of the claudin-binding domain of CPE reveals an acidic cleft surrounded by Tyr(306), Tyr(310), Tyr(312), and Leu(315), which were reported to be essential for interaction with the sensitive claudins. These results imply that an electrostatic attraction between the basic claudin region and the acidic CPE cleft is involved in their interaction.
Collapse
Affiliation(s)
- Jun Kimura
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Noncytotoxic Clostridium perfringens enterotoxin (CPE) variants localize CPE intestinal binding and demonstrate a relationship between CPE-induced cytotoxicity and enterotoxicity. Infect Immun 2008; 76:3793-800. [PMID: 18505809 DOI: 10.1128/iai.00460-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) causes the symptoms of a very common food poisoning. To assess whether CPE-induced cytotoxicity is necessary for enterotoxicity, a rabbit ileal loop model was used to compare the in vivo effects of native CPE or recombinant CPE (rCPE), both of which are cytotoxic, with those of the noncytotoxic rCPE variants rCPE D48A and rCPE(168-319). Both CPE and rCPE elicited significant fluid accumulation in rabbit ileal loops, along with severe mucosal damage that starts at villus tips and then progressively affects the entire villus, including necrosis of epithelium and lamina propria, villus blunting and fusion, and transmural edema and hemorrhage. Similar treatment of ileal loops with either of the noncytotoxic rCPE variants produced no visible histologic damage or fluid transport changes. Immunohistochemistry revealed strong CPE or rCPE(168-319) binding to villus tips, which correlated with the abundant presence of claudin-4, a known CPE receptor, in this villus region. These results support (i) cytotoxicity being necessary for CPE-induced enterotoxicity, (ii) the CPE sensitivity of villus tips being at least partially attributable to the abundant presence of receptors in this villus region, and (iii) claudin-4 being an important intestinal receptor for CPE. Finally, rCPE(168-319) was able to partially inhibit CPE-induced histologic damage, suggesting that noncytotoxic rCPE variants might be useful for protecting against some intestinal effects of CPE.
Collapse
|
12
|
Ebihara C, Kondoh M, Harada M, Fujii M, Mizuguchi H, Tsunoda SI, Horiguchi Y, Yagi K, Watanabe Y. Role of Tyr306 in the C-terminal fragment of Clostridium perfringens enterotoxin for modulation of tight junction. Biochem Pharmacol 2006; 73:824-30. [PMID: 17169334 DOI: 10.1016/j.bcp.2006.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 11/14/2006] [Accepted: 11/15/2006] [Indexed: 10/23/2022]
Abstract
We previously reported that the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) is a novel type of absorption enhancer that interacts with claudin-4 and that Tyr306 of C-CPE plays a role in ability of C-CPE to modulate barrier of tight junctions. In the current study, to investigate effects of Tyr306 on the C-CPE activity, we prepared some C-CPE mutants substituted Tyr306 with Trp (Y306W), Phe (Y306F) and Lys (Y306K). We found that Y306W and Y306F mutants of C-CPE had claudin-4 binding affinities and effects on the barrier function of tight junctions, whereas both of these properties were greatly reduced with the Y306K mutant. Finally, the Y306K but not the Y306F and Y306W mutants had reduced abilities to enhance absorption in rat jejunum. These results indicate that aromatic and hydrophobic properties, not hydrogen bonding potential, of Tyr306 are involved in the interaction of C-CPE with claudin-4 and in the modulation of the tight junction barrier function by C-CPE.
Collapse
Affiliation(s)
- Chiaki Ebihara
- Department of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Masuyama A, Kondoh M, Seguchi H, Takahashi A, Harada M, Fujii M, Mizuguchi H, Horiguchi Y, Watanabe Y. Role of N-terminal amino acids in the absorption-enhancing effects of the c-terminal fragment of Clostridium perfringens enterotoxin. J Pharmacol Exp Ther 2005; 314:789-95. [PMID: 15870390 DOI: 10.1124/jpet.105.085399] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently found that a polypeptide, the C-terminal of Clostridium perfringens enterotoxin (C-CPE), was a novel type of drug absorption enhancer. The C-terminal of C-CPE is thought to play a role in the binding of C-CPE to its receptor, claudin-4; however, the function of the N-terminal of C-CPE is unclear. In the present study, we evaluated the role of the N-terminal domain of C-CPE in jejunal absorption and claudin-4 binding. The treatment of rat jejunum with C-CPE resulted in enhanced absorption of dextran, with a molecular weight of 4000 Da. However, treatment with C-CPE220, which lacks the 36 N-terminal amino acids of C-CPE, did not enhance jejunal absorption. C-CPE had affinity for claudin-4 in rat jejunum lysates and Caco-2 lysates, but C-CPE220 did not. Interaction of C-CPE with the recombinant extracellular domain 2 of human claudin-4 (EC2hCld-4), which is the putative binding site for C-CPE, was observed, but C-CPE220 had no affinity for EC2hCld-4. To investigate the effect of C-CPE220 on the barrier function of tight junctions, we measured transepithelial electric resistance (TER) in C-CPE- or C-CPE220-treated Caco-2 monolayer cells. Although C-CPE decreased TER in Caco-2 monolayer cells, C-CPE220 did not disrupt the barrier function of tight junctions. Together, these results indicate that the 36 N-terminal amino acids of C-CPE may be necessary for the enhanced absorption mediated by C-CPE and play a partial role in binding to claudin-4.
Collapse
Affiliation(s)
- Akane Masuyama
- Department of Pharmaceutics and Biopharmaceutics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
McClane BA. The complex interactions between Clostridium perfringens enterotoxin and epithelial tight junctions. Toxicon 2001; 39:1781-91. [PMID: 11595640 DOI: 10.1016/s0041-0101(01)00164-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clostridium perfringens enterotoxin (CPE) is responsible for the diarrheal symptoms of C. perfringens type A food poisoning and antibiotic-associated diarrhea. The CPE protein consists of a single 35 kDa polypeptide with a C-terminal receptor-binding region and an N-terminal toxicity domain. Under appropriate conditions, CPE can interact with structural components of the epithelial tight junctions, including certain claudins and occludin. Those interactions can affect tight junction structure and function, thereby altering paracellular permeability and (possibly) contributing to CPE-induced diarrhea. However, the tight junction effects of CPE require cellular damage as a prerequisite. CPE induces cellular damage via its cytotoxic activity, which results from plasma membrane permeability alterations caused by formation of a approximately 155 kDa CPE-containing complex that may correspond to a pore. Thus, CPE appears to be a bifunctional toxin that first induces plasma membrane permeability alterations; using the resultant cell damage, CPE then gains access to tight junction proteins and affects tight junction structure and function.
Collapse
Affiliation(s)
- B A McClane
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Pittsburgh, PA 15261-2072, USA.
| |
Collapse
|
15
|
Fujita K, Katahira J, Horiguchi Y, Sonoda N, Furuse M, Tsukita S. Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein. FEBS Lett 2000; 476:258-61. [PMID: 10913624 DOI: 10.1016/s0014-5793(00)01744-0] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Claudins (claudin-1 to -18) with four transmembrane domains and two extracellular loops constitute tight junction strands. The peptide toxin Clostridium perfringens enterotoxin (CPE) has been shown to bind to claudin-3 and -4, but not to claudin-1 or -2. We constructed claudin-1/claudin-3 chimeric molecules and found that the second extracellular loop of claudin-3 conferred CPE sensitivity on L fibroblasts. Furthermore, overlay analyses revealed that the second extracellular loop of claudin-3 specifically bound to CPE at the K(a) value of 1.0x10(8) M(-1). We concluded that the second extracellular loop is the site through which claudin-3 interacts with CPE on the cell surface.
Collapse
Affiliation(s)
- K Fujita
- Department of Cell Biology, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Singh U, Van Itallie CM, Mitic LL, Anderson JM, McClane BA. CaCo-2 cells treated with Clostridium perfringens enterotoxin form multiple large complex species, one of which contains the tight junction protein occludin. J Biol Chem 2000; 275:18407-17. [PMID: 10749869 DOI: 10.1074/jbc.m001530200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The previous model for the action of Clostridium perfringens enterotoxin (CPE) proposed that (i) CPE binds to host cell receptor(s), forming a small ( approximately 90 kDa) complex, (ii) the small complex interacts with other eucaryotic protein(s), forming a large ( approximately 160 kDa) complex, and (iii) the large complex triggers massive permeability changes, thereby inducing enterocyte death. In the current study, Western immunoblot analysis demonstrated that CPE bound to CaCo-2 human intestinal cells at 37 degrees C forms multiple large complex species, with apparent sizes of approximately 200, approximately 155, and approximately 135 kDa. These immunoblot experiments also revealed that occludin, an approximately 65-kDa tight junction protein, is present in the approximately 200-kDa large complex but absent from the other large complex species. Immunoprecipitation studies confirmed that occludin physically associates with CPE in large complex material and also indicated that occludin is absent from small complex. These results strongly suggest that occludin becomes associated with CPE during formation of the approximately 200-kDa large complex. A postbinding association between CPE and occludin is consistent with the failure of rat fibroblast transfectants expressing occludin to bind CPE in the current study. Those occludin transfectants were also insensitive to CPE, strongly suggesting that occludin expression is not sufficient to confer CPE sensitivity. However, the occludin-containing, approximately 200-kDa large complex may contribute to CPE-induced cytotoxicity, because nontoxic CPE point mutants did not form any large complex species. By showing that large complex material is comprised of several species (one containing occludin), the current studies indicate that CPE action is more complicated than previously appreciated and also provide additional evidence for CPE interactions with tight junction proteins, which could be important for CPE-induced pathophysiology.
Collapse
Affiliation(s)
- U Singh
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
17
|
Kokai-Kun JF, Benton K, Wieckowski EU, McClane BA. Identification of a Clostridium perfringens enterotoxin region required for large complex formation and cytotoxicity by random mutagenesis. Infect Immun 1999; 67:5634-41. [PMID: 10531210 PMCID: PMC96936 DOI: 10.1128/iai.67.11.5634-5641.1999] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE), a single polypeptide of 319 amino acids, has a unique multistep mechanism of action. In the first step, CPE binds to claudin proteins and/or a 50-kDa eukaryotic membrane protein receptor, forming a small ( approximately 90-kDa) complex. This small complex apparently then associates with a 70-kDa eukaryotic membrane protein, resulting in formation of a large complex that induces the onset of membrane permeability alterations. To better define the boundaries of CPE functional regions and to identify specific amino acid residues involved in various steps of CPE action, in this study we subjected the cloned cpe gene to random mutagenesis in XL-1 Red strains of Escherichia coli. Seven CPE random mutants with reduced cytotoxicity for Vero cells were phenotypically characterized for the ability to complete each step in CPE action. Five of these seven recombinant CPE (rCPE) random mutants (G49D, S59L, R116S, R137G, and S167P) exhibited binding characteristics similar to those of rCPE or native CPE, while the Y310C and W226Stop mutants showed reduced binding and no binding, respectively, to brush border membranes. Interestingly, two completely nontoxic mutants (G49D and S59L) were able to bind and form small complex but they did not mediate any detectable large complex formation. Another strongly attenuated mutant, R116S, formed reduced amounts of an anomalously migrating large complex. Collectively, these results provide further support for large complex formation being an essential step in CPE action and also identify the CPE region ranging from residues approximately 45 to 116 as important for large complex formation. Finally, we also report that limited removal of extreme N-terminal CPE sequences, which may occur in vivo during disease, stimulates cytotoxic activity by enhancing large complex formation.
Collapse
Affiliation(s)
- J F Kokai-Kun
- Department of Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
18
|
Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, Tsukita S. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: Evidence for direct involvement of claudins in tight junction barrier. J Cell Biol 1999; 147:195-204. [PMID: 10508866 PMCID: PMC2164970 DOI: 10.1083/jcb.147.1.195] [Citation(s) in RCA: 479] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Claudins, comprising a multigene family, constitute tight junction (TJ) strands. Clostridium perfringens enterotoxin (CPE), a single approximately 35-kD polypeptide, was reported to specifically bind to claudin-3/RVP1 and claudin-4/CPE-R at its COOH-terminal half. We examined the effects of the COOH-terminal half fragment of CPE (C-CPE) on TJs in L transfectants expressing claudin-1 to -4 (C1L to C4L, respectively), and in MDCK I cells expressing claudin-1 and -4. C-CPE bound to claudin-3 and -4 with high affinity, but not to claudin-1 or -2. In the presence of C-CPE, reconstituted TJ strands in C3L cells gradually disintegrated and disappeared from their cell surface. In MDCK I cells incubated with C-CPE, claudin-4 was selectively removed from TJs with its concomitant degradation. At 4 h after incubation with C-CPE, TJ strands were disintegrated, and the number of TJ strands and the complexity of their network were markedly decreased. In good agreement with the time course of these morphological changes, the TJ barrier (TER and paracellular flux) of MDCK I cells was downregulated by C-CPE in a dose-dependent manner. These findings provided evidence for the direct involvement of claudins in the barrier functions of TJs.
Collapse
Affiliation(s)
- Noriyuki Sonoda
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mikio Furuse
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Sasaki
- Laboratory of Cell Biology, KAN Research Institute Inc., Kyoto Research Park, Chudoji, Shimogyo-ku, Kyoto 600-8317, Japan
- Department of Molecular Cell Biology, Institute of DNA Medicine, The Jikei University School of Medicine, Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Shigenobu Yonemura
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jun Katahira
- Project Research for Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuhiko Horiguchi
- Project Research for Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shoichiro Tsukita
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Katahira J, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N. Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J Cell Biol 1997; 136:1239-47. [PMID: 9087440 PMCID: PMC2132509 DOI: 10.1083/jcb.136.6.1239] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/1996] [Revised: 12/17/1996] [Indexed: 02/04/2023] Open
Abstract
A cDNA encoding the Clostridium perfringens enterotoxin receptor gene (CPE-R) was cloned from an expression library of enterotoxin-sensitive Vero cells. The nucleotide sequence of CPE-R showed that the enterotoxin receptor consists of 209 amino acids with a calculated molecular mass of 22,029 D. This receptor is highly hydrophobic, contains four putative transmembrane segments, and has significant similarity to the rat androgen withdrawal apoptosis protein RVP1 and the mouse oligodendrocyte specific protein, the functions of which are unknown. The expression of CPE-R was detected in the enterotoxin-sensitive Vero, Hep3B, and Intestine 407 cell lines, but not in the enterotoxin-insensitive K562 and JY cell lines. The CPE-R gene product expressed in enterotoxin-resistant L929 cells bound to enterotoxin specifically and directly and with high affinity and rendered the cells sensitive to the toxin, indicating that the cloned receptor is functional. Results showed that enterotoxin could not assemble into a complex with a defined structure unless it interacted with the receptor. From these results, it is proposed that the enterotoxin receptor is required for both target cell recognition and pore formation in the cell membrane.
Collapse
Affiliation(s)
- J Katahira
- Department of Bacterial Toxicology, Osaka University, Japan.
| | | | | | | | | |
Collapse
|
20
|
Abstract
To further our knowledge of the structure-function relationship and mechanism of action of the Clostridium perfringens enterotoxin (CPE), a series of recombinant CPE (rCPE) species containing N- and C-terminal CPE deletion fragments was constructed by recombinant DNA approaches. Each rCPE species was characterized for its ability to complete the first four early steps in the action of CPE, putatively ordered as specific binding, a postbinding physical change to bound CPE, large-complex formation, and induction of alterations in small-molecule membrane permeability. These studies demonstrated that (i) at least 44 amino acids can be removed from the N terminus of CPE without loss of cytotoxicity, (ii) removal of the first 53 amino acids from the N terminus of CPE produces a fragment that appears to be noncytotoxic because it cannot undergo the post-binding physical change step in CPE action, (iii) removal of as few as five amino acids from the C terminus of CPE produces a noncytotoxic fragment lacking receptor binding activity, and (iv) a fragment lacking the first 44 N-terminal amino acids of native CPE formed twice as much large complex and was twice as cytotoxic as native CPE. From these structure-function results, it appears that the minimum-size cytotoxic CPE fragment comprises approximately residues 45 to 319 of native CPE. Results from these deletion fragment studies have also contributed to our understanding of CPE action by (i) independently supporting previous suggestions that binding, the postbinding physical change step, and large-complex formation represent important steps in CPE cytotoxicity and (ii) providing independent evidence confirming the putative sequential order of these early events in CPE action.
Collapse
Affiliation(s)
- J F Kokai-Kun
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | |
Collapse
|
21
|
Sugimoto N, Horiguchi Y, Matsuda M. Mechanism of action of Clostridium perfringens enterotoxin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 391:257-69. [PMID: 8726065 DOI: 10.1007/978-1-4613-0361-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- N Sugimoto
- Department of Bacterial Toxinology, Osaka University, Japan
| | | | | |
Collapse
|
22
|
McClane BA. Clostridium perfringens enterotoxin acts by producing small molecule permeability alterations in plasma membranes. Toxicology 1994; 87:43-67. [PMID: 8160188 DOI: 10.1016/0300-483x(94)90154-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Clostridium perfringens enterotoxin (CPE) appears to utilize a unique mechanism of action to directly affect the plasma membrane permeability of mammalian cells. CPE action involves a multi-step action which culminates in cytotoxicity. Initially CPE binds to a protein receptor on mammalian plasma membranes. The membrane-bound CPE then becomes progressively more resistant to release by proteases (a phenomenon consistent with the insertion of CPE into membranes). This 'inserted' CPE then participates in the formation of a large complex in plasma membranes which contains one CPE: one 70 kDa membrane protein: one 50 kDa membrane protein. Upon formation of large complex, plasma membranes become freely permeable to small molecules such as ions and amino acids. This CPE-induced disruption of the cellular colloid-osmotic equilibrium then causes secondary cellular effects and cell death.
Collapse
Affiliation(s)
- B A McClane
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, PA 15261
| |
Collapse
|
23
|
Mietzner TA, Kokai-Kun JF, Hanna PC, McClane BA. A conjugated synthetic peptide corresponding to the C-terminal region of Clostridium perfringens type A enterotoxin elicits an enterotoxin-neutralizing antibody response in mice. Infect Immun 1992; 60:3947-51. [PMID: 1500207 PMCID: PMC257418 DOI: 10.1128/iai.60.9.3947-3951.1992] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A synthetic peptide homolog corresponding to the C-terminal 30 amino acids of Clostridium perfringens type A enterotoxin (CPE) was conjugated to a thyroglobulin carrier and used to immunize mice. Conjugate-immunized mice produced antibodies which neutralized native CPE cytotoxicity, at least in part, by blocking enterotoxin binding. This peptide may be useful for the development of a vaccine to protect against CPE-mediated disease.
Collapse
Affiliation(s)
- T A Mietzner
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261-2072
| | | | | | | |
Collapse
|
24
|
Hanna PC, Wieckowski EU, Mietzner TA, McClane BA. Mapping of functional regions of Clostridium perfringens type A enterotoxin. Infect Immun 1992; 60:2110-4. [PMID: 1373406 PMCID: PMC257123 DOI: 10.1128/iai.60.5.2110-2114.1992] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies were conducted to allow construction of an initial map of the structure-versus-function relationship of the Clostridium perfringens type A enterotoxin (CPE). Removal of the N-terminal 25 amino acids of CPE increased the primary cytotoxic effect of CPE but did not affect binding. CPE sequences required for at least four epitopes were also identified.
Collapse
Affiliation(s)
- P C Hanna
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261-2072
| | | | | | | |
Collapse
|
25
|
Logan AJ, Williamson ED, Titball RW, Percival DA, Shuttleworth AD, Conlan JW, Kelly DC. Epitope mapping of the alpha-toxin of Clostridium perfringens. Infect Immun 1991; 59:4338-42. [PMID: 1718874 PMCID: PMC259046 DOI: 10.1128/iai.59.12.4338-4342.1991] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A panel of monoclonal antibodies specific for the Clostridium perfringens alpha-toxin was produced by the fusion of X63.Ag8-653 cells with splenocytes from mice immunized either intrasplenically or intraperitoneally with an alpha-toxoid. The toxin-binding activity of each monoclonal antibody was evaluated. The monoclonal antibodies were also screened for their toxin-neutralizing potential in vitro, as determined by the inhibition of phospholipase C and hemolytic activities. In vivo inhibition of toxicity was assessed by the survival of mice challenged with preincubated alpha-toxin-antibody mixtures. Only one monoclonal antibody (3A4D10) was protective in vivo and neutralizing in both in vitro assays. Since 3A4D10 could inhibit both activities, the evidence suggests that these are colocated in the same area of the toxin molecule. This paper identifies a significant continuous linear binding region for 3A4D10 at positions 193 to 198 in the primary amino acid sequence of alpha-toxin.
Collapse
Affiliation(s)
- A J Logan
- Chemical and Biological Defence Establishment, Porton Down, Salisbury, Wiltshire, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
26
|
Hanna PC, Wnek AP, McClane BA. Molecular cloning of the 3' half of the Clostridium perfringens enterotoxin gene and demonstration that this region encodes receptor-binding activity. J Bacteriol 1989; 171:6815-20. [PMID: 2556374 PMCID: PMC210581 DOI: 10.1128/jb.171.12.6815-6820.1989] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Clostridium perfringens type A enterotoxin (CPE) causes the symptoms associated with C. perfringens food poisoning. To determine whether the C-terminal half of CPE contains receptor-binding activity, the 3' half of the cpe structural gene was cloned with an Escherichia coli expression vector system. E. coli lysates containing the expressed C-terminal CPE fragment (CPEfrag) were then assayed for CPE-like serologic, receptor-binding, and cytotoxic activities. CPEfrag was shown to contain an epitope located at or near the receptor-binding domain of the CPE molecule. Competitive-binding studies showed specific competition for CPE receptors between CPE and CPEfrag lysates. CPEfrag lysates did not cause cytotoxicity in Vero (African green monkey kidney) cells. However, preincubation with CPEfrag lysates specifically protected Vero cells from subsequent CPE challenge. This indicates that CPEfrag recognizes the physiologic receptor which mediates CPE cytotoxicity. Collectively, these studies indicate that the C-terminal half of CPE contains a receptor-binding domain but additional amino acid sequences appear to be required for CPE cytotoxicity.
Collapse
Affiliation(s)
- P C Hanna
- Department of Microbiology, University of Pittsburgh School of Medicine, Pennsylvania 15261
| | | | | |
Collapse
|
27
|
Sugii S, Horiguchi Y. Identification and isolation of the binding substance forClostridium perfringensenterotoxin on Vero cells. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb02576.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|