1
|
Abstract
M and M-like proteins are major virulence factors of the widespread and potentially deadly bacterial pathogen Streptococcus pyogenes. These proteins confer resistance against innate and adaptive immune responses by recruiting specific human proteins to the streptococcal surface. Nonimmune recruitment of immunoglobulins G (IgG) and A (IgA) through their fragment crystallizable (Fc) domains by M and M-like proteins was described almost 40 years ago, but its impact on virulence remains unresolved. These interactions have been suggested to be consequential under immune conditions at mucosal surfaces and in secretions but not in plasma, while other evidence suggests importance in evading phagocytic killing in nonimmune blood. Recently, an indirect effect of Fc-binding through ligand-induced stabilization of an M-like protein was shown to increase virulence. Nonimmune recruitment has also been seen to contribute to tissue damage in animal models of autoimmune diseases triggered by S. pyogenes infection. The damage was treatable by targeting Fc-binding. This and other potential therapeutic applications warrant renewed attention to Fc-binding by M and M-like proteins.
Collapse
Affiliation(s)
- Jori O. Mills
- Department of Chemistry & Biochemistry, La Jolla, California, United States of America
| | - Partho Ghosh
- Department of Chemistry & Biochemistry, La Jolla, California, United States of America
| |
Collapse
|
2
|
Frost HR, Sanderson-Smith M, Walker M, Botteaux A, Smeesters PR. Group A streptococcal M-like proteins: From pathogenesis to vaccine potential. FEMS Microbiol Rev 2018; 42:193-204. [PMID: 29228173 DOI: 10.1093/femsre/fux057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022] Open
Abstract
M and M-like surface proteins from group A Streptococcus (GAS) act as virulence factors and have been used in multiple vaccine candidates. While the M protein has been extensively studied, the two genetically and functionally related M-like proteins, Mrp and Enn, although present in most streptococcal strains have been relatively less characterised. We compile the current state of knowledge for these two proteins, from discovery to recent studies on function and immunogenicity, using the M protein for comparison as a prototype of this family of proteins. We focus on the known interactions between M-like proteins and host ligand proteins, and analyse the genetic data supporting these interactions. We discuss known and possible functions of M-like proteins during GAS infections, and highlight knowledge gaps where further investigation is warranted.
Collapse
Affiliation(s)
- Hannah R Frost
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium.,Group A Streptococcus Research Group, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia
| | - Martina Sanderson-Smith
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, 2522, NSW, Australia
| | - Mark Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, QLD, Australia
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Pierre R Smeesters
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels 1070, Belgium.,Group A Streptococcus Research Group, Murdoch Children's Research Institute, Melbourne 3052, VIC, Australia.,Department of Pediatrics, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels 1020, Belgium.,Centre for International Child Health, University of Melbourne, Melbourne 3052, VIC, Australia
| |
Collapse
|
3
|
Abstract
Proteins capable of non-immune binding of immunoglobulins G (IgG) of various mammalian species, i.e. without the involvement of the antigen-binding sites of the immunoglobulins, are widespread in bacteria. These proteins are located on the surface of bacterial cells and help them to evade the host's immune response due to protection against the action of complement and to decrease in phagocytosis. This review summarizes data on the structure of immunoglobulin-binding proteins (IBP) and their complexes with IgG. Common and distinctive structural features of IBPs of gram-positive bacteria (staphylococci, streptococci, peptostreptococci) are discussed. Conditions for IBP expression by bacteria and their functional heterogeneity are considered. Data on IBPs of gram-negative bacteria are presented.
Collapse
Affiliation(s)
- E V Sidorin
- Pacific Institute of Bioorganic Chemistry, Far-Eastern Division of the Russian Academy of Sciences, Vladivostok, Russia.
| | | |
Collapse
|
4
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 444] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
5
|
Boyle MD, Romer TG, Meeker AK, Sledjeski DD. Use of surface-enhanced laser desorption ionization protein chip system to analyze streptococcal exotoxin B activity secreted by Streptococcus pyogenes. J Microbiol Methods 2001; 46:87-97. [PMID: 11412919 DOI: 10.1016/s0167-7012(01)00279-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ciphergen surface-enhanced laser desorption ionization (SELDI) protein chip technology was used to analyze the secretion and autoactivation of the Streptococcus pyogenes cysteine protease SpeB. This method allowed rapid identification of both the zymogen form of the protein Mr approximately 41,000 and the fully active enzyme Mr approximately 28,500. SpeB production in culture supernatants was demonstrated to be growth-phase regulated and SpeB positive and negative variants of a blood passaged S. pyogenes isolate could readily be distinguished. In kinetic studies of the autoactivation of the zymogen form of SpeB, the sequential generation of four intermediates was detected before the accumulation of the fully active enzyme. The methods described enabled enhanced speed, use of lower sample volumes and concentrations, and a more complete molecular characterization of SpeB than allowed by existing methods of analysis using SDS-PAGE and Western immunoblotting.
Collapse
Affiliation(s)
- M D Boyle
- Department of Microbiology and Immunology, Medical College of Ohio, 3055 Arlington Avenue, Toledo, OH 43614-5806, USA.
| | | | | | | |
Collapse
|
6
|
Abstract
Group A streptococci are model extracellular gram-positive pathogens responsible for pharyngitis, impetigo, rheumatic fever, and acute glomerulonephritis. A resurgence of invasive streptococcal diseases and rheumatic fever has appeared in outbreaks over the past 10 years, with a predominant M1 serotype as well as others identified with the outbreaks. emm (M protein) gene sequencing has changed serotyping, and new virulence genes and new virulence regulatory networks have been defined. The emm gene superfamily has expanded to include antiphagocytic molecules and immunoglobulin-binding proteins with common structural features. At least nine superantigens have been characterized, all of which may contribute to toxic streptococcal syndrome. An emerging theme is the dichotomy between skin and throat strains in their epidemiology and genetic makeup. Eleven adhesins have been reported, and surface plasmin-binding proteins have been defined. The strong resistance of the group A streptococcus to phagocytosis is related to factor H and fibrinogen binding by M protein and to disarming complement component C5a by the C5a peptidase. Molecular mimicry appears to play a role in autoimmune mechanisms involved in rheumatic fever, while nephritis strain-associated proteins may lead to immune-mediated acute glomerulonephritis. Vaccine strategies have focused on recombinant M protein and C5a peptidase vaccines, and mucosal vaccine delivery systems are under investigation.
Collapse
Affiliation(s)
- M W Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
7
|
Nordstrand A, Norgren M, Holm SE. Pathogenic mechanism of acute post-streptococcal glomerulonephritis. SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES 2000; 31:523-37. [PMID: 10680980 DOI: 10.1080/00365549950164382] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Considerable knowledge has been accumulated regarding the characteristics of acute post-streptococcal glomerulonephritis (APSGN), and many attempts have been made to identify a streptococcal factor or factors responsible for triggering this disease. However, the pathogenic mechanism behind APSGN remains largely unknown. As glomerular deposition of C3 is generally demonstrated before that of IgG in the disease process, it is likely that the inflammatory response is initiated by renal deposition of a streptococcal product, rather than by deposition of antibodies or pre-formed immune complexes. During recent years, a number of streptococcal products have been suggested to be involved in the pathogenic process. In this review, possible roles of these factors are discussed in the context of the clinical and renal findings most often demonstrated in patients with APSGN. Streptokinase was observed to be required in order to induce signs of APSGN in mice, and a number of findings suggest that the initiation of the disease may occur as a result of renal binding by certain nephritis-associated variants of this protein. However, additional factors may be required for the development of the disease.
Collapse
Affiliation(s)
- A Nordstrand
- Department of Clinical Bacteriology, Umeå university, Sweden
| | | | | |
Collapse
|
8
|
Raeder R, Harokopakis E, Hollingshead S, Boyle MD. Absence of SpeB production in virulent large capsular forms of group A streptococcal strain 64. Infect Immun 2000; 68:744-51. [PMID: 10639442 PMCID: PMC97201 DOI: 10.1128/iai.68.2.744-751.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Passage in human blood of group A streptococcal isolate 64p was previously shown to result in the enhanced expression of M and M-related proteins. Similarly, when this isolate was injected into mice via an air sac model for skin infection, organisms recovered from the spleens showed both increased expression of M and M-related proteins and increased skin-invasive potential. We show that these phenotypic changes were not solely the result of increased transcription of the mRNAs encoding the M and M-related gene products. Rather, the altered expression was associated with posttranslational modifications of the M and M-related proteins that occur in this strain, based on the presence or absence of another virulence protein, the streptococcal cysteine protease SpeB. The phenotypic variability also correlates with colony size variation. Large colonies selected by both regimens expressed more hyaluronic acid, which may explain differences in colony morphology. All large-colony variants were SpeB negative and expressed three distinct immunoglobulin G (IgG)-binding proteins in the M and M-related protein family. Small-colony variants were SpeB positive and bound little IgG through their M and M-related proteins because these proteins, although made, were degraded or altered in profile by the SpeB protease. We conclude that passage in either human blood or a mouse selects for a stable, phase-varied strain of group A streptococci which is altered in many virulence properties.
Collapse
Affiliation(s)
- R Raeder
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43613-5806, USA
| | | | | | | |
Collapse
|
9
|
Hirono I, Yamashita H, Park CI, Yoshida T, Aoki T. Identification of genes in a KG- phenotype of Lactococcus garvieae, a fish pathogenic bacterium, whose proteins react with antiKG- rabbit serum. Microb Pathog 1999; 27:407-17. [PMID: 10588913 DOI: 10.1006/mpat.1999.0316] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Five different clones (SA1B05, SA1B10, SA2F01, SA8A11 and SA9H10) were isolated from the gene library of the Lactococcus garvieae SA8201 (KG-) strain by immunological screening using rabbit serum against L. garvieae (KG-) phenotype cells. A Western blot analysis indicated that the molecular sizes of immunologically detected proteins of SA1B05, SA1B10, SA2F01, SA8A11 and SA9H10, which were fused with LacZ protein, were 25, 30, 28, 26 and 13 kDa, respectively. The amino acid sequences of the immunologically detected proteins of SA1B05, SA1B10, SA2F01 and SA8A11 were homologous to a processing protease of Bacillus subtilis (36.6%), dihydropteroate synthase of Escherichia coli (34.6%), trigger factor of B. subtilis (45.8%) and N-acetylglucosamine-6-phosphate deacetylase of Vibrio furnissii (37.1%), respectively. There was no significant homologous sequence of SA9H10 in DDBJ/EMBL/GenBank and SwissProt. We cloned and sequenced a longer DNA fragment (SA9H10L) of SA9H10 from the gene library. The predicted amino acid sequence of this clone was weak homology to M protein of Streptococcus pyogenes (22.7%). Five genes were specifically expressed in the KG- phenotype strains. However, SA8A11 and SA9H10 was expressed in the mutated strain SA8201-TTC, whose serological phenotype was changed from KG- to KG+ by 2,3,5-triphenyltetrazolium chloride.
Collapse
Affiliation(s)
- I Hirono
- Laboratory of Genetics and Biochemistry, Department of Aquatic Biosciences, Tokyo University of Fisheries, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| | | | | | | | | |
Collapse
|
10
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 946] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
11
|
Facklam R, Beall B, Efstratiou A, Fischetti V, Johnson D, Kaplan E, Kriz P, Lovgren M, Martin D, Schwartz B, Totolian A, Bessen D, Hollingshead S, Rubin F, Scott J, Tyrrell G. emm typing and validation of provisional M types for group A streptococci. Emerg Infect Dis 1999; 5:247-53. [PMID: 10221877 PMCID: PMC2640698 DOI: 10.3201/eid0502.990209] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This report discusses the following issues related to typing of group A streptococci (GAS): The development and use of the 5' emm variable region sequencing (emm typing) in relation to the existing serologic typing system; the designation of emm types in relation to M types; a system for validation of new emm types; criteria for validation of provisional M types to new M-types; a list of reference type cultures for each of the M-type or emm-type strains of GAS; the results of the first culture exchange program for a quality control testing system among the national and World Health Organization collaborating centers for streptococci; and dissemination of new approaches to typing of GAS to the international streptococcal community.
Collapse
Affiliation(s)
- R Facklam
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Winram SB, Lottenberg R. Site-directed mutagenesis of streptococcal plasmin receptor protein (Plr) identifies the C-terminal Lys334 as essential for plasmin binding, but mutation of the plr gene does not reduce plasmin binding to group A streptococci. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2025-2035. [PMID: 9720024 DOI: 10.1099/00221287-144-8-2025] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Plasmin(ogen) binding is a common property of many pathogenic bacteria including group A streptococci. Previous analysis of a putative plasmin receptor protein, Plr, from the group A streptococcal strain 64/14 revealed that it is a glyceraldehyde-3-phosphate dehydrogenase and that the plr gene is present on the chromosome as a single copy. This study continues the functional characterization of Plr as a plasmin receptor. Attempts at insertional inactivation of the plr gene suggested that this single-copy gene may be essential for cell viability. Therefore, an alternative strategy was applied to manipulate this gene in vivo. Site-directed mutagenesis of Plr revealed that a C-terminal lysyl residue is required for wild-type levels of plasmin binding. Mutated Plr proteins expressed in Escherichia coli demonstrated reduced plasmin-binding activity yet retained glyceraldehyde-3-phosphate dehydrogenase activity. A novel integration vector was constructed to precisely replace the wild-type copy of the plr gene with these mutations. Isogenic streptococcal strains expressing altered Plr bound equivalent amounts of plasmin as wild-type streptococci. These data suggest that Plr does not function as a unique plasmin receptor, and underscore the need to identify other plasmin-binding structures on group A streptococci and to assess the importance of the plasminogen system in pathogenesis by inactivation of plasminogen activators and the use of appropriate animal models.
Collapse
Affiliation(s)
- Scott B Winram
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of MedicineBox 100277, Gainesville, FL 32610-0277USA
| | - Richard Lottenberg
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of MedicineBox 100277, Gainesville, FL 32610-0277USA
| |
Collapse
|
13
|
Thern A, Wästfelt M, Lindahl G. Expression of Two Different Antiphagocytic M Proteins by Streptococcus pyogenes of the OF+ Lineage. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.2.860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
All clinical isolates of Streptococcus pyogenes (group A streptococcus) share the ability to resist phagocytosis and grow in human blood. In many strains, this property is due to the expression of a single antiphagocytic M protein, while other strains express more than one M-like molecule, of which the role in phagocytosis resistance is unclear. In particular, all S. pyogenes strains of the OF+ lineage, representing approximately half of all isolates, express two M-like proteins, Mrp and Emm, which are immunologically unrelated. These two proteins bind different ligands that have been implicated in phagocytosis resistance: Mrp binds fibrinogen and Emm binds the complement inhibitor C4BP. Using a clinical isolate of the common serotype 22, we created mutants affected in the mrp and emm genes and characterized them in phagocytosis experiments and by electron microscopy. A double mutant mrp−emm− showed strongly decreased resistance to phagocytosis, while mrp− and emm− single mutants grew well in blood. However, optimal growth required the expression of both Mrp and Emm. Experiments in which coagulation was inhibited using the specific thrombin inhibitor, hirudin, rather than heparin, indicated that Emm is more important than Mrp for resistance to phagocytosis. Tuftlike surface structures typical for S. pyogenes were still present in the mrp−emm− double mutant, but not in a mutant affected in the regulatory gene mga, indicating that the presence of these surface structures is not directly correlated to phagocytosis resistance. Our data imply that OF+ strains of S. pyogenes express two antiphagocytic M proteins with different ligand-binding properties.
Collapse
Affiliation(s)
- Anette Thern
- Department of Medical Microbiology, Lund University, Lund, Sweden
| | - Maria Wästfelt
- Department of Medical Microbiology, Lund University, Lund, Sweden
| | - Gunnar Lindahl
- Department of Medical Microbiology, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Bessen DE, Izzo MW, McCabe EJ, Sotir CM. Two-domain motif for IgG-binding activity by group A streptococcal emm gene products. Gene 1997; 196:75-82. [PMID: 9322743 DOI: 10.1016/s0378-1119(97)00201-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A biological role for the non-immune binding of human IgG by group A streptococci is evidenced by its strong association with a subpopulation of strains giving rise to tissue-specific infection. IgG-binding activity lies within many of the M and M-like surface proteins (encoded by emm genes), and several structurally distinct IgG-binding sites are known to exist. In this report, two adjacent IgG-binding domains, differing in their specificity for human IgG subclasses, are localized within the M-like protein, protein H. The putative coding regions for the two IgG-binding domains were mapped for 82 epidemiologically unrelated strains. Both coding regions are associated with phylogenetically distant emm genes, supporting a role for horizontal transfer and intergenomic recombination in the evolution of emm genes. In most instances, the two coding regions are tightly linked, suggesting that there exist strong selective pressures to maintain a two-domain binding motif. Both coding regions are found among all strains bearing emm gene markers associated with impetigo lesions as the principal tissue reservoir, but are absent from most strains that exhibit markers for a predominant nasopharyngeal reservoir. The data support the hypothesis that the pathogenic potential of an isolate is dictated, at least in part, by its unique array of multifunctional emm gene products.
Collapse
Affiliation(s)
- D E Bessen
- Yale University School of Medicine, Department of Epidemiology and Public Health (Microbiology Section), New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
15
|
Beall B, Facklam R, Hoenes T, Schwartz B. Survey of emm gene sequences and T-antigen types from systemic Streptococcus pyogenes infection isolates collected in San Francisco, California; Atlanta, Georgia; and Connecticut in 1994 and 1995. J Clin Microbiol 1997; 35:1231-5. [PMID: 9114412 PMCID: PMC232734 DOI: 10.1128/jcm.35.5.1231-1235.1997] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The variable 5' emm (M-protein gene) sequences and T-antigen types were determined from 340 systemic group A streptococcal (GAS) isolates taken from hospitalized patients in San Francisco, Calif.; Atlanta, Ga.; and Connecticut in 1994 and 1995. Eighty percent of these isolates had emm sequences and T-antigen types in agreement with previously recorded M- and T-antigen associations. Most of the remaining strains either were T nontypeable (11%) or contained emm genes encoding M proteins for which T-antigen associations have not been made (6%). One newly encountered emm gene, designated ST2974, from each of 13 isolates had the T type 8/25/Imp19. Another new emm gene, ST2967, from 8 of 11 isolates was T nontypeable. Six other unique emm gene sequences from seven isolates were encountered. Sequencing of the variable region of the emm gene of GAS isolates (emm typing) is effective for surveying the sequence variability of the M virulence protein, and combined with T typing, emm typing is useful for monitoring GAS strain diversity.
Collapse
Affiliation(s)
- B Beall
- Childhood and Respiratory Diseases Branch, Centers for Diseases Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | |
Collapse
|
16
|
Jenkinson HF, Lamont RJ. Streptococcal adhesion and colonization. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1997; 8:175-200. [PMID: 9167092 DOI: 10.1177/10454411970080020601] [Citation(s) in RCA: 217] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Streptococci express arrays of adhesins on their cell surfaces that facilitate adherence to substrates present in their natural environment within the mammalian host. A consequence of such promiscuous binding ability is that streptococcal cells may adhere simultaneously to a spectrum of substrates, including salivary glycoproteins, extracellular matrix and serum components, host cells, and other microbial cells. The multiplicity of streptococcal adherence interactions accounts, at least in part, for their success in colonizing the oral and epithelial surfaces of humans. Adhesion facilitates colonization and may be a precursor to tissue invasion and immune modulation, events that presage the development of disease. Many of the streptococcal adhesins and virulence-related factors are cell-wall-associated proteins containing repeated sequence blocks of amino acids. Linear sequences, both within the blocks and within non-repetitive regions of the proteins, have been implicated in substrate binding. Sequences and functions of these proteins among the streptococci have become assorted through gene duplication and horizontal transfer between bacterial populations. Several adhesins identified and characterized through in vitro binding assays have been analyzed for in vivo expression and function by means of animal models used for colonization and virulence. Information on the molecular structure of adhesins as related to their in vivo function will allow for the rational design of novel acellular vaccines, recombinant antibodies, and adhesion agonists for the future control or prevention of streptococcal colonization and streptococcal diseases.
Collapse
Affiliation(s)
- H F Jenkinson
- Department of Oral Biology and Oral Pathology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
17
|
|
18
|
Pack TD, Podbielski A, Boyle MD. Identification of an amino acid signature sequence predictive of protein G-inhibitable IgG3-binding activity in group-A streptococcal IgG-binding proteins. Gene 1996; 171:65-70. [PMID: 8675032 DOI: 10.1016/0378-1119(96)00102-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sequence comparison of six known group-A streptococcal IgG-binding proteins, sharing the common property of protein G-inhibitable IgG3-binding-activity, identified a highly conserved 35-amino-acid (aa) sequence (74-100% similarity) within an EQ-rich central conserved core region of each protein. A search of aa sequence databases identified four additional proteins with > 50% similarity to this consensus sequence. All of these proteins demonstrated protein G-inhibitable IgG3-binding activity. Taken together, these results identify a signature sequence that predicts the presence of a protein G-inhibitable IgG3-binding domain(s) in group-A streptococcal IgG-binding proteins.
Collapse
Affiliation(s)
- T D Pack
- Department of Microbiology, Medical College of Ohio, Toledo 43699-0008, USA
| | | | | |
Collapse
|
19
|
Pack TD, Boyle MD. Characterization of a type II'o group A streptococcal immunoglobulin-binding protein. Mol Immunol 1995; 32:1235-43. [PMID: 8559148 DOI: 10.1016/0161-5890(95)00074-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The opacity factor positive M type 2 group A streptococcal isolate, A207, expresses a unique functional type II'o IgG-binding protein which reacts with all four human IgG subclasses and rabbit IgG. In order to determine the gene product or products responsible for this activity, three genes of the vir regulon from this isolate were cloned, expressed and analysed. The fcr A2 gene coded for a protein binding hyman IgG1, IgG2 and IgG4 but not IgG3. The enn2 gene coded for a protein reacting exclusively with human IgA, while the emmL2 gene product bound IgG1, IgG2, IgG3 and IgG4 as well as rabbit but not horse or pig IgG. The IgG3-binding activity of the EmmL2 protein was functionally indistinguishable from the Form 1 IgG3-binding activity present in heat extracts of group A isolate A207.
Collapse
Affiliation(s)
- T D Pack
- Department of Microbiology, Medical College of Ohio, Toledo 43699-0008, USA
| | | |
Collapse
|
20
|
Crater DL, van de Rijn I. Hyaluronic acid synthesis operon (has) expression in group A streptococci. J Biol Chem 1995; 270:18452-8. [PMID: 7629171 DOI: 10.1074/jbc.270.31.18452] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The has operon is composed of three genes, hasA, hasB, and hasC that encode hyaluronate synthase, UDP-glucose dehydrogenase, and presumptively UDP-glucose pyrophosphorylase, respectively. Expression of the has operon was shown to be required for the synthesis of the hyaluronic acid capsule in group A streptococci. Previous studies indicated that some group A and group C streptococcal strains produce the hyaluronic acid capsule, while others do not. In addition, it was observed that encapsulated strains cultured in stationary phase of growth lose the hyaluronic acid capsule. Therefore, the molecular mechanisms controlling the expression of the hyaluronic acid capsule in group A streptococci was investigated. In this study, it was determined that all encapsulated and unencapsulated strains of group A streptococci as well as encapsulated group C streptococci analyzed possess the has operon locus. The acapsular phenotype was accounted for by the absence of hyaluronate synthase activity in the membrane and not the production of extracellular hyaluronidase. A has operon mRNA transcript was not expressed by unencapsulated strains of group A streptococci, whereas encapsulated strains of group A streptococci grown to mid to late exponential phase produced the hyaluronate capsule, as well as has operon mRNA. However, as the streptococci entered the stationary phase of growth, they became acapsular and this was concomitant with the loss of has operon mRNA transcript. These results were confirmed by primer extension analyses of RNA isolated from encapsulated and unencapsulated strains of group A streptococci as well as RNA prepared from encapsulated strains cultured in exponential and stationary phases of growth. Thus, the loss of has operon mRNA in unencapsulated group A streptococci, as well as growth phase regulation occurs at the previously mapped has operon promoter. These data suggested that the synthesis of the hyaluronic acid capsule for group A streptococci may be controlled by transcriptional mechanisms.
Collapse
Affiliation(s)
- D L Crater
- Wake Forest University Medical Center, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
21
|
Boyle MD, Weber-Heynemann J, Raeder R, Podbielski A. Characterization of a gene coding for a type IIo bacterial IgG-binding protein. Mol Immunol 1995; 32:669-78. [PMID: 7643859 DOI: 10.1016/0161-5890(95)00022-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two antigenic classes of non-immune IgG-binding proteins can be expressed by group A streptococci. One antigenic group of proteins is recognized by an antibody prepared against the product of a cloned fcrA gene (anti-FcRA). In this study, the immunogen used to prepare the antibody that defines the second antigenic class was shown to be the product of the emm-like (emmL) gene of M serotype 55 group A isolate, A928. The emmL55 gene expressed in E. coli produced an M(r) approximately 58,000 molecule which bound human IgG1, IgG2, IgG3 and IgG4, as well as horse, rabbit and pig IgG in a non-immune fashion. These properties are characteristic of the previously described type IIo IgG-binding protein isolated from this strain. In addition, the recombinant protein was reactive with human serum albumin and fibrinogen. The emmL 55 gene sequence was analysed and found to have the organization and sequence characteristics of a typical class I emm-like gene.
Collapse
Affiliation(s)
- M D Boyle
- Department of Microbiology, Medical College of Ohio, Toledo 43699-0008, USA
| | | | | | | |
Collapse
|
22
|
Timoney JF, Walker J, Zhou M, Ding J. Cloning and sequence analysis of a protective M-like protein gene from Streptococcus equi subsp. zooepidemicus. Infect Immun 1995; 63:1440-5. [PMID: 7890407 PMCID: PMC173172 DOI: 10.1128/iai.63.4.1440-1445.1995] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Streptococcus equi subsp. zooepidemicus, a Lancefield group C streptococcus, is a frequently isolated opportunist pathogen from a variety of animal hosts, including the horse. Previous studies have indicated that equine strains carry antigens with characteristics of the antiphagocytic M proteins on the Lancefield groups A and G streptococci. We have cloned a protective M-like protein gene (SzPW60) of an equine strain of S. equi subsp. zooepidemicus W60 and determined its sequence. This gene encodes a protein with a molecular weight of 40,123 which protects mice against subsp. zooepidemicus but not subsp. equi, stimulates antibodies which opsonize subsp. zooepidemicus but not equi, and reacts with antiserum to the protein of the parent strain. The predicted amino acid structure shows significant homology with the carboxy termini of groups A and G M proteins but no other homology. The M-like protein, although showing an extensive region of alpha helix, lacks the A, B, and C repeats found in group A M proteins and has a shorter signal sequence. A proline-rich region upstream from the LPSTGE motif contains 20 repeats of the tetrapeptide PEPK. The presence of this repeat region may account for the slow migration of the M-like protein in sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- J F Timoney
- Gluck Equine Research Center, University of Kentucky, Lexington 40546-0099
| | | | | | | |
Collapse
|
23
|
Podbielski A, Krebs B, Kaufhold A. Genetic variability of the emm-related gene of the large vir regulon of group A streptococci: potential intra- and intergenomic recombination events. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:691-8. [PMID: 8028586 DOI: 10.1007/bf00279579] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One of the most prevalent genetic lineages of group A streptococci (GAS) harbors a genomic locus termed the large vir regulon, which contains an emm gene encoding the antiphagocytic M protein, and structurally related fcrA and enn (emm-related) genes encoding immunoglobulin-binding proteins. In the present study more than 100 large vir regulons from 42 different GAS serotypes were analyzed by PCR and partial DNA sequencing. On comparing these data to published sequences, sites of mutational and putative recombinational events were identified and ordered with respect to their intra/intergenic or intra/intergenomic nature. The emm-related genes were found to display small intragenic deletions or insertions, were completely deleted from, or newly inserted into the genome, or were fused to adjacent genes. Intergenomic exchanges of complete emm-related genes, or segments thereof, between different vir regulons were detected. Most of these processes seem to involve short flanking direct repeats. Occasionally, the structural changes could be correlated with changes in the functions of the encoded proteins.
Collapse
Affiliation(s)
- A Podbielski
- Institute of Medical Microbiology, Technical University (RWTH), Aachen, Germany
| | | | | |
Collapse
|
24
|
Podbielski A, Hawlitzky J, Pack TD, Flosdorff A, Boyle MD. A group A streptococcal Enn protein potentially resulting from intergenomic recombination exhibits atypical immunoglobulin-binding characteristics. Mol Microbiol 1994; 12:725-36. [PMID: 8052125 DOI: 10.1111/j.1365-2958.1994.tb01060.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The gene encoding the Enn protein (enn) of the M untypeable group A streptococcal (GAS) strain 64/14 was amplified by polymerase chain reaction, cloned into the expression vector pJLA602 and expressed in Escherichia coli DH5 alpha. Unlike other GAS-Enn proteins, which exhibit IgA-binding activity, the recombinant Enn enn64/14 protein reacted preferentially with human IgG3. The 1050 bp open reading frame comprising the enn64/14 gene was completely sequenced. The region of the gene encoding the signal peptide and the C-terminus exhibited > 95% homology to corresponding sections of other enn genes. The region of enn64/14 encoding the N-terminus of the mature Enn protein was found to be highly homologous to the corresponding section of the gene encoding the M-like protein of GAS serotype M9 (emmL9). The recombinant protein encoded by emmL9 was found to react with all four human IgG subclasses. About 30% of the 1152 bp open reading frame of emmL9 encoding the N-terminus was found to display > 90% homology to the corresponding section of enn64/14 but was < 50% homologous in the remainder of the gene sequence. The functional analysis of the subcloned N-terminal section of emmL9 demonstrated a polypeptide exhibiting selective binding to human IgG3. These findings suggested that enn64/14 was a hybrid gene formed by recombination of an enn gene and an emmL9 gene. The putative recombinational event could have involved a set of flanking 7 bp direct repeats. Since enn64/14 and emmL9 are genes from different phylogenetic lineages of GAS, this report provides evidence that intergenomic recombinations between different types of GAS genes can occur and could lead to hybrid proteins with unique Ig-binding characteristics.
Collapse
Affiliation(s)
- A Podbielski
- Institute of Medical Microbiology, Technical University RWTH, Aachen, Germany
| | | | | | | | | |
Collapse
|