1
|
Flores Ventura E, Bernabeu M, Callejón-Leblic B, Cabrera-Rubio R, Yeruva L, Estañ-Capell J, Martínez-Costa C, García-Barrera T, Collado MC. Human milk metals and metalloids shape infant microbiota. Food Funct 2024; 15:12134-12145. [PMID: 39584920 DOI: 10.1039/d4fo01929f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Background: The profile of metal(loid)s in human milk is essential for infant growth and development, yet its impact on the development of the infant microbiota remains unclear. Elements, such as manganese, zinc, iron or copper, play crucial roles in influencing infant health. Aim: To investigate the metal(loid) content within human milk and its influence on the infant's gut microbiota within the first 2 months after birth. Methods: Human milk samples and infant stool samples from 77 mother-infant dyads in the MAMI cohort were collected at two time points: the early transitional stage and the mature stage. Metallomic profiling of human milk was conducted using inductively coupled plasma-mass spectrometry (ICP-MS). The infant gut microbiota was profiled through 16S rRNA amplicon sequencing and maternal-infant clinical data were available. Spearman's rank correlation coefficientsprovided insights into metal(loid)-microbiota relationships. Results: Independent cross-sectional analyses of mother-infant pairs at two time points, significant variations in metal concentrations and differences in microbial abundances and diversities were observed. Notably, Bifidobacterium genus abundance was higher during the mature lactation stage. During early lactation, we found a significant positive correlation between infant gut Corynebacterium and human milk nickel concentrations, and negative correlations between Veillonella spp. and antimony, and Enterobacter spp. and copper. Additionally, Simpson's diversity was negatively correlated with iron. In the mature lactation stage, we identified eleven significant correlations between metals and microbiota. Notably, Klebsiella genus showed multiple negative correlations with iron, antimony, and vanadium. Conclusion: Our study highlights the significance of metal(loid)-microbiota interactions in early infant development, indicating that infant gut Klebsiella genus may be particularly vulnerable to fluctuations in metal(loid) levels present in human milk, when compared to other genera. Future research should explore these interactions at a strain level and the implications on infant health and development. This trial was registered as NCT03552939.
Collapse
Affiliation(s)
- Eduard Flores Ventura
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Manuel Bernabeu
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Belén Callejón-Leblic
- Research Centre of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| | - Laxmi Yeruva
- Microbiome and Metabolism Research Unit, USDA-ARS, SEA, Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Javier Estañ-Capell
- Department of Pediatrics, University of Valencia, INCLIVA Biomedical Research Institute, Avenida Blasco Ibáñez 15-17, 46010 Valencia, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, University of Valencia, INCLIVA Biomedical Research Institute, Avenida Blasco Ibáñez 15-17, 46010 Valencia, Spain
| | - Tamara García-Barrera
- Research Centre of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen, Fuerzas Armadas Ave., 21007, Huelva, Spain
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
2
|
Determination of Diphtheria Toxin in Bacterial Cultures by Enzyme Immunoassay. Diagnostics (Basel) 2022; 12:diagnostics12092204. [PMID: 36140605 PMCID: PMC9498204 DOI: 10.3390/diagnostics12092204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Since diphtheria toxin (DT) is the main virulence factor of Corynebacterium diphtheriae and C. ulcerans, the detection of DT in corynebacterial cultures is of utmost importance in the laboratory diagnosis of diphtheria. The need to measure the level of DT production (LTP) arises when studying the virulence of a strain for the purpose of diphtheria agent monitoring. To determine the LTP of diphtheria agents, an immunoassay based on monoclonal antibodies (mAbs) has been developed. A pair of mAbs specific to the fragment B of DT was selected, which makes it possible to detect DT in a sandwich ELISA with a detection limit of DT less than 1 ng/mL. Sandwich ELISA was used to analyze 218 liquid culture supernatants of high-, low- and non-toxigenic strains of various corynebacteria. It was shown that the results of ELISA are in good agreement with the results of PCR and the Elek test for the tox gene and DT detection, respectively. The diagnostic sensitivity of the assay was approximately 99%, and specificity was 100%. It has been found that strains of C. ulcerans, on average, produce 10 times less DT than C. diphtheriae. The mAbs used in the ELISA proved to be quite discriminatory and could be further used for the design of the LFIA, a method that can reduce the labor and cost of laboratory diagnosis of diphtheria.
Collapse
|
3
|
Sharma NC, Efstratiou A, Mokrousov I, Mutreja A, Das B, Ramamurthy T. Diphtheria. Nat Rev Dis Primers 2019; 5:81. [PMID: 31804499 DOI: 10.1038/s41572-019-0131-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 01/09/2023]
Abstract
Diphtheria is a potentially fatal infection mostly caused by toxigenic Corynebacterium diphtheriae strains and occasionally by toxigenic C. ulcerans and C. pseudotuberculosis strains. Diphtheria is generally an acute respiratory infection, characterized by the formation of a pseudomembrane in the throat, but cutaneous infections are possible. Systemic effects, such as myocarditis and neuropathy, which are associated with increased fatality risk, are due to diphtheria toxin, an exotoxin produced by the pathogen that inhibits protein synthesis and causes cell death. Clinical diagnosis is confirmed by the isolation and identification of the causative Corynebacterium spp., usually by bacterial culture followed by enzymatic and toxin detection tests. Diphtheria can be treated with the timely administration of diphtheria antitoxin and antimicrobial therapy. Although effective vaccines are available, this disease has the potential to re-emerge in countries where the recommended vaccination programmes are not sustained, and increasing proportions of adults are becoming susceptible to diphtheria. Thousands of diphtheria cases are still reported annually from several countries in Asia and Africa, along with many outbreaks. Changes in the epidemiology of diphtheria have been reported worldwide. The prevalence of toxigenic Corynebacterium spp. highlights the need for proper clinical and epidemiological investigations to quickly identify and treat affected individuals, along with public health measures to prevent and contain the spread of this disease.
Collapse
Affiliation(s)
- Naresh Chand Sharma
- Laboratory Department, Maharishi Valmiki Infectious Diseases Hospital, Delhi, India
| | - Androulla Efstratiou
- WHO Collaborating Centre for Diphtheria and Streptococcal Infections, Reference Microbiology Division, Public Health England, London, UK
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Ankur Mutreja
- Global Health-Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bhabatosh Das
- Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Thandavarayan Ramamurthy
- Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India.
| |
Collapse
|
4
|
Parveen S, Bishai WR, Murphy JR. Corynebacterium diphtheriae: Diphtheria Toxin, the tox Operon, and Its Regulation by Fe2 + Activation of apo-DtxR. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0063-2019. [PMID: 31267892 PMCID: PMC8713076 DOI: 10.1128/microbiolspec.gpp3-0063-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Indexed: 11/20/2022] Open
Abstract
Diphtheria is one of the most well studied of all the bacterial infectious diseases. These milestone studies of toxigenic Corynebacterium diphtheriae along with its primary virulence determinant, diphtheria toxin, have established the paradigm for the study of other related bacterial protein toxins. This review highlights those studies that have contributed to our current understanding of the structure-function relationships of diphtheria toxin, the molecular mechanism of its entry into the eukaryotic cell cytosol, the regulation of diphtheria tox expression by holo-DtxR, and the molecular basis of transition metal ion activation of apo-DtxR itself. These seminal studies have laid the foundation for the protein engineering of diphtheria toxin and the development of highly potent eukaryotic cell-surface receptor-targeted fusion protein toxins for the treatment of human diseases that range from T cell malignancies to steroid-resistant graft-versus-host disease to metastatic melanoma. This deeper scientific understanding of diphtheria toxin and the regulation of its expression have metamorphosed the third-most-potent bacterial toxin known into a life-saving targeted protein therapeutic, thereby at least partially fulfilling Paul Erlich's concept of a magic bullet-"a chemical that binds to and specifically kills microbes or tumor cells."
Collapse
Affiliation(s)
- Sadiya Parveen
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - William R Bishai
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - John R Murphy
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| |
Collapse
|
5
|
Niman CS, Zuckermann MJ, Balaz M, Tegenfeldt JO, Curmi PMG, Forde NR, Linke H. Fluidic switching in nanochannels for the control of Inchworm: a synthetic biomolecular motor with a power stroke. NANOSCALE 2014; 6:15008-15019. [PMID: 25367216 DOI: 10.1039/c4nr04701j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Synthetic molecular motors typically take nanometer-scale steps through rectification of thermal motion. Here we propose Inchworm, a DNA-based motor that employs a pronounced power stroke to take micrometer-scale steps on a time scale of seconds, and we design, fabricate, and analyze the nanofluidic device needed to operate the motor. Inchworm is a kbp-long, double-stranded DNA confined inside a nanochannel in a stretched configuration. Motor stepping is achieved through externally controlled changes in salt concentration (changing the DNA's extension), coordinated with ligand-gated binding of the DNA's ends to the functionalized nanochannel surface. Brownian dynamics simulations predict that Inchworm's stall force is determined by its entropic spring constant and is ∼ 0.1 pN. Operation of the motor requires periodic cycling of four different buffers surrounding the DNA inside a nanochannel, while keeping constant the hydrodynamic load force on the DNA. We present a two-layer fluidic device incorporating 100 nm-radius nanochannels that are connected through a few-nm-wide slit to a microfluidic system used for in situ buffer exchanges, either diffusionally (zero flow) or with controlled hydrodynamic flow. Combining experiment with finite-element modeling, we demonstrate the device's key performance features and experimentally establish achievable Inchworm stepping times of the order of seconds or faster.
Collapse
Affiliation(s)
- Cassandra S Niman
- Division of Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
6
|
Xiu Z, Liu Y, Mathieu J, Wang J, Zhu D, Alvarez PJJ. Elucidating the genetic basis for Escherichia coli defense against silver toxicity using mutant arrays. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:993-997. [PMID: 24408659 DOI: 10.1002/etc.2514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/12/2013] [Accepted: 12/21/2013] [Indexed: 06/03/2023]
Abstract
Bacterial adaptation and defense mechanisms against silver are poorly understood at the genetic level. A library of Escherichia coli gene-deletion mutants was used to show that clones lacking sodB (coding for oxidative stress protection), lon (protein damage repair), or cusR (metal efflux pump) are quite sensitive to silver (with 7.3 ± 9.1%, 5.3 ± 1.8%, and 0.4 ± 0.1% of cells surviving, respectively, compared with 90.1 ± 5.4% survival for wild-type E. coli, after 6-h exposure to 8 mg/L AgNO(3)), suggesting the importance of the coded functions as defense mechanisms. Mutants lacking pgaB or wcaD, which code for production of extracellular polymeric substances (EPS), also showed significant (p < 0.05) sensitivity to silver exposure (23.4 ± 16.2% and 23.1 ± 32.6% survival, respectively). Transmission electron microscopy (TEM) with scanning TEM/energy-dispersive X-ray spectroscopy analysis showed accumulation of silver nanoparticles within EPS, suggesting that EPS serve as a protective barrier that also immobilizes dissolved silver as silver nanoparticles.
Collapse
Affiliation(s)
- Zongming Xiu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
7
|
Dinu S, Damian M, Badell E, Dragomirescu CC, Guiso N. New diphtheria toxin repressor types depicted in a Romanian collection ofCorynebacterium diphtheriaeisolates. J Basic Microbiol 2013; 54:1136-9. [DOI: 10.1002/jobm.201300686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/24/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Sorin Dinu
- “Cantacuzino” National Institute of Research and Development for Microbiology and Immunology; Molecular Epidemiology Laboratory; Bucharest Romania
| | - Maria Damian
- “Cantacuzino” National Institute of Research and Development for Microbiology and Immunology; Molecular Epidemiology Laboratory; Bucharest Romania
| | - Edgar Badell
- Institut Pasteur; Molecular Prevention and Therapy of Human Diseases; Paris France
- CNRS URA-3012; Paris; France
| | - Cristiana Cerasella Dragomirescu
- “Cantacuzino” National Institute of Research and Development for Microbiology and Immunology; Bacterial Respiratory Infections Laboratory; Bucharest Romania
- “Carol Davila” University of Medicine and Pharmacy, Department of Microbiology; Bucharest Romania
| | - Nicole Guiso
- Institut Pasteur; Molecular Prevention and Therapy of Human Diseases; Paris France
- CNRS URA-3012; Paris; France
| |
Collapse
|
8
|
Persistence of nontoxigenic Corynebacterium diphtheriae biotype gravis strains in Pondicherry, Southern India. J Clin Microbiol 2010; 49:763-4. [PMID: 21159931 DOI: 10.1128/jcm.01543-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Fauquant C, Diederix REM, Rodrigue A, Dian C, Kapp U, Terradot L, Mandrand-Berthelot MA, Michaud-Soret I. pH dependent Ni(II) binding and aggregation of Escherichia coli and Helicobacter pylori NikR. Biochimie 2006; 88:1693-705. [PMID: 16930800 DOI: 10.1016/j.biochi.2006.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 07/19/2006] [Indexed: 11/30/2022]
Abstract
NikR proteins are bacterial metallo-regulatory transcription factors that control the expression of the nickel uptake system and/or nickel containing enzymes such as urease, and are involved in the acid stress response. Here, a comparative study is reported on NikR from Helicobacter pylori (HpNikR) and Escherichia coli (EcNikR), as well as the Q2E mutant of EcNikR. Most attention was focused on the Ni(II) binding properties of these proteins, as a function of pH. The influence of the pH on the Ni(II) binding and aggregation properties was studied using gel filtration analysis and UV-visible absorption spectroscopy in the presence of an increasing concentration of nickel. Q2E and wt EcNikR are identical in Ni(II) binding but the Q2E mutant is impaired to some extent in DNA-binding. For EcNikR it is shown that between pH 6 and 8, addition of Ni(II) above 1 equiv. induces mass aggregation and precipitation, concomitant with binding of Ni(II) up to a maximum of 5-8 Ni(II) ions per monomer. The Ni(II) site with highest affinity is the well-described square planar site with three histidines and one cysteine ligands. Aggregation is complete in the presence of less than 1 extra equiv. of Ni(II) and aggregation is fully reversible and precipitates are rapidly solubilized by addition of EDTA. The sensitivity of EcNikR to aggregation decreases with decreasing pH, concurrent with histidines being the main ligands of the site responsible for aggregation. HpNikR does not display aggregation except at alkaline pH, where 3 Ni(II) equiv. are needed. The participation of a cluster consisting of surface-exposed histidines present in EcNikR but not in HpNikR, is proposed to be involved in aggregation. Our results on HpNikR are compatible with the crystallographic data and with the ability of this protein to bind more than one nickel.
Collapse
Affiliation(s)
- C Fauquant
- Laboratoire de Physicochimie Des Métaux en Biologie, Département Réponse et Dynamique et Cellulaires, CEA-Grenoble, 17, avenue des Martyrs, 38054 Grenoble cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
D'Aquino JA, Tetenbaum-Novatt J, White A, Berkovitch F, Ringe D. Mechanism of metal ion activation of the diphtheria toxin repressor DtxR. Proc Natl Acad Sci U S A 2005; 102:18408-13. [PMID: 16352732 PMCID: PMC1317899 DOI: 10.1073/pnas.0500908102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10(-7), binding site 2 (primary) is a low-affinity binding site with a binding constant of 6.3 x 10(-4). These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A,C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.
Collapse
|
11
|
Bates CS, Toukoki C, Neely MN, Eichenbaum Z. Characterization of MtsR, a new metal regulator in group A streptococcus, involved in iron acquisition and virulence. Infect Immun 2005; 73:5743-53. [PMID: 16113291 PMCID: PMC1231137 DOI: 10.1128/iai.73.9.5743-5753.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group A streptococcus (GAS) is a common pathogen of the human skin and mucosal surfaces capable of producing a variety of diseases. In this study, we investigated regulation of iron uptake in GAS and the role of a putative transcriptional regulator named MtsR (for Mts repressor) with homology to the DtxR family of metal-dependent regulatory proteins. An mtsR mutant was constructed in NZ131 (M49 serotype) and analyzed. Western blot and RNA analysis showed that mtsR inactivation results in constitutive transcription of the sia (streptococcal iron acquisition) operon, which was negatively regulated by iron in the parent strain. A recombinant MtsR with C-terminal His(6) tag fusion (rMtsR) was cloned and purified. Electrophoretic mobility gel shift assays demonstrated that rMtsR specifically binds to the sia promoter region in an iron- and manganese-dependent manner. Together, these observations indicate that MtsR directly represses the sia operon during cell growth under conditions of high metal levels. Consistent with deregulation of iron uptake, the mtsR mutant is hypersensitive to streptonigrin and hydrogen peroxide, and (55)Fe uptake assays demonstrate that it accumulates 80% +/- 22.5% more iron than the wild-type strain during growth in complete medium. Studies with a zebrafish infection model revealed that the mtsR mutant is attenuated for virulence in both the intramuscular and the intraperitoneal routes. In conclusion, MtsR, a new regulatory protein in GAS, controls iron homeostasis and has a role in disease production.
Collapse
Affiliation(s)
- Christopher S Bates
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|
12
|
Flores FJ, Barreiro C, Coque JJR, Martín JF. Functional analysis of two divalent metal-dependent regulatory genes dmdR1 and dmdR2 in Streptomyces coelicolor and proteome changes in deletion mutants. FEBS J 2005; 272:725-35. [PMID: 15670153 DOI: 10.1111/j.1742-4658.2004.04509.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In Gram-positive bacteria, the expression of iron-regulated genes is mediated by a class of divalent metal-dependent regulatory (DmdR) proteins. We cloned and characterized two dmdR genes of Streptomyces coelicolor that were located in two different nonoverlapping cosmids. Functional analysis of dmdR1 and dmdR2 was performed by deletion of each copy. Deletion of dmdR1 resulted in the derepression of at least eight proteins and in the repression of three others, as shown by 2D proteome analysis. These 11 proteins were characterized by MALDI-TOF peptide mass fingerprinting. The proteins that show an increased level in the mutant correspond to a DNA-binding hemoprotein, iron-metabolism proteins and several divalent metal-regulated enzymes. The levels of two other proteins--a superoxide dismutase and a specific glutamatic dehydrogenase--were found to decrease in this mutant. Complementation of the dmdR1-deletion mutant with the wild-type dmdR1 allele restored the normal proteome profile. By contrast, deletion of dmdR2 did not affect significantly the protein profile of S. coelicolor. One of the proteins (P1, a phosphatidylethanolamine-binding protein), overexpressed in the dmdR1-deleted mutant, is encoded by ORF3 located immediately upstream of dmdR2; expression of both ORF3 and dmdR2 is negatively controlled by DmdR1. Western blot analysis confirmed that dmdR2 is only expressed when dmdR1 is disrupted. Species of Streptomyces have evolved an elaborated regulatory mechanism mediated by the DmdR proteins to control the expression of divalent metal-regulated genes.
Collapse
Affiliation(s)
- Francisco J Flores
- Area de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Spain
| | | | | | | |
Collapse
|
13
|
De Zoysa A, Efstratiou A, Hawkey PM. Molecular characterization of diphtheria toxin repressor (dtxR) genes present in nontoxigenic Corynebacterium diphtheriae strains isolated in the United Kingdom. J Clin Microbiol 2005; 43:223-8. [PMID: 15634975 PMCID: PMC540142 DOI: 10.1128/jcm.43.1.223-228.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontoxigenic strains of Corynebacterium diphtheriae represent a potential reservoir for the emergence of toxigenic C. diphtheriae strains if they possessed functional diphtheria toxin repressor (dtxR) genes. We studied the predominant strain of nontoxigenic C. diphtheriae circulating in the United Kingdom to see if they possessed dtxR genes and ascertain whether they were functional. A total of 26 nontoxigenic C. diphtheriae strains isolated in the United Kingdom during 1995 and 4 nontoxigenic strains isolated in other countries were analyzed by PCR and direct sequencing to determine the presence and intactness of the dtxR genes. The functionality of the DtxR proteins was assayed by testing for the production of siderophore in medium containing high and low concentrations of iron. PCR amplification and sequence analysis of the dtxR genes revealed four variants of the predicted DtxR protein among the nontoxigenic strains isolated in the United Kingdom. Production of siderophore in medium containing a low concentration of iron and repression of siderophore production in medium containing a high concentration of iron demonstrated that in all the strains the dtxR genes were functional. These findings demonstrate that, if lysogenised by a bacteriophage, nontoxigenic strains circulating in the United Kingdom could produce toxin and therefore represent a potential reservoir for toxigenic C. diphtheriae.
Collapse
Affiliation(s)
- Aruni De Zoysa
- Respiratory and Systemic Infection Laboratory, Specialist and Reference Microbiology Division, Health Protection Agency, London NW9 5HT, United Kingdom.
| | | | | |
Collapse
|
14
|
Oram DM, Must LM, Spinler JK, Twiddy EM, Holmes RK. Analysis of truncated variants of the iron dependent transcriptional regulators fromCorynebacterium diphtheriaeandMycobacterium tuberculosis. FEMS Microbiol Lett 2005; 243:1-8. [PMID: 15667993 DOI: 10.1016/j.femsle.2004.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 11/12/2004] [Accepted: 11/15/2004] [Indexed: 11/19/2022] Open
Abstract
Iron dependent regulatory proteins of the diphtheria toxin repressor family regulate transcription in a variety of bacterial species. These regulators have three domains. Domains 1 and 2 are required for DNA- and metal-binding while the role of the third domain is only partially defined. We compared full-length and carboxyl-terminally truncated variants of Corynebacterium diphtheriae DtxR and Mycobacterium tuberculosis IdeR for recognition by antibodies, DNA binding, and repressor activity. The third domain of DtxR contains immunodominant epitopes and is required for full repressor activity in an Escherichia coli reporter system, but it is not required for binding to DNA in vitro. In contrast, the third domain of IdeR is required both for full DNA binding activity in vitro and for repressor activity in vivo. DtxR and IdeR differ significantly in their requirements for domain 3 for DNA-binding and repressor activity.
Collapse
Affiliation(s)
- Diana Marra Oram
- Department of Microbiology, University of Colorado Health Sciences Center, Campus Box B-175, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
15
|
Spiering MM, Ringe D, Murphy JR, Marletta MA. Metal stoichiometry and functional studies of the diphtheria toxin repressor. Proc Natl Acad Sci U S A 2003; 100:3808-13. [PMID: 12655054 PMCID: PMC153003 DOI: 10.1073/pnas.0737977100] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diphtheria toxin repressor (DtxR) is a transition metal ion-activated repressor in Corynebacterium diphtheriae. DtxR is an iron sensor; metal-bound DtxR represses transcription of genes downstream of the tox operator. Wild-type DtxR [DtxR(wt)] and several mutant forms were overexpressed and purified from Escherichia coli. DtxR was isolated without bound metal. Metal reconstitution gave a binding stoichiometry of 2 per monomer for DtxR(wt) and 1 per monomer for DtxR(H79A) and DtxR(M10A). DNA binding of DtxR(H79A) and DtxR(M10A) indicates that metal site 2 is essential for activity. Metal binding lowers the dimerization K(d) of DtxR from low micromolar to 33 nM. Gel electrophoretic mobility-shift assays show that Fe(2+) and not Fe(3+) activates DtxR for DNA binding. This finding suggests that gene regulation by DtxR may be sensitive not only to iron levels but also to redox state of the iron. Mutations in the tox operator sequence indicate that DtxR dimers binding to DNA may be highly cooperative.
Collapse
Affiliation(s)
- Michelle M Spiering
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
16
|
Qian Y, Lee JH, Holmes RK. Identification of a DtxR-regulated operon that is essential for siderophore-dependent iron uptake in Corynebacterium diphtheriae. J Bacteriol 2002; 184:4846-56. [PMID: 12169610 PMCID: PMC135300 DOI: 10.1128/jb.184.17.4846-4856.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) uses Fe(2+) as a corepressor and inhibits transcription from iron-regulated promoters (IRPs) in Corynebacterium diphtheriae. A new IRP, designated IRP6, was cloned from C. diphtheriae by a SELEX-like procedure. DtxR bound to IRP6 in vitro only in the presence of appropriate divalent metal ions, and repression of IRP6 by DtxR in an Escherichia coli system was iron dependent. The open reading frames (ORFs) downstream from IRP6 and previously described promoter IRP1 were found to encode proteins homologous to components of ATP-binding cassette (ABC) transport systems involved in high-affinity iron uptake in other bacteria. IRP1 and IRP6 were repressed under high-iron conditions in wild-type C. diphtheriae C7(beta), but they were expressed constitutively in C7(beta) mutant strains HC1, HC3, HC4, and HC5, which were shown previously to be defective in corynebactin-dependent iron uptake. A clone of the wild-type irp6 operon (pCM6ABC) complemented the constitutive corynebactin production phenotype of HC1, HC4, and HC5 but not of HC3, whereas a clone of the wild-type irp1 operon failed to complement any of these strains. Complementation by subclones of pCM6ABC demonstrated that mutant alleles of irp6A, irp6C, and irp6B were responsible for the phenotypes of HC1, HC4, and HC5, respectively. The irp6A allele in HC1 and the irp6B allele in HC5 encoded single amino acid substitutions in their predicted protein products, and the irp6C allele in HC4 caused premature chain termination of its predicted protein product. Strain HC3 was found to have a chain-terminating mutation in dtxR in addition to a missense mutation in its irp6B allele. These findings demonstrated that the irp6 operon in C. diphtheriae encodes a putative ABC transporter, that specific mutant alleles of irp6A, irp6B, and irp6C are associated with defects in corynebactin-dependent iron uptake, and that complementation of these mutant alleles restores repression of corynebactin production under high-iron growth conditions, most likely as a consequence of restoring siderophore-dependent iron uptake mediated by the irp6 operon.
Collapse
Affiliation(s)
- Yilei Qian
- Department of Microbiology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | |
Collapse
|
17
|
Twigg PD, Parthasarathy G, Guerrero L, Logan TM, Caspar DL. Disordered to ordered folding in the regulation of diphtheria toxin repressor activity. Proc Natl Acad Sci U S A 2001; 98:11259-64. [PMID: 11572979 PMCID: PMC58717 DOI: 10.1073/pnas.191354798] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2001] [Indexed: 11/18/2022] Open
Abstract
Understanding how metal binding regulates the activity of the diphtheria toxin repressor protein (DtxR) requires information about the structure in solution. We have prepared a DtxR mutant construct with three additional N-terminal residues, Gly-Ser-His-DtxR(Cys-102 --> Asp), that retains metal-binding capabilities, but remains monomeric in solution and does not bind DNA under conditions that effect dimerization and DNA binding in the functional DtxR(Cys-102 --> Asp) construct. Although the interaction properties of this inactive mutant in solution are very different from that of active repressors, crystallization imposes the same dimeric structure as observed in all crystal forms of the active repressor with and without bound metal. Our solution NMR analyses of active and inactive metal-free diphtheria toxin repressors demonstrate that whereas the C-terminal one-third of the protein is well ordered, the N-terminal two-thirds exhibits conformational flexibility and exists as an ensemble of structural substates with undefined tertiary structure. Fluorescence binding assays with 1-anilino naphthalene-8-sulfonic acid (ANS) confirm that the highly alpha-helical N-terminal two-thirds of the apoprotein is molten globule-like in solution. Binding of divalent metal cations induces a substantial conformational reorganization to a more ordered state, as evidenced by changes in the NMR spectra and ANS binding. The evident disorder to order transition upon binding of metal in solution is in contrast to the minor conformational changes seen comparing apo- and holo-DtxR crystal structures. Disordered to ordered folding appears to be a general mechanism for regulating specific recognition in protein action and this mechanism provides a plausible explanation for how metal binding controls the DtxR repressor activity.
Collapse
Affiliation(s)
- P D Twigg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | |
Collapse
|
18
|
Holmes RK. Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis 2000; 181 Suppl 1:S156-67. [PMID: 10657208 DOI: 10.1086/315554] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Diphtheria toxin (DT) is an extracellular protein of Corynebacterium diphtheriae that inhibits protein synthesis and kills susceptible cells. The gene that encodes DT (tox) is present in some corynephages, and DT is only produced by C. diphtheriae isolates that harbor tox+ phages. The diphtheria toxin repressor (DtxR) is a global regulatory protein that uses Fe2+ as co-repressor. Holo-DtxR represses production of DT, corynebacterial siderophore, heme oxygenase, and several other proteins. Diagnostic tests for toxinogenicity of C. diphtheriae are based either on immunoassays or on bioassays for DT. Molecular analysis of tox and dtxR genes in recent clinical isolates of C. diphtheriae revealed several tox alleles that encode identical DT proteins and multiple dtxR alleles that encode five variants of DtxR protein. Therefore, recent clinical isolates of C. diphtheriae produce a single antigenic type of DT, and diphtheria toxoid continues to be an effective vaccine for immunization against diphtheria.
Collapse
Affiliation(s)
- R K Holmes
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| |
Collapse
|
19
|
Pohl E, Holmes RK, Hol WG. Crystal structure of a cobalt-activated diphtheria toxin repressor-DNA complex reveals a metal-binding SH3-like domain. J Mol Biol 1999; 292:653-67. [PMID: 10497029 DOI: 10.1006/jmbi.1999.3073] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The diphtheria toxin repressor (DtxR) is the prototype of a family of iron-dependent regulator (IdeR) proteins, which are activated by divalent iron and bind DNA to prevent the transcription of downstream genes. In Corynebacterium diphtheriae, DtxR regulates not only the expression of diphtheria toxin encoded by a corynebacteriophage, but also of components of the siderophore-mediated iron-transport system. Here we report the crystal structure of wild-type DtxR, a 226 residue three-domain dimeric protein, activated by cobalt and bound to a 21 bp DNA duplex based on the consensus operator sequence. Two DtxR dimers surround the DNA duplex which is distorted compared to canonical B -DNA. The SH3-like third domain interacts with the metal at site 1 via the side-chains of Glu170 and Gln173, revealing for the first time a metal-binding function for this class of domains. The SH3-like domain is also in contact with the DNA-binding first domain and with the second, or dimerization, domain. The DNA-binding helices in the first domain are shifted by 3 to 5 A when compared to the apo-repressor, and fit into the major groove of the duplex bound. These shifts are due to a hinge-binding motion of the DNA-binding domain with respect to the dimerization domains of DtxR. The third domain might play a role in regulating this hinge motion.
Collapse
Affiliation(s)
- E Pohl
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
20
|
Dussurget O, Timm J, Gomez M, Gold B, Yu S, Sabol SZ, Holmes RK, Jacobs WR, Smith I. Transcriptional control of the iron-responsive fxbA gene by the mycobacterial regulator IdeR. J Bacteriol 1999; 181:3402-8. [PMID: 10348851 PMCID: PMC93806 DOI: 10.1128/jb.181.11.3402-3408.1999] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exochelin is the primary extracellular siderophore of Mycobacterium smegmatis, and the iron-regulated fxbA gene encodes a putative formyltransferase, an essential enzyme in the exochelin biosynthetic pathway (E. H. Fiss, Y. Yu, and W. R. Jacobs, Jr., Mol. Microbiol. 14:557-569, 1994). We investigated the regulation of fxbA by the mycobacterial IdeR, a homolog of the Corynebacterium diphtheriae iron regulator DtxR (M. P. Schmitt, M. Predich, L. Doukhan, I. Smith, and R. K. Holmes, Infect. Immun. 63:4284-4289, 1995). Gel mobility shift experiments showed that IdeR binds to the fxbA regulatory region in the presence of divalent metals. DNase I footprinting assays indicated that IdeR binding protects a 28-bp region containing a palindromic sequence of the fxbA promoter that was identified in primer extension assays. fxbA regulation was measured in M. smegmatis wild-type and ideR mutant strains containing fxbA promoter-lacZ fusions. These experiments confirmed that fxbA expression is negatively regulated by iron and showed that inactivation of ideR results in iron-independent expression of fxbA. However, the levels of its expression in the ideR mutant were approximately 50% lower than those in the wild-type strain under iron limitation, indicating an undefined positive role of IdeR in the regulation of fxbA.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Cations, Divalent/pharmacology
- DNA Footprinting
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Bacterial/drug effects
- Genes, Bacterial/genetics
- Genes, Reporter
- Hydroxymethyl and Formyl Transferases/genetics
- Iron/pharmacology
- Mutation
- Mycobacterium/drug effects
- Mycobacterium/enzymology
- Mycobacterium/genetics
- Promoter Regions, Genetic/genetics
- Protein Binding/drug effects
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Repressor Proteins
- Response Elements/genetics
- Sequence Homology, Amino Acid
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- O Dussurget
- TB Center, Public Health Research Institute, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang G, Wylie GP, Twigg PD, Caspar DL, Murphy JR, Logan TM. Solution structure and peptide binding studies of the C-terminal src homology 3-like domain of the diphtheria toxin repressor protein. Proc Natl Acad Sci U S A 1999; 96:6119-24. [PMID: 10339551 PMCID: PMC26845 DOI: 10.1073/pnas.96.11.6119] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diphtheria toxin repressor (DtxR) is the best-characterized member of a family of homologous proteins that regulate iron uptake and virulence gene expression in the Gram-positive bacteria. DtxR contains two domains that are separated by a short, unstructured linker. The N-terminal domain is structurally well-defined and is responsible for Fe2+ binding, dimerization, and DNA binding. The C-terminal domain adopts a fold similar to eukaryotic Src homology 3 domains, but the functional role of the C-terminal domain in repressor activity is unknown. The solution structure of the C-terminal domain, consisting of residues N130-L226 plus a 13-residue N-terminal extension, has been determined by using NMR spectroscopy. Residues before A147 are highly mobile and adopt a random coil conformation, but residues A147-L226 form a single structured domain consisting of five beta-strands and three helices arranged into a partially orthogonal, two-sheet beta-barrel, similar to the structure observed in the crystalline Co2+ complex of full-length DtxR. Chemical shift perturbation studies demonstrate that a proline-rich peptide corresponding to residues R125-G139 of intact DtxR binds to the C-terminal domain in a pocket formed by residues in beta-strands 2, 3, and 5, and helix 3. Binding of the proline-rich peptide by the C-terminal domain of DtxR presents an example of peptide binding by a prokaryotic Src homology 3-like protein. The results of this study, combined with previous x-ray studies of intact DtxR, provide insights into a possible biological function of the C-terminal domain in regulating repressor activity.
Collapse
Affiliation(s)
- G Wang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | |
Collapse
|
22
|
Goranson-Siekierke J, Pohl E, Hol WG, Holmes RK. Anion-coordinating residues at binding site 1 are essential for the biological activity of the diphtheria toxin repressor. Infect Immun 1999; 67:1806-11. [PMID: 10085021 PMCID: PMC96531 DOI: 10.1128/iai.67.4.1806-1811.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The homodimeric diphtheria toxin repressor (DtxR) uses Fe2+ as a corepressor, binds to iron-regulated promoters, and negatively regulates the syntheses of diphtheria toxin, corynebacterial siderophore, and several other Corynebacterium diphtheriae products. The crystal structure of DtxR shows that the second domain of each monomer has two binding sites for Fe2+ or certain other divalent metal ions. In addition, site 1 binds a sulfate or phosphate anion, suggesting that phosphate may function intracellularly as a co-corepressor. The effects of alanine substitutions for selected residues in sites 1 and 2 were determined by measuring the beta-galactosidase activities of a tox operator/promoter-lacZ reporter construct in Escherichia coli strains expressing each DtxR variant. Our studies demonstrated that single alanine substitutions for the anion-binding residues in site 1 (R80A, S126A, or N130A) caused severely decreased DtxR activity, similar to the effects of alanine substitutions for metal-binding residues in site 2 (C102A, E105A, or H106A) and greater than the effects of alanine substitutions for metal-binding residues in site 1 (H79A, E83A, or H98A) reported previously by other investigators. Various combinations of alanine substitutions for site 1 and site 2 residues were also analyzed to further elucidate the roles of these cation- and anion-binding ligands in DtxR activity. Furthermore, the interaction between residue E20 in the DNA binding domain and R80 in anion/cation binding site 1 was analyzed, and the E20A variant of DtxR was shown to have a phenotype indistinguishable from that of the R80A variant. Our data demonstrated for the first time that the anion-binding residues R80, S126, and N130 at site 1 are essential for DtxR activity. The data also showed that the interaction of E20 in domain 1 with R80 in domain 2, first revealed by X-ray crystallography in apo-DtxR and holo-DtxR, is a structural feature of DtxR that is important for its repressor activity.
Collapse
Affiliation(s)
- J Goranson-Siekierke
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
23
|
Pohl E, Holmes RK, Hol WG. Crystal structure of the iron-dependent regulator (IdeR) from Mycobacterium tuberculosis shows both metal binding sites fully occupied. J Mol Biol 1999; 285:1145-56. [PMID: 9887269 DOI: 10.1006/jmbi.1998.2339] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron-dependent regulators are a family of metal-activated DNA binding proteins found in several Gram-positive bacteria. These proteins are negative regulators of virulence factors and of proteins of bacterial iron-uptake systems. In this study we present the crystal structure of the iron-dependent regulator (IdeR) from Mycobacterium tuberculosis, the causative agent of tuberculosis. The protein crystallizes in the hexagonal space group P62 with unit cell dimensions a=b=92.6 A, c=63.2 A. The current model comprises the N-terminal DNA-binding domain (residues 1-73) and the dimerization domain (residues 74-140), while the third domain (residues 141-230) is too disordered to be included. The molecule lies on a crystallographic 2-fold axis that generates the functional dimer. The overall structure of the monomer shares many features with the homologous regulator, diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae. The IdeR structure in complex with Zinc reported here is, however, the first wild-type repressor structure with both metal binding sites fully occupied. This crystal structure reveals that both Met10 and most probably the Sgamma of Cys102 are ligands of the second metal binding site. In addition, there are important changes in the tertiary structure between apo-DtxR and holo-IdeR bringing the putative DNA binding helices closer together in the holo repressor. The mechanism by which metal binding may cause these structural changes between apo and holo wild-type repressor is discussed.
Collapse
Affiliation(s)
- E Pohl
- Departments of Biological Structure and Biochemistry, Biomolecular Structure Center
| | | | | |
Collapse
|
24
|
Hill PJ, Cockayne A, Landers P, Morrissey JA, Sims CM, Williams P. SirR, a novel iron-dependent repressor in Staphylococcus epidermidis. Infect Immun 1998; 66:4123-9. [PMID: 9712757 PMCID: PMC108495 DOI: 10.1128/iai.66.9.4123-4129.1998] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Staphylococcus epidermidis and Staphylococcus aureus, a number of cell wall- and cytoplasmic membrane-associated lipoproteins are induced in response to iron starvation. To gain insights into the molecular basis of iron-dependent gene regulation in the staphylococci, we sequenced the DNA upstream of the 3-kb S. epidermidis sitABC operon, which Northern blot analysis indicates is transcriptionally regulated by the growth medium iron content. We identified two DNA sequences which are homologous to elements of the Corynebacterium diphtheriae DtxR regulon, which controls, in response to iron stress, for example, production of diphtheria toxin, siderophore, and a heme oxygenase. Upstream of the sitABC operon and divergently transcribed lies a 645-bp open reading frame (ORF), which codes for a polypeptide of approximately 25 kDa with homology to the DtxR family of metal-dependent repressor proteins. This ORF has been designated SirR (staphylococcal iron regulator repressor). Within the sitABC promoter/operator region, we also located a region of dyad symmetry overlapping the transcriptional start of sitABC which shows high homology to the DtxR operator consensus sequence, suggesting that this region, termed the Sir box, is the SirR-binding site. The SirR protein was overexpressed, purified, and used in DNA mobility shift assays; SirR retarded the migration of a synthetic oligonucleotide based on the Sir box in a metal (Fe2+ or Mn2+)-dependent manner, providing confirmatory evidence that this motif is the SirR-binding site. Furthermore, Southern blot analysis of staphylococcal chromosomal DNA with the synthetic Sir box as a probe confirmed that there are at least five Sir boxes in the S. epidermidis genome and at least three in the genome of S. aureus, suggesting that SirR controls the expression of multiple target genes. Using a monospecific polyclonal antibody raised against SirR to probe Western blots of whole-cell lysates of S. aureus, S. carnosus, S. epidermidis, S. hominis, S. cohnii, S. lugdunensis, and S. haemolyticus, we identified an approximately 25-kDa cross-reactive protein in each of the staphylococcal species examined. Taken together, these data suggest that SirR functions as a divalent metal cation-dependent transcriptional repressor which is widespread among the staphylococci.
Collapse
Affiliation(s)
- P J Hill
- Institute of Infections and Immunity, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| | | | | | | | | | | |
Collapse
|
25
|
White A, Ding X, vanderSpek JC, Murphy JR, Ringe D. Structure of the metal-ion-activated diphtheria toxin repressor/tox operator complex. Nature 1998; 394:502-6. [PMID: 9697776 DOI: 10.1038/28893] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The virulent phenotype of the pathogenic bacterium Corynebacterium diphtheriae is conferred by diphtheria toxin, whose expression is an adaptive response to low concentrations of iron. The expression of the toxin gene (tox) is regulated by the repressor DtxR, which is activated by transition metal ions. X-ray crystal structures of DtxR with and without (apo-form) its coordinated transition metal ion have established the general architecture of the repressor, identified the location of the metal-binding sites, and revealed a metal-ion-triggered subunit-subunit 'caliper-like' conformational change. Here we report the three-dimensional crystal structure of the complex between a biologically active Ni(II)-bound DtxR(C102D) mutant, in which a cysteine is replaced by an aspartate at residue 102, and a 33-base-pair DNA segment containing the toxin operator toxO. This structure shows that DNA interacts with two dimeric repressor proteins bound to opposite sides of the tox operator. We propose that a metal-ion-induced helix-to-coil structural transition in the amino-terminal region of the protein is partly responsible for the unique mode of repressor activation by transition metal ions.
Collapse
Affiliation(s)
- A White
- Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | | | | | | | |
Collapse
|
26
|
Westenberg DJ, Guerinot ML. Regulation of bacterial gene expression by metals. ADVANCES IN GENETICS 1998; 36:187-238. [PMID: 9348656 DOI: 10.1016/s0065-2660(08)60310-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- D J Westenberg
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
27
|
Lee JH, Wang T, Ault K, Liu J, Schmitt MP, Holmes RK. Identification and characterization of three new promoter/operators from Corynebacterium diphtheriae that are regulated by the diphtheria toxin repressor (DtxR) and iron. Infect Immun 1997; 65:4273-80. [PMID: 9317037 PMCID: PMC175613 DOI: 10.1128/iai.65.10.4273-4280.1997] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
DtxR is a dimeric, sequence-specific, DNA-binding protein that functions as an iron-dependent, negative global regulator in Corynebacterium diphtheriae. Under high-iron conditions, DtxR represses the synthesis of diphtheria toxin, corynebacterial siderophore, and other components of the high-affinity iron uptake system. Three DtxR-regulated promoter/operators designated tox, IRP1, and IRP2 were reported previously. In this study, we identified and characterized three additional DtxR-regulated promoter/operators from C. diphtheriae designated IRP3, IRP4, and IRP5. When beta-galactosidase was expressed from these three new promoter/ operators in Escherichia coli containing dtxR+ on pDSK29, enzyme levels were 5- to 30-fold lower during high-iron growth than during low-iron growth. In gel shift assays, the mobility of DNA fragments containing each promoter/operator decreased in the presence of purified DtxR and Co2+. In footprinting assays, DtxR protected 36-, 35-, and 30-bp regions of IRP3, IRP4, and IRP5, respectively, from cleavage by DNase I. In the 19-bp core of each promoter/operator, 12 or 13 bp matched the consensus for the DtxR-binding site. The putative polypeptides encoded by the open reading frames (ORFs) downstream from IRP3 and IRP4 were homologous, respectively, to several bacterial transcriptional regulators and to the deduced polypeptide encoded by an ORF located between the E. coli genes for primosomal replication protein N and adenine phosphoribosyltransferase. The putative polypeptide encoded by the ORF downstream from IRP5 was not homologous to any sequence in the protein database at the National Center for Biotechnology Information. When the ORFs downstream from IRP3 and IRP4 were expressed under the control of the phage T7 promoter in E. coli, polypeptide products of the predicted sizes were detected in small amounts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- J H Lee
- Department of Microbiology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
28
|
Hardham JM, Stamm LV, Porcella SF, Frye JG, Barnes NY, Howell JK, Mueller SL, Radolf JD, Weinstock GM, Norris SJ. Identification and transcriptional analysis of a Treponema pallidum operon encoding a putative ABC transport system, an iron-activated repressor protein homolog, and a glycolytic pathway enzyme homolog. Gene 1997; 197:47-64. [PMID: 9332349 DOI: 10.1016/s0378-1119(97)00234-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have characterized a 5.2-kilobase (kb) putative transport related operon (tro) locus of Treponema pallidum subsp. pallidum (Nichols strain) (Tp) encoding six proteins: TroA, TroB, TroC, TroD, TroR and Phosphoglycerate mutase (Pgm). Four of these gene products (TroA-TroD) are homologous to members of the ATP-Binding Cassette (ABC) superfamily of bacterial transport proteins. TroA (previously identified as Tromp1) has significant sequence similarity to a family of Gram-negative periplasmic substrate-binding proteins and to a family of streptococcal proteins that may have dual roles as substrate binding proteins and adhesins. TroB is homologous to the ATP-binding protein component, whereas TroC and TroD are related to the hydrophobic membrane protein components of ABC transport systems. TroR is similar to Gram-positive iron-activated repressor proteins (DesR, DtxR, IdeR, and SirR). The last open reading frame (ORF) of the tro operon encodes a protein that is highly homologous to the glycolytic pathway enzyme, Pgm. Primer extension results demonstrated that the tro operon is transcribed from a sigma 70-type promoter element. Northern analysis and reverse transcriptase-polymerase chain reactions provided evidence for the presence of a primary 1-kb troA transcript and a secondary, less abundant, troA-pgm transcript. The tro operon is flanked by a Holliday structure DNA helicase homolog (upstream) and two ORFs representing a purine nucleoside phosphorylase homolog and tpp15, a previously characterized gene encoding a membrane lipoprotein (downstream). The presence of a complex operon containing a putative ABC transport system and a DtxR homolog indicates a possible linkage between transport and gene regulation in Tp.
Collapse
Affiliation(s)
- J M Hardham
- Department of Pathology and Laboratory Medicine, University of Texas, Houston Medical School 77225-0708, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ponnampalam SN, Bauer CE. DNA binding characteristics of CrtJ. A redox-responding repressor of bacteriochlorophyll, carotenoid, and light harvesting-II gene expression in Rhodobacter capsulatus. J Biol Chem 1997; 272:18391-6. [PMID: 9218481 DOI: 10.1074/jbc.272.29.18391] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previous genetic analysis indicated that the photosynthesis gene cluster from Rhodobacter capsulatus coded for the transcription factor, CrtJ, that is responsible for aerobic repression of bacteriochlorophyll, carotenoid, and light harvesting-II gene expression. In this study, we have heterologously overexpressed and purified CrtJ to homogeneity and shown by gel mobility shift assays that CrtJ is biologically active. DNase I footprint analysis confirms molecular genetic studies by showing that CrtJ binds to conserved palindromic sequences that overlap the -10 and -35 promoter regions of the bchC operon. Graphs of the percentage of DNA bound versus protein concentration show sigmoidal curves, which is highly indicative of cooperative binding of CrtJ to the two palindromic sites. A binding constant for interaction of CrtJ with the palindrome that spans the -10 region was calculated to be 4.8 x 10(-9) M, whereas affinity for the palindrome that spans the -35 region was found to be 2.9 x 10(-9) M. Binding of CrtJ to the bchC promoter region was also found to be redox-sensitive, with CrtJ exhibiting a 4.5-fold higher binding affinity under oxidizing versus reducing conditions.
Collapse
Affiliation(s)
- S N Ponnampalam
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
30
|
Nakao H, Mazurova IK, Glushkevich T, Popovic T. Analysis of heterogeneity of Corynebacterium diphtheriae toxin gene, tox, and its regulatory element, dtxR, by direct sequencing. Res Microbiol 1997; 148:45-54. [PMID: 9404504 DOI: 10.1016/s0923-2508(97)81899-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The largest diphtheria outbreak in the developed world since the 1960s is in progress in the Russian Federation. Seventy-two Corynebacterium diphtheriae strains from throughout Russia and the Ukraine, selected for temporal and geographic diversity, and 6 reference and control strains were assayed by DNA direct sequencing, and DNA sequences of their diphtheria toxin gene, tox, and the regulatory dtxR gene, were compared to those of the Park-Williams no. 8 strain (PW8). Twenty-eight C. diphtheriae strains had entire tox sequences identical to that of the PW8 strain. Among the remaining 40 strains which were toxigenic, 4 point mutations were detected in the tox gene, one within the A and three within the B subunit gene. All four were silent mutations, indicating that diphtheria toxin is highly conserved at the amino acid sequence level; therefore, changes in the efficacy of the current vaccines would be unlikely to occur. Within the open reading frame of the regulatory dtxR gene, 35 point mutations were detected. Only 15 strains had entire dtxR sequences identical to that of the PW8 strain. Nine amino acid substitutions were found in the carboxyl half of dtxR: 22 and 25 strains differed from the PW8 strain in one and two amino acids, respectively. Given that naturally occurring variations of dtxR might be associated with increased diphtheria toxin production, studies to investigate the association of these point mutations and amino acid substitutions with quantified toxin production in the strains causing the current epidemic are under way.
Collapse
Affiliation(s)
- H Nakao
- Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
31
|
Nakao H, Pruckler JM, Mazurova IK, Narvskaia OV, Glushkevich T, Marijevski VF, Kravetz AN, Fields BS, Wachsmuth IK, Popovic T. Heterogeneity of diphtheria toxin gene, tox, and its regulatory element, dtxR, in Corynebacterium diphtheriae strains causing epidemic diphtheria in Russia and Ukraine. J Clin Microbiol 1996; 34:1711-6. [PMID: 8784575 PMCID: PMC229100 DOI: 10.1128/jcm.34.7.1711-1716.1996] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Diphtheria toxin (tox) and its regulatory element (dtxR) from 72 Corynebacterium diphtheriae strains isolated in Russia and Ukraine before and during the current diphtheria epidemic were studied by PCR-single-strand conformation polymorphism analysis (PCR-SSCP). Twelve sets of primers were constructed (eight for tox and four for dtxR), and three regions within tox and all four regions of dtxR showed significant variations in the number and/or sizes of the amplicons. Two to four different SSCP patterns were identified in each of the variable regions; subsequently, tox and dtxR could be classified into 6 and 12 different types, respectively. The great majority of epidemic strains from both Russia and Ukraine had tox types 3 and 4, and only in a single preepidemic strain isolated in Russia were all eight tox regions identical to those of C. diphtheriae Park-Williams No. 8 (tox type 1). Epidemic strains from Ukraine can easily be identified by dtxR type 5, while the majority of the Russian epidemic strains have dtxR of types 2 and 8. No differences in the tox regions between mitis and gravis biotype strains were observed. However, dtxR types 2, 5, and 8 were identified only in the gravis biotype, and dtxR type 1 was characteristic for the mitis biotype strains. PCR-SSCP is a simple and rapid method for the identification of variable tox and dtxR regions that allows for the clear association of tox and dtxR types with strains of distinct temporal and/or geographic origins.
Collapse
Affiliation(s)
- H Nakao
- Division of Bacterial and Mycotic Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ghassemian M, Straus NA. Fur regulates the expression of iron-stress genes in the cyanobacterium Synechococcus sp. strain PCC 7942. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 6):1469-1476. [PMID: 8704986 DOI: 10.1099/13500872-142-6-1469] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A homologue of the 'ferric uptake regulation' gene (fur) was isolated from the cyanobacterium Synechococcus sp. strain PCC 7942 by an Escherichia coli-based 'in vivo repression assay'. The assay uses a reporter-gene construct containing the promoter region of the iron-regulated cyanobacterial gene isiA, fused to the coding region for chloramphenicol acetyltransferase. The isolated gene codes for a protein that has 41% sequence similarity (36% identity) to Fur from E. coli and contains the putative iron-binding motif found in the Fur proteins of purple bacteria. No significant similarity was found to the DxtR repressor that regulates the expression of toxin and siderophore production in Gram-positive bacteria. Insertional mutagenesis of the cloned cyanobacterial fur gene led to the creation of heteroallelic mutants that showed iron-deficiency symptoms in iron-replete medium, including the constitutive production of flavodoxin and of hydroxamate siderophores. Failure to eliminate wild-type copies of the fur gene from the polyploid genome of Synechococcus 7942 implies that in this cyanobacterium Fur may have essential functions in addition to the regulation of genes involved in iron scavenging or photosynthetic electron transport.
Collapse
Affiliation(s)
- Majid Ghassemian
- Department of Botany, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2Canada
| | - Neil A Straus
- Department of Botany, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2Canada
| |
Collapse
|
33
|
Ding X, Zeng H, Schiering N, Ringe D, Murphy JR. Identification of the primary metal ion-activation sites of the diphtheria tox repressor by X-ray crystallography and site-directed mutational analysis. NATURE STRUCTURAL BIOLOGY 1996; 3:382-7. [PMID: 8599765 DOI: 10.1038/nsb0496-382] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The diphtheria tox repressor, DtxR, is a 226 amino acid transition metal ion-activated regulatory protein that controls the expression of diphtheria toxin in toxigenic Corynebacterium diphtheriae. The previously solved three-dimensional DtxR structures have identified two potential metal ion binding sites which may play a role in the activation of DNA binding by the repressor. We have used both X-ray crystallographic and site-directed mutational analysis of DtxR(C102D)-Ni2+ complexes and DtxR to identify the metal ion-binding site which results in the activation of the repressor. We demonstrate that DtxR contains both a primary and an ancillary metal ion binding site. The primary site functions directly in the activation of DNA binding. In contrast, the ancillary site contributes weakly, if at all, to activation.
Collapse
Affiliation(s)
- X Ding
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02154, USA
| | | | | | | | | |
Collapse
|
34
|
Günter-Seeboth K, Schupp T. Cloning and sequence analysis of the Corynebacterium diphtheriae dtxR homologue from Streptomyces lividans and S. pilosus encoding a putative iron repressor protein. Gene 1995; 166:117-9. [PMID: 8529874 DOI: 10.1016/0378-1119(95)00628-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The iron-regulated promoter involved in desferrioxamine B synthesis of Streptomyces pilosus contains a region homologous to the iron repressor (DtxR)-binding site of the diphtheria toxin gene promoter in Corynebacterium diphtheriae [Günter et al., J. Bacteriol. 175 (1993) 3295-3302]. Here, we report the cloning and sequencing of the putative Streptomyces iron repressor gene, homologous to dtxR of C. diphtheriae. The N-terminal 139 amino acids of the deduced protein are 73% identical to DtxR.
Collapse
|
35
|
Doukhan L, Predich M, Nair G, Dussurget O, Mandic-Mulec I, Cole ST, Smith DR, Smith I. Genomic organization of the mycobacterial sigma gene cluster. Gene X 1995; 165:67-70. [PMID: 7489918 DOI: 10.1016/0378-1119(95)00427-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have previously described sigma A and sigma B and their structural genes, mysA and mysB, respectively, in Mycobacterium smegmatis. We have now sequenced the corresponding regions in the M. tuberculosis and M. leprae chromosomes, and have found the two homologous genes. The chromosomal linkage and the deduced amino acid (aa) sequences of the two genes show very high similarity in the three species of mycobacteria. We also report the finding of two other open reading frames (ORF) in these clusters. orfX, which has an unknown function, is located between mysA and mysB. The other ORF, located downstream from mysB, encodes a homolog of DtxR, the iron regulatory protein from Corynebacterium diphtheriae (Cd).
Collapse
Affiliation(s)
- L Doukhan
- Department of Microbiology, Public Health Research Institute, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Schiering N, Tao X, Zeng H, Murphy JR, Petsko GA, Ringe D. Structures of the apo- and the metal ion-activated forms of the diphtheria tox repressor from Corynebacterium diphtheriae. Proc Natl Acad Sci U S A 1995; 92:9843-50. [PMID: 7568230 PMCID: PMC40899 DOI: 10.1073/pnas.92.21.9843] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The diphtheria tox repressor (DtxR) of Corynebacterium diphtheriae plays a critical role in the regulation of diphtheria toxin expression and the control of other iron-sensitive genes. The crystal structures of apo-DtxR and of the metal ion-activated form of the repressor have been solved and used to identify motifs involved in DNA and metal ion binding. Residues involved in binding of the activated repressor to the diphtheria tox operator, glutamine 43, arginine 47, and arginine 50, were located and confirmed by site-directed mutagenesis. Previous biochemical and genetic data can be explained in terms of these structures. Conformational differences between apo- and Ni-DtxR are discussed with regard to the mechanism of action of this repressor.
Collapse
Affiliation(s)
- N Schiering
- Department of Chemistry, Brandeis University, Waltham, MA 02154, USA
| | | | | | | | | | | |
Collapse
|
37
|
Tao X, Zeng HY, Murphy JR. Transition metal ion activation of DNA binding by the diphtheria tox repressor requires the formation of stable homodimers. Proc Natl Acad Sci U S A 1995; 92:6803-7. [PMID: 7624323 PMCID: PMC41417 DOI: 10.1073/pnas.92.15.6803] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The diphtheria tox repressor (DtxR) is a transition metal ion-dependent regulatory element that controls the expression of diphtheria toxin and several genes involved in the synthesis of siderophores in Corynebacterium diphtheriae. In the presence of transition metal ions apo-DtxR becomes activated and specifically binds to its target DNA sequences. We demonstrate by glutaraldehyde cross-linking that monomeric apo-DtxR is in weak equilibrium with a dimeric form and that upon addition of activating metal ions to the reaction mixture a dimeric complex is stabilized. Addition of the DNA-binding-defective mutant apo-DtxR(delta 1-47) to apo-DtxR in the absence of transition metal ions inhibits conversion of the apo-repressor to its activated DNA-binding form. We also show that the binding of Ni2+ to both apo-DtxR and apo-DtxR(delta 1-47) is cooperative and that upon ion binding there is a conformational change in the environment of the indole ring moiety of Trp-104. For the wild-type repressor the consequences of this conformational change include a shift in equilibrium toward dimer formation and activation of target DNA binding by the repressor. We conclude that the formation of DtxR homodimers is mediated through a protein-protein interaction domain that is also activated on metal ion binding.
Collapse
Affiliation(s)
- X Tao
- Evans Department of Clinical Research, Boston University Medical Center Hospital, MA 02118, USA
| | | | | |
Collapse
|
38
|
Qiu X, Verlinde CL, Zhang S, Schmitt MP, Holmes RK, Hol WG. Three-dimensional structure of the diphtheria toxin repressor in complex with divalent cation co-repressors. Structure 1995; 3:87-100. [PMID: 7743135 DOI: 10.1016/s0969-2126(01)00137-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND When Corynebacterium diphtheriae encounters an environment with a low concentration of iron ions, it initiates the synthesis of several virulence factors, including diphtheria toxin. The diphtheria toxin repressor (DtxR) plays a key role in this iron-dependent, global regulatory system and is the prototype for a new family of iron-dependent repressor proteins in Gram-positive bacteria. This study aimed to increase understanding of the general regulatory principles of cation binding to DtxR. RESULTS The crystal structure of dimeric DtxR holo-repressor in complex with different transition metals shows that each subunit comprises an amino-terminal DNA-binding domain, an interface domain (which contains two metal-binding sites) and a third, very flexible carboxy-terminal domain. Each DNA-binding domain contains a helix-turn-helix motif and has a topology which is very similar to catabolite gene activator protein (CAP). Molecular modeling suggests that bound DNA adopts a bent conformation with helices alpha 3 of DtxR interacting with the major grooves. The two metal-binding sites lie approximately 10 A apart. Binding site 2 is positioned at a potential hinge region between the DNA-binding and interface domains. Residues 98-108 appear to be crucial for the functioning of the repressor; these provide four of the ligands of the two metal-binding sites and three residues at the other side of the helix which are at the heart of the dimer interface. CONCLUSIONS The crystal structure of the DtxR holorepressor suggests that the divalent cation co-repressor controls motions of the DNA-binding domain. In this way the metal co-repressor governs the distance between operator recognition elements in the two subunits and, consequently, DNA recognition.
Collapse
Affiliation(s)
- X Qiu
- Department of Biological Structure, School of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
39
|
Oguiza JA, Tao X, Marcos AT, Martín JF, Murphy JR. Molecular cloning, DNA sequence analysis, and characterization of the Corynebacterium diphtheriae dtxR homolog from Brevibacterium lactofermentum. J Bacteriol 1995; 177:465-7. [PMID: 7814338 PMCID: PMC176612 DOI: 10.1128/jb.177.2.465-467.1995] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A homolog of the Corynebacterium diphtheriae dtxR gene was isolated from Brevibacterium lactofermentum. The product of the B. lactofermentum dtxR gene was immunoreactive with polyclonal anti-DtxR antibodies and functioned as an iron-activated repressor capable of regulating the expression of beta-galactosidase from a diphtheria tox promoter/operator transcriptional fusion in recombinant Escherichia coli. The extents of induction by increasing concentrations of the chelator 2,2'-dipyridyl were identical in cells expressing DtxR from either C. diphtheriae or B. lactofermentum.
Collapse
Affiliation(s)
- J A Oguiza
- Area of Microbiology, Faculty of Biology, University of León, Spain
| | | | | | | | | |
Collapse
|
40
|
Tao X, Schiering N, Zeng HY, Ringe D, Murphy JR. Iron, DtxR, and the regulation of diphtheria toxin expression. Mol Microbiol 1994; 14:191-7. [PMID: 7830565 DOI: 10.1111/j.1365-2958.1994.tb01280.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In recent years considerable advances have been made in the understanding of the molecular basis of iron-mediated regulation of diphtheria toxin expression. The tox gene has been shown to be regulated by the heavy metal ion-activated regulatory element DtxR. In the presence of divalent heavy metal ions, DtxR becomes activated and binds to a 9 bp interrupted palindromic sequence. The consensus-binding site has been determined by both the sequence analysis of DtxR-responsive operators cloned from genomic libraries of Corynebacterium diphtheriae as well as by in vitro genetic methods using cyclic amplification of selected targets (CASTing). It is now clear that DtxR functions as a global iron-sensitive regulatory element in the control of gene expression in C. diphtheriae. In addition, the metal ion-activation domain of DtxR is being characterized by both mutational analysis and determination of the X-ray structure at 3.0 A resolution.
Collapse
Affiliation(s)
- X Tao
- Evans Department of Clinical Research, Boston University Medical Center Hospital, Massachusetts 02118
| | | | | | | | | |
Collapse
|