1
|
Pilligua-Lucas M, Tkavc R, Bash SK, North BB, Weitzel MB, Jerse AE. Polyphenylene carboxymethylene (PPCM), the active component of the topical contraceptive Yaso-GEL, exhibits potent antimicrobial activity against Neisseria gonorrhoeae in preclinical studies. Sex Transm Infect 2023; 99:409-415. [PMID: 37156608 PMCID: PMC10447406 DOI: 10.1136/sextrans-2022-055596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/07/2023] [Indexed: 05/10/2023] Open
Abstract
INTRODUCTION Polyphenylene carboxymethylene (PPCM) is a condensation polymer that has both contraceptive and antimicrobial activity against several sexually transmitted viruses including HIV, herpes simplex virus, Ebola virus and SARS-CoV-2 in preclinical studies. PPCM, both as an active pharmaceutical ingredient (API) and in a vaginal gel formulation (Yaso-GEL), has an excellent safety profile. Here, we evaluated the efficacy of PPCM against Neisseria gonorrhoeae in vitro and in a gonorrhoea mouse model. METHODS The minimal inhibitory concentration (MIC) of PPCM was determined against 11 N. gonorrhoeae strains by agar dilution and a microtitre plate-based method. In vivo efficacy was tested in a murine model of N. gonorrhoeae genital tract infection by applying Yaso-GEL, PPCM incorporated in 2.7% hydroxyethylcellulose (HEC), or the HEC vehicle vaginally prior to challenge with N. gonorrhoeae. Vaginal swabs were quantitatively cultured over 5 days to assess efficacy. RESULTS PPCM MIC against N. gonorrhoeae ranged between 5-100 µg/mL (agar dilution) and 50-200 µg/mL (microtitre plate method). PPCM/HEC gel applied vaginally prior to bacterial challenge resulted in a concentration-dependent inhibition of infection. Yaso-GEL containing 4% PPCM prevented infection in 100% of mice. Incubation of N. gonorrhoeae with PPCM increased membrane permeability, suggesting PPCM directly compromises N. gonorrhoeae viability, which may be a mechanism by which PPCM inhibits N. gonorrhoeae infection. CONCLUSIONS Yaso-GEL containing the API PPCM showed significant activity against N. gonorrhoeae in vitro and in vivo in a female mouse model. These data support further development of Yaso-GEL as an inexpensive, non-hormonal and non-systemic product with both contraceptive and antimicrobial activity against gonorrhea and other common sexually transmitted infections (STIs). Such multipurpose prevention technology products are needed by women in all economic, social and cultural circumstances to prevent unintended pregnancy and STIs.
Collapse
Affiliation(s)
- Michelle Pilligua-Lucas
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Rok Tkavc
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Sarah K Bash
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | | | | | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Talaga ML, Fan N, Fueri AL, Brown RK, Bandyopadhyay P, Dam TK. Multitasking Human Lectin Galectin-3 Interacts with Sulfated Glycosaminoglycans and Chondroitin Sulfate Proteoglycans. Biochemistry 2016; 55:4541-51. [PMID: 27427828 DOI: 10.1021/acs.biochem.6b00504] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycosaminoglycan (GAG) binding proteins (GAGBPs), including growth factors, cytokines, morphogens, and extracellular matrix proteins, interact with both free GAGs and those covalently linked to proteoglycans. Such interactions modulate a variety of cellular and extracellular events, such as cell growth, metastasis, morphogenesis, neural development, and inflammation. GAGBPs are structurally and evolutionarily unrelated proteins that typically recognize internal sequences of sulfated GAGs. GAGBPs are distinct from the other major group of glycan binding proteins, lectins. The multifunctional human galectin-3 (Gal-3) is a β-galactoside binding lectin that preferentially binds to N-acetyllactosamine moieties on glycoconjugates. Here, we demonstrate through microcalorimetric and spectroscopic data that Gal-3 possesses the characteristics of a GAGBP. Gal-3 interacts with unmodified heparin, chondroitin sulfate-A (CSA), -B (CSB), and -C (CSC) as well as chondroitin sulfate proteoglycans (CSPGs). While heparin, CSA, and CSC bind with micromolar affinity, the affinity of CSPGs is nanomolar. Significantly, CSA, CSC, and a bovine CSPG were engaged in multivalent binding with Gal-3 and formed noncovalent cross-linked complexes with the lectin. Binding of sulfated GAGs was completely abolished when Gal-3 was preincubated with β-lactose. Cross-linking of Gal-3 by CSA, CSC, and the bovine CSPG was reversed by β-lactose. Both observations strongly suggest that GAGs primarily occupy the lactose/LacNAc binding site of Gal-3. Hill plot analysis of calorimetric data reveals that the binding of CSA, CSC, and a bovine CSPG to Gal-3 is associated with progressive negative cooperativity effects. Identification of Gal-3 as a GAGBP should help to reveal new functions of Gal-3 mediated by GAGs and proteoglycans.
Collapse
Affiliation(s)
- Melanie L Talaga
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, ‡Department of Biological Sciences, §Life Science and Technology Institute, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Ni Fan
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, ‡Department of Biological Sciences, §Life Science and Technology Institute, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Ashli L Fueri
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, ‡Department of Biological Sciences, §Life Science and Technology Institute, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Robert K Brown
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, ‡Department of Biological Sciences, §Life Science and Technology Institute, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Purnima Bandyopadhyay
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, ‡Department of Biological Sciences, §Life Science and Technology Institute, Michigan Technological University , Houghton, Michigan 49931, United States
| | - Tarun K Dam
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, ‡Department of Biological Sciences, §Life Science and Technology Institute, Michigan Technological University , Houghton, Michigan 49931, United States
| |
Collapse
|
3
|
Affiliation(s)
- Vitor H. Pomin
- Program of
Glycobiology, Institute of Medical Biochemistry,
and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913,
Brazil
| |
Collapse
|
4
|
Innate recognition by neutrophil granulocytes differs between Neisseria gonorrhoeae strains causing local or disseminating infections. Infect Immun 2013; 81:2358-70. [PMID: 23630956 DOI: 10.1128/iai.00128-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family serve as cellular receptors for Neisseria gonorrhoeae. More specifically, neisserial colony opacity (OpaCEA)) proteins bind to epithelial CEACAMs (CEACAM1, CEA, CEACAM6) to promote bacterial colonization of the mucosa. In contrast, recognition by CEACAM3, expressed by human granulocytes, results in uptake and destruction of Opa(CEA)-expressing bacteria. Therefore, CEACAM3-mediated uptake might limit the spread of gonococci. However, some strains can cause disseminating gonococcal infections (DGIs), and it is currently unknown how these strains escape detection by granulocyte CEACAM3. Therefore, the opa gene loci from N. gonorrhoeae strain VP1, which was derived from a patient with disseminated gonococcal disease, were cloned and constitutively expressed in Escherichia coli. Similar to Opa proteins of the nondisseminating strain MS11, the majority of Opa proteins from strain VP1 bound epithelial CEACAMs and promoted CEACAM-initiated responses by epithelial cells. In sharp contrast to the Opa proteins of strain MS11, the Opa proteins of strain VP1 failed to interact with the human granulocyte receptor CEACAM3. Accordingly, bacteria expressing VP1 Opa proteins were not taken up by primary human granulocytes and did not trigger a strong oxidative burst. Analysis of Opa variants from four additional clinical DGI isolates again demonstrated a lack of CEACAM3 binding. In summary, our results reveal that particular N. gonorrhoeae strains express an Opa protein repertoire allowing engagement of epithelial CEACAMs for successful mucosal colonization, while avoiding recognition and elimination via CEACAM3-mediated phagocytosis. A failure of CEACAM3-mediated innate immune detection might be linked to the ability of gonococci to cause disseminated infections.
Collapse
|
5
|
Pomin VH, Park Y, Huang R, Heiss C, Sharp JS, Azadi P, Prestegard JH. Exploiting enzyme specificities in digestions of chondroitin sulfates A and C: production of well-defined hexasaccharides. Glycobiology 2012; 22:826-38. [PMID: 22345629 DOI: 10.1093/glycob/cws055] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Interactions between proteins and glycosaminoglycans (GAGs) of the extracellular matrix are important to the regulation of cellular processes including growth, differentiation and migration. Understanding these processes can benefit greatly from the study of protein-GAG interactions using GAG oligosaccharides of well-defined structure. Materials for such studies have, however, been difficult to obtain because of challenges in synthetic approaches and the extreme structural heterogeneity in GAG polymers. Here, it is demonstrated that diversity in structures of oligosaccharides derived by limited enzymatic digestion of materials from natural sources can be greatly curtailed by a proper selection of combinations of source materials and digestive enzymes, a process aided by an improved understanding of the specificities of certain commercial preparations of hydrolases and lyases. Separation of well-defined oligosaccharides can then be accomplished by size-exclusion chromatography followed by strong anion-exchange chromatography. We focus here on two types of chondroitin sulfate (CS) as starting material (CS-A, and CS-C) and the use of three digestive enzymes with varying specificities (testicular hyaluronidase and bacterial chondroitinases ABC and C). Analysis using nuclear magnetic resonance and mass spectrometry focuses on isolated CS disaccharides and hexasaccharides. In all, 15 CS hexasaccharides have been isolated and characterized. These serve as useful contributions to growing libraries of well-defined GAG oligosaccharides that can be used in further biophysical assays.
Collapse
Affiliation(s)
- Vitor H Pomin
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Sa E Cunha C, Griffiths NJ, Virji M. Neisseria meningitidis Opc invasin binds to the sulphated tyrosines of activated vitronectin to attach to and invade human brain endothelial cells. PLoS Pathog 2010; 6:e1000911. [PMID: 20502634 PMCID: PMC2873925 DOI: 10.1371/journal.ppat.1000911] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 04/16/2010] [Indexed: 11/18/2022] Open
Abstract
The host vasculature is believed to constitute the principal route of dissemination of Neisseria meningitidis (Nm) throughout the body, resulting in septicaemia and meningitis in susceptible humans. In vitro, the Nm outer membrane protein Opc can enhance cellular entry and exit, utilising serum factors to anchor to endothelial integrins; but the mechanisms of binding to serum factors are poorly characterised. This study demonstrates that Nm Opc expressed in acapsulate as well as capsulate bacteria can increase human brain endothelial cell line (HBMEC) adhesion and entry by first binding to serum vitronectin and, to a lesser extent, fibronectin. This study also demonstrates that Opc binds preferentially to the activated form of human vitronectin, but not to native vitronectin unless the latter is treated to relax its closed conformation. The direct binding of vitronectin occurs at its Connecting Region (CR) requiring sulphated tyrosines Y(56) and Y(59). Accordingly, Opc/vitronectin interaction could be inhibited with a conformation-dependent monoclonal antibody 8E6 that targets the sulphotyrosines, and with synthetic sulphated (but not phosphorylated or unmodified) peptides spanning the vitronectin residues 43-68. Most importantly, the 26-mer sulphated peptide bearing the cell-binding domain (45)RGD(47) was sufficient for efficient meningococcal invasion of HBMECs. To our knowledge, this is the first study describing the binding of a bacterial adhesin to sulphated tyrosines of the host receptor. Our data also show that a single region of Opc is likely to interact with the sulphated regions of both vitronectin and of heparin. As such, in the absence of heparin, Opc-expressing Nm interact directly at the CR but when precoated with heparin, they bind via heparin to the heparin-binding domain of the activated vitronectin, although with a lower affinity than at the CR. Such redundancy suggests the importance of Opc/vitronectin interaction in meningococcal pathogenesis and may enable the bacterium to harness the benefits of the physiological processes in which the host effector molecule participates.
Collapse
Affiliation(s)
- Claudia Sa E Cunha
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Natalie J. Griffiths
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Mumtaz Virji
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Pomin VH, Sharp JS, Li X, Wang L, Prestegard JH. Characterization of glycosaminoglycans by 15N NMR spectroscopy and in vivo isotopic labeling. Anal Chem 2010; 82:4078-88. [PMID: 20423049 PMCID: PMC2884402 DOI: 10.1021/ac1001383] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Characterization of glycosaminoglycans (GAGs), including chondroitin sulfate (CS), dermatan sulfate (DS), and heparan sulfate (HS), is important in developing an understanding of cellular function and in assuring quality of preparations destined for biomedical applications. While use of (1)H and (13)C NMR spectroscopy has become common in characterization of these materials, spectra are complex and difficult to interpret when a more heterogeneous GAG type or a mixture of several types is present. Herein a method based on (1)H-(15)N two-dimensional NMR experiments is described. The (15)N- and (1)H-chemical shifts of amide signals from (15)N-containing acetylgalactosamines in CSs are shown to be quite sensitive to the sites of sulfation (4-, 6-, or 4,6-) and easily distinguishable from those of DS. The amide signals from residual (15)N-containing acetylglucosamines in HS are shown to be diagnostic of the presence of these GAG components as well. Most data were collected at natural abundance of (15)N despite its low percentage. However enrichment of the (15)N-content in GAGs using metabolic incorporation from (15)N-glutamine added to cell culture media is also demonstrated and used to distinguish metabolic states in different cell types.
Collapse
Affiliation(s)
- Vitor H. Pomin
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA, 30602, USA
| | - Joshua S. Sharp
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA, 30602, USA
| | - Xuanyang Li
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA, 30602, USA
| | - Lianchun Wang
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA, 30602, USA
| | - James H. Prestegard
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
8
|
Wing JB, Jack DL, Lee ME, Pacey AA, Kinghorn GR, Read RC. Mannose-binding lectin is present in human semen and modulates cellular adhesion of Neisseria gonorrhoeae in vitro. Clin Exp Immunol 2009; 157:408-14. [PMID: 19664150 DOI: 10.1111/j.1365-2249.2009.03984.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Mannose-binding lectin (MBL) is an innate immune molecule present in blood and some mucosal tissues, which can influence microbial attachment and inflammatory responses of host cells during infection. In this study MBL was found to be present at a low concentration in semen samples in the range 1.2-24.9 ng/ml. Co-incubation of bacteria with semen resulted in the binding of MBL to the bacterial surface. Neisseria gonorrhoeae is a common cause of genitourinary infection. MBL bound to N. gonorrhoeae with strain-to-strain variation in the intensity of binding and nature of the bacterial receptor. Pretreatment with MBL concentrations similar to those found in human serum modulated the adhesion of N. gonorrhoeae strain FA1090 but not strain MS11 to epithelial cells. This effect was dose-dependent. This work demonstrates that MBL is present in human semen and modifies cellular responses to N. gonorrhoeae in a concentration-dependent manner.
Collapse
Affiliation(s)
- J B Wing
- Academic Unit of Infection and Immunity, University of Sheffield Medical School, Sheffield S10 2RX, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Neisseria gonorrhoeae displays considerable potential for antigenic variation as shown in human experimental studies. Various surface antigens can change either by antigenic variation using RecA-dependent recombination schemes (e.g. PilE antigenic variation) or, alternatively, through phase variation (on/off switching) in a RecA-independent fashion (e.g. Opa and lipooligosaccharide phase variation). PilE antigenic variation has been well documented over the years. However, with the availability of the N. gonorrhoeae FA1090 genome sequence, considerable genetic advances have recently been made regarding the mechanistic considerations of the gene conversion event, leading to an altered PilE protein. This review will compare the various models that have been presented and will highlight potential mechanistic problems that may constrain any genetic model for pilE gene variation.
Collapse
Affiliation(s)
- Stuart A Hill
- Department of Biological Sciences, Northern Illinois University, DeKalb, 60115, USA.
| | | |
Collapse
|
10
|
Griffiths NJ, Bradley CJ, Heyderman RS, Virji M. IFN-gamma amplifies NFkappaB-dependent Neisseria meningitidis invasion of epithelial cells via specific upregulation of CEA-related cell adhesion molecule 1. Cell Microbiol 2007; 9:2968-83. [PMID: 17764466 PMCID: PMC3020365 DOI: 10.1111/j.1462-5822.2007.01038.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 07/30/2007] [Indexed: 12/01/2022]
Abstract
Temporal relationship between viral and bacterial infections has been observed, and may arise via the action of virus-induced inflammatory cytokines. These, by upregulating epithelial receptors targeted by bacteria, may encourage greater bacterial infiltration. In this study, human epithelial cells exposed to interferon-gamma but not tumour necrosis factor-alpha or interleukin 1-beta supported increased meningococcal adhesion and invasion. The increase was related to Opa but not Opc or pili adhesin expression. De novo synthesis of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a major Opa receptor, occurred in epithelial cells exposed to the cytokine, or when infected with Opa-expressing bacteria. Cell line-dependent differences in invasion that were observed could be correlated with CEACAM expression levels. There was also evidence for Opa/pili synergism leading to high levels of monolayer infiltration by capsulate bacteria. The use of nuclear factor-kappa B (NFkappaB) inhibitors, diferuloylmethane (curcumin) and SN50, abrogated bacterial infiltration of both untreated and interferon-gamma-treated cells. The studies demonstrate the importance of CEACAMs as mediators of increased cellular invasion under conditions of inflammation and bring to light the potential role of NFkappaB pathway in Opa-mediated invasion by meningococci. The data imply that cell-surface remodelling by virally induced cytokines could be one factor that increases host susceptibility to bacterial infection.
Collapse
Affiliation(s)
- Natalie J Griffiths
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of BristolBristol, BS8 1TD, UK
| | | | - Robert S Heyderman
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of BristolBristol, BS8 1TD, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research ProgrammePO Box 30096, Chichiri, Blantyre 3, Malawi
| | - Mumtaz Virji
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of BristolBristol, BS8 1TD, UK
| |
Collapse
|
11
|
Patrone JB, Bish SE, Stein DC. TNF-α-Independent IL-8 Expression: Alterations in Bacterial Challenge Dose Cause Differential Human Monocytic Cytokine Response. THE JOURNAL OF IMMUNOLOGY 2006; 177:1314-22. [DOI: 10.4049/jimmunol.177.2.1314] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Moore J, Bailey SES, Benmechernene Z, Tzitzilonis C, Griffiths NJE, Virji M, Derrick JP. Recognition of saccharides by the OpcA, OpaD, and OpaB outer membrane proteins from Neisseria meningitidis. J Biol Chem 2005; 280:31489-97. [PMID: 16006553 DOI: 10.1074/jbc.m506354200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adhesion of the pathogen Neisseria meningitidis to host cell surface proteoglycan, mediated by the integral outer membrane proteins OpcA and Opa, plays an important part in the processes of colonization and invasion by the bacterium. The precise specificities of the OpcA and Opa proteins are, however, unknown. Here we use a fluorescence-based binding assay to show that both proteins bind to mono- and disaccharides with high affinity. Binding of saccharides caused a quench in the intrinsic fluorescence emission of both proteins, and mutation of selected Tyr residues within the external loop regions caused a substantial decrease in fluorescence. We suggest that the intrinsic fluorescence arises from resonance energy transfer from Tyr to Trp residues in the beta-barrel portion of the structure. OpcA bound sialic acid with a Kd of 0.31 microM and was shown to be specific for pyranose saccharides. The binding specificities of two different Opa proteins were compared; unlike OpcA, neither protein bound to monosaccharides, but both bound to maltose, lactose, and sialic acid-containing oligosaccharides, with Kd values in the micromolar range. OpaB had a 10-fold higher affinity for sialic acid-containing ligands than OpaD as a result of the mutation Y165V, which was shown to restore this specificity to OpaD. Finally, the OpcA- and Opa-dependent adhesion of meningococci to epithelial cells was shown to be partially inhibited by exogenously added sialic acid and maltose. The results show that OpcA and the Opa proteins can be thought of as outer membrane lectins and that simple saccharides can modulate their recognition of complex proteoglycan receptors.
Collapse
Affiliation(s)
- Jeremy Moore
- Faculty of Life Sciences, University of Manchester, Manchester, M60 1QD United Kingdom
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Many pathogens must surmount an epithelial cell barrier in order to establish an infection. While much has been learned about the interaction of bacterial pathogens with cultured epithelial cells, the influence of cell polarity on these events has only recently been appreciated. This review outlines bacterial-host epithelial cell interactions in the context of the distinct apical and basolateral surfaces of the polarized epithelium that lines the lumens of our organs.
Collapse
Affiliation(s)
- B I Kazmierczak
- Department of Medicine, University of California, San Francisco, California 94143-0654, USA.
| | | | | |
Collapse
|
14
|
Minor SY, Banerjee A, Gotschlich EC. Effect of alpha-oligosaccharide phenotype of Neisseria gonorrhoeae strain MS11 on invasion of Chang conjunctival, HEC-1-B endometrial, and ME-180 cervical cells. Infect Immun 2000; 68:6526-34. [PMID: 11083761 PMCID: PMC97746 DOI: 10.1128/iai.68.12.6526-6534.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes encoding the glycosyltransferases responsible for the addition of the five sugars in the alpha-oligosaccharide (alpha-OS) moiety of lipooligosaccharide (LOS) have been identified. Disruption of these glycosyltransferase genes singly or in combination results in corresponding truncations in LOS. In the present work we show that sequential deletion of the terminal four sugar residues of gonococcal alpha-OS had no discernible effect on the invasion of human conjunctival, endometrial, and cervical cell lines. However, deletion of the proximal glucose, which resulted in the complete deletion of alpha-OS, significantly impaired invasion of the gonococci into all three cell lines. The effect of deleting alpha-OS on invasion was independent of and additive to the known invasion-promoting factor OpaA. These data suggest that the proximal glucose residue of the alpha-OS chain of LOS is required for efficient invasion of gonococci into host mucosa.
Collapse
Affiliation(s)
- S Y Minor
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
15
|
Stephens RS, Fawaz FS, Kennedy KA, Koshiyama K, Nichols B, van Ooij C, Engel JN. Eukaryotic cell uptake of heparin-coated microspheres: a model of host cell invasion by Chlamydia trachomatis. Infect Immun 2000; 68:1080-5. [PMID: 10678910 PMCID: PMC97251 DOI: 10.1128/iai.68.3.1080-1085.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using polystyrene microspheres coated with heparin or heparan sulfate, it was shown that coated microspheres specifically bound eukaryotic cells and were endocytosed by nonprofessional phagocytic cells. Coated microspheres displayed properties of binding to eukaryotic cells that were similar to those of chlamydiae, and the microspheres were competitively inhibited by chlamydial organisms. Endocytosis of heparin-coated beads resulted in the tyrosine phosphorylation of a similar set of host proteins as did endocytosis of chlamydiae; however, unlike viable chlamydial organisms, which prevent phagolysosomal fusion, endocytosed beads were trafficked to a lysosomal compartment. These findings suggest that heparin-coated beads and Chlamydia trachomatis enter eukaryotic cells by similar pathways.
Collapse
Affiliation(s)
- R S Stephens
- Program in Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Virji M, Evans D, Hadfield A, Grunert F, Teixeira AM, Watt SM. Critical determinants of host receptor targeting by Neisseria meningitidis and Neisseria gonorrhoeae: identification of Opa adhesiotopes on the N-domain of CD66 molecules. Mol Microbiol 1999; 34:538-51. [PMID: 10564495 DOI: 10.1046/j.1365-2958.1999.01620.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human pathogens Neisseria meningitidis and Neisseria gonorrhoeae express a family of variable outer membrane opacity-associated (Opa) proteins that recognize multiple human cell surface receptors. Most Opa proteins target the highly conserved N-terminal domain of the CD66 family of adhesion molecules, although a few also interact with heparan sulphate proteoglycans. In this study, we observed that at least two Opa proteins of a N. meningitidis strain C751 have the dual capacity to interact with both receptors. In addition, all three Opa proteins of C751 bind equally well to HeLa cells transfected with cDNA encoding the carcinoembryonic antigen [CEA (CD66e)] subgroup of the CD66 family, but show distinct tropism for CGM1- (CD66d) and NCA (CD66c)-expressing cells. Because the C751 Opa proteins make up distinct structures via the surface-exposed hypervariable domains (HV-1 and HV-2), these combinations appear to be involved in tropism for the distinct CD66 subgroups. To define the determinants of receptor recognition, we used mutant proteins of biliary glycoprotein [BGP (CD66a)] carrying substitutions at several predicted exposed sites in the N-domain and compared their interactions with several Opa proteins of both N. meningitidis and N. gonorrhoeae. The observations applied to the molecular model of the BGP N-domain that we constructed show that the binding of all Opa proteins tested occurs at the non-glycosylated (CFG) face of the molecule and, in general, appears to require Tyr-34 and Ile-91. Further, efficient interaction of distinct Opa proteins depends on different non-adjacent amino acids. In the three-dimensional model, these residues lie in close proximity to Tyr-34 and Ile-91 at the CFG face, making continuous binding domains (adhesiotopes). The epitope of the monoclonal antibody YTH71.3 that inhibits Opa/CD66 interactions was also identified within the Opa adhesiotopes on the N-domain. These studies define the molecular basis that directs the Opa specificity for the CD66 family and the rationale for tropism of the Opa proteins for the CD66 subgroups.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation/chemistry
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Bacterial Adhesion
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/metabolism
- Binding Sites
- Cell Adhesion Molecules
- Heparan Sulfate Proteoglycans/metabolism
- Humans
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Neisseria gonorrhoeae/chemistry
- Neisseria gonorrhoeae/genetics
- Neisseria gonorrhoeae/metabolism
- Neisseria meningitidis/chemistry
- Neisseria meningitidis/genetics
- Neisseria meningitidis/metabolism
- Protein Structure, Tertiary
- Receptors, Cell Surface/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Virji
- Department of Pathology and Microbiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|
17
|
Duensing TD, Wing JS, van Putten JP. Sulfated polysaccharide-directed recruitment of mammalian host proteins: a novel strategy in microbial pathogenesis. Infect Immun 1999; 67:4463-8. [PMID: 10456887 PMCID: PMC96765 DOI: 10.1128/iai.67.9.4463-4468.1999] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Fundamental to the virulence of microbial pathogens is their capacity for adaptation and survival within variable, and often hostile, environments encountered in the host. We describe a novel, extragenomic mechanism of surface modulation which may amplify the adaptive and pathogenic potential of numerous bacterial species, including Staphylococcus, Yersinia, and pathogenic Neisseria species, as well as Helicobacter pylori and Streptococcus pyogenes. The mechanism involves specific bacterial recruitment of heparin, glycosaminoglycans, or related sulfated polysaccharides, which in turn serve as universal binding sites for a diverse array of mammalian heparin binding proteins, including adhesive glycoproteins (vitronectin and fibronectin), inflammatory (MCP-3, PF-4, and MIP-1alpha) and immunomodulatory (gamma interferon) intermediates, and fibroblast growth factor. This strategy impacts key aspects of microbial pathogenicity as exemplified by increased bacterial invasion of epithelial cells and inhibition of chemokine-induced chemotaxis. Our findings illustrate a previously unrecognized form of parasitism that complements classical virulence strategies encoded within the microbial genome.
Collapse
Affiliation(s)
- T D Duensing
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | |
Collapse
|
18
|
Merz AJ, Enns CA, So M. Type IV pili of pathogenic Neisseriae elicit cortical plaque formation in epithelial cells. Mol Microbiol 1999; 32:1316-32. [PMID: 10383771 DOI: 10.1046/j.1365-2958.1999.01459.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The pathogenic Neisseriae Neisseria meningitidis and Neisseria gonorrhoeae, initiate colonization by attaching to host cells using type IV pili. Subsequent adhesive interactions are mediated through the binding of other bacterial adhesins, in particular the Opa family of outer membrane proteins. Here, we have shown that pilus-mediated adhesion to host cells by either meningococci or gonococci triggers the rapid, localized formation of dramatic cortical plaques in host epithelial cells. Cortical plaques are enriched in both components of the cortical cytoskeleton and a subset of integral membrane proteins. These include: CD44v3, a heparan sulphate proteoglycan that may serve as an Opa receptor; EGFR, a receptor tyrosine kinase; CD44 and ICAM-1, adhesion molecules known to mediate inflammatory responses; f-actin; and ezrin, a component that tethers membrane components to the actin cytoskeleton. Genetic analyses reveal that cortical plaque formation is highly adhesin specific. Both pilE and pilC null mutants fail to induce cortical plaques, indicating that neisserial type IV pili are required for cortical plaque induction. Mutations in pilT, a gene required for pilus-mediated twitching motility, confer a partial defect in cortical plaque formation. In contrast to type IV pili, many other neisserial surface structures are not involved in cortical plaque induction, including Opa, Opc, glycolipid GgO4-binding adhesins, polysialic acid capsule or a particular lipooligosaccharide variant. Furthermore, it is shown that type IV pili allow gonococci to overcome the inhibitory effect of heparin, a soluble receptor analogue, on gonococcal invasion of Chang and A431 epithelial cells. These and other observations strongly suggest that type IV pili play an active role in initiating neisserial infection of the mucosal surface in vivo. The functions of type IV pili and other neisserial adhesins are discussed in the specific context of the mucosal microenvironment, and a multistep model for neisserial colonization of mucosal epithelia is proposed.
Collapse
Affiliation(s)
- A J Merz
- Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, 97201-3098, USA.
| | | | | |
Collapse
|
19
|
van Putten JP, Duensing TD, Carlson J. Gonococcal invasion of epithelial cells driven by P.IA, a bacterial ion channel with GTP binding properties. J Exp Med 1998; 188:941-52. [PMID: 9730895 PMCID: PMC2213401 DOI: 10.1084/jem.188.5.941] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The neisserial porin P.I is a GTP binding protein that forms a voltage-gated channel that translocates into mammalian cell membranes and modulates host cell signaling events. Here, we report that P.I confers invasion of the bacterial pathogen Neisseria gonorrhoeae into Chang epithelial cells and that this event is controlled by GTP, as well as other phosphorus-containing compounds. Bacterial invasion was observed only for strains carrying the P.IA subtype of porin, which is typically associated with the development of disseminated neisserial disease, and did not require opacity outer membrane proteins, previously recognized as gonococcal invasins. Allelic replacement studies showed that bacterial invasiveness cotransferred with the P.IA (por1A) gene. Mutation of the P.I-associated protein Rmp did not alter the invasive properties. Cross-linking of labeled GTP to the porin revealed more efficient GTP binding to the P.IA than P.IB porin subtype. GTP binding was inhibited by an excess of unlabeled GTP, ATP, and GDP, as well as inorganic phosphate, but not by UTP or beta-glycerophosphate, fully in line with the respective invasion-inhibitory activities observed for these compounds. The P.IA-mediated cellular invasion may explain the more invasive behavior of P.IA strains in the natural infection and may broaden the basis for the development of a P.I-based gonococcal vaccine.
Collapse
Affiliation(s)
- J P van Putten
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840-2999, USA.
| | | | | |
Collapse
|
20
|
Duensing TD, Putten JP. Vitronectin binds to the gonococcal adhesin OpaA through a glycosaminoglycan molecular bridge. Biochem J 1998; 334 ( Pt 1):133-9. [PMID: 9693112 PMCID: PMC1219671 DOI: 10.1042/bj3340133] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several bacterial pathogens including Neisseria gonorrhoeae bind the human serum glycoprotein vitronectin. We aimed at defining the gonococcal receptor for vitronectin. Ligand blots demonstrated that vitronectin bound specifically to the heparin-binding outer-membrane protein OpaA, but that coating OpaA with the sulphated polysaccharide heparin was required for the interaction to occur. Bound vitronectin could be dissociated from OpaA-heparin-vitronectin complexes by the addition of excess heparin, indicating that sulphated polysaccharides provided the main linkage between the two proteins. Binding assays with intact micro-organisms substantiated the requirement of sulphated polysaccharides such as heparin and dextran sulphate for the efficient binding of vitronectin to OpaA+ gonococci. This was underscored by the increased binding of vitronectin to gonococci that had been preincubated with saturating concentrations of dextran sulphate, as opposed to the inhibition of vitronectin binding observed when bacteria were incubated simultaneously with vitronectin and saturating concentrations of dextran sulphate. Binding assays with dextran sulphates of various sizes indicated that vitronectin binding correlated with the size of the polysaccharide rather than with the amount of OpaA produced by the bacteria. The inability of zero-length cross-linking agents to couple vitronectin to OpaA provided further evidence that sulphated polysaccharides formed the linkage between vitronectin and OpaA. Infection experiments demonstrated that proteoglycan-deficient Chinese hamster ovary cells efficiently internalized dextran sulphate/vitronectin-coated gonococci, suggesting that soluble sulphated polysaccharides could substitute for cell surface glycosaminoglycans in the internalization process. On the basis of our results, we propose a novel mechanism of vitronectin binding in which sulphated polysaccharides act as molecular bridges, linking the glycosaminoglycan-binding sites of vitronectin and gonococcal OpaA.
Collapse
Affiliation(s)
- T D Duensing
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT 59840-2999, USA.
| | | |
Collapse
|
21
|
van Putten JP, Duensing TD, Cole RL. Entry of OpaA+ gonococci into HEp-2 cells requires concerted action of glycosaminoglycans, fibronectin and integrin receptors. Mol Microbiol 1998; 29:369-79. [PMID: 9701828 DOI: 10.1046/j.1365-2958.1998.00951.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heparan sulphate proteoglycans are increasingly implicated as eukaryotic cell surface receptors for bacterial pathogens. Here, we report that Neisseria gonorrhoeae adheres to proteoglycan receptors on HEp-2 epithelial cells but that internalization of the bacterium by this cell type requires the serum glycoprotein fibronectin. Fibronectin was shown to bind specifically to gonococci producing the OpaA adhesin. Binding assays with fibronectin fragments located the bacterial binding site near the N-terminal end of the molecule. However, none of the tested fibronectin fragments supported gonococcal entry into the eukaryotic cells; a 120 kDa fragment carrying the cell adhesion domain with the amino acid sequence RGD even inhibited the fibronectin-mediated uptake of MS11-OpaA. This inhibition could be mimicked by an RGD-containing hexapeptide and by alpha 5 beta 1 integrin-specific antibodies, suggesting that interaction of the central region of fibronectin with integrin receptors facilitated bacterial uptake. Fibronectin was unable to promote gonococcal entry into HEp-2 cells that had been treated with the enzyme heparinase III, which degrades the glycosaminoglycan side-chains of proteoglycan receptors. On the basis of these results, we propose a novel cellular uptake pathway for bacteria, which involves the binding of the pathogen to glycosaminoglycans that, in turn, act as co-receptors facilitating fibronectin-mediated bacterial uptake through integrin receptors. In this scenario, fibronectin would act as a molecular bridge linking to Opa-proteoglycan complex with host cell integrin receptors.
Collapse
Affiliation(s)
- J P van Putten
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | | | |
Collapse
|