1
|
Gent V, Dhar N, Izu A, Jones S, Dangor Z, Briner C, Hosken N, Kwatra G, Madhi SA. Association of serum anti-gbs2106 protein immunoglobulin G (IgG) in newborns and risk reduction of invasive group B streptococcus disease during early infancy. Vaccine 2025; 54:127016. [PMID: 40088514 DOI: 10.1016/j.vaccine.2025.127016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/25/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Human immunoglobulin G (IgG) directed against Group B streptococcus (GBS) epitopes is transferred transplacentally from the mother to the fetus. A GBS putative protein, gbs2106, has been previously identified as a potential GBS protein antigen vaccine candidate. However, its genetic prevalence and surface expression in GBS-isolates has not been evaluated. In this study, we evaluated the prevalence, surface expression and association of maternal-acquired serum anti-gbs2106 IgG in newborns and risk reduction of infant invasive GBS disease through to 90 days of age in a South African-based cohort. METHODS We conducted a nested case-control study within a previously established birth cohort that was designed to investigate serological markers associated with risk reduction of invasive GBS disease. In the parent study, additional cases were identified through a hospital surveillance system which included infants diagnosed with culture-confirmed invasive GBS disease outside the original cohort study. In this current study, surface expression of gbs2106 was analyzed on recto-vaginal colonizing isolates from mothers whose infants remained healthy, and on isolates from infants who developed invasive GBS disease. Flow cytometry was used to determine surface expression levels. The anti-gbs2106 IgG in maternal and infant or cord blood was measured using a bead-based assay on the Luminex platform. RESULTS The gbs2106 gene was present on all colonizing GBS-isolates from women in the control group and infant invasive GBS-isolates. The gbs2106 protein was expressed on 81.6 % (71/87) and 82.2 % (48/58) of maternal colonizing isolates and invasive GBS-isolates, respectively. There was a strong positive correlation (r = 0.855, p < 0.0001) of maternal and cord serum anti-gbs2106 IgG levels, with the combined cord to maternal anti-gbs2106 IgG geometric mean concentration ratio being 0.9 (IQR 0.7-1.1). Serum anti-gbs2106 IgG geometric mean concentrations in the infants were lower among the invasive disease cases (158.7 arbitrary units [AU]/ml; 95 %CI: 102.3-246.2) compared with controls (304.8 AU/ml; 95 %CI: 226.8-409.8; p = 0.012). CONCLUSION Our study demonstrates an inverse association between infant serum anti-gbs2106 IgG and risk of invasive GBS disease, indicating gbs2106 protein as a potential vaccine candidate.
Collapse
Affiliation(s)
- Vicky Gent
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nisha Dhar
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alane Izu
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephanie Jones
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ziyaad Dangor
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Carmen Briner
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nancy Hosken
- Center for Vaccine Innovation and Access, PATH, Seattle, Washington, USA
| | - Gaurav Kwatra
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Clinical Microbiology, Christian Medical College, Vellore, India; Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Zeng Z, Li M, Zhu S, Zhang K, Wu Y, Zheng M, Cao Y, Huang Z, Liao Q, Zhang L. Strain-level genomic analysis of serotype, genotype and virulence gene composition of group B streptococcus. Front Cell Infect Microbiol 2024; 14:1396762. [PMID: 39569407 PMCID: PMC11576427 DOI: 10.3389/fcimb.2024.1396762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction GBS (group B streptococcus) is an opportunistic pathogen that can colonize healthy individuals but presents significant challenges in clinical obstetrics and gynecology, as it can cause miscarriage, preterm birth, and invasive infections in newborns. To develop specific and personalized preventative strategies, a better understanding of the epidemiological characteristics and pathogenic features of GBS is essential. Methods We conducted a comprehensive strain-level genomic analysis of GBS, examining serotype and genotype distributions, as well as the composition and correlations of virulence genes using the blastn-short mode of the BLAST program(v2.10.0+), mlstsoftware (https://github.com/tseemann/mlst), Snippy (v4.6.0), FastTree (v2.1.11) and iTOL. The coding sequence region of virulence factors was annotated by Prodigal (v2.6.3) and Glimmer(v3.02b). We further identified host protein interacting with Srr2 by mass spectrometry analysis. Results While certain genotypes showed strong serotype consistency, there was no significant association between overall serotypes and genotypes. However, the composition of virulence genes was more closely related to the phylogeny of GBS, among which simultaneous presence of Srr2 and HygA exhibit significant association with hypervirulence. Tubulin emerged as the most distinct and abundant hit. The specific interaction of Tubulin with Srr2-BR, rather than Srr1-BR, was further confirmed by immunoblotting. Discussion Considering the impact of cytoskeleton rearrangement on GBS pathogenesis, this observation offers a plausible explanation for the hypervirulence triggered by Srr2. Collectively, our findings indicate that in the future clinical practice, virulence gene detection should be given more attention to achieve precise GBS surveillance and disease prevention.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Meng Li
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Simin Zhu
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ke Zhang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yifan Wu
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Minzi Zheng
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yang Cao
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhenyu Huang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qinping Liao
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Dangor Z, Kwatra G, Pawlowski A, Fisher PB, Izu A, Lala SG, Johansson-Lindbom B, Madhi SA. Association of infant Rib and Alp1 surface protein N-terminal domain immunoglobulin G and invasive Group B Streptococcal disease in young infants. Vaccine 2023; 41:1679-1683. [PMID: 36754766 PMCID: PMC9996286 DOI: 10.1016/j.vaccine.2023.01.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Vaccine development for Group B Streptococcus (GBS), a common cause of invasive disease in early-infancy and adverse pregnancy outcomes, include exploring widely-expressed GBS surface proteins as vaccine epitopes. We investigated the association between natural infant serum IgG against the RibN and Alp1N domains and risk of invasive GBS disease caused by isolates expressing these proteins. METHODS We analyzed maternal and infant serum samples from GBS disease cases and infants born to GBS-colonized women controls. Bayesian modelling was used to calculate the GBS homotypic IgG concentration associated with risk reduction of invasive disease in the infant. RESULTS PCR-based typing of 85 GBS invasive isolates showed 46 and 24 possessing the gene for Rib and Alp1, respectively. These were matched to 46 and 36 infant controls whose mothers were colonized with GBS expressing Rib and Alp1, respectively. RibN IgG geometric mean concentrations (GMC) were lower in cases than controls among infants (0.01; 95 %CI: 0.01-0.02 vs 0.04; 95 %CI: 0.03-0.06; p < 0.001), no significant difference was found between maternal RibN IgG GMC in cases compared to controls. Alp1N IgG GMC was also lower in infant cases (0.02; 95 %CI: 0.01-0.03) than controls (0.05; 95 %CI: 0.04-0.07; p < 0.001); albeit not so in mothers. An infant IgG threshold ≥ 0.428 and ≥ 0.112 µg/mL was associated with 90 % risk reduction of invasive GBS disease due to Rib and Alp1 expressing strains, respectively. DISCUSSION Lower serum RibN and Alp1N IgG GMC were evident in infants with invasive GBS disease compared with controls born to women colonized with GBS expressing the homotypic protein. These data support the evaluation of Alp family proteins as potential vaccine candidates against invasive GBS disease.
Collapse
Affiliation(s)
- Ziyaad Dangor
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, South Africa; Department of Paediatrics & Child Health, Faculty of Health Sciences, University of the Witwatersrand, South Africa.
| | - Gaurav Kwatra
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, South Africa; Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | | | | - Alane Izu
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, South Africa
| | - Sanjay G Lala
- Department of Paediatrics & Child Health, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Bengt Johansson-Lindbom
- Immunology Section, BMC D14, Lund University, Lund, Sweden; MinervaX ApS, DK-2200 Copenhagen N, Denmark
| | - Shabir A Madhi
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, South Africa; African Leadership in Vaccinology Expertise University of the Witwatersrand, South Africa.
| |
Collapse
|
4
|
The long and the short of Periscope Proteins. Biochem Soc Trans 2022; 50:1293-1302. [PMID: 36196877 DOI: 10.1042/bst20220194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
Bacteria sense, interact with, and modify their environmental niche by deploying a molecular ensemble at the cell surface. The changeability of this exposed interface, combined with extreme changes in the functional repertoire associated with lifestyle switches from planktonic to adherent and biofilm states necessitate dynamic variability. Dynamic surface changes include chemical modifications to the cell wall; export of diverse extracellular biofilm components; and modulation of expression of cell surface proteins for adhesion, co-aggregation and virulence. Local enrichment for highly repetitive proteins with high tandem repeat identity has been an enigmatic phenomenon observed in diverse bacterial species. Preliminary observations over decades of research suggested these repeat regions were hypervariable, as highly related strains appeared to express homologues with diverse molecular mass. Long-read sequencing data have been interrogated to reveal variation in repeat number; in combination with structural, biophysical and molecular dynamics approaches, the Periscope Protein class has been defined for cell surface attached proteins that dynamically expand and contract tandem repeat tracts at the population level. Here, I review the diverse high-stability protein folds and coherent interdomain linkages culminating in the formation of highly anisotropic linear repeat arrays, so-called rod-like protein 'stalks', supporting roles in bacterial adhesion, biofilm formation, cell surface spatial competition, and immune system modulation. An understanding of the functional impacts of dynamic changes in repeat arrays and broader characterisation of the unusual protein folds underpinning this variability will help with the design of immunisation strategies, and contribute to synthetic biology approaches including protein engineering and microbial consortia construction.
Collapse
|
5
|
Eraso JM, Kachroo P, Olsen RJ, Beres SB, Zhu L, Badu T, Shannon S, Cantu CC, Saavedra MO, Kubiak SL, Porter AR, DeLeo FR, Musser JM. Genetic heterogeneity of the Spy1336/R28-Spy1337 virulence axis in Streptococcus pyogenes and effect on gene transcript levels and pathogenesis. PLoS One 2020; 15:e0229064. [PMID: 32214338 PMCID: PMC7098570 DOI: 10.1371/journal.pone.0229064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pyogenes is a strict human pathogen responsible for more than 700 million infections annually worldwide. Strains of serotype M28 S. pyogenes are typically among the five more abundant types causing invasive infections and pharyngitis in adults and children. Type M28 strains also have an unusual propensity to cause puerperal sepsis and neonatal disease. We recently discovered that a one-nucleotide indel in an intergenic homopolymeric tract located between genes Spy1336/R28 and Spy1337 altered virulence in a mouse model of infection. In the present study, we analyzed size variation in this homopolymeric tract and determined the extent of heterogeneity in the number of tandemly-repeated 79-amino acid domains in the coding region of Spy1336/R28 in large samples of strains recovered from humans with invasive infections. Both repeat sequence elements are highly polymorphic in natural populations of M28 strains. Variation in the homopolymeric tract results in (i) changes in transcript levels of Spy1336/R28 and Spy1337 in vitro, (ii) differences in virulence in a mouse model of necrotizing myositis, and (iii) global transcriptome changes as shown by RNAseq analysis of isogenic mutant strains. Variation in the number of tandem repeats in the coding sequence of Spy1336/R28 is responsible for size variation of R28 protein in natural populations. Isogenic mutant strains in which genes encoding R28 or transcriptional regulator Spy1337 are inactivated are significantly less virulent in a nonhuman primate model of necrotizing myositis. Our findings provide impetus for additional studies addressing the role of R28 and Spy1337 variation in pathogen-host interactions.
Collapse
Affiliation(s)
- Jesus M. Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Randall J. Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Stephen B. Beres
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Traci Badu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Sydney Shannon
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Concepcion C. Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Samantha L. Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Adeline R. Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Frank R. DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - James M. Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
6
|
Kobayashi M, Schrag SJ, Alderson MR, Madhi SA, Baker CJ, Sobanjo-Ter Meulen A, Kaslow DC, Smith PG, Moorthy VS, Vekemans J. WHO consultation on group B Streptococcus vaccine development: Report from a meeting held on 27-28 April 2016. Vaccine 2019; 37:7307-7314. [PMID: 28017431 PMCID: PMC6892266 DOI: 10.1016/j.vaccine.2016.12.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/17/2016] [Indexed: 11/29/2022]
Abstract
Globally, group B Streptococcus (GBS) remains a leading cause of sepsis and meningitis in infants in the first 90days of life. Intrapartum antibiotic prophylaxis (IAP) for women at increased risk of transmitting GBS to their newborns has been effective in reducing part, but not all, of the GBS disease burden in many high income countries (HICs). In low- and middle-income countries (LMICs), IAP use is low. Immunization of pregnant women with a GBS vaccine represents an alternative strategy to protecting newborns and young infants, through transplacental antibody transfer and potentially by reducing new vaginal colonization. This vaccination strategy was first suggested in the 1970s and several potential GBS vaccines have completed phase I/II clinical trials. During the 2015 WHO Product Development for Vaccines Advisory Committee meeting, GBS was identified as a high priority for the development of a vaccine for maternal immunization because of the major public health burden posed by GBS in LMICs, and the high technical feasibility for successful development. Following this meeting, the first WHO technical consultation on GBS vaccines was held on the 27th and 28th of April 2016, to consider development pathways for such vaccines, focused on their potential role in reducing newborn and young infant deaths and possibly stillbirths in LMICs. Discussion topics included: (1) pathophysiology of disease; (2) current gaps in the knowledge of global disease burden and serotype distribution; (3) vaccine candidates under development; (4) design considerations for phase III trials; and (5) pathways to licensure, policy recommendations and use. Efforts to address gaps identified in each of these areas are needed to establish the public health need for, the development and deployment of, efficacious GBS vaccines. In particular, more work is required to understand the global disease burden of GBS-associated stillbirths, and to develop quality-assured standardized antibody assays to identify correlates of protection.
Collapse
Affiliation(s)
- Miwako Kobayashi
- National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA; Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Stephanie J Schrag
- National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329-4027, USA
| | - Mark R Alderson
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA
| | - Shabir A Madhi
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, and Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Carol J Baker
- Department of Pediatrics, Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - David C Kaslow
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA
| | - Peter G Smith
- MRC Tropical Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Vasee S Moorthy
- Initiative for Vaccine Research, World Health Organization, CH-1211 Geneva 27, Switzerland
| | - Johan Vekemans
- Initiative for Vaccine Research, World Health Organization, CH-1211 Geneva 27, Switzerland.
| |
Collapse
|
7
|
Paoletti LC, Kasper DL. Surface Structures of Group B Streptococcus Important in Human Immunity. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0001-2017. [PMID: 30873933 PMCID: PMC11590616 DOI: 10.1128/microbiolspec.gpp3-0001-2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 11/20/2022] Open
Abstract
The surface of the Gram-positive opportunistic pathogen Streptococcus agalactiae, or group B Streptococcus (GBS), harbors several carbohydrate and protein antigens with the potential to be effective vaccines. Capsular polysaccharides of all clinically-relevant GBS serotypes coupled to immunogenic proteins of both GBS and non-GBS origin have undergone extensive testing in animals that led to advanced clinical trials in healthy adult women. In addition, GBS proteins either alone or in combination have been tested in animals; a fusion protein construct has recently advanced to human clinical studies. Given our current understanding of the antigenicity and immunogenicity of the wide array of GBS surface antigens, formulations now exist for the generation of viable vaccines against diseases caused by GBS.
Collapse
Affiliation(s)
- Lawrence C Paoletti
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Dennis L Kasper
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
8
|
Parallel Evolution of Group B Streptococcus Hypervirulent Clonal Complex 17 Unveils New Pathoadaptive Mutations. mSystems 2017; 2:mSystems00074-17. [PMID: 28904998 PMCID: PMC5585690 DOI: 10.1128/msystems.00074-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/10/2017] [Indexed: 12/21/2022] Open
Abstract
The incidence of group B Streptococcus (GBS) neonatal disease continues to be a significant cause of concern worldwide. Strains belonging to clonal complex 17 (CC17) are the most frequently responsible for GBS infections in neonates, especially among late-onset disease cases. Therefore, we undertook the largest genomic study of GBS CC17 strains to date to decipher the genetic bases of their remarkable colonization and infection ability. We show that crucial functions involved in different steps of the colonization or infection process of GBS are distinctly mutated during the adaptation of CC17 to the human host. In particular, our results implicate the CovRS two-component regulator of virulence in the differentiation between carriage- and disease-associated isolates. Not only does this work raise important implications for the ongoing development of a vaccine against GBS but might also drive the discovery of key functions for GBS adaptation and pathogenesis that have been overlooked until now. Group B Streptococcus (GBS) is a commensal of the gastrointestinal and genitourinary tracts, while a prevailing cause of neonatal disease worldwide. Of the various clonal complexes (CCs), CC17 is overrepresented in GBS-infected newborns for reasons that are still largely unknown. Here, we report a comprehensive genomic analysis of 626 CC17 isolates collected worldwide, identifying the genetic traits behind their successful adaptation to humans and the underlying differences between carriage and clinical strains. Comparative analysis with 923 GBS genomes belonging to CC1, CC19, and CC23 revealed that the evolution of CC17 is distinct from that of other human-adapted lineages and recurrently targets functions related to nucleotide and amino acid metabolism, cell adhesion, regulation, and immune evasion. We show that the most distinctive features of disease-specific CC17 isolates were frequent mutations in the virulence-associated CovS and Stk1 kinases, underscoring the crucial role of the entire CovRS regulatory pathway in modulating the pathogenicity of GBS. Importantly, parallel and convergent evolution of major components of the bacterial cell envelope, such as the capsule biosynthesis operon, the pilus, and Rib, reflects adaptation to host immune pressures and should be taken into account in the ongoing development of a GBS vaccine. The presence of recurrent targets of evolution not previously implicated in virulence also opens the way for uncovering new functions involved in host colonization and GBS pathogenesis. IMPORTANCE The incidence of group B Streptococcus (GBS) neonatal disease continues to be a significant cause of concern worldwide. Strains belonging to clonal complex 17 (CC17) are the most frequently responsible for GBS infections in neonates, especially among late-onset disease cases. Therefore, we undertook the largest genomic study of GBS CC17 strains to date to decipher the genetic bases of their remarkable colonization and infection ability. We show that crucial functions involved in different steps of the colonization or infection process of GBS are distinctly mutated during the adaptation of CC17 to the human host. In particular, our results implicate the CovRS two-component regulator of virulence in the differentiation between carriage- and disease-associated isolates. Not only does this work raise important implications for the ongoing development of a vaccine against GBS but might also drive the discovery of key functions for GBS adaptation and pathogenesis that have been overlooked until now. Author Video: An author video summary of this article is available.
Collapse
|
9
|
Martín-Galiano AJ. The MiiA motif is a common marker present in polytopic surface proteins of oral and urinary tract invasive bacteria. INFECTION GENETICS AND EVOLUTION 2017; 49:283-292. [PMID: 28167145 DOI: 10.1016/j.meegid.2017.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/24/2016] [Accepted: 02/02/2017] [Indexed: 12/25/2022]
Abstract
Many surface virulence factors of bacterial pathogens show mosaicism and confounding phylogenetic origin. The Streptococcus gordonii platelet-binding GspB protein, the Streptococcus sanguinis SrpA adhesin and the Streptococcus pneumoniae DiiA protein, share an imperfect 27-residue motif. Given the disparate domain architectures of these proteins and its association to invasive disease, this motif was named MiiA from Multiarchitecture invasion-involved motif A. MiiA is predicted to adopt a beta-sheet folding, probably related to the Ig-like fold, with a symmetrical positioning of two conserved aspartic residues. A specific hidden Markov model profiling MiiA was built, which specifically detected the motif in proteins from 58 species, mainly in cell-wall proteins from Gram-positive bacteria. These proteins contained one to ten MiiA motifs, which were embedded within larger repeat units of 70-82 residues. MiiA motifs combined to other domains and elements such as coiled-coils and low-complexity regions. The species carrying MiiA-proteins included commensals from the urogenital tract and the oral cavity, which can cause opportunistic endocarditis and sepsis. Intra-protein MiiA repeats showed a complex mixture of orthologal, paralogal and inter-species relationships, suggestive of a multistep origin. Presence of these repeats in proteins involved in oligosaccharide recognition and lifestyle of species suggest a putative function for MiiA repeats in sugars binding, probably those present in receptors of epithelial and blood cells. MiiA modules appear to have been transferred horizontally between species co-habiting in the same niche to create their own MiiA-containing determinants. The present work provides a global study and a catalog of potential MiiA virulence factors that should be analyzed experimentally.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, Carretera a Pozuelo, km 2.2, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
10
|
Escolano-Martínez MS, Domenech A, Yuste J, Cercenado MI, Ardanuy C, Liñares J, de la Campa AG, Martin-Galiano AJ. DiiA is a novel dimorphic cell wall protein of Streptococcus pneumoniae involved in invasive disease. J Infect 2016; 73:71-81. [PMID: 27105656 DOI: 10.1016/j.jinf.2016.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Many outer multidomain proteins play fundamental virulent roles in an allele-dependent manner. We aimed to investigate the influence of the outer SP1992 protein, here renamed DiiA (Dimorphic invasion-involved A), in pneumococcal disease. METHODS The presence and type of diiA allele was screened by PCR in 560 clinical isolates. Isogenic mutants carrying progressive diiA deletions were constructed and checked in mouse models of infection. DiiA binding to human molecules was carried out by surface plasmon resonance. RESULTS The diiA gene is exclusive of Streptococcus pneumoniae and included in the core genome. DiiA variants contain one or two imperfect repeats (R1 and R2), an unstructured region and a cell-wall anchor domain. Clonal complexes carrying both repeats were associated with invasive disease, while those carrying R2 preferentially caused non-invasive syndromes in patients with underlying risk factors. Mutants lacking both repeats were less efficient in nasopharyngeal colonization and dissemination from lungs. Moreover, the ΔdiiA defective strain suffered a severe impairment in bacterial proliferation in blood. Purified DiiA bound to collagen and lactoferrin with high affinity. CONCLUSIONS DiiA is a distinctive pneumococcal virulence factor contributing to colonization and long-term invasion in this pathogen.
Collapse
Affiliation(s)
- María S Escolano-Martínez
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, Carretera a Pozuelo, km 2.2, Majadahonda, 28220 Madrid, Spain
| | - Arnau Domenech
- CIBER de Enfermedades Respiratorias (CIBERES), Spain; Servicio de Microbiología, Hospital Universitari de Bellvitge, Universitat de Barcelona, IDIBELL, Feixa Llarga, sn. L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - José Yuste
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, Carretera a Pozuelo, km 2.2, Majadahonda, 28220 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Spain
| | - María I Cercenado
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, Carretera a Pozuelo, km 2.2, Majadahonda, 28220 Madrid, Spain
| | - Carmen Ardanuy
- CIBER de Enfermedades Respiratorias (CIBERES), Spain; Servicio de Microbiología, Hospital Universitari de Bellvitge, Universitat de Barcelona, IDIBELL, Feixa Llarga, sn. L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josefina Liñares
- CIBER de Enfermedades Respiratorias (CIBERES), Spain; Servicio de Microbiología, Hospital Universitari de Bellvitge, Universitat de Barcelona, IDIBELL, Feixa Llarga, sn. L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Adela G de la Campa
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, Carretera a Pozuelo, km 2.2, Majadahonda, 28220 Madrid, Spain; Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Antonio J Martin-Galiano
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, Carretera a Pozuelo, km 2.2, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
11
|
Domenech A, Moreno J, Ardanuy C, Liñares J, de la Campa AG, Martin-Galiano AJ. A Novel Typing Method for Streptococcus pneumoniae Using Selected Surface Proteins. Front Microbiol 2016; 7:420. [PMID: 27064593 PMCID: PMC4815138 DOI: 10.3389/fmicb.2016.00420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/16/2016] [Indexed: 11/15/2022] Open
Abstract
The diverse pneumococcal diseases are associated with different pneumococcal lineages, or clonal complexes. Nevertheless, intra-clonal genomic variability, which influences pathogenicity, has been reported for surface virulence factors. These factors constitute the communication interface between the pathogen and its host and their corresponding genes are subjected to strong selective pressures affecting functionality and immunogenicity. First, the presence and allelic dispersion of 97 outer protein families were screened in 19 complete pneumococcal genomes. Seventeen families were deemed variable and were then examined in 216 draft genomes. This procedure allowed the generation of binary vectors with 17 positions and the classification of strains into surfotypes. They represent the outer protein subsets with the highest inter-strain discriminative power. A total of 116 non-redundant surfotypes were identified. Those sharing a critical number of common protein features were hierarchically clustered into 18 surfogroups. Most clonal complexes with comparable epidemiological characteristics belonged to the same or similar surfogroups. However, the very large CC156 clonal complex was dispersed over several surfogroups. In order to establish a relationship between surfogroup and pathogenicity, the surfotypes of 95 clinical isolates with different serogroup/serotype combinations were analyzed. We found a significant correlation between surfogroup and type of pathogenic behavior (primary invasive, opportunistic invasive, and non-invasive). We conclude that the virulent behavior of S. pneumoniae is related to the activity of collections of, rather than individual, surface virulence factors. Since surfotypes evolve faster than MLSTs and directly reflect virulence potential, this novel typing protocol is appropriate for the identification of emerging clones.
Collapse
Affiliation(s)
- Arnau Domenech
- Servicio de Microbiología, Hospital Universitari de Bellvitge, Universitat de Barcelona, IDIBELLBarcelona, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| | - Javier Moreno
- Servicio de Microbiología, Hospital Universitari de Bellvitge, Universitat de Barcelona, IDIBELLBarcelona, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| | - Carmen Ardanuy
- Servicio de Microbiología, Hospital Universitari de Bellvitge, Universitat de Barcelona, IDIBELLBarcelona, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| | - Josefina Liñares
- Servicio de Microbiología, Hospital Universitari de Bellvitge, Universitat de Barcelona, IDIBELLBarcelona, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| | - Adela G de la Campa
- Bacterial Genetics, Centro Nacional de Microbiología, Instituto de Salud Carlos IIIMajadahonda, Spain; Presidencia, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Antonio J Martin-Galiano
- Bacterial Genetics, Centro Nacional de Microbiología, Instituto de Salud Carlos III Majadahonda, Spain
| |
Collapse
|
12
|
Survey of immunological features of the alpha-like proteins of Streptococcus agalactiae. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:153-9. [PMID: 25540270 DOI: 10.1128/cvi.00643-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nearly all Streptococcus agalactiae (group B streptococcus [GBS]) strains express a protein which belongs to the so-called alpha-like proteins (Alps), of which Cα, Alp1, Alp2, Alp3, Rib, and Alp4 are known to occur in GBS. The Alps are chimeras which form mosaic structures on the GBS surface. Both N- and C-terminal stretches of the Alps possess immunogenic sites of dissimilar immunological specificity. In this review, we have compiled data dealing with the specificity of the N- and C-terminal immunogenic sites of the Alps. The majority of N-terminal sites show protein specificity while the C-terminal sites show broader cross-reactivity. Molecular serotyping has revealed that antibody-based serotyping has often resulted in erroneous Alp identification, due to persistence of cross-reacting antibodies in antisera for serotyping. Retrospectively, this could be expected on the basis of sequence analysis results. Some of the historical R proteins are in fact Alps. The data included in the review may provide a basis for decisions regarding techniques for the preparation of specific antisera for serotyping of GBS, for use in other approaches in GBS research, and for decision making in the context of GBS vaccine developments.
Collapse
|
13
|
Landwehr-Kenzel S, Henneke P. Interaction of Streptococcus agalactiae and Cellular Innate Immunity in Colonization and Disease. Front Immunol 2014; 5:519. [PMID: 25400631 PMCID: PMC4212683 DOI: 10.3389/fimmu.2014.00519] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/05/2014] [Indexed: 12/18/2022] Open
Abstract
Streptococcus agalactiae (Group B streptococcus, GBS) is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis, and death at the beginning of life, in the elderly and in diabetic patients. Thus, GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days 7 and 90 of life are at risk of a particularly striking sepsis manifestation (late-onset disease), where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases are caused by one clone, GBS ST17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood–brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels, and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like glycerinaldehyde-3-phosphate-dehydrogenase-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are just emerging.
Collapse
Affiliation(s)
- Sybille Landwehr-Kenzel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin , Berlin , Germany ; Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin , Berlin , Germany ; Department of Pediatric Pulmonology and Immunology, Charité University Medicine Berlin , Berlin , Germany
| | - Philipp Henneke
- Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg , Freiburg , Germany ; Center for Chronic Immunodeficiency, University Medical Center Freiburg , Freiburg , Germany
| |
Collapse
|
14
|
Zhou K, Aertsen A, Michiels CW. The role of variable DNA tandem repeats in bacterial adaptation. FEMS Microbiol Rev 2013; 38:119-41. [PMID: 23927439 DOI: 10.1111/1574-6976.12036] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/13/2013] [Accepted: 07/26/2013] [Indexed: 01/05/2023] Open
Abstract
DNA tandem repeats (TRs), also designated as satellite DNA, are inter- or intragenic nucleotide sequences that are repeated two or more times in a head-to-tail manner. Because TR tracts are prone to strand-slippage replication and recombination events that cause the TR copy number to increase or decrease, loci containing TRs are hypermutable. An increasing number of examples illustrate that bacteria can exploit this instability of TRs to reversibly shut down or modulate the function of specific genes, allowing them to adapt to changing environments on short evolutionary time scales without an increased overall mutation rate. In this review, we discuss the prevalence and distribution of inter- and intragenic TRs in bacteria and the mechanisms of their instability. In addition, we review evidence demonstrating a role of TR variations in bacterial adaptation strategies, ranging from immune evasion and tissue tropism to the modulation of environmental stress tolerance. Nevertheless, while bioinformatic analysis reveals that most bacterial genomes contain a few up to several dozens of intra- and intergenic TRs, only a small fraction of these have been functionally studied to date.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Microbial and Molecular Systems (M²S), Faculty of Bioscience Engineering, Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
15
|
Abstract
The infection of mice with Mycoplasma pulmonis is a model for studying chronic mycoplasmal respiratory disease. Many in vivo and in vitro studies have used the organism to gain a better understanding of host-pathogen interactions in chronic respiratory infection. The organism's Vsa proteins contain an extensive tandem repeat region. The length of the tandem repeat unit varies from as few as 11 amino acids to as many as 19. The number of tandem repeats can be as high as 60. The number of repeats varies at a high frequency due to slipped-strand mispairing events that occur during DNA replication. When the number of repeats is high, e.g., 40, the mycoplasma is resistant to lysis by complement but does not form a robust biofilm. When the number of repeats is low, e.g., 5, the mycoplasma is killed by complement when the cells are dispersed but has the capacity to form a biofilm that resists complement. Here, we examine the role of the Vsa proteins in the avoidance of phagocytosis and find that cells producing a protein with many tandem repeats are relatively resistant to killing by macrophages. These results may be pertinent to understanding the functions of similar proteins that have extensive repeat regions in other microbes.
Collapse
|
16
|
Haguenoer E, Baty G, Pourcel C, Lartigue MF, Domelier AS, Rosenau A, Quentin R, Mereghetti L, Lanotte P. A multi locus variable number of tandem repeat analysis (MLVA) scheme for Streptococcus agalactiae genotyping. BMC Microbiol 2011; 11:171. [PMID: 21794143 PMCID: PMC3163538 DOI: 10.1186/1471-2180-11-171] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/27/2011] [Indexed: 11/10/2022] Open
Abstract
Background Multilocus sequence typing (MLST) is currently the reference method for genotyping Streptococcus agalactiae strains, the leading cause of infectious disease in newborns and a major cause of disease in immunocompromised children and adults. We describe here a genotyping method based on multiple locus variable number of tandem repeat (VNTR) analysis (MLVA) applied to a population of S. agalactiae strains of various origins characterized by MLST and serotyping. Results We studied a collection of 186 strains isolated from humans and cattle and three reference strains (A909, NEM316 and 2603 V/R). Among 34 VNTRs, 6 polymorphic VNTRs loci were selected for use in genotyping of the bacterial population. The MLVA profile consists of a series of allele numbers, corresponding to the number of repeats at each VNTR locus. 98 MLVA genotypes were obtained compared to 51 sequences types generated by MLST. The MLVA scheme generated clusters which corresponded well to the main clonal complexes obtained by MLST. However it provided a higher discriminatory power. The diversity index obtained with MLVA was 0.960 compared to 0.881 with MLST for this population of strains. Conclusions The MLVA scheme proposed here is a rapid, cheap and easy genotyping method generating results suitable for exchange and comparison between different laboratories and for the epidemiologic surveillance of S. agalactiae and analyses of outbreaks.
Collapse
Affiliation(s)
- Eve Haguenoer
- Université François-Rabelais de Tours, UFR de Médecine, EA 3854 Bactéries et risque materno-fœtal, Institut Fédératif de Recherche 136 Agents Transmissibles et Infectiologie, Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Klinzing DC, Madoff LC, Puopolo KM. Genomic analysis identifies a transcription-factor binding motif regulating expression of the alpha C protein in Group B Streptococcus. Microb Pathog 2009; 46:315-20. [PMID: 19328843 PMCID: PMC2747082 DOI: 10.1016/j.micpath.2009.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 11/21/2022]
Abstract
The virulence-associated alpha C protein (ACP) of Group B Streptococcus (GBS) facilitates the bacterial interaction with host epithelial cells. We previously demonstrated that phase-variable expression of ACP is controlled by variation in short-sequence repeat sequences present upstream of the promoter of bca, the gene encoding ACP. To determine if trans-acting transcriptional control also influences ACP expression, we developed an in silico prediction algorithm that identified a potential transcription-factor binding motif (TTT-N(6)-ATAT) in the bca upstream region. In vitro reporter gene expression studies confirmed that this motif is required for full ACP expression, and DNA-binding assays with a GBS protein extract demonstrated that the predicted site is bound by a protein. This approach demonstrates the utility of in silico genomic predictive methods in the study of GBS regulatory mechanisms.
Collapse
Affiliation(s)
- David C. Klinzing
- Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115
| | - Lawrence C. Madoff
- Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115
- Division of Infectious Diseases, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Karen M. Puopolo
- Channing Laboratory, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115
- Department of Newborn Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| |
Collapse
|
18
|
Harper KN, Liu H, Ocampo PS, Steiner BM, Martin A, Levert K, Wang D, Sutton M, Armelagos GJ. The sequence of the acidic repeat protein (arp) gene differentiates venereal from nonvenereal Treponema pallidum subspecies, and the gene has evolved under strong positive selection in the subspecies that causes syphilis. ACTA ACUST UNITED AC 2008; 53:322-32. [PMID: 18554302 DOI: 10.1111/j.1574-695x.2008.00427.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the completion of the Treponema pallidum genome project, only minor genetic differences have been found between the subspecies that cause venereal syphilis (ssp. pallidum) and the nonvenereal diseases yaws (ssp. pertenue) and bejel (ssp. endemicum). In this paper, we describe sequence variation in the arp gene which allows straightforward differentiation of ssp. pallidum from the nonvenereal subspecies. We also present evidence that this region is subject to positive selection in ssp. pallidum, consistent with pressure from the immune system. Finally, the presence of multiple, but distinct, repeat motifs in both ssp. pallidum and Treponema paraluiscuniculi (the pathogen responsible for rabbit syphilis) suggests that a diverse repertoire of repeat motifs is associated with sexual transmission. This study suggests that variations in the number and sequence of repeat motifs in the arp gene have clinical, epidemiological, and evolutionary significance.
Collapse
Affiliation(s)
- Kristin N Harper
- Department of Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Identification of a novel trimeric autotransporter adhesin in the cryptic genospecies of Haemophilus. J Bacteriol 2008; 190:4313-20. [PMID: 18424521 DOI: 10.1128/jb.01963-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus biotype IV strains belonging to the recently recognized Haemophilus cryptic genospecies are an important cause of maternal genital tract and neonatal systemic infections and initiate infection by colonizing the genital or respiratory epithelium. To gain insight into the mechanism of Haemophilus cryptic genospecies colonization, we began by examining prototype strain 1595 and three other strains for adherence to genital and respiratory epithelial cell lines. Strain 1595 and two of the three other strains demonstrated efficient adherence to all of the cell lines tested. With a stably adherent variant of strain 1595, we generated a Mariner transposon library and identified 16 nonadherent mutants. All of these mutants lacked surface fibers and contained an insertion in the same open reading frame, which encodes a 157-kDa protein designated Cha for cryptic haemophilus adhesin. Analysis of the predicted amino acid sequence of Cha revealed the presence of an N-terminal signal peptide and a C-terminal domain bearing homology to YadA-like and Hia-like trimeric autotransporters. Examination of the C-terminal 120 amino acids of Cha demonstrated mobility as a trimer on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the capacity to present the passenger domain of the Hia trimeric autotransporter on the bacterial surface. Southern analysis revealed that the gene that encodes Cha is conserved among clinical isolates of the Haemophilus cryptic genospecies and is absent from the closely related species Haemophilus influenzae. We speculate that Cha is important in the pathogenesis of disease due to the Haemophilus cryptic genospecies and is in part responsible for the apparent tissue tropism of this organism.
Collapse
|
20
|
Stålhammar-Carlemalm M, Waldemarsson J, Johnsson E, Areschoug T, Lindahl G. Nonimmunodominant Regions Are Effective as Building Blocks in a Streptococcal Fusion Protein Vaccine. Cell Host Microbe 2007; 2:427-34. [DOI: 10.1016/j.chom.2007.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/27/2007] [Accepted: 10/12/2007] [Indexed: 11/28/2022]
|
21
|
Ho YR, Li CM, Su HP, Wu JH, Tseng YC, Lin YJ, Wu JJ. Variation in the number of tandem repeats and profile of surface protein genes among invasive group B Streptococci correlates with patient age. J Clin Microbiol 2007; 45:1634-6. [PMID: 17344358 PMCID: PMC1865878 DOI: 10.1128/jcm.00122-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The average number of tandem repeats of the rib gene (which encodes the Rib surface protein) in invasive group B streptococci from 29 neonates was smaller than that from 20 adults (6.8 and 8.6, respectively; P<0.05), implying a distinct contribution of immunity toward this age-related variation.
Collapse
Affiliation(s)
- Yueh-Ren Ho
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1 University Road, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
22
|
Henneke P, Berner R. Interaction of neonatal phagocytes with group B streptococcus: recognition and response. Infect Immun 2006; 74:3085-95. [PMID: 16714536 PMCID: PMC1479263 DOI: 10.1128/iai.01551-05] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Philipp Henneke
- Zentrum für Kinderheilkunde und Jugendmedizin, Albert-Ludwigs Universität Freiburg, Mathildenstr. 1, 79106 Freiburg, Germany.
| | | |
Collapse
|
23
|
Zhao Z, Kong F, Gilbert GL. Reverse line blot assay for direct identification of seven Streptococcus agalactiae major surface protein antigen genes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:145-9. [PMID: 16426012 PMCID: PMC1356620 DOI: 10.1128/cvi.13.1.145-149.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We developed a multiplex PCR-based reverse line blot hybridization assay (mPCR/RLB) to detect the genes encoding members of the family of variable surface-localized proteins of Streptococcus agalactiae (group B streptococcus [GBS]), namely, Bca (Calpha), Rib, Epsilon (Epsilon/Alp1/Alp5), Alp2, Alp3, and Alp4, and the immunoglobulin A binding protein, Bac (Cbeta). We used the assay to identify these genes in a collection of well-characterized GBS isolates and reference strains. The results showed that mPCR/RLB avoids the common problems of cross-reaction and nontypability associated with protein typing using antisera. It is as sensitive as, but more practical than, separate gene-specific PCRs and would be suitable for large molecular epidemiological studies of GBS.
Collapse
Affiliation(s)
- Zuotao Zhao
- Centre for Infectious Diseases and Microbiology (CIDM), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Darcy Road, Westmead, New South Wales 2145, Australia
| | | | | |
Collapse
|
24
|
Lindahl G, Stålhammar-Carlemalm M, Areschoug T. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin Microbiol Rev 2005; 18:102-27. [PMID: 15653821 PMCID: PMC544178 DOI: 10.1128/cmr.18.1.102-127.2005] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received increasing attention as potential virulence factors and vaccine components. Here, we summarize current knowledge about S. agalactiae surface proteins, with emphasis on proteins that have been characterized immunochemically and/or elicit protective immunity in animal models. These surface proteins have been implicated in interactions with human epithelial cells, binding to extracellular matrix components, and/or evasion of host immunity. Of note, several S. agalactiae surface proteins are related to surface proteins identified in other bacterial pathogens, emphasizing the general interest of the S. agalactiae proteins. Because some S. agalactiae surface proteins elicit protective immunity, they hold promise as components in a vaccine based only on proteins or as carriers in polysaccharide conjugate vaccines.
Collapse
Affiliation(s)
- Gunnar Lindahl
- Department of Medical Microbiology, Dermatology and Infection, Lund University, Sölvegatan 23, SE-22362 Lund, Sweden.
| | | | | |
Collapse
|
25
|
Aupérin TC, Bolduc GR, Baron MJ, Heroux A, Filman DJ, Madoff LC, Hogle JM. Crystal structure of the N-terminal domain of the group B streptococcus alpha C protein. J Biol Chem 2005; 280:18245-52. [PMID: 15753100 DOI: 10.1074/jbc.m412391200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis, and meningitis among neonates and an important cause of morbidity among pregnant women and immunocompromised adults. Invasive diseases due to GBS are attributed to the ability of the pathogen to translocate across human epithelial surfaces. The alpha C protein (ACP) has been identified as an invasin that plays a role in internalization and translocation of GBS across epithelial cells. The soluble N-terminal domain of ACP (NtACP) blocks the internalization of GBS. We determined the 1.86-A resolution crystal structure of NtACP comprising residues Ser(52) through Leu(225) of the full-length ACP. NtACP has two domains, an N-terminal beta-sandwich and a C-terminal three-helix bundle. Structural and topological alignments reveal that the beta-sandwich shares structural elements with the type III fibronectin fold (FnIII), but includes structural elaborations that make it unique. We have identified a potential integrin-binding motif consisting of Lys-Thr-Asp(146), Arg(110), and Asp(118). A similar arrangement of charged residues has been described in other invasins. ACP shows a heparin binding activity that requires NtACP. We propose a possible heparin-binding site, including one surface of the three-helix bundle, and nearby portions of the sandwich and repeat domains. We have validated this prediction using assays of the heparin binding and cell-adhesion properties of engineered fragments of ACP. This is the first crystal structure of a member of the highly conserved Gram-positive surface alpha-like protein family, and it will enable the internalization mechanism of GBS to be dissected at the atomic level.
Collapse
Affiliation(s)
- Thierry C Aupérin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Tu AHT, Clapper B, Schoeb TR, Elgavish A, Zhang J, Liu L, Yu H, Dybvig K. Association of a major protein antigen of Mycoplasma arthritidis with virulence. Infect Immun 2005; 73:245-9. [PMID: 15618160 PMCID: PMC538968 DOI: 10.1128/iai.73.1.245-249.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma arthritidis causes acute polyarthritis in rats and chronic proliferative arthritis in mice. M. arthritidis-induced arthritis serves as a model for arthritis caused by infectious agents and as a model for examining the role of the superantigen MAM (M. arthritidis T-cell mitogen) in the development of autoimmunity. M. arthritidis strain 158-1 is a spontaneous mutant of strain 158 that has a drastic reduction in virulence. We show that the mutant is missing a major antigen of 47 kDa (P47) and has acquired a protein of 67 kDa (P67). P47 and P67 partitioned into the detergent phase by extraction with Triton X-114. Coomassie blue staining of sodium dodecyl sulfate-polyacrylamide gels show that P67 is produced in abundance. Analysis of gel-purified P67 by mass spectrometry led to its identification as a lipoprotein (the open reading frame [ORF] 619 gene product) predicted from the genome sequence of M. arthritidis. PCR analysis of genomic DNA from 158 and 158-1 indicates that P47 and P67 are encoded by the same ORF 619 gene and differ only in the number of repeats in a tandem repeat region. By two-dimensional polyacrylamide gel analysis, no protein differences were detectable between 158 and 158-1 other than P47 and P67. Collectively, the data suggest that the tandem repeat region of P47 and P67 influences disease outcome.
Collapse
Affiliation(s)
- A-H T Tu
- Department of Genetics, KAUL, Room 720, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Puopolo KM, Madoff LC. Upstream short sequence repeats regulate expression of the alpha C protein of group B Streptococcus. Mol Microbiol 2004; 50:977-91. [PMID: 14617155 DOI: 10.1046/j.1365-2958.2003.03745.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Group B streptococci (GBS) express a family of repeat-containing surface proteins, the prototype of which is the alpha C protein expressed in type Ia/C strain A909. We have isolated a series of mutant GBS strains by mouse-passage of A909 that do not produce normal levels of the alpha C protein. Polymerase chain reaction amplification and sequencing of the gene encoding the alpha C protein, bca, from four mutant strains revealed the presence of a full-length gene in each strain. However, Northern and RT-PCR analysis revealed greatly reduced levels of RNA encoding the alpha C protein. Sequence analysis of the mutant genes found the coding region unchanged from the wild-type gene in each case, but variation was observed in a specific locus located 110 bp upstream of the start codon. The presence of a 5-nucleotide repeat, AGATT, and a string of adenine residues mark this locus. Both deletion and expansion of the AGATT motif were associated with the complete null phenotype. Deletions in the string of adenine residues were associated with both a decreased-production phenotype and a complete null phenotype. Cloning of this upstream region into a green-fluorescent protein (GFP) reporter system in GBS demonstrated promoter activity that was completely abolished by changes in the pentanucleotide repeat or adenine string. Primer extension studies of the wild-type strain revealed one dominant and two minor transcription start sites. Primer extension studies of the null and low-expression mutant strains revealed that the dominant transcript is completely absent in each mutant. The short sequence repeat locus is located at position - 55 to - 78 relative to the start site of the dominant transcript. We have demonstrated in vitro phase variation in expression of the alpha C protein associated with variation at the pentanucleotide repeat locus. We conclude that this short sequence repeat motif is located upstream of the dominant promoter for the alpha C protein and represents a regulatory site for alpha C protein expression. This is the first evidence of transcriptional regulation by short-sequence repeats in a Gram-positive organism.
Collapse
Affiliation(s)
- Karen M Puopolo
- Department of Newborn Medicine, Brigham and Womens' Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
28
|
Puopolo KM, Hollingshead SK, Carey VJ, Madoff LC. Tandem repeat deletion in the alpha C protein of group B streptococcus is recA independent. Infect Immun 2001; 69:5037-45. [PMID: 11447184 PMCID: PMC98598 DOI: 10.1128/iai.69.8.5037-5045.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Group B streptococci (GBS) contain a family of protective surface proteins characterized by variable numbers of repeating units within the proteins. The prototype alpha C protein of GBS from the type Ia/C strain A909 contains a series of nine identical 246-bp tandem repeat units. We have previously shown that deletions in the tandem repeat region of the alpha C protein affect both the immunogenicity and protective efficacy of the protein in animal models, and these deletions may serve as a virulence mechanism in GBS. The molecular mechanism of tandem repeat deletion is unknown. To determine whether RecA-mediated homologous recombination is involved in this process, we identified, cloned, and sequenced the recA gene homologue from GBS. A strain of GBS with recA deleted, A909DeltarecA, was constructed by insertional inactivation in the recA locus. A909DeltarecA demonstrated significant sensitivity to UV light, and the 50% lethal dose of the mutant strain in a mouse intraperitoneal model of sepsis was 20-fold higher than that of the parent strain. The spontaneous rate of tandem repeat deletion in the alpha C protein in vitro, as well as in our mouse model of immune infection, was studied using A909DeltarecA. We report that tandem repeat deletion in the alpha C protein does occur in the absence of a functional recA gene both in vitro and in vivo, indicating that tandem repeat deletion in GBS occurs by a recA-independent recombinatorial pathway.
Collapse
Affiliation(s)
- K M Puopolo
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
29
|
Kreikemeyer B, Jerlström PG. An Escherichia coli-Enterococcus faecalis shuttle vector as a tool for the construction of a group B Streptococcus heterologous mutant expressing the beta antigen (Bac) of the C protein complex. FEMS Microbiol Lett 1999; 180:255-62. [PMID: 10556720 DOI: 10.1111/j.1574-6968.1999.tb08804.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Group B streptococci (GBS) represent a very important group of human pathogens. So far little is known about the mechanisms by which these bacteria can cause disease and the bacterial factors involved. One putative virulence factor is the beta antigen of the C protein complex (Bac), which can bind to the Fc region of human IgA. Its binding function might represent an important virulence mechanism. However, the genetic manipulation of this group of bacteria, necessary to prove involvement of bacterial factors in pathogenesis, is still in its infancy. We therefore tested the pAM401 vector system for its suitability in the construction of a heterologous expression mutant using the Bac protein as a model antigen. The bac gene, including its own promoter, was cloned into the Escherichia coli-Enterococcus faecalis shuttle vector pAM401 and was stably maintained extrachromosomally in the bac-deficient GBS strain 335. Expression of Bac was assessed by extracting the protein from transformed 335(pPJTU1) cells, negative controls (335 wild-type, 335(pAM401)) and other Bac-expressing GBS strains (A909, LA239). Blots of the extracted proteins probed with IgA, polyclonal sera and a monoclonal antibody raised against Bac clearly revealed expression of the 130-kDa protein in the transformed GBS 335(pPJTU1) cells. The correct processing and surface anchoring of the expressed Bac was demonstrated by binding of (125)I-labelled IgA to whole cells. Strain 335(pPJTU1) bound 12 times as much IgA compared to the parental strain LA239 and the GBS 335 negative controls, and a total of 25% compared to the high-level-expressing strain A909. Our studies show that the pAM401 shuttle vector can be used for stable heterologous expression of surface proteins in GBS. Our strategy is also of major importance for the complementation of deletion mutants in GBS and other Gram-positive human pathogens to fulfill Koch's postulates. The Bac mutant constructed in this study, 335(pPJTU1), can be used in animal models to assess the importance of Bac in GBS pathogenesis.
Collapse
Affiliation(s)
- B Kreikemeyer
- Department of Microbial Pathogenesis and Vaccine Research, GBF-National Research Centre for Biotechnology, Braunschweig, Germany.
| | | |
Collapse
|
30
|
Gravekamp C, Kasper DL, Paoletti LC, Madoff LC. Alpha C protein as a carrier for type III capsular polysaccharide and as a protective protein in group B streptococcal vaccines. Infect Immun 1999; 67:2491-6. [PMID: 10225912 PMCID: PMC115995 DOI: 10.1128/iai.67.5.2491-2496.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/1998] [Accepted: 02/18/1999] [Indexed: 11/20/2022] Open
Abstract
The alpha C protein, a protective surface protein of group B streptococci (GBS), is present in most non-type III GBS strains. Conjugate vaccines composed of the alpha C protein and type III capsular polysaccharide (CPS) might be protective against most GBS infections. In this study, the type III CPS was covalently coupled to full-length, nine-repeat alpha C protein (resulting in III-alpha9r conjugate vaccine) or to two-repeat alpha C protein (resulting in III-alpha2r conjugate vaccine) by reductive amination. Initial experiments with the III-alpha9r vaccine showed that it was poorly immunogenic in mice with respect to both vaccine antigens and was suboptimally efficacious in providing protection in mice against challenge with GBS. Therefore, modified vaccination protocols were used with the III-alpha2r vaccine. Female mice were immunized three times with 0.5, 5, or 20 microgram of the III-alpha2r vaccine with an aluminum hydroxide adjuvant and bred. Ninety-five percent of neonatal mice born to dams immunized with the III-alpha2r vaccine survived challenge with GBS expressing type III CPS, and 60% survived challenge with GBS expressing wild-type (nine-repeat) alpha C protein; 18 and 17%, respectively, of mice in the negative control groups survived (P, <0.0001). These protection levels did not differ significantly from those obtained with the type III CPS-tetanus toxoid conjugate vaccine and the unconjugated two-repeat alpha C protein, which protected 98 and 58% of neonates from infection with GBS expressing type III CPS or the alpha C protein, respectively. Thus, the two-repeat alpha C protein in the vaccine was immunogenic and simultaneously enhanced the immunogenicity of type III CPS. III-alpha vaccines may be alternatives to GBS polysaccharide-tetanus toxoid vaccines, eliciting additional antibodies protective against GBS infection.
Collapse
Affiliation(s)
- C Gravekamp
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Proteins containing amino acid repeats are widespread among protozoan parasites. It has been suggested that these repetitive structures act as immunomodulators, but other functional aspects may be of primary importance. We have recently suggested that tandem repeats present in Trypanosoma cruzi trans-sialidase stabilize the catalytic activity in blood. Because the parasite releasestrans-sialidase, this delayed clearance of the enzyme might have implications in vivo. In the present work, the ability of repetitive units from different T. cruzi molecules in stabilizing trans-sialidase activity in blood was evaluated. It is shown that repeats present on T. cruzi shed proteins (antigens 13 and Shed-Acute-Phase-Antigen [SAPA]) increase trans-sialidase half-life in blood from 7 to almost 35 hours. Conversely, those repeats present in intracellular T. cruzi proteins only increase the enzyme half-life in blood up to 15 hours. Despite these results, comparative analysis of structural and catalytic properties of both groups of chimeric enzymes show no substantial differences. Interestingly, antigens 13 and SAPA also increase the persistence in blood of chimeric glutathione S-transferases, thus suggesting that this effect is inherent to these repeats and independent of the carrier protein. Although the molecular basis of this phenomenon is still uncertain, its biotechnological potential can be envisaged.
Collapse
|
32
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 946] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|
33
|
Jespersgaard C, Hajishengallis G, Greenway TE, Smith DJ, Russell MW, Michalek SM. Functional and immunogenic characterization of two cloned regions of Streptococcus mutans glucosyltransferase I. Infect Immun 1999; 67:810-6. [PMID: 9916095 PMCID: PMC96391 DOI: 10.1128/iai.67.2.810-816.1999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucosyltransferase (GTF) enzymes of mutans streptococci are considered virulence factors due to their ability to synthesize adhesive glucans, which facilitate cell-to-cell adherence and accumulation. In this study we report the cloning, expression, and characterization of the catalytic (CAT) and glucan-binding (GLU) domains of S. mutans GTF-I encoded by gtfB. The CAT and GLU polypeptides represent amino acid residues 253 to 628 and 1183 to 1473, respectively, of S. mutans GTF-I. Antibodies to recombinant CAT and GLU were generated in rabbits and purified by affinity chromatography. Purified anti-CAT antibodies significantly inhibited water-insoluble glucan synthesis by S. mutans and S. sobrinus GTFs (P < 0.0001 and P < 0.05, respectively). The purified anti-GLU antibodies significantly inhibited both water-insoluble and water-soluble glucan synthesis by S. mutans GTFs (P < 0.0001 and P < 0.05, respectively). These results demonstrate that anti-CAT and anti-GLU antibodies are capable of inhibiting a variety of GTF activities. Since antibodies to S. mutans in saliva are implicated in protection against disease, we next assessed the ability of CAT and GLU polypeptides to induce mucosal antibody responses in mice. Intranasal (i.n.) immunization of mice with CAT showed significantly (P < 0.005) elevated levels of specific immunoglobulin G (IgG) antibody activity in serum and specific IgA antibody activity in serum, saliva, vaginal washes, and fecal samples. GLU immunized animals showed significantly (P < 0.005) elevated levels of specific IgA antibody activity in serum and vaginal secretions. Taken together, these results demonstrate that the recombinant CAT and GLU polypeptides are effective in inducing both mucosal and systemic immune responses. The ability of these polypeptides to induce a mucosal IgA immune response in mice after i.n. immunization supports their use as subunit vaccine candidates in the development of an anticaries vaccine.
Collapse
Affiliation(s)
- C Jespersgaard
- Departments of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
34
|
Holmes AR, Gilbert C, Wells JM, Jenkinson HF. Binding properties of Streptococcus gordonii SspA and SspB (antigen I/II family) polypeptides expressed on the cell surface of Lactococcus lactis MG1363. Infect Immun 1998; 66:4633-9. [PMID: 9746559 PMCID: PMC108570 DOI: 10.1128/iai.66.10.4633-4639.1998] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oral bacterium Streptococcus gordonii expresses two cell wall-associated polypeptides, designated SspA (1,542 amino acid residues) and SspB (1,462 amino acid residues), that have 70% sequence identity. These polypeptides are members of the antigen I/II family of oral streptococcal adhesins and mediate the binding of streptococci to salivary glycoproteins, collagen, and other oral microorganisms such as Actinomyces naeslundii. To determine if SspA and SspB have differential binding properties, the coding sequences of the sspA and sspB genes were cloned into expression plasmid vector pTREX1-usp45LS to generate pTREX1-sspA and pTREX1-sspB, respectively, and the Ssp polypeptides were displayed on the cell surface of Lactococcus lactis MG1363. Lactococcal cells expressing similar levels of surface SspA or SspB polypeptide were then compared for their abilities to adhere to a range of antigen I/II polypeptide substrates. More than twice as many L. lactis cells expressing SspA bound to immobilized salivary agglutinin glycoprotein (SAG) as did L. lactis cells expressing SspB. In contrast, lactococci expressing SspB adhered twice as well as lactococci producing SspA to collagen type I and to Candida albicans. The binding of A. naeslundii to lactococci was only weakly enhanced by surface expression of Ssp polypeptides. L. lactis(pTREX1-sspB) cells bound in greater numbers to SAG than did Enterococcus faecalis JH2-2 cells expressing SspB from pAM401EB-5. The results suggest that SspA and SspB have markedly different binding affinities for their oral substrates and thus may function to promote site diversity in colonization by S. gordonii.
Collapse
Affiliation(s)
- A R Holmes
- Department of Oral Sciences and Orthodontics, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
35
|
Gravekamp C, Rosner B, Madoff LC. Deletion of repeats in the alpha C protein enhances the pathogenicity of group B streptococci in immune mice. Infect Immun 1998; 66:4347-54. [PMID: 9712787 PMCID: PMC108525 DOI: 10.1128/iai.66.9.4347-4354.1998] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alpha C protein is a protective surface-associated antigen of group B streptococci (GBS). The prototype alpha C protein of GBS (strain A909) contains nine identical tandem repeats, each comprising 82 amino acids, flanked by N- and C-terminal domains. Clinical isolates of GBS show variable numbers of repeats with a normal distribution and a median of 9 to 10 repeats. Here, we show that escape mutants of GBS expressing one-repeat alpha C protein were 100-fold more pathogenic than GBS expressing wild-type nine-repeat alpha C protein in neonatal mice whose dams were immunized with antiserum elicited to nine-repeat alpha C protein (50% lethal doses of 1.6 x 10(3) and 1.8 x 10(5), respectively; P = 0.0073). There was no difference in pathogenicity in nonimmune mice. Enzyme-linked immunosorbent assay inhibition showed that nine-repeat but not one-repeat alpha C protein is readily available for antibody binding on the surface of intact GBS. Immune electron microscopy studies with antibodies to the capsular polysaccharide (CPS) and to the alpha C protein demonstrated localization of the nine-repeat alpha C protein and the CPS at similar distances from the cell wall. The one-repeat alpha C protein was visualized poorly and only in close proximity to the cell wall, thus suggesting that antibody binding to the protein was hindered by CPS or other cell surface components. We concluded that deletion in the repeat region of the alpha C protein enhanced the pathogenicity of GBS in immune mice by (i) loss of a protective (conformational) epitope(s) and (ii) loss of antibody binding to the alpha C protein due to a decrease in antigen size relative to cell wall components and/or CPS.
Collapse
Affiliation(s)
- C Gravekamp
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
36
|
van Belkum A, Scherer S, van Alphen L, Verbrugh H. Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 1998; 62:275-93. [PMID: 9618442 PMCID: PMC98915 DOI: 10.1128/mmbr.62.2.275-293.1998] [Citation(s) in RCA: 455] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Short-sequence DNA repeat (SSR) loci can be identified in all eukaryotic and many prokaryotic genomes. These loci harbor short or long stretches of repeated nucleotide sequence motifs. DNA sequence motifs in a single locus can be identical and/or heterogeneous. SSRs are encountered in many different branches of the prokaryote kingdom. They are found in genes encoding products as diverse as microbial surface components recognizing adhesive matrix molecules and specific bacterial virulence factors such as lipopolysaccharide-modifying enzymes or adhesins. SSRs enable genetic and consequently phenotypic flexibility. SSRs function at various levels of gene expression regulation. Variations in the number of repeat units per locus or changes in the nature of the individual repeat sequences may result from recombination processes or polymerase inadequacy such as slipped-strand mispairing (SSM), either alone or in combination with DNA repair deficiencies. These rather complex phenomena can occur with relative ease, with SSM approaching a frequency of 10(-4) per bacterial cell division and allowing high-frequency genetic switching. Bacteria use this random strategy to adapt their genetic repertoire in response to selective environmental pressure. SSR-mediated variation has important implications for bacterial pathogenesis and evolutionary fitness. Molecular analysis of changes in SSRs allows epidemiological studies on the spread of pathogenic bacteria. The occurrence, evolution and function of SSRs, and the molecular methods used to analyze them are discussed in the context of responsiveness to environmental factors, bacterial pathogenicity, epidemiology, and the availability of full-genome sequences for increasing numbers of microorganisms, especially those that are medically relevant.
Collapse
Affiliation(s)
- A van Belkum
- Department of Medical Microbiology & Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|