1
|
Kulshrestha A, Gupta P. Multi-computational screening identifies homovanillic acid as a potential SAP5 inhibitor against Candida albicans biofilms. Comput Biol Chem 2025; 118:108453. [PMID: 40222055 DOI: 10.1016/j.compbiolchem.2025.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/15/2025]
Abstract
This work aims to find inhibitors of SAP5, a virulence factor in Candida albicans polymicrobial biofilms. The methodology included docking simulations, MMGBSA calculations, and molecular dynamics simulations. Of the 107 phenolic acids retrieved from PubChem, 20 passed ADMET screening. The research finds homovanillic acid to be a possible SAP5 inhibitor, with a binding energy of -19.92 kcal/mol as shown by molecular docking and MMGBSA analysis. The compound showed favorable ADMET properties, indicating low toxicity and high drug-likeness. Molecular dynamics simulations over 100 nanoseconds confirmed stable protein-ligand interactions. These findings suggest homovanillic acid's potential in treating AMR-associated biofilms and establish a foundation for experimental validation. The study demonstrates how computational methods can accelerate the discovery of novel antifungal medicines targeting polymicrobial infections.
Collapse
Affiliation(s)
- Anmol Kulshrestha
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India.
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
2
|
Deng K, Zhang Y, Lv S, Zhang C, Xiao L. Decoding Pecan's Fungal Foe: A Genomic Insight into Colletotrichum plurivorum Isolate W-6. J Fungi (Basel) 2025; 11:203. [PMID: 40137241 PMCID: PMC11943440 DOI: 10.3390/jof11030203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Pecan (Carya illinoinensis) is a world-renowned nut crop that is highly favored by consumers for its high content of healthy nutrients. For a long time, anthracnose has severely threatened the yield and quality of pecan, causing significant economic losses to the global pecan industry. Here, we report the 54.57-Mb gapless chromosome-level assembly of the pathogenic ascomycetes Colletotrichum plurivorum isolate W-6 from pecan plantations in Southeast China. Six of 12 chromosomes contain, at least, telomeric repeats (CCCTAA)n or (TTAGGG)n at one end. A total of 14,343 protein-coding genes were predicted. Pathogenicity- and virulence-related annotations revealed 137 to 4558 genes associated with the TCDB, PHI, Cyt_P450, DFVF, effector, and secretome databases, respectively. A comparative analysis of isolate W-6, together with 51 other Colletotrichum strains, reveled 13 genes unique to the Orchidearum complex to which isolate W-6 belongs, highlighting the major facilitator superfamily transporters. The detailed analyses of MFS transporters associated with secondary metabolite gene clusters in isolate W-6 led to the identification and protein structure analyses of two key virulence factor candidates in DHA1 subclass, prlG and azaK, which were reported as efflux transporters of antibiotics in other pathogenic fungi. The assembly and further functional investigation of two pathogenic genes identified here potentially provide important resources for better understanding the biology and lifestyle of Colletotrichum and pave the way for designing more efficient strategies to control anthracnose in pecan plantations.
Collapse
Affiliation(s)
- Ke Deng
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (K.D.); (Y.Z.); (S.L.)
| | - Ying Zhang
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (K.D.); (Y.Z.); (S.L.)
| | - Saibin Lv
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (K.D.); (Y.Z.); (S.L.)
| | - Chulong Zhang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lihong Xiao
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (K.D.); (Y.Z.); (S.L.)
| |
Collapse
|
3
|
Zawrotniak M, Satala D, Juszczak M, Bras G, Rapala-Kozik M. Candida albicans aspartyl protease (Sap6) inhibits neutrophil function via a "Trojan horse" mechanism. Sci Rep 2025; 15:6946. [PMID: 40011643 PMCID: PMC11865311 DOI: 10.1038/s41598-025-91425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Abstract
Candida albicans, a prevalent fungal pathogen, employs aspartyl proteases such as Sap6 to evade immune defenses, challenging our understanding of host‒pathogen interactions. This research examined the impact of Sap6 on neutrophil responses, which are crucial for innate immunity. Employing flow cytometry and fluorescence microscopy, we explored how Sap6 affects neutrophil functions, particularly by focusing on reactive oxygen species (ROS) production, neutrophil extracellular traps release (NETosis), and apoptosis. Our findings revealed Sap6's unique ability to bind and internalize in neutrophils, significantly attenuating ROS production through proteolytic damage to NADPH oxidase, resulting in blocking the ROS-dependent NETosis pathway. This disruption in neutrophil functions by Sap6 suggested the presence of a 'Trojan horse' mechanism by C. albicans. This mechanism reveals a sophisticated immune evasion strategy, shedding light on fungal pathogenicity and host immune interactions. Understanding fungal proteases in immune modulation could inspire new therapeutic approaches for fungal infections.
Collapse
Affiliation(s)
- Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Grażyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Bose S, Sahu SR, Dutta A, Acharya N. A chemically induced attenuated strain of Candida albicans generates robust protective immune responses and prevents systemic candidiasis development. eLife 2024; 13:RP93760. [PMID: 38787374 PMCID: PMC11126311 DOI: 10.7554/elife.93760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Despite current antifungal therapy, invasive candidiasis causes >40% mortality in immunocompromised individuals. Therefore, developing an antifungal vaccine is a priority. Here, we could for the first time successfully attenuate the virulence of Candida albicans by treating it with a fungistatic dosage of EDTA and demonstrate it to be a potential live whole cell vaccine by using murine models of systemic candidiasis. EDTA inhibited the growth and biofilm formation of C. albicans. RNA-seq analyses of EDTA-treated cells (CAET) revealed that genes mostly involved in metal homeostasis and ribosome biogenesis were up- and down-regulated, respectively. Consequently, a bulky cell wall with elevated levels of mannan and β-glucan, and reduced levels of total monosomes and polysomes were observed. CAET was eliminated faster than the untreated strain (Ca) as found by differential fungal burden in the vital organs of the mice. Higher monocytes, granulocytes, and platelet counts were detected in Ca- vs CAET-challenged mice. While hyper-inflammation and immunosuppression caused the killing of Ca-challenged mice, a critical balance of pro- and anti-inflammatory cytokines-mediated immune responses are the likely reasons for the protective immunity in CAET-infected mice.
Collapse
Affiliation(s)
- Swagata Bose
- Department of Infectious Disease Biology, Institute of Life SciencesBhubaneswarIndia
| | - Satya Ranjan Sahu
- Department of Infectious Disease Biology, Institute of Life SciencesBhubaneswarIndia
| | - Abinash Dutta
- Department of Infectious Disease Biology, Institute of Life SciencesBhubaneswarIndia
| | - Narottam Acharya
- Department of Infectious Disease Biology, Institute of Life SciencesBhubaneswarIndia
| |
Collapse
|
5
|
Lim SJ, Muhd Noor ND, Sabri S, Mohamad Ali MS, Salleh AB, Oslan SN. Bibliometric analysis and thematic review of Candida pathogenesis: Fundamental omics to applications as potential antifungal drugs and vaccines. Med Mycol 2024; 62:myad126. [PMID: 38061839 DOI: 10.1093/mmy/myad126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
Invasive candidiasis caused by the pathogenic Candida yeast species has resulted in elevating global mortality. The pathogenicity of Candida spp. is not only originated from its primary invasive yeast-to-hyphal transition; virulence factors (transcription factors, adhesins, invasins, and enzymes), biofilm, antifungal drug resistance, stress tolerance, and metabolic adaptation have also contributed to a greater clinical burden. However, the current research theme in fungal pathogenicity could hardly be delineated with the increasing research output. Therefore, our study analysed the research trends in Candida pathogenesis over the past 37 years via a bibliometric approach against the Scopus and Web of Science databases. Based on the 3993 unique documents retrieved, significant international collaborations among researchers were observed, especially between Germany (Bernhard Hube) and the UK (Julian Naglik), whose focuses are on Candida proteinases, adhesins, and candidalysin. The prominent researchers (Neils Gow, Alistair Brown, and Frank Odds) at the University of Exeter and the University of Aberdeen (second top performing affiliation) UK contribute significantly to the mechanisms of Candida adaptation, tolerance, and stress response. However, the science mapping of co-citation analysis performed herein could not identify a hub representative of subsequent work since the clusters were semi-redundant. The co-word analysis that was otherwise adopted, revealed three research clusters; the cluster-based thematic analyses indicated the severeness of Candida biofilm and antifungal resistance as well as the elevating trend on molecular mechanism elucidation for drug screening and repurposing. Importantly, the in vivo pathogen adaptation and interactions with hosts are crucial for potential vaccine development.
Collapse
Affiliation(s)
- Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Wu Y, Du S, Bimler LH, Mauk KE, Lortal L, Kichik N, Griffiths JS, Osicka R, Song L, Polsky K, Kasper L, Sebo P, Weatherhead J, Knight JM, Kheradmand F, Zheng H, Richardson JP, Hube B, Naglik JR, Corry DB. Toll-like receptor 4 and CD11b expressed on microglia coordinate eradication of Candida albicans cerebral mycosis. Cell Rep 2023; 42:113240. [PMID: 37819761 PMCID: PMC10753853 DOI: 10.1016/j.celrep.2023.113240] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 07/17/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
The fungal pathogen Candida albicans is linked to chronic brain diseases such as Alzheimer's disease (AD), but the molecular basis of brain anti-Candida immunity remains unknown. We show that C. albicans enters the mouse brain from the blood and induces two neuroimmune sensing mechanisms involving secreted aspartic proteinases (Saps) and candidalysin. Saps disrupt tight junction proteins of the blood-brain barrier (BBB) to permit fungal brain invasion. Saps also hydrolyze amyloid precursor protein (APP) into amyloid β (Aβ)-like peptides that bind to Toll-like receptor 4 (TLR4) and promote fungal killing in vitro while candidalysin engages the integrin CD11b (Mac-1) on microglia. Recognition of Aβ-like peptides and candidalysin promotes fungal clearance from the brain, and disruption of candidalysin recognition through CD11b markedly prolongs C. albicans cerebral mycosis. Thus, C. albicans is cleared from the brain through innate immune mechanisms involving Saps, Aβ, candidalysin, and CD11b.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shuqi Du
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lynn H Bimler
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kelsey E Mauk
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Nessim Kichik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - James S Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lizhen Song
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Katherine Polsky
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI), 07737 Jena, Germany
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jill Weatherhead
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - J Morgan Knight
- Departments of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Departments of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX 77030, USA
| | - Hui Zheng
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI), 07737 Jena, Germany; Institute of Microbiology, Friedrich Schiller University, 07737 Jena, Germany.
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK.
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Departments of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Kim JS, Lee KT, Bahn YS. Secreted aspartyl protease 3 regulated by the Ras/cAMP/PKA pathway promotes the virulence of Candida auris. Front Cell Infect Microbiol 2023; 13:1257897. [PMID: 37780854 PMCID: PMC10540861 DOI: 10.3389/fcimb.2023.1257897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
The surge of multidrug-resistant fungal pathogens, especially Candida auris, poses significant threats to global public health. Candida auris exhibits resistance to multiple antifungal drugs, leading to major outbreaks and a high mortality rate. With an urgent call for innovative therapeutic strategies, this study focused on the regulation and pathobiological significance of secreted aspartyl proteinases (SAPs) in C. auris, as these enzymes play pivotal roles in the virulence of some fungal species. We delved into the Ras/cAMP/PKA signaling pathway's influence on SAP activity in C. auris. Our findings underscored that the Ras/cAMP/PKA pathway significantly modulates SAP activity, with PKA catalytic subunits, Tpk1 and Tpk2, playing a key role. We identified a divergence in the SAPs of C. auris compared to Candida albicans, emphasizing the variation between Candida species. Among seven identified secreted aspartyl proteases in C. auris (Sapa1 to Sapa7), Sapa3 emerged as the primary SAP in the pathogen. Deletion of Sapa3 led to a significant decline in SAP activity. Furthermore, we have established the involvement of Sapa3 in the biofilm formation of C. auris. Notably, Sapa3 was primarily regulated by Tpk1 and Tpk2. Deletion of SAPA3 significantly reduced C. auris virulence, underscoring its pivotal role in C. auris pathogenicity. The outcomes of this study provide valuable insights into potential therapeutic targets, laying the groundwork for future interventions against C. auris infection.
Collapse
Affiliation(s)
- Ji-Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Kumari P, Sahu SR, Utkalaja BG, Dutta A, Acharya N. RAD51-WSS1-dependent genetic pathways are essential for DNA-Protein crosslink repair and pathogenesis in Candida albicans. J Biol Chem 2023; 299:104728. [PMID: 37080389 DOI: 10.1016/j.jbc.2023.104728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023] Open
Abstract
Genetic analyses in Saccharomyces cerevisiae suggest that nucleotide excision repair (NER), homologous recombination (HR), and proteases-dependent repair (PDR) pathways coordinately function to remove DNA-protein crosslinks (DPCs) from the genome. DPCs are genomic cytotoxic lesions generated due to the covalent linkage of proteins with DNA. Although NER and HR processes have been studied in pathogenic Candida albicans, their roles in DPCs repair (DPCR) are yet to be explored. Proteases like Wss1 and Tdp1 are known to be involved in DPCR, however, Tdp1 that selectively removes topoisomerase-DNA complexes is intrinsically absent in C. albicans. Therefore, the mechanism of DPCR might have evolved differently in C. albicans. Herein, we investigated the interplay of three genetic pathways and found that RAD51-WSS1 dependent HR and PDR pathways are essential for DPCs removal, and their absence caused an increased rate of loss of heterozygosity in C. albicans. RAD1 but not RAD2 of NER is critical for DPCR. Additionally, we observed truncation of chromosome#6 in the cells defective in both RAD51 and WSS1 genes. While the protease and DNA binding activities are essential, a direct interaction of Wss1 with the eukaryotic DNA clamp PCNA is not a requisite for Wss1's function. DPCR-defective C. albicans cells exhibited filamentous morphology, reduced immune cell evasion, and attenuation in virulence. Thus, we concluded that RAD51-WSS1-dependent DPCR pathways are essential for genome stability and candidiasis development. Since no vaccine against candidiasis is available for human use yet, we propose to explore DPCR defective attenuated strains (rad51ΔΔwss1ΔΔ and rad2ΔΔrad51ΔΔwss1ΔΔ) for whole-cell vaccine development.
Collapse
Affiliation(s)
- Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar-751023, India; Regional center of Biotechnology, Faridabad, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar-751023, India; Regional center of Biotechnology, Faridabad, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar-751023, India; Regional center of Biotechnology, Faridabad, India
| | - Abinash Dutta
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar-751023, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar-751023, India.
| |
Collapse
|
9
|
Polyphyllin I Effects Candida albicans via Inhibition of Virulence Factors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:5645500. [PMID: 36726525 PMCID: PMC9886465 DOI: 10.1155/2023/5645500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/24/2023]
Abstract
Paris polyphylla is often used in Chinese medicine to treat conditions such as carbuncles, trauma, snake bites, and mosquito bites. In the present study, we investigated the effect and mechanism of the morphological transition and extracellular phospholipase activity of Candida albicans treated with polyphyllin I (PPI). First, the minimum inhibitory concentration and antifungal activity of PPI were evaluated using the multiple microdilution method and time-killing assays. Then, the effect of PPI on the morphological transition of Candida albicans in Spider liquid medium and Sabouraud-dextrose liquid medium containing 10% fetal bovine serum was observed under an inverted microscope and by scanning electron microscopy. Finally, egg yolk agar plates were used to evaluate extracellular phospholipase activity. Gene expression was detected by real-time quantitative polymerase chain reaction analysis. Our results suggest that PPI inhibited the transition from the yeast to the hyphal stage and decreased secreted aspartyl proteinase activity. We further confirmed that PPI significantly downregulated the expression of extracellular phospholipase genes and cAMP-PKA signaling pathway-related genes. Taken together, our results suggest that PPI exerts anti-Candida albicans activity by inhibiting virulence characteristics, including the yeast-to-hyphal transition and the secretion of aspartyl proteases and phospholipases. The study results also indicated that PPI could be a promising therapeutic strategy for Candida albicans.
Collapse
|
10
|
Smith DFQ, Casadevall A. On the relationship between Pathogenic Potential and Infective Inoculum. PLoS Pathog 2022; 18:e1010484. [PMID: 35696437 PMCID: PMC9232127 DOI: 10.1371/journal.ppat.1010484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/24/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Pathogenic Potential (PP) is a mathematical description of an individual microbe, virus, or parasite's ability to cause disease in a host, given the variables of inoculum, signs of disease, mortality, and in some instances, median survival time of the host. We investigated the relationship between pathogenic potential (PP) and infective inoculum (I) using two pathogenic fungi in the wax moth Galleria mellonella with mortality as the relevant outcome. Our analysis for C. neoformans infection revealed negative exponential relationship between PP and I. Plotting the log(I) versus the Fraction of animals with signs or symptoms (Fs) over median host survival time (T) revealed a linear relationship, with a slope that varied between the different fungi studied and a y-intercept corresponding to the inoculum that produced no signs of disease. The I vs Fs/T slope provided a measure of the pathogenicity of each microbial species, which we call the pathogenicity constant or kPath. The kPath provides a new parameter to quantitatively compare the relative virulence and pathogenicity of microbial species for a given host. In addition, we investigated the PP and Fs/T from values found in preexisting literature. Overall, the relationship between Fs/T and PP versus inoculum varied among microbial species and extrapolation to zero signs of disease allowed the calculation of the lowest pathogenic inoculum (LPI) of a microbe. Microbes tended to fall into two groups: those with positive linear relationships between PP and Fs/T vs I, and those that had a negative exponential PP vs I relationship with a positive logarithmic Fs/T vs I relationship. The microbes with linear relationships tended to be bacteria, whereas the exponential-based relationships tended to be fungi or higher order eukaryotes. Differences in the type and sign of the PP vs I and Fs/T vs I relationships for pathogenic microbes suggest fundamental differences in host-microbe interactions leading to disease.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
11
|
Lapaquette P, Ducreux A, Basmaciyan L, Paradis T, Bon F, Bataille A, Winckler P, Hube B, d’Enfert C, Esclatine A, Dubus E, Bringer MA, Morel E, Dalle F. Membrane protective role of autophagic machinery during infection of epithelial cells by Candida albicans. Gut Microbes 2022; 14:2004798. [PMID: 35086419 PMCID: PMC8803057 DOI: 10.1080/19490976.2021.2004798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Candida albicans (C. albicans) is an opportunistic pathogen causing infections ranging from superficial to life-threatening disseminated infections. In a susceptible host, C. albicans is able to translocate through the gut barrier, promoting its dissemination into deeper organs. C. albicans hyphae can invade human epithelial cells by two well-documented mechanisms: epithelial-driven endocytosis and C. albicans-driven active penetration. One mechanism by which host cells protect themselves against intracellular C. albicans is termed autophagy. The protective role of autophagy during C. albicans infection has been investigated in myeloid cells; however, far less is known regarding the role of this process during the infection of epithelial cells. In the present study, we investigated the role of autophagy-related proteins during the infection of epithelial cells, including intestinal epithelial cells and gut explants, by C. albicans. Using cell imaging, we show that key molecular players of the autophagy machinery (LC3-II, PI3P, ATG16L1, and WIPI2) were recruited at Candida invasion sites. We deepened these observations by electron microscopy analyses that reveal the presence of autophagosomes in the vicinity of invading hyphae. Importantly, these events occur during active penetration of C. albicans into host cells and are associated with plasma membrane damage. In this context, we show that the autophagy-related key proteins ATG5 and ATG16L1 contribute to plasma membrane repair mediated by lysosomal exocytosis and participate in protecting epithelial cells against C. albicans-induced cell death. Our findings provide a novel mechanism by which epithelial cells, forming the first line of defense against C. albicans in the gut, can react to limit C. albicans invasion.
Collapse
Affiliation(s)
- Pierre Lapaquette
- Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France,CONTACT Pierre Lapaquette Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France
| | - Amandine Ducreux
- Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France
| | - Louise Basmaciyan
- Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France,Laboratoire de Parasitologie-Mycologie, Plateforme de Biologie Hospitalo-Universitaire Gérard Mack, Dijon, France
| | - Tracy Paradis
- Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France
| | - Fabienne Bon
- Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France
| | | | - Pascale Winckler
- Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France,Dimacell Imaging Facility, Agrosup Dijon, INRA, INSERM, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Christophe d’Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, USC2019 INRA, Paris, France
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Elisabeth Dubus
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Marie-Agnès Bringer
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Etienne Morel
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Frédéric Dalle
- Univ. Bourgogne Franche-Comté, Agrosup Dijon, UMR PAM A 02.102, Dijon, France,Laboratoire de Parasitologie-Mycologie, Plateforme de Biologie Hospitalo-Universitaire Gérard Mack, Dijon, France,Frédéric Dalle Laboratoire de Parasitologie-Mycologie
| |
Collapse
|
12
|
Wu Y, Zeng Z, Guo Y, Song L, Weatherhead JE, Huang X, Zeng Y, Bimler L, Chang CY, Knight JM, Valladolid C, Sun H, Cruz MA, Hube B, Naglik JR, Luong AU, Kheradmand F, Corry DB. Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity 2021; 54:2595-2610.e7. [PMID: 34506733 DOI: 10.1016/j.immuni.2021.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/19/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
Fungal airway infection (airway mycosis) is an important cause of allergic airway diseases such as asthma, but the mechanisms by which fungi trigger asthmatic reactions are poorly understood. Here, we leverage wild-type and mutant Candida albicans to determine how this common fungus elicits characteristic Th2 and Th17 cell-dependent allergic airway disease in mice. We demonstrate that rather than proteinases that are essential virulence factors for molds, C. albicans instead promoted allergic airway disease through the peptide toxin candidalysin. Candidalysin activated platelets through the Von Willebrand factor (VWF) receptor GP1bα to release the Wnt antagonist Dickkopf-1 (Dkk-1) to drive Th2 and Th17 cell responses that correlated with reduced lung fungal burdens. Platelets simultaneously precluded lethal pulmonary hemorrhage resulting from fungal lung invasion. Thus, in addition to hemostasis, platelets promoted protection against C. albicans airway mycosis through an antifungal pathway involving candidalysin, GP1bα, and Dkk-1 that promotes Th2 and Th17 responses.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zhimin Zeng
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yubiao Guo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lizhen Song
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jill E Weatherhead
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xinyan Huang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yuying Zeng
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lynn Bimler
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Cheng-Yen Chang
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Translational Biology and Molecular Medicine Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - John M Knight
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Christian Valladolid
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA
| | - Hua Sun
- Department of Otolaryngology, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Miguel A Cruz
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI), Jena 07745, Germany; Institute of Microbiology, Friedrich Schiller University, Jena 07737, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Amber U Luong
- Department of Otolaryngology, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Farrah Kheradmand
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA
| | - David B Corry
- Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; The Biology of Inflammation Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Michael E. DeBakey VA Center for Translational Research on Inflammatory Diseases, Houston Texas, 77030, USA.
| |
Collapse
|
13
|
The Role of B-Cells and Antibodies against Candida Vaccine Antigens in Invasive Candidiasis. Vaccines (Basel) 2021; 9:vaccines9101159. [PMID: 34696267 PMCID: PMC8540628 DOI: 10.3390/vaccines9101159] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic candidiasis is an invasive fungal infection caused by members of the genus Candida. The recent emergence of antifungal drug resistance and increased incidences of infections caused by non-albicans Candida species merit the need for developing immune therapies against Candida infections. Although the role of cellular immune responses in anti-Candida immunity is well established, less is known about the role of humoral immunity against systemic candidiasis. This review summarizes currently available information on humoral immune responses induced by several promising Candida vaccine candidates, which have been identified in the past few decades. The protective antibody and B-cell responses generated by polysaccharide antigens such as mannan, β-glucan, and laminarin, as well as protein antigens like agglutinin-like sequence gene (Als3), secreted aspartyl proteinase (Sap2), heat shock protein (Hsp90), hyphally-regulated protein (Hyr1), hyphal wall protein (Hwp1), enolase (Eno), phospholipase (PLB), pyruvate kinase (Pk), fructose bisphosphate aldolase (Fba1), superoxide dismutase gene (Sod5) and malate dehydrogenase (Mdh1), are outlined. As per studies reviewed, antibodies induced in response to leading Candida vaccine candidates contribute to protection against systemic candidiasis by utilizing a variety of mechanisms such as opsonization, complement fixation, neutralization, biofilm inhibition, direct candidacidal activity, etc. The contributions of B-cells in controlling fungal infections are also discussed. Promising results using anti-Candida monoclonal antibodies for passive antibody therapy reinforces the need for developing antibody-based therapeutics including anti-idiotypic antibodies, single-chain variable fragments, peptide mimotopes, and antibody-derived peptides. Future research involving combinatorial immunotherapies using humanized monoclonal antibodies along with antifungal drugs/cytokines may prove beneficial for treating invasive fungal infections.
Collapse
|
14
|
Enhancing the Protective Immune Response to Administration of a LIVP-GFP Live Attenuated Vaccinia Virus to Mice. Pathogens 2021; 10:pathogens10030377. [PMID: 33801026 PMCID: PMC8004012 DOI: 10.3390/pathogens10030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
Following the WHO announcement of smallpox eradication, discontinuation of smallpox vaccination with vaccinia virus (VACV) was recommended. However, interest in VACV was soon renewed due to the opportunity of genetic engineering of the viral genome by directed insertion of foreign genes or introduction of mutations or deletions into selected viral genes. This genomic technology enabled production of stable attenuated VACV strains producing antigens of various infectious agents. Due to an increasing threat of human orthopoxvirus re-emergence, the development of safe highly immunogenic live orthopoxvirus vaccines using genetic engineering methods has been the challenge in recent years. In this study, we investigated an attenuated VACV LIVP-GFP (TK-) strain having an insertion of the green fluorescent protein gene into the viral thymidine kinase gene, which was generated on the basis of the LIVP (Lister-Institute for Viral Preparations) strain used in Russia as the first generation smallpox vaccine. We studied the effect of A34R gene modification and A35R gene deletion on the immunogenic and protective properties of the LIVP-GFP strain. The obtained data demonstrate that intradermal inoculation of the studied viruses induces higher production of VACV-specific antibodies compared to their levels after intranasal administration. Introduction of two point mutations into the A34R gene, which increase the yield of extracellular enveloped virions, and deletion of the A35R gene, the protein product of which inhibits presentation of antigens by MHC II, enhances protective potency of the created LIVP-TK--A34R*-dA35R virus against secondary lethal orthopoxvirus infection of BALB/c mice even at an intradermal dose as low as 103 plaque forming units (PFU)/mouse. This virus may be considered not only as a candidate attenuated live vaccine against smallpox and other human orthopoxvirus infections but also as a vector platform for development of safe multivalent live vaccines against other infectious diseases using genetic engineering methods.
Collapse
|
15
|
F. Q. Smith D, Casadevall A. Fungal immunity and pathogenesis in mammals versus the invertebrate model organism Galleria mellonella. Pathog Dis 2021; 79:ftab013. [PMID: 33544836 PMCID: PMC7981337 DOI: 10.1093/femspd/ftab013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
In recent decades, Galleria mellonella (Lepidoptera: Pyralidae) have emerged as a model system to explore experimental aspects of fungal pathogenesis. The benefits of the G. mellonella model include being faster, cheaper, higher throughput and easier compared with vertebrate models. Additionally, as invertebrates, their use is subject to fewer ethical and regulatory issues. However, for G. mellonella models to provide meaningful insight into fungal pathogenesis, the G. mellonella-fungal interactions must be comparable to mammalian-fungal interactions. Indeed, as discussed in the review, studies suggest that G. mellonella and mammalian immune systems share many similarities, and fungal virulence factors show conserved functions in both hosts. While the moth model has opened novel research areas, many comparisons are superficial and leave large gaps of knowledge that need to be addressed concerning specific mechanisms underlying G. mellonella-fungal interactions. Closing these gaps in understanding will strengthen G. mellonella as a model for fungal virulence in the upcoming years. In this review, we provide comprehensive comparisons between fungal pathogenesis in mammals and G. mellonella from immunological and virulence perspectives. When information on an antifungal immune component is unknown in G. mellonella, we include findings from other well-studied Lepidoptera. We hope that by outlining this information available in related species, we highlight areas of needed research and provide a framework for understanding G. mellonella immunity and fungal interactions.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Marton T, Maufrais C, d'Enfert C, Legrand M. Use of CRISPR-Cas9 To Target Homologous Recombination Limits Transformation-Induced Genomic Changes in Candida albicans. mSphere 2020; 5:e00620-20. [PMID: 32878930 PMCID: PMC7471004 DOI: 10.1128/msphere.00620-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/09/2020] [Indexed: 12/30/2022] Open
Abstract
Most of our knowledge relating to molecular mechanisms of human fungal pathogenesis in Candida albicans relies on reverse genetics approaches, requiring strain engineering. DNA-mediated transformation of C. albicans has been described as highly mutagenic, potentially accentuated by the organism's genome plasticity, including the acquisition of genomic rearrangements, notably upon exposure to stress. The advent of CRISPR-Cas9 has vastly accelerated the process of genetically modifying strains, especially in diploid (such as C. albicans) and polyploid organisms. The effects of unleashing this nuclease within the genome of C. albicans are unknown, although several studies in other organisms report Cas9-associated toxicity and off-target DNA breaks. Upon the construction of a C. albicans strain collection, we took the opportunity to compare strains which were constructed using CRISPR-Cas9-free and CRISPR-Cas9-dependent transformation strategies, by quantifying and describing transformation-induced loss-of-heterozygosity and hyperploidy events. Our analysis of 57 strains highlights the mutagenic effects of transformation in C. albicans, regardless of the transformation protocol, but also underscores interesting differences in terms of genomic changes between strains obtained using different transformation protocols. Indeed, although strains constructed using the CRISPR-Cas9-free transformation method display numerous concomitant genomic changes randomly distributed throughout their genomes, the use of CRISPR-Cas9 leads to a reduced overall number of genome changes, particularly hyperploidies. Overall, in addition to facilitating strain construction by reducing the number of transformation steps, the CRISPR-Cas9-dependent transformation strategy in C. albicans appears to limit transformation-associated genome changes.IMPORTANCE Genome editing is essential to nearly all research studies aimed at gaining insight into the molecular mechanisms underlying various biological processes, including those in the opportunistic pathogen Candida albicans The adaptation of the CRISPR-Cas9 system greatly facilitates genome engineering in many organisms. However, our understanding of the effects of CRISPR-Cas9 technology on the biology of C. albicans is limited. In this study, we sought to compare the extents of transformation-induced genomic changes within strains engineered using CRISPR-Cas9-free and CRISPR-Cas9-dependent transformation methods. CRISPR-Cas9-dependent transformation allows one to simultaneously target both homologs and, importantly, appears less mutagenic in C. albicans, since strains engineered using CRISPR-Cas9 display an overall decrease in concomitant genomic changes.
Collapse
Affiliation(s)
- Timea Marton
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Hub de Bioinformatique et Biostatistique, Département de Biologie Computationnelle, USR 3756 IP CNRS, Institut Pasteur, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Melanie Legrand
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
17
|
The Impact of Gene Dosage and Heterozygosity on The Diploid Pathobiont Candida albicans. J Fungi (Basel) 2019; 6:jof6010010. [PMID: 31892130 PMCID: PMC7151161 DOI: 10.3390/jof6010010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a fungal species that can colonize multiple niches in the human host where it can grow either as a commensal or as an opportunistic pathogen. The genome of C. albicans has long been of considerable interest, given that it is highly plastic and can undergo a wide variety of alterations. These changes play a fundamental role in determining C. albicans traits and have been shown to enable adaptation both to the host and to antifungal drugs. C. albicans isolates contain a heterozygous diploid genome that displays variation from the level of single nucleotides to largescale rearrangements and aneuploidy. The heterozygous nature of the genome is now increasingly recognized as being central to C. albicans biology, as the relative fitness of isolates has been shown to correlate with higher levels of overall heterozygosity. Moreover, loss of heterozygosity (LOH) events can arise frequently, either at single polymorphisms or at a chromosomal level, and both can alter the behavior of C. albicans cells during infection or can modulate drug resistance. In this review, we examine genome plasticity in this pathobiont focusing on how gene dosage variation and loss of heterozygosity events can arise and how these modulate C. albicans behavior.
Collapse
|
18
|
Global Transcriptomic Analysis of the Candida albicans Response to Treatment with a Novel Inhibitor of Filamentation. mSphere 2019; 4:4/5/e00620-19. [PMID: 31511371 PMCID: PMC6739497 DOI: 10.1128/msphere.00620-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
These results from whole-genome transcriptional profiling provide further insights into the biological activity and mode of action of a small-molecule inhibitor of C. albicans filamentation. This information will assist in the development of novel antivirulence strategies against C. albicans infections. The opportunistic pathogenic fungus Candida albicans can cause devastating infections in immunocompromised patients. Its ability to undergo a morphogenetic transition from yeast to filamentous forms allows it to penetrate tissues and damage tissues, and the expression of genes associated with a number of pathogenetic mechanisms is also coordinately regulated with the yeast-to-hypha conversion. Therefore, it is widely considered that filamentation represents one of the main virulence factors of C. albicans. We have previously identified N-[3-(allyloxy)-phenyl]-4-methoxybenzamide (compound 9029936) as the lead compound in a series of small-molecule inhibitors of C. albicans filamentation and characterized its activity both in vitro and in vivo. This compound appears to be a promising candidate for the development of alternative antivirulence strategies for the treatment of C. albicans infections. In this study, we performed RNA sequencing analysis of samples obtained from C. albicans cells grown under filament-inducing conditions in the presence or absence of this compound. Overall, treatment with compound 9029936 resulted in 618 upregulated and 702 downregulated genes. Not surprisingly, some of the most downregulated genes included well-characterized genes associated with filamentation and virulence such as SAP5, ECE1 (candidalysin), and ALS3, as well as genes that impact metal chelation and utilization. Gene ontology analysis revealed an overrepresentation of cell adhesion, iron transport, filamentation, biofilm formation, and pathogenesis processes among the genes downregulated during treatment with this leading compound. Interestingly, the top upregulated genes suggested an enhancement of vesicular transport pathways, particularly those involving SNARE interactions. IMPORTANCE These results from whole-genome transcriptional profiling provide further insights into the biological activity and mode of action of a small-molecule inhibitor of C. albicans filamentation. This information will assist in the development of novel antivirulence strategies against C. albicans infections.
Collapse
|
19
|
Role of Amino Acid Metabolism in the Virulence of Human Pathogenic Fungi. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00124-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Beekman C, Jiang Z, Suzuki BM, Palmer JM, Lindner DL, O'Donoghue AJ, Knudsen GM, Bennett RJ. Characterization of PdCP1, a serine carboxypeptidase from Pseudogymnoascus destructans, the causal agent of White-nose Syndrome. Biol Chem 2019; 399:1375-1388. [PMID: 30367778 DOI: 10.1515/hsz-2018-0240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022]
Abstract
Pseudogymnoascus destructans is a pathogenic fungus responsible for White-nose Syndrome (WNS), a disease afflicting multiple species of North American bats. Pseudogymnoascus destructans infects susceptible bats during hibernation, invading dermal tissue and causing extensive tissue damage. In contrast, other Pseudogymnoascus species are non-pathogenic and cross-species comparisons may therefore reveal factors that contribute to virulence. In this study, we compared the secretome of P. destructans with that from several closely related Pseudogymnoascus species. A diverse set of hydrolytic enzymes were identified, including a putative serine peptidase, PdCP1, that was unique to the P. destructans secretome. A recombinant form of PdCP1 was purified and substrate preference determined using a multiplexed-substrate profiling method based on enzymatic degradation of a synthetic peptide library and analysis by mass spectrometry. Most peptide substrates were sequentially truncated from the carboxyl-terminus revealing that this enzyme is a bona fide carboxypeptidase. Peptides with arginine located close to the carboxyl-terminus were rapidly cleaved, and a fluorescent substrate containing arginine was therefore used to characterize PdCP1 activity and to screen a selection of peptidase inhibitors. Antipain and leupeptin were found to be the most potent inhibitors of PdCP1 activity.
Collapse
Affiliation(s)
- Chapman Beekman
- Department of Molecular Microbiology and Immunology, Brown University, 171 Meeting Street, Providence, RI 02912, USA
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Brian M Suzuki
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan M Palmer
- Center for Forest Mycology Research, Northern Research Station, USDA Forest Service, Madison, WI, USA
| | - Daniel L Lindner
- Center for Forest Mycology Research, Northern Research Station, USDA Forest Service, Madison, WI, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Giselle M Knudsen
- Alaunus Biosciences, Inc., San Francisco, CA, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, 171 Meeting Street, Providence, RI 02912, USA
| |
Collapse
|
21
|
Vaginal lactobacilli inhibit growth and hyphae formation of Candida albicans. Sci Rep 2019; 9:8121. [PMID: 31148560 PMCID: PMC6544633 DOI: 10.1038/s41598-019-44579-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Lactobacillus species are the predominant vaginal microbiota found in healthy women of reproductive age and help to prevent pathogen infection by producing lactic acid, H2O2 and anti-microbial compounds. Identification of novel vaginal Lactobacillus isolates that exhibit efficient colonisation and secrete anti-Candida factors is a promising strategy to prevent vulvovaginal candidiasis. The azole antifungal agents used to treat vulvovaginal candidiasis elicit adverse effects such as allergic responses and exhibit drug interactions. Candida strains with resistance to antifungal treatments are often reported. In this study, we isolated Lactobacillus species from healthy Korean women and investigated their antifungal effects against C. albicans in vitro and in vivo. Lactobacillus conditioned supernatant (LCS) of L. crispatus and L. fermentum inhibited C. albicans growth in vitro. A Lactobacillus-derived compound, which was not affected by proteolytic enzyme digestion and heat inactivation, inhibited growth and hyphal induction of C. albicans after adjustment to neutral pH. Combination treatment with neutral LCSs of L. crispatus and L. fermentum effectively inhibited propagation of C. albicans in a murine in vivo model of vulvovaginal candidiasis.
Collapse
|
22
|
Truong T, Suriyanarayanan T, Zeng G, Le TD, Liu L, Li J, Tong C, Wang Y, Seneviratne CJ. Use of Haploid Model of Candida albicans to Uncover Mechanism of Action of a Novel Antifungal Agent. Front Cell Infect Microbiol 2018; 8:164. [PMID: 29938200 PMCID: PMC6002804 DOI: 10.3389/fcimb.2018.00164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Antifungal agents for the treatment of Candida albicans infections are limited. We recently discovered a novel antifungal small molecule, SM21, with promising in vivo activity. Herein, we employed the newly developed C. albicans haploid toolbox to uncover the mechanism of action of SM21. Comprehensive RNA-Seq analyses of the haploid susceptible GZY803 strain revealed significant gene expression changes related to mitochondria when exposed to SM21. Mitochondrial structure visualization and measurement of ATP generation, reactive oxygen species (ROS) levels, and the antioxidant potential of SM21-treated and untreated GZY803, mitochondrial structure defective haploid mutant (dnm1Δ), and wild-type diploid SC5314 strains confirmed defects in mitochondria. Exploiting the advantage of C. albicans haploids as a single ploidy model, we further exposed GZY803 to repetitive treatments of SM21 in order to generate resistant mutants. Three colonies designated S3, S5 and S6, which displayed resistance to SM21, were isolated. All resistant strains exhibited enhanced transcriptomic responses for peptide and protein metabolism and secreted aspartate proteases (SAPs) activity under SM21 treatment compared to the parent strain GZY803. Consistently, supplementing the resistant strains, GZY803, and SC5314 with peptone, a form of digested peptides, decreased susceptibility to SM21. The present study demonstrates the usefulness of haploid C. albicans model in antifungal drug discovery. The findings will be invaluable to develop SM21 as a novel antifungal agent, which will benefit millions of patients suffering from Candida infections.
Collapse
Affiliation(s)
- Thuyen Truong
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | | | - Guisheng Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Thuc D Le
- School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Lin Liu
- School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jiuyong Li
- School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Cao Tong
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chaminda J Seneviratne
- Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Allert S, Förster TM, Svensson CM, Richardson JP, Pawlik T, Hebecker B, Rudolphi S, Juraschitz M, Schaller M, Blagojevic M, Morschhäuser J, Figge MT, Jacobsen ID, Naglik JR, Kasper L, Mogavero S, Hube B. Candida albicans-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers. mBio 2018; 9:e00915-18. [PMID: 29871918 PMCID: PMC5989070 DOI: 10.1128/mbio.00915-18] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/31/2023] Open
Abstract
Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin.IMPORTANCECandida albicans, usually a harmless fungus colonizing human mucosae, can cause lethal bloodstream infections when it manages to translocate across the intestinal epithelium. This can result from antibiotic treatment, immune dysfunction, or intestinal damage (e.g., during surgery). However, fungal processes may also contribute. In this study, we investigated the translocation process of C. albicans using in vitro cell culture models. Translocation occurs as a stepwise process starting with invasion, followed by epithelial damage and loss of epithelial integrity. The ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein Ece1, is key: C. albicans hyphae, secreting candidalysin, take advantage of a necrotic weakened epithelium to translocate through the intestinal layer.
Collapse
Affiliation(s)
- Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Toni M Förster
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | | | - Jonathan P Richardson
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Tony Pawlik
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
| | - Betty Hebecker
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Sven Rudolphi
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
| | - Marc Juraschitz
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Mariana Blagojevic
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Hans-Knöll-Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Julian R Naglik
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
24
|
Basso V, d'Enfert C, Znaidi S, Bachellier-Bassi S. From Genes to Networks: The Regulatory Circuitry Controlling Candida albicans Morphogenesis. Curr Top Microbiol Immunol 2018; 422:61-99. [PMID: 30368597 DOI: 10.1007/82_2018_144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Candida albicans is a commensal yeast of most healthy individuals, but also one of the most prevalent human fungal pathogens. During adaptation to the mammalian host, C. albicans encounters different niches where it is exposed to several types of stress, including oxidative, nitrosative (e.g., immune system), osmotic (e.g., kidney and oral cavity) stresses and pH variation (e.g., gastrointestinal (GI) tract and vagina). C. albicans has developed the capacity to respond to the environmental changes by modifying its morphology, which comprises the yeast-to-hypha transition, white-opaque switching, and chlamydospore formation. The yeast-to-hypha transition has been very well characterized and was shown to be modulated by several external stimuli that mimic the host environment. For instance, temperature above 37 ℃, serum, alkaline pH, and CO2 concentration are all reported to enhance filamentation. The transition is characterized by the activation of an intricate regulatory network of signaling pathways, involving many transcription factors. The regulatory pathways that control either the stress response or morphogenesis are required for full virulence and promote survival of C. albicans in the host. Many of these transcriptional circuitries have been characterized, highlighting the complexity and the interconnections between the different pathways. Here, we present the major signaling pathways and the main transcription factors involved in the yeast-to-hypha transition. Furthermore, we describe the role of heat shock transcription factors in the morphogenetic transition, providing an edifying example of the complex cross talk between pathways involved in morphogenesis and stress response.
Collapse
Affiliation(s)
- Virginia Basso
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 25 Rue Du Docteur Roux, Paris, France.,Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France
| | - Sadri Znaidi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France. .,Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13 Place Pasteur, 1002, Tunis-Belvédère, Tunisia.
| | - Sophie Bachellier-Bassi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
25
|
Ries LNA, Beattie S, Cramer RA, Goldman GH. Overview of carbon and nitrogen catabolite metabolism in the virulence of human pathogenic fungi. Mol Microbiol 2017; 107:277-297. [PMID: 29197127 DOI: 10.1111/mmi.13887] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022]
Abstract
It is estimated that fungal infections, caused most commonly by Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans, result in more deaths annually than malaria or tuberculosis. It has long been hypothesized the fungal metabolism plays a critical role in virulence though specific nutrient sources utilized by human pathogenic fungi in vivo has remained enigmatic. However, the metabolic utilisation of preferred carbon and nitrogen sources, encountered in a host niche-dependent manner, is known as carbon catabolite and nitrogen catabolite repression (CCR, NCR), and has been shown to be important for virulence. Several sensory and uptake systems exist, including carbon and nitrogen source-specific sensors and transporters, that allow scavenging of preferred nutrient sources. Subsequent metabolic utilisation is governed by transcription factors, whose functions and essentiality differ between fungal species. Furthermore, additional factors exist that contribute to the implementation of CCR and NCR. The role of the CCR and NCR-related factors in virulence varies greatly between fungal species and a substantial gap in knowledge exists regarding specific pathways. Further elucidation of carbon and nitrogen metabolism mechanisms is therefore required in a fungal species- and animal model-specific manner in order to screen for targets that are potential candidates for anti-fungal drug development.
Collapse
Affiliation(s)
- Laure Nicolas Annick Ries
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, Ribeirão Preto, São Paulo, 3900, CEP 14049-900, Brazil
| | - Sarah Beattie
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, 74 College Street Remsen 213, Hanover, NH 03755, USA
| | - Robert A Cramer
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, 74 College Street Remsen 213, Hanover, NH 03755, USA
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n°, Ribeirão Preto, São Paulo, CEP 14040903, Brazil
| |
Collapse
|
26
|
Zawrotniak M, Bochenska O, Karkowska-Kuleta J, Seweryn-Ozog K, Aoki W, Ueda M, Kozik A, Rapala-Kozik M. Aspartic Proteases and Major Cell Wall Components in Candida albicans Trigger the Release of Neutrophil Extracellular Traps. Front Cell Infect Microbiol 2017; 7:414. [PMID: 28983472 PMCID: PMC5613151 DOI: 10.3389/fcimb.2017.00414] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
Neutrophils use different mechanisms to cope with pathogens that invade the host organism. The most intriguing of these responses is a release of neutrophil extracellular traps (NETs) composed of decondensed chromatin and granular proteins with antimicrobial activity. An important potential target of NETs is Candida albicans-an opportunistic fungal pathogen that employs morphological and phenotype switches and biofilm formation during contact with neutrophils, accompanied by changes in epitope exposition that mask the pathogen from host recognition. These processes differ depending on infection conditions and are thus influenced by the surrounding environment. In the current study, we compared the NET release by neutrophils upon contact with purified main candidal cell surface components. We show here for the first time that in addition to the main cell wall-building polysaccharides (mannans and β-glucans), secreted aspartic proteases (Saps) trigger NETs with variable intensities. The most efficient NET-releasing response is with Sap4 and Sap6, which are known to be secreted by fungal hyphae. This involves mixed, ROS-dependent and ROS-independent signaling pathways, mainly through interactions with the CD11b receptor. In comparison, upon contact with the cell wall-bound Sap9 and Sap10, neutrophils responded via a ROS-dependent mechanism using CD16 and CD18 receptors for protease recognition. In addition to the Saps tested, the actuation of selected mediating kinases (Src, Syk, PI3K, and ERK) was also investigated. β-Glucans were found to trigger a ROS-dependent process of NET production with engagement of Dectin-1 as well as CD11b and CD18 receptors. Mannans were observed to be recognized by TLRs, CD14, and Dectin-1 receptors and triggered NET release mainly via a ROS-independent pathway. Our results thus strongly suggest that neutrophils activate NET production in response to different candidal components that are presented locally at low concentrations at the initial stages of infection. However, NET release seemed to be blocked by increasing numbers of fungal cells.
Collapse
Affiliation(s)
- Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Oliwia Bochenska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Karolina Seweryn-Ozog
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto UniversityKyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto UniversityKyoto, Japan
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| |
Collapse
|
27
|
Pritchard M, Jack A, Powell L, Sadh H, Rye P, Hill K, Thomas D. Alginate oligosaccharides modify hyphal infiltration ofCandida albicansin anin vitromodel of invasive human candidosis. J Appl Microbiol 2017. [DOI: 10.1111/jam.13516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- M.F. Pritchard
- Advanced Therapies Group; Cardiff University School of Dentistry; College of Biomedical and Life Sciences; Cardiff UK
| | - A.A. Jack
- Advanced Therapies Group; Cardiff University School of Dentistry; College of Biomedical and Life Sciences; Cardiff UK
| | - L.C. Powell
- Advanced Therapies Group; Cardiff University School of Dentistry; College of Biomedical and Life Sciences; Cardiff UK
| | - H. Sadh
- Advanced Therapies Group; Cardiff University School of Dentistry; College of Biomedical and Life Sciences; Cardiff UK
| | | | - K.E. Hill
- Advanced Therapies Group; Cardiff University School of Dentistry; College of Biomedical and Life Sciences; Cardiff UK
| | - D.W. Thomas
- Advanced Therapies Group; Cardiff University School of Dentistry; College of Biomedical and Life Sciences; Cardiff UK
| |
Collapse
|
28
|
In Vivo Indicators of Cytoplasmic, Vacuolar, and Extracellular pH Using pHluorin2 in Candida albicans. mSphere 2017; 2:mSphere00276-17. [PMID: 28685162 PMCID: PMC5497024 DOI: 10.1128/msphere.00276-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that colonizes the reproductive and gastrointestinal tracts of its human host. It can also invade the bloodstream and deeper organs of immunosuppressed individuals, and thus it encounters enormous variations in external pH in vivo. Accordingly, survival within such diverse niches necessitates robust adaptive responses to regulate intracellular pH. However, the impact of antifungal drugs upon these adaptive responses, and on intracellular pH in general, is not well characterized. Furthermore, the tools and methods currently available to directly monitor intracellular pH in C. albicans, as well as other fungal pathogens, have significant limitations. To address these issues, we developed a new and improved set of pH sensors based on the pH-responsive fluorescent protein pHluorin. This includes a cytoplasmic sensor, a probe that localizes inside the fungal vacuole (an acidified compartment that plays a central role in intracellular pH homeostasis), and a cell surface probe that can detect changes in extracellular pH. These tools can be used to monitor pH within single C. albicans cells or in cell populations in real time through convenient and high-throughput assays. Environmental or chemically induced stresses often trigger physiological responses that regulate intracellular pH. As such, the capacity to detect pH changes in real time and within live cells is of fundamental importance to essentially all aspects of biology. In this respect, pHluorin, a pH-sensitive variant of green fluorescent protein, has provided an invaluable tool to detect such responses. Here, we report the adaptation of pHluorin2 (PHL2), a substantially brighter variant of pHluorin, for use with the human fungal pathogen Candida albicans. As well as a cytoplasmic PHL2 indicator, we describe a version that specifically localizes within the fungal vacuole, an acidified subcellular compartment with important functions in nutrient storage and pH homeostasis. In addition, by means of a glycophosphatidylinositol-anchored PHL2-fusion protein, we generated a cell surface pH sensor. We demonstrated the utility of these tools in several applications, including accurate intracellular and extracellular pH measurements in individual cells via flow cytometry and in cell populations via a convenient plate reader-based protocol. The PHL2 tools can also be used for endpoint as well as time course experiments and to conduct chemical screens to identify drugs that alter normal pH homeostasis. These tools enable observation of the highly dynamic intracellular pH shifts that occur throughout the fungal growth cycle, as well as in response to various chemical treatments. IMPORTANCECandida albicans is an opportunistic fungal pathogen that colonizes the reproductive and gastrointestinal tracts of its human host. It can also invade the bloodstream and deeper organs of immunosuppressed individuals, and thus it encounters enormous variations in external pH in vivo. Accordingly, survival within such diverse niches necessitates robust adaptive responses to regulate intracellular pH. However, the impact of antifungal drugs upon these adaptive responses, and on intracellular pH in general, is not well characterized. Furthermore, the tools and methods currently available to directly monitor intracellular pH in C. albicans, as well as other fungal pathogens, have significant limitations. To address these issues, we developed a new and improved set of pH sensors based on the pH-responsive fluorescent protein pHluorin. This includes a cytoplasmic sensor, a probe that localizes inside the fungal vacuole (an acidified compartment that plays a central role in intracellular pH homeostasis), and a cell surface probe that can detect changes in extracellular pH. These tools can be used to monitor pH within single C. albicans cells or in cell populations in real time through convenient and high-throughput assays.
Collapse
|
29
|
Köhler JR, Hube B, Puccia R, Casadevall A, Perfect JR. Fungi that Infect Humans. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0014-2016. [PMID: 28597822 PMCID: PMC11687496 DOI: 10.1128/microbiolspec.funk-0014-2016] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 12/18/2022] Open
Abstract
Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients-Candida, Pneumocystis, and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.
Collapse
Affiliation(s)
- Julia R Köhler
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute Jena (HKI), Jena, Germany
| | - Rosana Puccia
- Disciplina de Biologia Celular, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - John R Perfect
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
30
|
Wang S, Wang Q, Yang E, Yan L, Li T, Zhuang H. Antimicrobial Compounds Produced by Vaginal Lactobacillus crispatus Are Able to Strongly Inhibit Candida albicans Growth, Hyphal Formation and Regulate Virulence-related Gene Expressions. Front Microbiol 2017; 8:564. [PMID: 28421058 PMCID: PMC5378977 DOI: 10.3389/fmicb.2017.00564] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/20/2017] [Indexed: 01/09/2023] Open
Abstract
The female vaginal environment contains diverse microorganisms, and their interactions play significant roles in health and disease. Lactobacillus species are the predominant vaginal microorganisms in healthy women and relevant as a barrier to defense against pathogens, including Candida albicans. The yeast-to-hyphae transition is believed to be a determinant of C. albicans pathogenesis. In this study, we investigated the effects of vaginal isolates of L. crispatus (seven strains), L. gasseri (six strains), and L. jensenii (five strains) on growth, hyphal formation and virulence-related genes expression of C. albicans ATCC 10231. We found that the L. crispatus showed the most significant antimicrobial activities in microplate-based liquid medium assay (P < 0.05). All seven cell-free supernatants (CFS) from L. crispatus strains reduced the growth of C. albicans by >60%. The effects might be due to their productions of some secretory antimicrobial compounds in addition to H2O2 and organic acids. Furthermore, each of the CFS of Lactobacillus strains was found to significantly suppress the yeast-to-hyphae transition of C. albicans under hyphae-inducing conditions (RPMI 1640 medium supplemented with 10% fetal bovine serum). The hyphae inhibition rates of C. albicans treated by CFS from L. crispatus, L. gasseri, and L. jensenii were 88.3 ± 3.02%, 84.9 ± 6.0%, and 81.9 ± 6.2%, respectively. Moreover, the expression of hyphae-specific genes (ALS3, HWP1, ECE1, EAP1, and SAP5) and transcriptional regulatory genes (EFG1, TEC1, and NRG1) were analyzed using quantitative real-time PCR. The results demonstrated that L. crispatus CFS significantly down-regulated the expression of hyphae-specific genes ALS3 (0.140-fold)), HWP1 (0.075-fold), and ECE1 (0.045-fold), while up-regulated the expression of the negative transcriptional regulator gene NRG1 with 1.911-fold. The antimicrobial compounds from L. crispatus B145 against Candida growth were heat stable and protease resistance, but those against hyphal formation were partially sensitive to the same treatments. Our novel findings suggest that L. crispatus, a dominant Lactobacillus species associated with a healthy vagina, could strongly inhibit C. albicans growth and hyphal formation. L. crispatus might repress the expression of hyphae-specific genes (ALS3, HWP1, and ECE1) in a NRG1-dependent manner. Besides, L. crispatus B145 is highly worthwhile for probiotic investigation.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - Qiangyi Wang
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - Ence Yang
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - Ling Yan
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - Tong Li
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - Hui Zhuang
- Department of Microbiology and Center of Infectious Disease, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| |
Collapse
|
31
|
Koller B, Schramm C, Siebert S, Triebel J, Deland E, Pfefferkorn AM, Rickerts V, Thewes S. Dictyostelium discoideum as a Novel Host System to Study the Interaction between Phagocytes and Yeasts. Front Microbiol 2016; 7:1665. [PMID: 27818653 PMCID: PMC5073093 DOI: 10.3389/fmicb.2016.01665] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 01/26/2023] Open
Abstract
The social amoeba Dictyostelium discoideum is a well-established model organism to study the interaction between bacteria and phagocytes. In contrast, research using D. discoideum as a host model for fungi is rare. We describe a comprehensive study, which uses D. discoideum as a host model system to investigate the interaction with apathogenic (Saccharomyces cerevisiae) and pathogenic (Candida sp.) yeast. We show that Dictyostelium can be co-cultivated with yeasts on solid media, offering a convenient test to study the interaction between fungi and phagocytes. We demonstrate that a number of D. discoideum mutants increase (atg1-, kil1-, kil2-) or decrease (atg6-) the ability of the amoebae to predate yeast cells. On the yeast side, growth characteristics, reduced phagocytosis rate, as well as known virulence factors of C. albicans (EFG1, CPH1, HGC1, ICL1) contribute to the resistance of yeast cells against predation by the amoebae. Investigating haploid C. albicans strains, we suggest using the amoebae plate test for screening purposes after random mutagenesis. Finally, we discuss the potential of our adapted amoebae plate test to use D. discoideum for risk assessment of yeast strains.
Collapse
Affiliation(s)
- Barbara Koller
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Christin Schramm
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität BerlinBerlin, Germany; FG16, Robert Koch InstituteBerlin, Germany
| | - Susann Siebert
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - János Triebel
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Eric Deland
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Anna M Pfefferkorn
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | | | - Sascha Thewes
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| |
Collapse
|
32
|
Xu H, Sobue T, Bertolini M, Thompson A, Dongari-Bagtzoglou A. Streptococcus oralis and Candida albicans Synergistically Activate μ-Calpain to Degrade E-cadherin From Oral Epithelial Junctions. J Infect Dis 2016; 214:925-34. [PMID: 27190184 DOI: 10.1093/infdis/jiw201] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/04/2016] [Indexed: 12/31/2022] Open
Abstract
Streptococcus oralis forms robust mucosal biofilms with Candida albicans that have increased pathogenic potential. In this study, using oral epithelial cultures, organotypic oral mucosal constructs, and a mouse model of oral infection, we demonstrated that S. oralis augmented C. albicans invasion through epithelial junctions. C. albicans and S. oralis decreased epithelial E-cadherin levels by synergistically increasing µ-calpain, a proteolytic enzyme that targets E-cadherin. In the mouse coinfection model this was accompanied by increased fungal kidney dissemination. Coinfection with a secreted aspartyl protease (sap) mutant sap2456 and S. oralis increased μ-calpain and triggered mucosal invasion and systemic dissemination, suggesting that fungal protease activity is not required for invasion during coinfection. We conclude that C. albicans and S. oralis synergize to activate host enzymes that cleave epithelial junction proteins and increase fungal invasion.
Collapse
Affiliation(s)
- Hongbin Xu
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut, Farmington
| | - Takanori Sobue
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut, Farmington
| | - Martinna Bertolini
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut, Farmington
| | - Angela Thompson
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut, Farmington
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut, Farmington
| |
Collapse
|
33
|
Saraswat D, Kumar R, Pande T, Edgerton M, Cullen PJ. Signalling mucin Msb2 Regulates adaptation to thermal stress in Candida albicans. Mol Microbiol 2016; 100:425-41. [PMID: 26749104 PMCID: PMC4955288 DOI: 10.1111/mmi.13326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/13/2022]
Abstract
Temperature is a potent inducer of fungal dimorphism. Multiple signalling pathways control the response to growth at high temperature, but the sensors that regulate these pathways are poorly defined. We show here that the signalling mucin Msb2 is a global regulator of temperature stress in the fungal pathogen Candida albicans. Msb2 was required for survival and hyphae formation at 42°C. The cytoplasmic signalling domain of Msb2 regulated temperature-dependent activation of the CEK mitogen activated proteins kinase (MAPK) pathway. The extracellular glycosylated domain of Msb2 (100-900 amino acid residues) had a new and unexpected role in regulating the protein kinase C (PKC) pathway. Msb2 also regulated temperature-dependent induction of genes encoding regulators and targets of the unfolded protein response (UPR), which is a protein quality control (QC) pathway in the endoplasmic reticulum that controls protein folding/degradation in response to high temperature and other stresses. The heat shock protein and cell wall component Ssa1 was also required for hyphae formation and survival at 42°C and regulated the CEK and PKC pathways.
Collapse
Affiliation(s)
- Darpan Saraswat
- Department of Oral Biology, University at Buffalo, Buffalo, NY, 14260-1300, USA
| | - Rohitashw Kumar
- Department of Oral Biology, University at Buffalo, Buffalo, NY, 14260-1300, USA
| | - Tanaya Pande
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260-1300, USA
| | - Mira Edgerton
- Department of Oral Biology, University at Buffalo, Buffalo, NY, 14260-1300, USA
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260-1300, USA
| |
Collapse
|
34
|
Adaptations of the Secretome of Candida albicans in Response to Host-Related Environmental Conditions. EUKARYOTIC CELL 2015; 14:1165-72. [PMID: 26453650 PMCID: PMC4664879 DOI: 10.1128/ec.00142-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The wall proteome and the secretome of the fungal pathogen Candida albicans help it to thrive in multiple niches of the human body. Mass spectrometry has allowed researchers to study the dynamics of both subproteomes. Here, we discuss some major responses of the secretome to host-related environmental conditions. Three β-1,3-glucan-modifying enzymes, Mp65, Sun41, and Tos1, are consistently found in large amounts in culture supernatants, suggesting that they are needed for construction and expansion of the cell wall β-1,3-glucan layer and thus correlate with growth and might serve as diagnostic biomarkers. The genes ENG1, CHT3, and SCW11, which encode an endoglucanase, the major chitinase, and a β-1,3-glucan-modifying enzyme, respectively, are periodically expressed and peak in M/G1. The corresponding protein abundances in the medium correlate with the degree of cell separation during single-yeast-cell, pseudohyphal, and hyphal growth. We also discuss the observation that cells treated with fluconazole, or other agents causing cell surface stress, form pseudohyphal aggregates. Fluconazole-treated cells secrete abundant amounts of the transglucosylase Phr1, which is involved in the accumulation of β-1,3-glucan in biofilms, raising the question whether this is a general response to cell surface stress. Other abundant secretome proteins also contribute to biofilm formation, emphasizing the important role of secretome proteins in this mode of growth. Finally, we discuss the relevance of these observations to therapeutic intervention. Together, these data illustrate that C. albicans actively adapts its secretome to environmental conditions, thus promoting its survival in widely divergent niches of the human body.
Collapse
|
35
|
Novel Aggregation Properties of Candida albicans Secreted Aspartyl Proteinase Sap6 Mediate Virulence in Oral Candidiasis. Infect Immun 2015; 83:2614-26. [PMID: 25870228 DOI: 10.1128/iai.00282-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Candida albicans, a commensal fungus of the oral microbiome, causes oral candidiasis in humans with localized or systemic immune deficiencies. Secreted aspartic proteinases (Saps) are a family of 10 related proteases and are virulence factors due to their proteolytic activity, as well as their roles in adherence and colonization of host tissues. We found that mice infected sublingually with C. albicans cells overexpressing Sap6 (SAP6 OE and a Δsap8 strain) had thicker fungal plaques and more severe oral infection, while infection with the Δsap6 strain was attenuated. These hypervirulent strains had highly aggregative colony structure in vitro and higher secreted proteinase activity; however, the levels of proteinase activity of C. albicans Saps did not uniformly match their abilities to damage cultured oral epithelial cells (SCC-15 cells). Hyphal induction in cells overexpressing Sap6 (SAP6 OE and Δsap8 cells) resulted in formation of large cell-cell aggregates. These aggregates could be produced in germinated wild-type cells by addition of native or heat-inactivated Sap6. Sap6 bound only to germinated cells and increased C. albicans adhesion to oral epithelial cells. The adhesion properties of Sap6 were lost upon deletion of its integrin-binding motif (RGD) and could be inhibited by addition of RGD peptide or anti-integrin antibodies. Thus, Sap6 (but not Sap5) has an alternative novel function in cell-cell aggregation, independent of its proteinase activity, to promote infection and virulence in oral candidiasis.
Collapse
|
36
|
Bruno VM, Shetty AC, Yano J, Fidel PL, Noverr MC, Peters BM. Transcriptomic analysis of vulvovaginal candidiasis identifies a role for the NLRP3 inflammasome. mBio 2015; 6:e00182-15. [PMID: 25900651 PMCID: PMC4453569 DOI: 10.1128/mbio.00182-15] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/26/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Treatment of vulvovaginal candidiasis (VVC), caused most frequently by Candida albicans, represents a significant unmet clinical need. C. albicans, as both a commensal and a pathogenic organism, has a complex and poorly understood interaction with the vaginal environment. Understanding the complex nature of this relationship is necessary for the development of desperately needed therapies to treat symptomatic infection. Using transcriptome sequencing (RNA-seq), we characterized the early murine vaginal and fungal transcriptomes of the organism during VVC. Network analysis of host genes that were differentially expressed between infected and naive mice predicted the activation or repression of several signaling pathways that have not been previously associated with VVC, including NLRP3 inflammasome activation. Intravaginal challenge of Nlrp3(-/-) mice with C. albicans demonstrated severely reduced levels of polymorphonuclear leukocytes (PMNs), alarmins, and inflammatory cytokines, including interleukin-1β (IL-1β) (the hallmarks of VVC immunopathogenesis) in vaginal lavage fluid. Intravaginal administration of wild-type (WT) mice with glyburide, a potent inhibitor of the NLRP3 inflammasome, reduced PMN infiltration and IL-1β to levels comparable to those observed in Nlrp3(-/-) mice. Furthermore, RNA-seq analysis of C. albicans genes indicated robust expression of hypha-associated secreted aspartyl proteinases 4, 5, and 6 (SAP4-6), which are known inflammasome activators. Despite colonization similar to that of the WT strain, ΔSAP4-6 triple and ΔSAP5 single mutants induced significantly less PMN influx and IL-1β during intravaginal challenge. Our findings demonstrate a novel role for the inflammasome in the immunopathogenesis of VVC and implicate the hypha-associated SAPs as major C. albicans virulence determinants during vulvovaginal candidiasis. IMPORTANCE Vaginitis, most commonly caused by the fungus Candida albicans, results in significant quality-of-life issues for all women of reproductive age. Recent efforts have suggested that vaginitis results from an immunopathological response governed by host innate immunity, although an explanatory mechanism has remained undefined. Using comprehensive genomic, immunological, and pharmacological approaches, we have elucidated the NLRP3 inflammasome as a crucial molecular mechanism contributing to host immunopathology. We have also demonstrated that C. albicans hypha-associated secreted aspartyl proteinases (SAP4-6 and SAP5, more specifically) contribute to disease immunopathology. Ultimately, this study enhances our understanding of the complex interplay between host and fungus at the vaginal mucosa and provides proof-of-principle evidence for therapeutic targeting of inflammasomes for symptomatic vulvovaginal candidiasis.
Collapse
Affiliation(s)
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Junko Yano
- Department of Oral Biology, School of Dentistry, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | |
Collapse
|
37
|
Inactivation of the antifungal and immunomodulatory properties of human cathelicidin LL-37 by aspartic proteases produced by the pathogenic yeast Candida albicans. Infect Immun 2015; 83:2518-30. [PMID: 25847962 DOI: 10.1128/iai.00023-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/27/2015] [Indexed: 01/07/2023] Open
Abstract
Constant cross talk between Candida albicans yeast cells and their human host determines the outcome of fungal colonization and, eventually, the progress of infectious disease (candidiasis). An effective weapon used by C. albicans to cope with the host defense system is the release of 10 distinct secreted aspartic proteases (SAPs). Here, we validate a hypothesis that neutrophils and epithelial cells use the antimicrobial peptide LL-37 to inactivate C. albicans at sites of candidal infection and that C. albicans uses SAPs to effectively degrade LL-37. LL-37 is cleaved into multiple products by SAP1 to -4, SAP8, and SAP9, and this proteolytic processing is correlated with the gradual decrease in the antifungal activity of LL-37. Moreover, a major intermediate of LL-37 cleavage-the LL-25 peptide-is antifungal but devoid of the immunomodulatory properties of LL-37. In contrast to LL-37, LL-25 did not affect the generation of reactive oxygen species by neutrophils upon treatment with phorbol esters. Stimulating neutrophils with LL-25 (rather than LL-37) significantly decreased calcium flux and interleukin-8 production, resulting in lower chemotactic activity of the peptide against neutrophils, which may decrease the recruitment of neutrophils to infection foci. LL-25 also lost the function of LL-37 as an inhibitor of neutrophil apoptosis, thereby reducing the life span of these defense cells. This study indicates that C. albicans can effectively use aspartic proteases to destroy the antimicrobial and immunomodulatory properties of LL-37, thus enabling the pathogen to survive and propagate.
Collapse
|
38
|
Greig JA, Sudbery IM, Richardson JP, Naglik JR, Wang Y, Sudbery PE. Cell cycle-independent phospho-regulation of Fkh2 during hyphal growth regulates Candida albicans pathogenesis. PLoS Pathog 2015; 11:e1004630. [PMID: 25617770 PMCID: PMC4305328 DOI: 10.1371/journal.ppat.1004630] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/16/2014] [Indexed: 11/21/2022] Open
Abstract
The opportunistic human fungal pathogen, Candida albicans, undergoes morphological and transcriptional adaptation in the switch from commensalism to pathogenicity. Although previous gene-knockout studies have identified many factors involved in this transformation, it remains unclear how these factors are regulated to coordinate the switch. Investigating morphogenetic control by post-translational phosphorylation has generated important regulatory insights into this process, especially focusing on coordinated control by the cyclin-dependent kinase Cdc28. Here we have identified the Fkh2 transcription factor as a regulatory target of both Cdc28 and the cell wall biosynthesis kinase Cbk1, in a role distinct from its conserved function in cell cycle progression. In stationary phase yeast cells 2D gel electrophoresis shows that there is a diverse pool of Fkh2 phospho-isoforms. For a short window on hyphal induction, far before START in the cell cycle, the phosphorylation profile is transformed before reverting to the yeast profile. This transformation does not occur when stationary phase cells are reinoculated into fresh medium supporting yeast growth. Mass spectrometry and mutational analyses identified residues phosphorylated by Cdc28 and Cbk1. Substitution of these residues with non-phosphorylatable alanine altered the yeast phosphorylation profile and abrogated the characteristic transformation to the hyphal profile. Transcript profiling of the phosphorylation site mutant revealed that the hyphal phosphorylation profile is required for the expression of genes involved in pathogenesis, host interaction and biofilm formation. We confirmed that these changes in gene expression resulted in corresponding defects in pathogenic processes. Furthermore, we identified that Fkh2 interacts with the chromatin modifier Pob3 in a phosphorylation-dependent manner, thereby providing a possible mechanism by which the phosphorylation of Fkh2 regulates its specificity. Thus, we have discovered a novel cell cycle-independent phospho-regulatory event that subverts a key component of the cell cycle machinery to a role in the switch from commensalism to pathogenicity. The fungus Candida albicans is a commensal in the human microbiota, responsible for superficial infections such as oral and vaginal thrush. However, it can become highly virulent, causing life-threatening systemic candidemia in severely immunocompromised patients, including those taking immunosuppressive drugs for transplantation, sufferers of AIDS and neutropenia, and individuals undergoing chemotherapy or at extremes of age. With a rapidly increasing ageing population worldwide, C. albicans and other fungal pathogens will become more prevalent, demanding a greater understanding of their pathogenesis for the development of effective therapeutics. Fungal pathogenicity requires a coordinated change in the pattern of gene expression orchestrated by a set of transcription factors. Here we have discovered that a transcription factor, Fkh2, is modified by phosphorylation under the control of the kinases Cdc28 and Cbk1 in response to conditions that activate virulence factor expression. Fkh2 is involved in a wide variety of cellular processes including cell proliferation, but this phosphorylation endows it with a specialized function in promoting the expression of genes required for tissue invasion, biofilm formation, and pathogenesis in the host. This study highlights the role of protein phosphorylation in regulating pathogenesis and furthers our understanding of the pathogenic switch in this important opportunistic fungal pathogen.
Collapse
Affiliation(s)
- Jamie A. Greig
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Ian M. Sudbery
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jonathan P. Richardson
- Mucosal and Salivary Biology Division, King’s College London Dental Institute, King’s College London, London, United Kingdom
| | - Julian R. Naglik
- Mucosal and Salivary Biology Division, King’s College London Dental Institute, King’s College London, London, United Kingdom
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Biochemistry, Yong Loo Ling School of Medicine, National University of Singapore, Singapore
- * E-mail: (PES); (YW)
| | - Peter E. Sudbery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail: (PES); (YW)
| |
Collapse
|
39
|
Rane HS, Hardison S, Botelho C, Bernardo SM, Wormley F, Lee SA. Candida albicans VPS4 contributes differentially to epithelial and mucosal pathogenesis. Virulence 2014; 5:810-8. [PMID: 25483774 DOI: 10.4161/21505594.2014.956648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have previously demonstrated that the C. albicans pre-vacuolar protein sorting gene VPS4 is required for extracellular secretion of the secreted aspartyl proteases Sap2p and Saps4-6p. Furthermore, the vps4Δ null mutant has been shown to be markedly hypovirulent in a murine tail vein model of disseminated candidiasis. In these experiments, we sought to further define the role of the pre-vacuolar secretion pathway mediated by the pre-vacuolar sorting gene VPS4 in the pathogenesis of epithelial and mucosal infection using a broad range of virulence models. The C. albicans vps4Δ mutant demonstrates reduced tolerance of cell wall stresses compared to its isogenic, complemented control strain. In an in vitro oral epithelial model (OEM) of tissue invasion, the vps4Δ mutant caused reduced tissue damage compared to controls. Further, the vps4Δ mutant was defective in macrophage killing in vitro, and was attenuated in virulence in an in vivo Caenorhabditis elegans model representative of intestinal epithelial infection. In contrast, the vps4Δ mutant caused a similar degree of tissue damage in an in vitro uroepithelial model of Candida infection compared with controls. Furthermore, in an in vivo murine model of vaginal candidiasis there was no reduction in fungal colony burden and no differences in vaginal histopathology compared to wild-type and complemented controls. These results suggest that VPS4 contributes to several key aspects of oral epithelial but not uroepithelial infection, and in contrast to systemic infection, plays no major role in the pathogenesis of Candida vaginitis. By using a wide range of virulence models, we demonstrate that C. albicans VPS4 contributes to virulence according to the specific tissue that is infected. Thus, in order to gain a full understanding of C. albicans virulence in relation to a particular gene or pathway of interest, a selected range of infection models may need to be utilized.
Collapse
Affiliation(s)
- Hallie S Rane
- a Division of Infectious Diseases ; University of New Mexico Health Science Center ; Albuquerque , NM USA
| | | | | | | | | | | |
Collapse
|
40
|
Castilho DG, Chaves AFA, Xander P, Zelanis A, Kitano ES, Serrano SMT, Tashima AK, Batista WL. Exploring Potential Virulence Regulators in Paracoccidioides brasiliensis Isolates of Varying Virulence through Quantitative Proteomics. J Proteome Res 2014; 13:4259-71. [DOI: 10.1021/pr5002274] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniele G. Castilho
- Departamento
de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Mirassol, 207, São Paulo, 04044-010 SP, Brazil
| | - Alison F. A. Chaves
- Departamento
de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Mirassol, 207, São Paulo, 04044-010 SP, Brazil
| | - Patricia Xander
- Departamento
de Ciências Biológicas, Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema, 09913-030 SP, Brazil
| | - André Zelanis
- Instituto
de Ciência e Tecnologia, Universidade Federal de São Paulo, Campus São José dos Campos, Rua Talim, 330, São José dos Campos, 12231-280 SP, Brazil
| | - Eduardo S. Kitano
- Laboratório
Especial de Toxinologia Aplicada − CeTICS, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-900 SP, Brazil
| | - Solange M. T. Serrano
- Laboratório
Especial de Toxinologia Aplicada − CeTICS, Instituto Butantan, Av. Vital Brasil 1500, São Paulo, 05503-900 SP, Brazil
| | - Alexandre K. Tashima
- Departamento
de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua 3 de maio, 100 - Vila Clementino, São
Paulo, 04023-062 SP, Brazil
| | - Wagner L. Batista
- Departamento
de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Mirassol, 207, São Paulo, 04044-010 SP, Brazil
- Departamento
de Ciências Biológicas, Universidade Federal de São Paulo, Campus Diadema, Rua São Nicolau, 210, Diadema, 09913-030 SP, Brazil
| |
Collapse
|
41
|
Essential functional modules for pathogenic and defensive mechanisms in Candida albicans infections. BIOMED RESEARCH INTERNATIONAL 2014; 2014:136130. [PMID: 24757665 PMCID: PMC3976935 DOI: 10.1155/2014/136130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/10/2014] [Indexed: 12/24/2022]
Abstract
The clinical and biological significance of the study of fungal pathogen Candida albicans (C. albicans) has markedly increased. However, the explicit pathogenic and invasive mechanisms of such host-pathogen interactions have not yet been fully elucidated. Therefore, the essential functional modules involved in C. albicans-zebrafish interactions were investigated in this study. Adopting a systems biology approach, the early-stage and late-stage protein-protein interaction (PPI) networks for both C. albicans and zebrafish were constructed. By comparing PPI networks at the early and late stages of the infection process, several critical functional modules were identified in both pathogenic and defensive mechanisms. Functional modules in C. albicans, like those involved in hyphal morphogenesis, ion and small molecule transport, protein secretion, and shifts in carbon utilization, were seen to play important roles in pathogen invasion and damage caused to host cells. Moreover, the functional modules in zebrafish, such as those involved in immune response, apoptosis mechanisms, ion transport, protein secretion, and hemostasis-related processes, were found to be significant as defensive mechanisms during C. albicans infection. The essential functional modules thus determined could provide insights into the molecular mechanisms of host-pathogen interactions during the infection process and thereby devise potential therapeutic strategies to treat C. albicans infection.
Collapse
|
42
|
Buu LM, Chen YC. Impact of glucose levels on expression of hypha-associated secreted aspartyl proteinases in Candida albicans. J Biomed Sci 2014; 21:22. [PMID: 24628998 PMCID: PMC3995546 DOI: 10.1186/1423-0127-21-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 03/11/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Ten secreted aspartyl proteinase (Sap) genes were identified in Candida albicans. The products of SAP genes are considered to be virulent factors of C. albicans that participated in causing mucocutaneous and systemic candidiasis in humans. Depending on environmental conditions, C. albicans may stay in yeast-form or convert into invasive hypha-form, and these issues may affect the expression of SAP genes. In this study we explored the component(s) of culture media that may affect the expression of hypha-associated SAP genes. RESULTS We demonstrate that glucose levels modulate both the hyphae development and the expression strength of hypha-associated SAP genes (SAP4-6). In contrast to high glucose concentration (2%), lower glucose level (0.1%) is more potent to promote hyphae development and to promptly elicit the expression of hypha-associated Sap proteins during yeast-to-hypha transition of C. albicans. Both Cph1-mediated MAP kinase cascade and Efg1-mediated cAMP/PKA pathway, although the latter seemed dominant, participate in convey the glucose signaling to regulate the expression of hypha-associated SAP genes and this glucose level effect may perform at very early stage of yeast-to-hypha transition. In addition, when C. albicans was co-cultured with THP-1 human monocytes, the engulfed C. albicans was developing hypha efficiently within 1 hr and the expression of hypha-associated Sap proteins could be detected on the distal surface of hyphae. CONCLUSION We propose that the glucose level of bloodstream (approximately 0.1%) may be facilitated for stimulation of C. albicans to develop invasive hypha-form and to elicit promptly production of high-level hypha-associated Sap proteins.
Collapse
Affiliation(s)
| | - Yee-Chun Chen
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, No, 7, Chung-Shan South Road, Taipei 10002, Taiwan.
| |
Collapse
|
43
|
Buu LM, Chen YC. Sap6, a secreted aspartyl proteinase, participates in maintenance the cell surface integrity of Candida albicans. J Biomed Sci 2013; 20:101. [PMID: 24378182 PMCID: PMC3890532 DOI: 10.1186/1423-0127-20-101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/28/2013] [Indexed: 12/04/2022] Open
Abstract
Background The polymorphic species Candida albicans is the major cause of candidiasis in humans. The secreted aspartyl proteinases (Saps) of C. albicans, encoded by a family of 10 SAP genes, have been investigated as the virulent factors during candidiasis. However, the biological functions of most Sap proteins are still uncertain. In this study, we applied co-culture system of C. albicans and THP-1 human monocytes to explore the pathogenic roles and biological functions of Sap proteinases. Results After 1 hr of co-culture of C. albicans strains and THP-1 human monocytes at 37°C, more than 60% of the THP-1-engulfed wild type and Δsap5 Candida cells were developing long hyphae. However, about 50% of THP-1-engulfed Δsap6 Candida cells were generating short hyphae, and more dead Candida cells were found in Δsap6 strain that was ingested by THP-1 cells (about 15% in Δsap6 strain vs. 2 ~ 2.5% in SC5314 and Δsap5 strains). The immunofluorescence staining demonstrated that the Sap6 is the major hyphal tip located Sap protein under THP-1 phagocytosis. The sap6-deleted strains (Δsap6, Δsap4/6, and Δsap5/6) appeared slower growth on Congo red containing solid medium at 25°C, and the growth defect was exacerbated when cultured at 37°C in Congo red or SDS containing medium. In addition, more proteins were secreted from Δsap6 strain and the β-mercaptoethanol (β-ME) extractable surface proteins from Δsap6 mutant were more abundant than that of extracted from wild type strain, which included the plasma membrane protein (Pma1p), the ER-chaperone protein (Kar2p), the protein transport-related protein (Arf1p), the cytoskeleton protein (Act1), and the mitochondrial outer membrane protein (porin 1). Moreover, the cell surface accessibility was increased in sap6-deleted strains. Conclusion From these results, we speculated that the cell surface constitution of C. albicans Δsap6 strain was defect. This may cause the more accessible of β-ME to disulfide-bridged cell surface components and may weaken the resistance of Δsap6 strain encountering phagocytosis of THP-1 cells. Sap6 protein displays a significant function involving in maintenance the cell surface integrity.
Collapse
Affiliation(s)
- Leh-Miauh Buu
- Department of Biotechnology, National Kaohsiung Normal University, No, 62, Shenzhong Rd,, Yanchao District, Kaohsiung City 82444, Taiwan.
| | | |
Collapse
|
44
|
The in vitro expression of SAP6 gene in Candida albicans morphogenesis mutants under human serum influence. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0226-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Silva NC, Nery JM, Dias ALT. Aspartic proteinases of Candida spp.: role in pathogenicity and antifungal resistance. Mycoses 2013; 57:1-11. [PMID: 23735296 DOI: 10.1111/myc.12095] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 05/03/2013] [Accepted: 05/08/2013] [Indexed: 12/20/2022]
Abstract
Fungal infections represent a serious health risk as they are particularly prevalent in immunocompromised individuals. Candida spp. pathogenicity depends on several factors and secreted aspartic proteinases (Sap) are considered one of the most critical factors as they are associated with adhesion, invasion and tissue damage. The production of proteinases is encoded by a family of 10 genes known as SAP, which are distributed differently among the species. The expression of these genes may be influenced by environmental conditions, which generally result in a higher fungal invasive potential. Non-pathogenic Candida spp. usually have fewer SAP genes, which are not necessarily expressed in the genome. Exposure to subinhibitory concentrations of antifungal agents promotes the development of resistant strains with an increased expression of SAP genes. In general, Candida spp. isolates that are resistant to antifungals show a higher secretion of Sap than the susceptible isolates. The relationship between Sap secretion and the susceptibility profile of the isolates is of great interest, although the role of SAPs in the development of resistance to antifungal agents remains still unclear. This review is the first one to address these issues.
Collapse
Affiliation(s)
- Naiara C Silva
- Microbiology and Immunology Department, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | | | | |
Collapse
|
46
|
Wu H, Downs D, Ghosh K, Ghosh AK, Staib P, Monod M, Tang J. Candida albicans secreted aspartic proteases 4-6 induce apoptosis of epithelial cells by a novel Trojan horse mechanism. FASEB J 2013; 27:2132-44. [PMID: 23430844 PMCID: PMC6188231 DOI: 10.1096/fj.12-214353] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 02/04/2013] [Indexed: 11/11/2022]
Abstract
Systemic infection by the pathogenic yeast Candida albicans produces high mortality in immune-compromised people. Such infection starts with the penetration of the organism at the mucosal surfaces, facilitated by the secreted aspartic proteases (Saps) 4, 5, and 6. The functional mechanism of these virulence factors is unclear. We discovered that Saps 4-6 each contains amino acid motifs RGD/KGD to bind integrins on epithelial cell A549 and are internalized to endosomes and lysosomes. These processes are inhibited by RGD-containing peptides or by substituting RGD motifs of these Saps. The internalization of Saps 4-6 results in partial permeabilization of lysosomal membranes, measured by the redistribution of the lysosomal tropic dye acridine orange to the cytosol, and the triggering of apoptosis via caspase activation. Sap 2 and mutated Saps 4-6 contain no RGD motif, are ineffective in these processes, and a proteolytic inhibitor abolished Sap 4 activity in lysosome permeabilization. Same results were also seen for human tongue keratinocyte SCC-15 cells. Mucosal lesions from this fundamental new mechanism may permit C. albicans to enter the body and may be used to attack cells in immune defense during systemic infections. RGD-motif may also be incorporated in Sap inhibitors for Candidiasis drugs targeting to lysosomes.
Collapse
Affiliation(s)
- Hao Wu
- Protein Studies Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Deborah Downs
- Protein Studies Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Koena Ghosh
- Department of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Inidana, USA
| | - Arun K. Ghosh
- Department of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Inidana, USA
| | - Peter Staib
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany; and
| | - Michel Monod
- Laboratoire de Mycologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jordan Tang
- Protein Studies Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| |
Collapse
|
47
|
Puri S, Kumar R, Chadha S, Tati S, Conti HR, Hube B, Cullen PJ, Edgerton M. Secreted aspartic protease cleavage of Candida albicans Msb2 activates Cek1 MAPK signaling affecting biofilm formation and oropharyngeal candidiasis. PLoS One 2012; 7:e46020. [PMID: 23139737 PMCID: PMC3491010 DOI: 10.1371/journal.pone.0046020] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/23/2012] [Indexed: 11/18/2022] Open
Abstract
Perception of external stimuli and generation of an appropriate response are crucial for host colonization by pathogens. In pathogenic fungi, mitogen activated protein kinase (MAPK) pathways regulate dimorphism, biofilm/mat formation, and virulence. Signaling mucins, characterized by a heavily glycosylated extracellular domain, a transmembrane domain, and a small cytoplasmic domain, are known to regulate various signaling pathways. In Candida albicans, the mucin Msb2 regulates the Cek1 MAPK pathway. We show here that Msb2 is localized to the yeast cell wall and is further enriched on hyphal surfaces. A msb2Δ/Δ strain formed normal hyphae but had biofilm defects. Cek1 (but not Mkc1) phosphorylation was absent in the msb2Δ/Δ mutant. The extracellular domain of Msb2 was shed in cells exposed to elevated temperature and carbon source limitation, concomitant with germination and Cek1 phosphorylation. Msb2 shedding occurred differentially in cells grown planktonically or on solid surfaces in the presence of cell wall and osmotic stressors. We further show that Msb2 shedding and Cek1 phosphorylation were inhibited by addition of Pepstatin A (PA), a selective inhibitor of aspartic proteases (Saps). Analysis of combinations of Sap protease mutants identified a sap8Δ/Δ mutant with reduced MAPK signaling along with defects in biofilm formation, thereby suggesting that Sap8 potentially serves as a major regulator of Msb2 processing. We further show that loss of either Msb2 (msb2Δ/Δ) or Sap8 (sap8Δ/Δ) resulted in higher C. albicans surface β-glucan exposure and msb2Δ/Δ showed attenuated virulence in a murine model of oral candidiasis. Thus, Sap-mediated proteolytic cleavage of Msb2 is required for activation of the Cek1 MAPK pathway in response to environmental cues including those that induce germination. Inhibition of Msb2 processing at the level of Saps may provide a means of attenuating MAPK signaling and reducing C. albicans virulence.
Collapse
Affiliation(s)
- Sumant Puri
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
In vitro Candida albicans biofilm induced proteinase activity and SAP8 expression correlates with in vivo denture stomatitis severity. Mycopathologia 2012; 174:11-19. [PMID: 22302440 DOI: 10.1007/s11046-012-9522-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
Abstract
Denture stomatitis is a common inflammatory disorder of the palatal mucosa amongst denture wearers. The pathological changes are induced by Candida albicans biofilm on the fitting surface of the upper denture, and different individuals experience different levels of disease. C. albicans is known to produce secreted aspartyl proteinases (SAPs) to aid adhesion, invasion and tissue destruction. We hypothesised that differential expression and activity of SAPs from denture stomatitis isolates results in different levels of disease amongst denture wearers. We selected C. albicans isolates from asymptomatic controls and three different severities of disease [Newton’s type (NT) 0, I, II and III]. We assessed biofilm formation and proteinase activity for each biofilm and investigated the transcriptional profile of SAPs 1, 2, 5, 6 and 8 from early (12 h) and mature (24 h) biofilms. There were no significant differences between isolates with respect to biofilm formation, whereas proteinase activity normalised to biofilm growth was significantly increased in the diseased groups (p < 0.0001). Proteinase activity correlated strongly with SAP expression (p < 0.0001). SAP8 expression was the greatest, followed by SAP5, 6, 2 and 1. The diseased groups showed the greatest levels of SAP expression, with significant differences also observed between the groups (p < 0.005). All SAPs except SAP5 were expressed in greater amounts in the mature biofilms compared to early biofilms. Overall, this study suggests that SAP activity in biofilms determined in vitro may help to explain differences in disease severity. SAP8 has been shown for the first time to play a prominent role in biofilms.
Collapse
|
49
|
Aoki W, Kitahara N, Miura N, Morisaka H, Yamamoto Y, Kuroda K, Ueda M. Candida albicans possesses Sap7 as a pepstatin A-insensitive secreted aspartic protease. PLoS One 2012; 7:e32513. [PMID: 22384266 PMCID: PMC3287985 DOI: 10.1371/journal.pone.0032513] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/27/2012] [Indexed: 01/12/2023] Open
Abstract
Background Candida albicans, a commensal organism, is a part of the normal flora of healthy individuals. However, once the host immunity is compromised, C. albicans opportunistically causes recurrent superficial or fatal systemic candidiasis. Secreted aspartic proteases (Sap), encoded by 10 types of SAP genes, have been suggested to contribute to various virulence processes. Thus, it is important to elucidate their biochemical properties for better understanding of the molecular mechanisms that how Sap isozymes damage host tissues. Methodology/Principal Findings The SAP7 gene was cloned from C. albicans SC5314 and heterogeneously produced by Pichia pastoris. Measurement of Sap7 proteolytic activity using the FRETS-25Ala library showed that Sap7 was a pepstatin A-insensitive protease. To understand why Sap7 was insensitive to pepstatin A, alanine substitution mutants of Sap7 were constructed. We found that M242A and T467A mutants had normal proteolytic activity and sensitivity to pepstatin A. M242 and T467 were located in close proximity to the entrance to an active site, and alanine substitution at these positions widened the entrance. Our results suggest that this alteration might allow increased accessibility of pepstatin A to the active site. This inference was supported by the observation that the T467A mutant has stronger proteolytic activity than the wild type. Conclusions/Significance We found that Sap7 was a pepstatin A-insensitive protease, and that M242 and T467 restricted the accessibility of pepstatin A to the active site. This finding will lead to the development of a novel protease inhibitor beyond pepstatin A. Such a novel inhibitor will be an important research tool as well as pharmaceutical agent for patients suffering from candidiasis.
Collapse
Affiliation(s)
- Wataru Aoki
- Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Nao Kitahara
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Natsuko Miura
- Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hironobu Morisaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoshihiro Yamamoto
- Industrial Technology Center, Kyoto Municipal Institute of Industrial Technology and Culture, Simogyo-ku, Kyoto, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail:
| |
Collapse
|
50
|
Host cell invasion in mucormycosis: role of iron. Curr Opin Microbiol 2011; 14:406-11. [PMID: 21807554 DOI: 10.1016/j.mib.2011.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/10/2011] [Accepted: 07/01/2011] [Indexed: 11/24/2022]
Abstract
Clinical hallmarks of mucormycosis infections include the unique susceptibility of patients with increased available serum iron, the propensity of the organism to invade blood vessels, and defective phagocytic function. These hallmarks underscore the crucial roles of iron metabolism, phagocyte function, and interactions with endothelial cells lining blood vessels, in the organism's virulence strategy. In an attempt to understand how Mucorales invade the host, we will review the current knowledge about interactions between Mucorales and the host while evading phagocyte-mediated killing. Additionally, since iron is an important determinant of the disease, we will focus on the role of iron on these interactions. Ultimately, a superior understanding of the pathogenesis of mucormycosis will enable development of novel therapies for this disease.
Collapse
|