1
|
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that is the cause of the sexually transmitted disease gonorrhoea. Recently, there has been a surge in gonorrhoea cases that has been exacerbated by the rapid rise in gonococcal multidrug resistance to all useful antimicrobials resulting in this organism becoming a significant public health burden. Therefore, there is a clear and present need to understand the organism's biology through its physiology and pathogenesis to help develop new intervention strategies. The gonococcus initially colonises and adheres to host mucosal surfaces utilising a type IV pilus that helps with microcolony formation. Other adhesion strategies include the porin, PorB, and the phase variable outer membrane protein Opa. The gonococcus is able to subvert complement mediated killing and opsonisation by sialylation of its lipooligosaccharide and deploys a series of anti-phagocytic mechanisms. N. gonorrhoeae is a fastidious organism that is able to grow on a limited number of primary carbon sources such as glucose and lactate. The utilization of lactate by the gonococcus has been implicated in a number of pathogenicity mechanisms. The bacterium lives mainly in microaerobic environments and can grow both aerobically and anaerobically with the aid of nitrite. The gonococcus does not produce siderophores for scavenging iron but can utilize some produced by other bacteria, and it is able to successful chelate iron from host haem, transferrin and lactoferrin. The gonococcus is an incredibly versatile human pathogen; in the following chapter, we detail the intricate mechanisms used by the bacterium to invade and survive within the host.
Collapse
Affiliation(s)
- Luke R Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ernesto Feliz Diaz Parga
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
2
|
Rao CV. Potential Therapy for Neisseria Gonorrhoeae Infections With Human Chorionic Gonadotropin. Reprod Sci 2015; 22:1484-7. [PMID: 25868582 DOI: 10.1177/1933719115580998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The scientific evidence suggests that Neisseria gonorrhoeae (NG) infects human fallopian tubes by molecular mimicry in which pathogens act like a ligand to bind to epithelial cell surface human chorionic gonadotrophin (hCG)/luteinizing hormone (LH) receptors. The hCG-like molecule has been identified as ribosomal protein L12 in NG coat surface. Human fallopian tube epithelial cells have been shown to contain functional hCG/LH receptors. As previously shown in human fallopian tube organ and cell culture studies, cellular invasion and infection can be prevented by exposing the cells to excess hCG, which would outnumber and outcompete NG for receptor binding. Based on these data, we suggest testing hCG in clinical trials on infected women.
Collapse
Affiliation(s)
- C V Rao
- Departments of Cellular Biology and Pharmacology, Molecular and Human Genetics and Obstetrics and Gynecology, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
3
|
Edwards JL, Butler EK. The Pathobiology of Neisseria gonorrhoeae Lower Female Genital Tract Infection. Front Microbiol 2011; 2:102. [PMID: 21747805 PMCID: PMC3129011 DOI: 10.3389/fmicb.2011.00102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/25/2011] [Indexed: 11/13/2022] Open
Abstract
Infection and disease associated with Neisseria gonorrhoeae, the gonococcus, continue to be a global health problem. Asymptomatic and subclinical gonococcal infections occur at a high frequency in females; thus, the true incidence of N. gonorrhoeae infections are presumed to be severely underestimated. Inherent to this asymptomatic/subclinical diseased state is the continued prevalence of this organism within the general population, as well as the medical, economic, and social burden equated with the observed chronic, disease sequelae. As infections of the lower female genital tract (i.e., the uterine cervix) commonly result in subclinical disease, it follows that the pathobiology of cervical gonorrhea would differ from that observed for other sites of infection. In this regard, the potential responses to infection that are generated by the female reproductive tract mucosa are unique in that they are governed, in part, by cyclic fluctuations in steroid hormone levels. The lower female genital tract has the further distinction of being able to functionally discriminate between resident commensal microbiota and transient pathogens. The expression of functionally active complement receptor 3 by the lower, but not the upper, female genital tract mucosa; together with data indicating that gonococcal adherence to and invasion of primary cervical epithelial cells and tissue are predominately aided by this surface-expressed host molecule; provide one explanation for asymptomatic/subclinical gonococcal cervicitis. However, co-evolution of the gonococcus with its sole human host has endowed this organism with variable survival strategies that not only aid these bacteria in successfully evasion of immune detection and function but also enhance cervical colonization and cellular invasion. To this end, we herein summarize current knowledge pertaining to the pathobiology of gonococcal infection of the human cervix.
Collapse
Affiliation(s)
- Jennifer L Edwards
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
4
|
Lactobacillus jensenii surface-associated proteins inhibit Neisseria gonorrhoeae adherence to epithelial cells. Infect Immun 2010; 78:3103-11. [PMID: 20385752 DOI: 10.1128/iai.01200-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
High numbers of lactobacilli in the vaginal tract have been correlated with a decreased risk of infection by the sexually transmitted pathogen Neisseria gonorrhoeae. We have previously shown that Lactobacillus jensenii, one of the most prevalent microorganisms in the healthy human vaginal tract, can inhibit gonococcal adherence to epithelial cells in culture. Here we examined the role of the epithelial cells and the components of L. jensenii involved in the inhibition of gonococcal adherence. L. jensenii inhibited the adherence of gonococci to glutaraldehyde-fixed epithelial cells like it inhibited the adherence of gonococci to live epithelial cells, suggesting that the epithelial cells do not need to be metabolically active for the inhibition to occur. In addition, methanol-fixed L. jensenii inhibited gonococcal adherence to live epithelial cells, indicating that L. jensenii uses a constitutive component to inhibit gonococcal interactions with epithelial cells. Proteinase K treatment of methanol-fixed lactobacilli eliminated the inhibitory effect, suggesting that the inhibitory component contains protein. Released surface components (RSC) isolated from L. jensenii were found to contain at least two inhibitory components, both of which are protease sensitive. Using anion-exchange and size exclusion chromatography, an inhibitory protein which exhibits significant similarity to the enzyme enolase was isolated. A recombinant His6-tagged version of this protein was subsequently produced and shown to inhibit gonococcal adherence to epithelial cells in a dose-dependent manner.
Collapse
|
5
|
Du Y, Lenz J, Arvidson CG. Global gene expression and the role of sigma factors in Neisseria gonorrhoeae in interactions with epithelial cells. Infect Immun 2005; 73:4834-45. [PMID: 16040997 PMCID: PMC1201249 DOI: 10.1128/iai.73.8.4834-4845.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Like many bacterial pathogens, Neisseria gonorrhoeae must adapt to environmental changes in order to successfully colonize and proliferate in a new host. Modulation of gene expression in response to environmental signals is an efficient mechanism used by bacteria to achieve this goal. Using DNA microarrays and a tissue culture model for gonococcal infection, we examined global changes in gene expression in N. gonorrhoeae in response to adherence to host cells. Among those genes induced upon adherence to human epithelial cells in culture was rpoH, which encodes a homolog of the heat shock sigma factor, sigma(32) (RpoH), as well as genes of the RpoH regulon, groEL and groES. Attempts to construct an rpoH null mutant in N. gonorrhoeae were unsuccessful, suggesting that RpoH is essential for viability of N. gonorrhoeae. The extracytoplasmic sigma factor, RpoE (sigma(E)), while known to regulate rpoH in other bacteria, was found not to be necessary for the up-regulation of rpoH in gonococci upon adherence to host cells. To examine the role of RpoH in host cell interactions, an N. gonorrhoeae strain conditionally expressing rpoH was constructed. The results of our experiments showed that while induction of rpoH expression is not necessary for adherence of gonococci to epithelial cells, it is important for the subsequent invasion step, as gonococci depleted for rpoH invade cells two- to threefold less efficiently than a wild-type strain. Taken together, these results indicate that sigma(32), but not sigma(E), is important for the response of gonococci in the initial steps of an infection.
Collapse
Affiliation(s)
- Ying Du
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-1101, USA
| | | | | |
Collapse
|
6
|
Edwards JL, Apicella MA. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev 2004; 17:965-81, table of contents. [PMID: 15489357 PMCID: PMC523569 DOI: 10.1128/cmr.17.4.965-981.2004] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The molecular mechanisms used by the gonococcus to initiate infection exhibit gender specificity. The clinical presentations of disease are also strikingly different upon comparison of gonococcal urethritis to gonococcal cervicitis. An intimate association occurs between the gonococcus and the urethral epithelium and is mediated by the asialoglycoprotein receptor. Gonococcal interaction with the urethral epithelia cell triggers cytokine release, which promotes neutrophil influx and an inflammatory response. Similarly, gonococcal infection of the upper female genital tract also results in inflammation. Gonococci invade the nonciliated epithelia, and the ciliated cells are subjected to the cytotoxic effects of tumor necrosis factor alpha induced by gonococcal peptidoglycan and lipooligosaccharide. In contrast, gonococcal infection of the lower female genital tract is typically asymptomatic. This is in part the result of the ability of the gonococcus to subvert the alternative pathway of complement present in the lower female genital tract. Gonococcal engagement of complement receptor 3 on the cervical epithelia results in membrane ruffling and does not promote inflammation. A model of gonococcal pathogenesis is presented in the context of the male and female human urogenital tracts.
Collapse
Affiliation(s)
- Jennifer L Edwards
- Department of Microbiology, The University of Iowa, 51 Newton Rd., BSB 3-403, Iowa City, IA 52242, USA
| | | |
Collapse
|
7
|
Edwards JG, Odell WD. Partial characterization of chorionic gonadotropin-like binding sites from the bacteria Xanthomonas maltophilia. Exp Biol Med (Maywood) 2003; 228:926-34. [PMID: 12968064 DOI: 10.1177/153537020322800808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The gram-negative bacterium, Xanthomonas maltophilia, has low- and high-affinity luteinizing hormone/chorionic gonadotropin (LH/CG)-binding sites, similar to the LH/CG receptor found in mammals. Although the low-affinity site binds both LH and human CG (hCG), the high-affinity site is specific for hCG. In the current investigation, these two binding sites were independently isolated from X. maltophilia for further characterization. To isolate functional binding sites, we developed a solubilization method using the detergent zwittergent 3,14 and high glycerol concentrations that allowed for the maintenance of ligand-binding integrity. Gel filtration experiments established molecular weights of 170 and 11.5 kDa for the two binding sites, which were supported by data from photoaffinity labeling and ultracentrifugation experiments. Gel filtration data also suggested the presence of a third binding site of 5.4 kDa. The 170-kDa site had a binding affinity of Kd = 12 x 10(-6) and bound both LH and hCG. The small molecular weight site had an affinity of Kd = 9.4 x 10(-8) and was CG specific. Collectively, these data demonstrate the presence of multiple hormone binding sites in X. maltophilia that differ in molecular size, binding affinity, and ligand specificity.
Collapse
Affiliation(s)
- Jeffrey G Edwards
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah 84108-1297, USA.
| | | |
Collapse
|
8
|
Spence JM, Tyler RE, Domaoal RA, Clark VL. L12 enhances gonococcal transcytosis of polarized Hec1B cells via the lutropin receptor. Microb Pathog 2002; 32:117-25. [PMID: 11855942 DOI: 10.1006/mpat.2001.0484] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that gonococci convert to a more invasive phenotype (Inv(+)GC) following contact with cells expressing the lutropin receptor (LHr) and that Inv(+)GC express a novel adhesin that interacts with LHr. We propose that this adhesion allows Inv(+)GC to activate LHr and induce gonococcal transcytosis, usurping normal LHr function in fallopian and endometrial epithelium, which is to transport fetal chorionic gonadotropin (hCG) into the mother. Infected polarized Hec1B monolayers, grown on collagen-coated transwells, showed that the passage of GC across the monolayer occurred rapidly, within 30 min, and proceeded at a constant rate with Inv(+)GC passage three-fold faster than GC grown in tissue culture media alone (Inv(-)GC). Electron microscopy found that Inv(+)GC triggered pseudopod formation around the bacterium, with GC found throughout the Hec1B targets within 30 min, while Inv(-)GC did neither. Pre-treatment of Inv(-)GC with recombinant ribosomal protein L12, a gonococcal "hCG-like" protein previously shown to increase invasion, also increased Inv(-)GC transcytosis to the rate of Inv(+)GC. This enhancement was completely abolished by addition of luteinizing hormone, a cognate ligand of LHr. This is convincing evidence that surface expressed L12 mediates gonococcal invasion and transcytosis via LHr, a mechanism that could be important in the development of invasive gonococcal disease in women.
Collapse
Affiliation(s)
- Janice M Spence
- Department of Microbiology and Immunology, School of Medicine and Dentistry, Rochester, NY 14642, U.S.A
| | | | | | | |
Collapse
|
9
|
Fichorova RN, Desai PJ, Gibson FC, Genco CA. Distinct proinflammatory host responses to Neisseria gonorrhoeae infection in immortalized human cervical and vaginal epithelial cells. Infect Immun 2001; 69:5840-8. [PMID: 11500462 PMCID: PMC98702 DOI: 10.1128/iai.69.9.5840-5848.2001] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study we utilized immortalized morphologically and functionally distinct epithelial cell lines from normal human endocervix, ectocervix, and vagina to characterize gonococcal epithelial interactions pertinent to the lower female genital tract. Piliated, but not nonpiliated, N. gonorrhoeae strain F62 variants actively invaded these epithelial cell lines, as demonstrated by an antibiotic protection assay and confocal microscopy. Invasion of these cells by green fluorescent protein-expressing gonococci was characterized by colocalization of gonococci with F actin, which were initially detected 30 min postinfection. In all three cell lines, upregulation of interleukin 8 (IL-8) and IL-6, intercellular adhesion molecule 1 (CD54), and the nonspecific cross-reacting antigen (CD66c) were detected 4 h after infection with piliated and nonpiliated gonococci. Furthermore, stimulation of all three cell lines with gonococcal whole-cell lysates resulted in a similar upregulation of IL-6 and IL-8, confirming that bacterial uptake is not essential for this response. Increased levels of IL-1 were first detected 8 h after infection with gonococci, suggesting that the earlier IL-8 and IL-6 responses were not mediated through the IL-1 signaling pathway. The IL-1 response was limited to cultures infected with piliated gonococci and was more vigorous in the endocervical epithelial cells. The ability of gonococci to stimulate distinct proinflammatory host responses in these morphologically and functionally different compartments of the lower female genital tract may contribute directly to the inflammatory signs and symptoms characteristic of disease caused by N. gonorrhoeae.
Collapse
Affiliation(s)
- R N Fichorova
- Fearing Research Laboratory, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
10
|
Abstract
The closely related bacterial pathogens Neisseria gonorrhoeae (gonococci, GC) and N. meningitidis (meningococci, MC) initiate infection at human mucosal epithelia. Colonization begins at apical epithelial surfaces with a multistep adhesion cascade, followed by invasion of the host cell, intracellular persistence, transcytosis, and exit. These activities are modulated by the interaction of a panoply of virulence factors with their cognate host cell receptors, and signals are sent from pathogen to host and host to pathogen at multiple stages of the adhesion cascade. Recent advances place us on the verge of understanding the colonization process at a molecular level of detail. In this review we describe the Neisseria virulence factors in the context of epithelial cell biology, placing special emphasis on the signaling functions of type IV pili, pilus-based twitching motility, and the Opa and Opc outermembrane adhesin/invasin proteins. We also summarize what is known about bacterial intracellular trafficking and growth. With the accelerated integration of tools from cell biology, biochemistry, biophysics, and genomics, experimentation in the next few years should bring unprecedented insights into the interactions of Neisseriae with their host.
Collapse
Affiliation(s)
- A J Merz
- Department of Molecular Microbiology & Immunology, L220, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | |
Collapse
|
11
|
Abstract
Previous studies led to the development of a model of contact-induced enhanced gonococcal invasion of human reproductive cells that utilizes the lutropin receptor (LHr) as both the induction signal for conversion to this enhanced-gonococcal-invasion phenotype (Inv(+) GC) and as the specific Inv(+) GC uptake mechanism. This model proposes that gonococci express a surface feature that mimics human chorionic gonadotropin (hCG), the cognate ligand for LHr, and that this structure is responsible for the specific and productive interaction of GC with LHr. In this report, we identify a 13-kDa gonococcal protein with immunological similarities to hCG. The antiserum reactivity is specific since interaction with the 13-kDa gonococcal protein can be blocked by the addition of highly purified hCG. This gonococcal "hCG-like" protein, purified from two-dimensional gels and by immunoprecipitation, was determined by N-terminal sequencing to be the ribosomal protein L12. We present evidence that gonococcal L12 is membrane associated and surface exposed in gonococci, as shown by immunoblot analysis of soluble and insoluble gonococcal protein and antibody adsorption studies with fixed GC. Using highly purified recombinant gonococcal L12, we show that preincubation of Inv(-) GC with micromolar amounts of rL12 leads to a subsequent five- to eightfold increase in invasion of the human endometrial cell line, Hec1B. In addition, nanomolar concentrations of exogenous L12 inhibits gonococcal invasion to approximately 70% of the level in controls. Thus, we propose a novel cellular location for the gonococcal ribosomal protein L12 and concomitant function in LHr-mediated gonococcal invasion of human reproductive cells.
Collapse
Affiliation(s)
- J M Spence
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
12
|
Källström H, Hansson-Palo P, Jonsson AB. Cholera toxin and extracellular Ca2+ induce adherence of non-piliated Neisseria: evidence for an important role of G-proteins and Rho in the bacteria-cell interaction. Cell Microbiol 2000; 2:341-51. [PMID: 11207590 DOI: 10.1046/j.1462-5822.2000.00063.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, we characterize the interaction between non-piliated (P-) Neisseria gonorrhoeae and human epithelial cells. P- mutants lacking the pilus subunit protein PilE attach at low levels to cells. Although the binding may not lead to heavy inflammatory responses, the interaction between P- Neisseria and host cells most probably play a role in colonization and asymptomatic carriage of the pathogen. Here we show that the adherence of P N. gonorrhoeae is blocked by GDP-beta-S [guanosine 5'-O(thio)diphosphate], a non-hydrolyzable GTP analogue, and by C3 exotoxin, an inhibitor of the small G-protein Rho. G-protein activators such as cholera toxin, that activates Gs, and fluoroaluminate, a general G-protein activator, induced bacterial adherence. Furthermore, increase of the extracellular free [Ca2+] dramatically enhanced adherence of non-piliated Neisseria. The pharynx and the urogenital tract are natural entry sites of the pathogenic Neisseria species, and at both sites the epithelial cells can be exposed to wide variations in Ca2+ concentration. Taken together, these data show the importance of extracellular Ca2+ in the pathogenic Neisseria-host interaction, and reveal a novel function of cholera toxin, namely induction of bacterial adherence.
Collapse
Affiliation(s)
- H Källström
- Microbiology and Tumorbiology Center, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
13
|
Abstract
As outlined in this review, various experimental techniques have been employed in an attempt to understand neisserial pathogenesis. In vitro genetic analysis has been used to study the genetic basis for the structural variability of cell surface components. Transformed or primary epithelial cell cultures have provided the simplest model to analyze bacterial adherence and invasion, while the infection of polarized epithelial monolayers, fallopian tube and nasopharyngeal organ cultures, and ureteral tissue have each been used to more closely represent the events which occur in vivo. Finally, the in vivo infection of human volunteers with N. gonorrhoeae has provided a powerful means to confirm and expand the results obtained in vitro. By these various approaches, a number of neisserial adhesins (i.e. pilli, Opa, Opc and P36) and additional putative virulence determinants which affect bacterial adherence and invasion into host cells (i.e. LOS, capsule, PorB) have been identified. Clearly, neisserial surface variation serves as an adaptive mechanism which can modulate tissue tropism, immune evasion and survival in the changing host environment. Important progress has been made in recent years with respect to the host cellular receptors and subsequent signal transduction processes which are involved in neisserial adherence, invasion and transcytosis. This has led to the identification of (i) CD46 as a receptor for pilus which allows adherence to epithelial and endothelial cells, (ii) HSPGs, in cooperation with vitronectin and fibronectin, as receptors for a particular subset of Opa proteins and Opc, which may both mediate invasion into most epithelial and endothelial cells, and (iii) CD66 as the receptors for most Opa variants, potentially being involved in cellular interactions including adherence, invasion and transcytosis with epithelial, endothelial and phagocytic cells. As most of these data have been obtained using transformed cell lines growing in vitro, attempts must be made to translate these basic observations into a more natural situation. It can be expected that the successful ongoing integration of laboratory findings from the various infection models with human volunteer studies will further increase our understanding of the biology of neisserial infection. Perhaps the most difficult but also most rewarding challenge for the future will be to use volunteer studies to identify and understand the role of host factors which are important for the infectious process. Hopefully, insights gained from each of these studies will reveal new and useful strategies for the preventive and/or therapeutic intervention into infection and disease by these fascinating microbes.
Collapse
Affiliation(s)
- C Dehio
- Dept. Infektionsbiologie, Max-Planck-Institut für Biologie, Tübingen, Germany
| | | | | |
Collapse
|
14
|
Lobel L, Pollak S, Wang S, Chaney M, Lustbader JW. Expression and characterization of recombinant beta-subunit hCG homodimer. Endocrine 1999; 10:261-70. [PMID: 10484290 DOI: 10.1007/bf02738625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have linked two human chorionic gonadotropin (hCG) beta-subunit cDNAs in tandem such that the expressed fusion protein consists of two mature beta-subunits joined through the carboxy terminal peptide of the first beta-subunit. A single glycine residue is inserted between the two subunits in the fusion protein. Chinese hamster ovary (CHO) cells transformed with a clone that contains the fused cDNAs express and secrete a protein that is consistent with it being a beta-hCG homodimer protein. These beta-homodimer molecules can recombine with two free alpha-subunits indicating that both beta-subunits within the homodimer are likely folded in their native conformation. Our data also suggest that the two beta-subunits fold upon each other as a globular protein and do not appear to exist as a simple fusion of two linear beta-subunits. Furthermore, the two beta-monomer subunits in the fusion protein form a stable homodimer that can bind and activate the hLH/CG receptor specifically. Recombination of the fusion protein with alpha-subunits appears to favor an arrangement where two alpha-subunits combine with a single molecule of the fusion protein. The recombined molecule consists of four subunits and is comparable to two tethered hCG moieties, which constitutes a hCG dimer. This hormone dimer can bind and activate the hLH/CG receptor with an activity approximating that of native hCG.
Collapse
MESH Headings
- Animals
- Blotting, Western
- CHO Cells
- Chorionic Gonadotropin, beta Subunit, Human/chemistry
- Chorionic Gonadotropin, beta Subunit, Human/genetics
- Chorionic Gonadotropin, beta Subunit, Human/metabolism
- Cricetinae
- Dimerization
- Gene Expression
- Glycoprotein Hormones, alpha Subunit/chemistry
- Humans
- Models, Molecular
- Protein Conformation
- Receptors, LH/metabolism
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- L Lobel
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
15
|
Nassif X, Pujol C, Morand P, Eugène E. Interactions of pathogenic Neisseria with host cells. Is it possible to assemble the puzzle? Mol Microbiol 1999; 32:1124-32. [PMID: 10383754 DOI: 10.1046/j.1365-2958.1999.01416.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae are human pathogens that have to interact with mucosa and/or cellular barriers for their life cycles to progress. Even though they both give rise to dramatically different diseases, the use of in vitro models has shown that most of the mechanisms mediating cellular interactions are common to N. meningitidis and N. gonorrhoeae. This suggests that bacterial cell interactions may be essential not only for pathogenesis but also for other aspects of the bacterial life cycle that are common to both N. meningitidis and N. gonorrhoeae. This manuscript will review the most recent developments concerning the mechanisms mediating cellular interaction of pathogenic Neisseria and will then try to put them into the perspective of pathogenesis and bacterial life cycle.
Collapse
Affiliation(s)
- X Nassif
- INSERM U411, Faculté de Médecine Necker-Enfants Malades, Université René Descartes, Paris, France.
| | | | | | | |
Collapse
|
16
|
Bauer FJ, Rudel T, Stein M, Meyer TF. Mutagenesis of the Neisseria gonorrhoeae porin reduces invasion in epithelial cells and enhances phagocyte responsiveness. Mol Microbiol 1999; 31:903-13. [PMID: 10048033 DOI: 10.1046/j.1365-2958.1999.01230.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Porin (PorB), the major outer membrane protein of Neisseria gonorrhoeae, has been implicated in pathogenesis previously. However, the fact that porin deletion mutants are not viable has complicated investigations. Here, we describe a method of manipulating the porin gene site-specifically. N. gonorrhoeae MS11, which harbours the porB1B (P.1B) porin allele, was used to generate mutants carrying deletions in the surface loops 1 and 5. An 11-amino-acid deletion in loop 1 impaired Opa50-dependent invasion into human Chang epithelial cells, whereas loop 5 deletion exhibited no apparent phenotype. In a second approach, the complete gonococcal porB1B was replaced by the porBNia gene of Neisseria lactamica. Such mutants were unable to induce efficient uptake by epithelial cells but induced an enhanced respiratory response in HL60 phagocytic cells. The increased respiratory burst was accompanied by an enhanced phagocytic uptake of the mutant compared with the wild-type strain. Our data extend previous evidence for multiple central functions of PorB in the infection process.
Collapse
Affiliation(s)
- F J Bauer
- Max-Planck-Institut für Biologie, Abt Infektionsbiologie, Tübingen, Germany
| | | | | | | |
Collapse
|
17
|
Abstract
Neisseria gonorrhoeae is a highly adapted human pathogen that utilises multiple adhesins to interact with a variety of host cell receptors. Recently, substantial progress has been made in unravelling the signalling events induced by N. gonorrhoae that can lead to cytoskeletal reorganisation, invasion or phagocytic uptake, intraphagosomal accommodation, nuclear signalling, cytokine/chemokine release and apoptosis.
Collapse
Affiliation(s)
- M Naumann
- Max-Planck-Institut für Infektionsbiologie Abteilung Molekulare Biologie Monbijou Str 2 10117 Berlin Germany
| | | | | |
Collapse
|
18
|
van Putten JP, Duensing TD, Cole RL. Entry of OpaA+ gonococci into HEp-2 cells requires concerted action of glycosaminoglycans, fibronectin and integrin receptors. Mol Microbiol 1998; 29:369-79. [PMID: 9701828 DOI: 10.1046/j.1365-2958.1998.00951.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heparan sulphate proteoglycans are increasingly implicated as eukaryotic cell surface receptors for bacterial pathogens. Here, we report that Neisseria gonorrhoeae adheres to proteoglycan receptors on HEp-2 epithelial cells but that internalization of the bacterium by this cell type requires the serum glycoprotein fibronectin. Fibronectin was shown to bind specifically to gonococci producing the OpaA adhesin. Binding assays with fibronectin fragments located the bacterial binding site near the N-terminal end of the molecule. However, none of the tested fibronectin fragments supported gonococcal entry into the eukaryotic cells; a 120 kDa fragment carrying the cell adhesion domain with the amino acid sequence RGD even inhibited the fibronectin-mediated uptake of MS11-OpaA. This inhibition could be mimicked by an RGD-containing hexapeptide and by alpha 5 beta 1 integrin-specific antibodies, suggesting that interaction of the central region of fibronectin with integrin receptors facilitated bacterial uptake. Fibronectin was unable to promote gonococcal entry into HEp-2 cells that had been treated with the enzyme heparinase III, which degrades the glycosaminoglycan side-chains of proteoglycan receptors. On the basis of these results, we propose a novel cellular uptake pathway for bacteria, which involves the binding of the pathogen to glycosaminoglycans that, in turn, act as co-receptors facilitating fibronectin-mediated bacterial uptake through integrin receptors. In this scenario, fibronectin would act as a molecular bridge linking to Opa-proteoglycan complex with host cell integrin receptors.
Collapse
Affiliation(s)
- J P van Putten
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | | | |
Collapse
|
19
|
Nassif X, Pujol C, Tinsley C, Morand P, Eugène E, Marceau M, Perrin A, Pron B, Taha MK. What do we know about the entry of s into the meninges? into the meninges? ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0020-2452(97)83530-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|