1
|
Teng J, Cui MY, Zhao Y, Chen HJ, Du WJ, Xue LY, Ji XS. Expression changes of non-specific cytotoxic cell receptor (NCCRP1) and proliferation and migration of NCCs post-Nocardia seriolae infection in Northern Snakehead. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104576. [PMID: 36240859 DOI: 10.1016/j.dci.2022.104576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Non-specific cytotoxic cells (NCCs) are essential to the cytotoxic cell-mediated immune response in teleost. The fish non-specific cytotoxic cell receptor protein 1 (NCCRP1) plays an important role as a membrane protein in the recognition of target cells and the activation of NCC. However, the roles of fish NCCs during pathogen infection require comprehensive studies. In this study, the coding sequence of northern snakehead (Channa argus) nccrp1 (Canccrp1) was cloned. Canccrp1 contains an open reading frame of 690 bp, encoding a peptide of 229 amino acids with a conserved F-box-associated domain (FBA) and proline-rich motifs (PRMs). Transcriptional expression analysis revealed that the constitutive expression of Canccrp1 was higher in the immune-related organs, such as liver, kidneys, and spleen. Moreover, mRNA and protein expression of Canccrp1 gradually increased in the spleen at 1-6 days post infection (dpi) with Nocardia seriolae, in addition to reaching peak expression in both the kidneys and liver at 2 dpi. A polyclonal antibody prepared against recombinant CaNCCRP1 effectively labeled NCCs in peripheral blood and different tissues. Then, immunofluorescence (IF) staining showed that the number of NCCs was significantly increased and showed a scattered distribution in the early stages of N. seriolae infection (2 and 4 dpi) before the forming of granulomas. At the late stages of N. seriolae infection (6 dpi), more NCCs migrated to preexisting granulomas, showing significant coaccumulation with N. seriolae. All these results clearly indicate the expression changes of CaNCCRP1, and the number and localization changes of NCCs post-N. seriolae infection, implying potential roles for fish NCCs in the antimicrobial infection process in fish.
Collapse
Affiliation(s)
- Jian Teng
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China
| | - Meng Yao Cui
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China
| | - Yan Zhao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China
| | - Hong Ju Chen
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China
| | - Wen Jing Du
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China
| | - Liang Yi Xue
- College of Marine Sciences, Ningbo University, Ningbo, China.
| | - Xiang Shan Ji
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, China.
| |
Collapse
|
2
|
Mohamed AM, Ashshi AM, Abou El-Ella GA, Basalamah MA, Alandiyjany MN, Alsaegh AA. Augmentation of DTH reaction of mycobacterial antigenic cocktail using synthetic mycobacterial 19-kDa lipoprotein as a TLR-stimulant. J Immunoassay Immunochem 2018; 40:159-182. [PMID: 30452306 DOI: 10.1080/15321819.2018.1543703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The current study proposed that previously characterized individual antigenic proteins could represent potential replacement for conventional purified protein derivative (PPD) in tuberculosis skin testing when used in cocktails triggered by suitable TLR-stimulants that would provide the missing pro-inflammatory stimulus. Three different cocktails of previously selected antigens, including C1 (ESAT-6/CPF-10/MPB-83); C2 (ESAT-6/MPB-64/MPB-83); and C3 (CPF-10/MPB-64/MPB-83), were evaluated in vitro using lymphocytic proliferation and IFN-γ production assays, as well as mRNA and protein expression levels of TNF-α, IL-12p40, and IL-2 as pro-inflammatory molecules. C1 showed the highest significant induction of pro-inflammatory molecules as compared to other cocktails, yet still significantly lower than that induced by conventional PPD. Interestingly, inclusion of the synthetic Mycobacterium tuberculosis 19-kDa lipoprotein (Pam3Cys-SSNKSTTGSGETTTA) as a TLR-stimulant resulted in obvious augmentation of C1-induced pro-inflammatory molecules to levels comparable to that of PPD. In addition, skin testing using sensitized guinea pig model revealed comparable significant reaction to that of conventional PPD. ESAT-6/CPF-10/MPB-83 cocktail is suggested as a potential alternative skin-testing reagent when used in combination with the M. tuberculosis 19-kDa lipoprotein as a TLR-stimulant.
Collapse
Affiliation(s)
- Amr M Mohamed
- a Laboratory Medicine, Faculty of Applied Medical Sciences , Umm Al-Qura University , Makkah , Saudi Arabia.,b Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine , Assiut University , Assiut , Egypt
| | - Ahmed M Ashshi
- a Laboratory Medicine, Faculty of Applied Medical Sciences , Umm Al-Qura University , Makkah , Saudi Arabia
| | - Ghada A Abou El-Ella
- a Laboratory Medicine, Faculty of Applied Medical Sciences , Umm Al-Qura University , Makkah , Saudi Arabia.,b Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine , Assiut University , Assiut , Egypt
| | - Mohamed A Basalamah
- c Molecular Pathology, Faculty of Medicine , Umm Al-Qura University , Makkah , Saudi Arabia
| | - Maher N Alandiyjany
- a Laboratory Medicine, Faculty of Applied Medical Sciences , Umm Al-Qura University , Makkah , Saudi Arabia
| | - Aiman A Alsaegh
- a Laboratory Medicine, Faculty of Applied Medical Sciences , Umm Al-Qura University , Makkah , Saudi Arabia
| |
Collapse
|
3
|
He L, Zhou X, Yin X, Tian L, Yang L, Fan K, Zhao D. Comparative study of the growth and survival of recombinant Mycobacterium smegmatis expressing Mce4A and Mce4E from Mycobacterium bovis. DNA Cell Biol 2014; 34:125-32. [PMID: 25536284 DOI: 10.1089/dna.2014.2487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cholesterol is important for the growth and persistence of Mycobacterium tuberculosis in macrophages. The mce4 locus, which is conserved in both M. tuberculosis and Mycobacterium bovis, is thought to be responsible for cholesterol transport into the bacteria. However, the exact roles of specific genes within the sophisticated mce4 system remain poorly understood. In this study, Mce4A and Mce4E of M. bovis, two proteins that are encoded by the mce4 locus, were expressed in Mycobacterium smegmatis. The recombinant strain expressing the Mce4E protein (M. smeg::E) performed better than that expressing the Mce4A protein (M. smeg::A) in a minimal medium with and without glycerol or cholesterol, which may be the reason why M. smeg::E showed better survival in ANA-1 macrophages than did M. smeg::A. Cytokine expression profiles were similar in macrophages infected with either recombinant strain. We also investigated the role of CD36 in recognizing Mce4A and Mce4E proteins. However, CD36 did not appear to be specific for these proteins and showed little impact on the ultimate clearance of the recombinant strains. Reduced interleukin-1β, inducible nitric oxide synthase, and tumor necrosis factor-alpha mRNA expression at 6 h postinfection in macrophages infected with M. smeg::E was observed using a CD36-specific monocular antibody to block the receptor, whereas no obvious changes in the expression of these cytokines were observed in cells infected with M. smeg::A with or without exposure to the CD36 antibody. Conclusively, the different performances of the recombinant strains suggest that the Mce4A and Mce4E proteins enhance mycobacterial adaptation to the harsh environment within macrophages after phagocytosis.
Collapse
Affiliation(s)
- Liu He
- 1 The State Key Lab of Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis Ministry of Agriculture, National TSE Lab, College of Veterinary Medicine, China Agricultural University , Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
4
|
Three-dimensional in vitro models of granuloma to study bacteria-host interactions, drug-susceptibility, and resuscitation of dormant mycobacteria. BIOMED RESEARCH INTERNATIONAL 2014; 2014:623856. [PMID: 24967387 PMCID: PMC4055484 DOI: 10.1155/2014/623856] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 04/16/2014] [Indexed: 12/02/2022]
Abstract
Mycobacterium tuberculosis, Mycobacterium leprae, Mycobacterium bovis, and Mycobacterium avium subsp. paratuberculosis can survive within host macrophages in a dormant state, encased within an organized aggregate of immune host cells called granuloma. Granulomas consist of uninfected macrophages, foamy macrophages, epithelioid cells, and T lymphocytes accumulated around infected macrophages. Within granulomas, activated macrophages can fuse to form multinucleated giant cells, also called giant Langhans cells. A rim of T lymphocytes surrounds the core, and a tight coat of fibroblast closes the structure. Several in vivo models have been used to study granuloma's structure and function, but recently developed in vitro models of granuloma show potential for closer observation of the early stages of host's responses to live mycobacteria. This paper reviews culture conditions that resulted in three-dimensional granulomas, formed by the adhesion of cell populations in peripheral blood mononuclear cells infected with mycobacteria. The similarities of these models to granulomas encountered in clinical specimens include cellular composition, granulomas' cytokine production, and cell surface antigens. A reliable in vitro dormancy model may serve as a useful platform to test whether drug candidates can kill dormant mycobacteria. Novel drugs that target dormancy-specific pathways may shorten the current long, difficult treatments necessary to cure mycobacterial diseases.
Collapse
|
5
|
Yin X, Zhou X, Xue Z, Tian L, Zhou Y, Yang L, Zhao D. Prokaryotic expression and functional analysis of the Mb1514 gene in Mycobacterium bovis. Mol Cell Biochem 2014; 385:43-52. [PMID: 24141863 DOI: 10.1007/s11010-013-1813-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 09/13/2013] [Indexed: 12/11/2022]
Abstract
The ability of mycobacteria to grow and invade target tissues is the key component in the process of Mycobacterium bovis infection. Therefore, analysis of the proteins responsible for cell invasion will assist clinicians in combating bovine tuberculosis. The Mb1514 gene of M. bovis encodes a hypothetical invasion protein (designated here as MbINV protein), whose function has not yet been directly identified. In this study, the Mb1514 gene from M. bovis was cloned, and expressed in E. coli. The recombinant MbINV protein (a single band of approximately 28 kDa) was purified for biological analysis. Our data demonstrated that recombinant MbINV protein significantly inhibited the viability of RAW264.7 macrophages in a dose-dependent manner (P < 0.05), and induced cell necrosis, indicating that the protein is toxic. MbINV protein infection significantly enhanced the mRNA expression levels of TNF-α, IL-1β, and NOS2 (P < 0.01), suggesting that MbINV protein may be one of the virulence factors which directly interact with macrophages and modulate the host immune response to M. bovis. An invasion inhibition assay showed that MbINV-inhibited M. bovis invasion of RAW264.7 cells in a concentration-dependant manner, demonstrating it is an invasion protein.
Collapse
Affiliation(s)
- Xiaomin Yin
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
6
|
Sharma M, Bose M, Abhimanyu, Sharma L, Diwakar A, Kumar S, Gaur SN, Banavalikar JN. Intracellular survival of Mycobacterium tuberculosis in macrophages is modulated by phenotype of the pathogen and immune status of the host. Int J Mycobacteriol 2012; 1:65-74. [DOI: 10.1016/j.ijmyco.2012.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022] Open
|
7
|
Harding JS, Schreiber HA, Sandor M. Granuloma transplantation: an approach to study mycobacterium-host interactions. Front Microbiol 2011; 2:245. [PMID: 22180751 PMCID: PMC3235768 DOI: 10.3389/fmicb.2011.00245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/23/2011] [Indexed: 11/13/2022] Open
Abstract
The host-pathogen biology during infection with Mycobacterium tuberculosis is incredibly complex and despite accelerating progress in research, remains poorly understood. Our limited understanding hinders the development of new drugs, next generation vaccines, and novel therapies. The granuloma is the site where mycobacteria are both controlled and allowed to persist, but it remains one of the least studied aspects of the host-pathogen relationship. Here, we review the development, application, potential uses, and limitations of a novel model of granuloma transplantation as a tool to study specific host-pathogen interactions that have been difficult to probe. Application of this new model has already contributed to our understanding of granuloma cell traffic, repopulation, and the relationship between systemic immunity and mycobacteria-containing granulomas. The data collected highlight the dynamic interaction between systemic and local immune processes and support a paradigm that defines the granuloma as a highly dynamic structure. Granuloma transplantation also has special potential as a novel latency model that can contribute to our understanding of host protection factors and bacterial mutants, and serve as a platform for drug testing.
Collapse
Affiliation(s)
- Jeffrey S Harding
- Laboratory Medicine, Department of Pathology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA
| | | | | |
Collapse
|
8
|
Shen H, Wang C, Yang E, Xu Y, Liu W, Yan J, Wang F, Wang H. Novel recombinant BCG coexpressing Ag85B, ESAT-6 and mouse TNF-α induces significantly enhanced cellular immune and antibody responses in C57BL/6 mice. Microbiol Immunol 2010; 54:435-41. [DOI: 10.1111/j.1348-0421.2010.00232.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Cavalcanti YVN, Pereira VRA, Reis LC, Ramos ALG, Luna CF, Nascimento EJM, Lucena-Silva N. Evaluation of memory immune response to mycobacterium extract among household contact of tuberculosis cases. J Clin Lab Anal 2009; 23:57-62. [PMID: 19140213 DOI: 10.1002/jcla.20290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The human immune response to tuberculosis (TB) is especially mediated by T CD4(+)lymphocytes. However, more studies are needed in order to understand the exact role of each cytokine in the mechanisms for cures. In this article, our aim was to analyze the production of TNF-alpha, IL-10, and IFN-gamma in peripheral blood mononuclear cells (PBMCs) among the household contacts of common primary TB cases, with or without histories of active TB infection, who were negative to parasitological and HIV tests. In order to characterize the cytokine production, PBMCs from these groups were stimulated with whole-protein extract of M. tuberculosis (WPE) antigen (rAgTb) for 24 and 48 hr. The culture supernatants were collected and IFN-gamma, TNF-alpha, and IL-10 were assayed using capture ELISA. There were no statistical differences between primary TB cases and their household contacts with or without previous histories of lung TB. Our results suggest that T memory cells, T regulatory cells, and the Th1/Th2 dichotomy may be responsible for the results described in this article. Further studies are currently underway.
Collapse
|
10
|
Xu G, Li Y, Yang J, Zhou X, Yin X, Liu M, Zhao D. Effect of recombinant Mce4A protein of Mycobacterium bovis on expression of TNF-alpha, iNOS, IL-6, and IL-12 in bovine alveolar macrophages. Mol Cell Biochem 2007; 302:1-7. [PMID: 17530193 DOI: 10.1007/s11010-006-9395-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 12/06/2006] [Indexed: 01/29/2023]
Abstract
The pathogenesis of tuberculosis-causing Mycobacterium bovis is largely due to its ability to enter and survive in alveolar macrophages. Its mechanism of entry, mediated by proteins encoded by mammalian cell entry (mce) genes, is important for its pathogenesis. Here we focussed on the role of the Mce4A protein in the pathogenesis of M. bovis in cattle. Cell livability decreased in a dosage-dependent manner when Mce4A proteins were used to stimulate alveolar macrophages, which suggested that the recombinant Mce4A protein significantly inhibited alveolar macrophage activity. To test whether Mce4A modulates the gene expression profile of alveolar macrophages, alveolar macrophages were stimulated by Mce4A protein and other proteins/ligands (such as MtbPPD, MbPPD, and BCG), followed by real-time RT-PCR assay for the mRNA expression level of TNF-alpha, iNOS, IL-6, and IL-12. The results showed that the expression of TNF-alpha, iNOS, and IL-6 in alveolar macrophages was up-regulated by stimulation with the recombinant Mce4A protein of M. bovis; in contrast, expression of IL-12 was unaffected. MbPPD and BCG up-regulated the mRNA expression of TNF-alpha, iNOS, IL-6, and IL-12 (P < 0.05), whereas MtbPPD stimulated the mRNA expression of TNF-alpha, IL-6, and IL-12 with no effect on iNOS. This study suggests that Mce4A proteins may induce the body's inflammation response to M. bovis and therefore may play an important role in the immune response.
Collapse
Affiliation(s)
- Guangxian Xu
- National Animal TSE Laboratory, College of Veterinary Medicine, China Agricultural University, Haidian District Yuanmingyuan Xi Lu 2, Beijing, 100094, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Yamamoto T, Lasco TM, Uchida K, Goto Y, Jeevan A, McFarland C, Ly L, Yamamoto S, McMurray DN. Mycobacterium bovis BCG vaccination modulates TNF-α production after pulmonary challenge with virulent Mycobacterium tuberculosis in guinea pigs. Tuberculosis (Edinb) 2007; 87:155-65. [PMID: 17289434 DOI: 10.1016/j.tube.2006.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 06/05/2006] [Accepted: 07/13/2006] [Indexed: 11/27/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) plays critical and opposing roles in the pathogenesis of tuberculosis (TB). We examined the effects of Mycobacterium bovis BCG vaccination on TNF-alpha production in three distinct guinea pig leukocyte populations before and after pulmonary infection with M. tuberculosis H37Rv. Following BCG vaccination alone, and following challenge, bronchoalveolar lavage cells (BALC), resident peritoneal cells (PC), and splenocytes (SPC) were stimulated with purified protein derivative (PPD). Before virulent challenge, BCG vaccination clearly enhanced the ability of BALC, PC and SPC to produce TNF-alpha in response to PPD stimulation ex vivo. Following challenge, the TNF-alpha production of all three leukocyte populations from BCG-vaccinated animals remained relatively constant at pre-challenged levels. In sharp contrast, 5 weeks post-challenge, all three leukocyte populations from unvaccinated animals produced very high amounts of TNF-alpha in response to PPD. Three weeks post-challenge, SPC from one of the unvaccinated animals produced higher levels of TNF-alpha but the others produced lower levels of TNF-alpha than BCG-vaccinated animals. As expected, BCG vaccination reduced the levels of virulent mycobacteria in both the lungs and spleens. Thus, BCG vaccination allows guinea pigs to modulate TNF-alpha levels in conjunction with a reduction in bacillary loads in their tissues.
Collapse
Affiliation(s)
- Toshiko Yamamoto
- Department of Microbial and Molecular Pathogenesis, The Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ryffel B, Fremond C, Jacobs M, Parida S, Botha T, Schnyder B, Quesniaux V. Innate immunity to mycobacterial infection in mice: Critical role for toll-like receptors. Tuberculosis (Edinb) 2005; 85:395-405. [PMID: 16257265 DOI: 10.1016/j.tube.2005.08.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Toll-like receptors (TLRs) play a critical role in the recognition of several pathogens, including Mycobacterium tuberculosis. Mycobacterial antigens recognize distinct TLRs resulting in rapid activation of cells of the innate immune system. Ablation of most of the TLR signalling as in mice deficient for the common adaptor protein MyD88 reveals that TLR is crucial for the activation of an innate immune response. MyD88-deficient mice are unable to clear virulent mycobacteria and succumb to acute necrotic pneumonia. Despite the profound defect of the innate immune response, MyD88 deficiency allows the emergence of an adaptive immunity. These data demonstrate that activation of multiple TLRs contributes to an efficient innate response to mycobacteria, while MyD88-dependent signalling is dispensable to generate adaptive immunity.
Collapse
|
13
|
Lasco TM, Cassone L, Kamohara H, Yoshimura T, McMurray DN. Evaluating the role of tumor necrosis factor-alpha in experimental pulmonary tuberculosis in the guinea pig. Tuberculosis (Edinb) 2005; 85:245-58. [PMID: 15958260 DOI: 10.1016/j.tube.2005.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2005] [Indexed: 11/19/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is suggested to play multiple roles in immune and pathologic responses in tuberculosis. In this study, we have developed a system for the expression of recombinant guinea pig TNF-alpha (rgpTNF-alpha). Using rgpTNF-alpha along with neutralizing anti-rgpTNF-alpha antiserum, we tested the effect of modulating the levels of TNF-alpha on antigen-specific T cell proliferation in splenocytes. By neutralizing TNF-alpha in the supernatant of PPD-pulsed splenocytes with anti-rgpTNF-alpha, we observed hyperproliferation. Conversely, the addition of rgpTNF-alpha resulted in a significant suppression of PPD-induced lymphoproliferation. In addition, when unvaccinated and BCG-vaccinated guinea pigs were treated with polyclonal rgpTNF-alpha antiserum throughout the first 3 weeks following low-dose, pulmonary infection with Mycobacterium tuberculosis H37Rv, we observed splenomegaly in BCG-vaccinated guinea pigs. We also detected higher levels of splenic granuloma organization in the non-vaccinated group as well as a significant number of plasma cells associated with granulomata from the BCG-vaccinated group. These results suggest that modulating the availability of TNF-alpha in BCG-vaccinated guinea pigs can lead to immuno-dysregulation and, perhaps, the inappropriate enhancement of humoral immunity. Conversely, abrogating TNF-alpha activity in the context of a hyperinflammatory response in non-vaccinated guinea pigs may, in fact, rescue them from immunopathological consequences of overproducing TNF-alpha.
Collapse
Affiliation(s)
- Todd M Lasco
- Department of Medical Microbiology and Immunology, The Texas A&M University System-Health Science Center, College Station, TX 77843-1114, USA.
| | | | | | | | | |
Collapse
|
14
|
Guler R, Olleros ML, Vesin D, Parapanov R, Garcia I. Differential effects of total and partial neutralization of tumor necrosis factor on cell-mediated immunity to Mycobacterium bovis BCG infection. Infect Immun 2005; 73:3668-76. [PMID: 15908396 PMCID: PMC1111814 DOI: 10.1128/iai.73.6.3668-3676.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of total and partial inhibition of tumor necrosis factor (TNF) on sensitivity to Mycobacterium bovis BCG infection were investigated by using transgenic mice in which hepatocytes produced different amounts of human soluble TNF receptor 1 (sTNFR1) fused to the Fc fragment of human immunoglobulin G3 that could be detected in the serum. Transgenic mice expressing high serum levels of sTNFR1, neutralizing all circulating TNF, failed to develop differentiated granulomas and bactericidal mechanisms, and they succumbed to BCG infection. sTNFR1 transgenic mice did not activate BCG-induced Th1-type cytokines early in infection, but uncontrolled cytokine release was found late in infection. In this work we also evaluated the effect of partial inhibition of TNF on resistance to BCG infection. Transgenic mice expressing low levels of sTNFR1 were protected against BCG infection, and they developed increased bactericidal mechanisms, such as enhanced inducible nitric oxide synthase activity, increased macrophage activation, and showed higher numbers of liver granulomas early in infection compared to their negative littermates. Our data suggest that while total inhibition of TNF prevented BCG-induced cell-mediated immune responses, partial inhibition of TNF could contribute to macrophage activation, induction of bactericidal mechanisms, and granuloma formation in the early phase of BCG infection.
Collapse
Affiliation(s)
- Reto Guler
- Department of Pathology and Immunology, C.M.U., 1 rue Michel-Servet, CH 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Cho H, Lasco TM, Allen SS, Yoshimura T, McMurray DN. Recombinant guinea pig tumor necrosis factor alpha stimulates the expression of interleukin-12 and the inhibition of Mycobacterium tuberculosis growth in macrophages. Infect Immun 2005; 73:1367-76. [PMID: 15731034 PMCID: PMC1064954 DOI: 10.1128/iai.73.3.1367-1376.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-alpha) plays an important role in the host immune response to infection with the intracellular pathogen Mycobacterium tuberculosis. It is essential for the formation of protective tuberculous granulomas and regulates the expression of other cytokines which contribute to a protective immune response. Interleukin-12 (IL-12) is known to promote a Th1 response, which is essential for antimycobacterial resistance. Recombinant guinea pig TNF-alpha (rgpTNF-alpha) protein (17 kDa) was purified, and its bioactivity was confirmed by its cytotoxicity for L929 fibroblasts. High titers of polyclonal anti-gpTNF-alpha antibody were obtained by immunization of rabbits. Resident alveolar and peritoneal macrophages were isolated from guinea pigs and infected with either the H37Ra or H37Rv strain of M. tuberculosis. The mRNA levels for TNF-alpha and IL-12 p40 were measured using real-time PCR. IL-12 p40 mRNA was up-regulated in a dose-dependent manner by rgpTNF-alpha alone. In infected macrophages, a lower dose of rgpTNF-alpha intensified the mRNA levels of TNF-alpha and IL-12 p40. However, higher doses of rgpTNF-alpha suppressed TNF-alpha and IL-12 p40 mRNA. The antimycobacterial activity of macrophages was assessed by metabolic labeling of M. tuberculosis with [3H]uracil. Resident alveolar and peritoneal macrophages treated with anti-gpTNF-alpha antibody to block endogenous TNF-alpha exhibited increased intracellular mycobacterial growth. These data suggest that the dose of TNF-alpha is crucial to the stimulation of optimal expression of protective cytokines and that TNF-alpha contributes to the control of mycobacterial replication to promote host resistance against M. tuberculosis.
Collapse
Affiliation(s)
- Hyosun Cho
- Department of Medical Microbiology and Immunology, The Texas A&M University System Health Science Center, 407 Reynolds Medical Building, College Station, TX 77843-1114, USA.
| | | | | | | | | |
Collapse
|
16
|
Quesniaux V, Fremond C, Jacobs M, Parida S, Nicolle D, Yeremeev V, Bihl F, Erard F, Botha T, Drennan M, Soler MN, Le Bert M, Schnyder B, Ryffel B. Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect 2004; 6:946-59. [PMID: 15310472 DOI: 10.1016/j.micinf.2004.04.016] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The control of Mycobacterium tuberculosis infection depends on recognition of the pathogen and the activation of both the innate and adaptive immune responses. Toll-like receptors (TLR) were shown to play a critical role in the recognition of several pathogens. Mycobacterial antigens recognise distinct TLR resulting in rapid activation of cells of the innate immune system. Recent evidence from in vitro and in vivo investigations, summarised in this review demonstrates TLR-dependent activation of innate immune response, while the induction of adaptive immunity to mycobacteria may be TLR independent.
Collapse
Affiliation(s)
- Valerie Quesniaux
- CNRS, IEM2815, Institut Transgenose, 3B, rue de la Ferollerie, 45071 Orleans, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Monack DM, Mueller A, Falkow S. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2004; 2:747-65. [PMID: 15372085 DOI: 10.1038/nrmicro955] [Citation(s) in RCA: 383] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Persistent bacterial infections involving Mycobacterium tuberculosis, Salmonella enterica serovar Typhi (S. typhi) and Helicobacter pylori pose significant public-health problems. Multidrug-resistant strains of M. tuberculosis and S. typhi are on the increase, and M. tuberculosis and S. typhi infections are often associated with HIV infection. This review discusses the strategies used by these bacteria during persistent infections that allow them to colonize specific sites in the host and evade immune surveillance. The nature of the host immune response to this type of infection and the balance between clearance of the pathogen and avoidance of damage to host tissues are also discussed.
Collapse
Affiliation(s)
- Denise M Monack
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
18
|
Puissegur MP, Botanch C, Duteyrat JL, Delsol G, Caratero C, Altare F. An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell Microbiol 2004; 6:423-33. [PMID: 15056213 DOI: 10.1111/j.1462-5822.2004.00371.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the majority of individuals infected with Mycobacterium tuberculosis, the bacilli cause a long-term asymptomatic infection called latent tuberculosis, a state during which the bacilli reside within granulomas. Latently infected individuals have around 10% risk of progression to clinical disease at a later stage. Determining the state of the mycobacteria and the host cells during this latent phase, i.e. within the granulomas, would greatly improve our understanding of the physiopathology of tuberculosis, and thus enable the development of new therapeutic means to treat the one-third of the world's population who are latently infected. We have developed an in vitro model of human mycobacterial granulomas, enabling the cellular and molecular analysis of the very first steps in the host granulomatous response to either mycobacterial compounds or live mycobacterial species. In vitro mycobacterial granulomas mimic natural granulomas very well, with the progressive recruitment of macrophages around live bacilli or mycobacterial antigen-coated beads, their differentiation into multinucleated giant cells and epithelioid cells, and the final recruitment of a ring of activated lymphocytes. Besides morphological similarities, in vitro granulomas also functionally resemble natural ones, with the development of intense cellular co-operation and intracellular mycobactericidal activities.
Collapse
Affiliation(s)
- Marie-Pierre Puissegur
- Department of Molecular Mechanisms of Mycobacterial Infections, Institut de Pharmacologie et de Biologie Structurale, CNRS UMR5089, 205, route de Narbonne, 31077 Toulouse, France
| | | | | | | | | | | |
Collapse
|
19
|
Cosma CL, Humbert O, Ramakrishnan L. Superinfecting mycobacteria home to established tuberculous granulomas. Nat Immunol 2004; 5:828-35. [PMID: 15220915 DOI: 10.1038/ni1091] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 05/17/2004] [Indexed: 11/08/2022]
Abstract
A central paradox of tuberculosis immunity is that reinfection and bacterial persistence occur despite vigorous host immune responses concentrated in granulomas, which are organized structures that form in response to infection. Prevailing models attribute reinfection and persistence to bacterial avoidance of host immunity via establishment of infection outside primary granulomas. Alternatively, persistence is attributed to a gradual bacterial adaptation to evolving host immune responses. We show here that superinfecting Mycobacterium marinum traffic rapidly into preexisting granulomas, including their caseous (necrotic) centers, through specific mycobacterium-directed and host cell-mediated processes, yet adapt quickly to persist long term therein. These findings demonstrate a failure of established granulomas, concentrated foci of activated macrophages and antigen-specific immune effector cells, to eradicate newly deposited mycobacteria not previously exposed to host responses.
Collapse
Affiliation(s)
- Christine L Cosma
- Department of Microbiology, University of Washington School of Medicine, Box 357242, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
20
|
Abstract
Pathogenic mycobacteria, including the causative agents of tuberculosis and leprosy, are responsible for considerable morbidity and mortality worldwide. A hallmark of these pathogens is their tendency to establish chronic infections that produce similar pathologies in a variety of hosts. During infection, mycobacteria reside in macrophages and induce the formation of granulomas, organized immune complexes of differentiated macrophages, lymphocytes, and other cells. This review summarizes our understanding of Mycobacterium-host cell interactions, the bacterial-granuloma interface, and mechanisms of bacterial virulence and persistence. In addition, we highlight current controversies and unanswered questions in these areas.
Collapse
Affiliation(s)
- Christine L Cosma
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
21
|
Fuller CL, Flynn JL, Reinhart TA. In situ study of abundant expression of proinflammatory chemokines and cytokines in pulmonary granulomas that develop in cynomolgus macaques experimentally infected with Mycobacterium tuberculosis. Infect Immun 2003; 71:7023-34. [PMID: 14638792 PMCID: PMC308896 DOI: 10.1128/iai.71.12.7023-7034.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2003] [Revised: 06/17/2003] [Accepted: 08/20/2003] [Indexed: 01/24/2023] Open
Abstract
Tuberculosis remains a major public health problem worldwide. Chemokines and cytokines organize and direct infiltrating cells to sites of infection, and these molecules likely play crucial roles in granuloma formation and maintenance. To address this issue, we used in situ hybridization (ISH) to measure chemokine and cytokine mRNA expression levels and patterns directly in lung tissues from cynomolgus macaques (Macaca fascicularis) experimentally infected with a low dose of virulent Mycobacterium tuberculosis. We examined more than 300 granulomas and observed abundant expression of gamma interferon (IFN-gamma)-inducible chemokine mRNAs (CXCL9/monokine induced by IFN-gamma, CXCL10/IFN-gamma-inducible protein, and CXCL11/IFN-gamma-inducible T-cell alpha-chemoattractant) within solid and caseous granulomas, and there was only minimal expression in nongranulomatous regions of tissue. The mRNA expression patterns of IFN-gamma and tumor necrosis factor alpha were examined in parallel, and the results revealed that cytokine mRNA(+) cells were abundant and generally localized to the granulomas. Mycobacterial 16S rRNA expression was also measured by ISH, and the results revealed that there was localization predominantly to the granulomas and that the highest signal intensity was in caseous granulomas. We observed several granulomatous lesions with exceptionally high levels of RNA for mycobacterial 16S rRNA, IFN-gamma, and IFN-gamma-inducible chemokines, suggesting that the local presence of mycobacteria is partially responsible for the upregulation of IFN-gamma-inducible chemokines and recruitment of CXCR3(+) cells, which were also abundant in granulomatous lesions. These results suggest that expression of CXCR3 ligands and the subsequent recruitment of CXCR3(+) cells are involved in granuloma formation and maintenance.
Collapse
MESH Headings
- Animals
- Cytokines/biosynthesis
- Cytokines/genetics
- DNA, Ribosomal/analysis
- Granuloma, Respiratory Tract/immunology
- Granuloma, Respiratory Tract/microbiology
- Humans
- In Situ Hybridization
- Inflammation
- Interferon-gamma/biosynthesis
- Lung/immunology
- Lung/microbiology
- Lung/pathology
- Macaca fascicularis
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- RNA, Messenger/biosynthesis
- RNA, Ribosomal, 16S/genetics
- Receptors, CXCR3
- Receptors, Chemokine/metabolism
- Sequence Analysis, DNA
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Craig L Fuller
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
22
|
Abstract
In view of the increasing use of anti-cytokine-based therapies to treat autoimmune diseases, the role of specific cytokines in host defense against infection has become a highly relevant area of investigation. There are over 300,000 patients worldwide being treated with agents that specifically block the biological activities of interleukin-1 (IL-1) or tumor necrosis factor (TNF) for reducing the severity of autoimmune diseases such as rheumatoid arthritis, Crohn's disease or psoriasis. Those patients receiving anti-TNF-alpha or IL-1 blocking therapies are treated on a chronic basis. Studies suggest that other chronic inflammatory diseases will benefit from anti-cytokine therapies. However, there is a growing body of clinical evidence that neutralization of TNF-alpha is associated with an increased risk of opportunistic infections, including mycobacterial diseases. Blockade of IL-1 activity with the IL-1 receptor antagonist (IL-1Ra) appears, at present, to be relatively safe. However, because of physician under reporting (some estimates of reporting being less than 5% of these infections), the true incidence of infections, both serious and non-serious, will remain unknown. Does the increase in infections associated with anti-cytokine-based therapies come as a surprise? Of the two components of host defense, the innate and the acquired responses, which are affected by anti-cytokine therapies? From a wealth of rodent studies using live infection models, the following conclusions can be drawn: (1) neutralization or gene deletion for TNF-alpha is frequently associated with reduction of host defense in models of live Gram-positive or Gram-negative infections as well as infection by intracellular microbes such as Salmonella and Listeria; (2) absence of the IL-1 receptor can also result in decreased resistance to Listeria or Gram-positive bacteria and (3) TNF-alpha and IFN-gamma are required for defense against infection caused by Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Charles A Dinarello
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| |
Collapse
|
23
|
Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 2002; 17:693-702. [PMID: 12479816 DOI: 10.1016/s1074-7613(02)00475-2] [Citation(s) in RCA: 397] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Infection of vertebrate hosts with pathogenic Mycobacteria, the agents of tuberculosis, produces granulomas, highly organized structures containing differentiated macrophages and lymphocytes, that sequester the pathogen. Adult zebrafish are naturally susceptible to tuberculosis caused by Mycobacterium marinum. Here, we exploit the optical transparency of zebrafish embryos to image the events of M. marinum infection in vivo. Despite the fact that the embryos do not yet have lymphocytes, infection leads to the formation of macrophage aggregates with pathological hallmarks of granulomas and activation of previously identified granuloma-specific Mycobacterium genes. Thus, Mycobacterium-macrophage interactions can initiate granuloma formation solely in the context of innate immunity. Strikingly, infection can redirect normal embryonic macrophage migration, even recruiting macrophages seemingly committed to their developmentally dictated tissue sites.
Collapse
Affiliation(s)
- J Muse Davis
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
24
|
Wedlock DN, Skinner MA, de Lisle GW, Buddle BM. Control of Mycobacterium bovis infections and the risk to human populations. Microbes Infect 2002; 4:471-80. [PMID: 11932198 DOI: 10.1016/s1286-4579(02)01562-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conventional control methods based on test-and-slaughter policies have, in several countries, led to the successful eradication of bovine tuberculosis in cattle. However, new approaches for control of bovine tuberculosis are required in developing countries and those with a wildlife reservoir of infection. Recent developments include improved diagnostics and evaluation of new vaccination strategies.
Collapse
Affiliation(s)
- D Neil Wedlock
- AgResearch Limited, Wallaceville Animal Research Centre, P.O. Box 40063, Upper Hutt, New Zealand.
| | | | | | | |
Collapse
|
25
|
Prete SP, Giuliani A, Iona E, Fattorini L, Orefici G, Franzese O, Bonmassar E, Graziani G. Bacillus Calmette-Guerin down-regulates CD1b induction by granulocyte-macrophage colony stimulating factor in human peripheral blood monocytes. J Chemother 2001; 13:52-8. [PMID: 11233801 DOI: 10.1179/joc.2001.13.1.52] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Non-peptide antigens (e.g. glycolipids of microbial origin) presented by monocyte-associated CD1 molecules to T cells appear to play an important role in host immunity against tuberculosis and other pathogenic bacteria. Since vaccination with Bacillus Calmette-Guerin (BCG) has limited efficacy, the influence of viable BCG organisms on the induction of CD1b antigen by granulocyte macrophage-colony stimulating factor (GM-CSF) has been tested in adherent mononuclear cells obtained from peripheral blood of healthy donors. The results indicate that the vaccine reduces substantially CD1b induction by GM-CSF. On the other hand, BCG was found to promote a slight increase in the expression of this molecule on target cells not exposed to GM-CSF. Attempts to reverse the antagonistic effects of BCG on GM-CSF with high concentrations of GM-CSF, alone, or associated with IL-4, were unsuccessful. Moreover, mycobacteria suppression by 10 microg/ml of rifampin, did not affect BCG influence on CD1b induction. The present results suggest that mycobacterium-induced impairment of the CD1 system could play a role in the unsatisfactory results obtained with BCG vaccination.
Collapse
Affiliation(s)
- S P Prete
- Department of Neuroscience, University of Rome Tor Vergata, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bekker LG, Moreira AL, Bergtold A, Freeman S, Ryffel B, Kaplan G. Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect Immun 2000; 68:6954-61. [PMID: 11083819 PMCID: PMC97804 DOI: 10.1128/iai.68.12.6954-6961.2000] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In experimental mycobacterial infection, tumor necrosis factor alpha (TNF-alpha) is required for control of bacillary growth and the protective granulomatous response, but may cause immunopathology. To directly examine the positive and detrimental effects of this cytokine, a murine model was used in which different amounts of TNF-alpha were delivered to the site of infection. Mice with a disruption in the TNF-alpha gene (TNF-KO) or wild-type mice were infected with low or high doses of recombinant Mycobacterium bovis BCG that secreted murine TNF-alpha (BCG-TNF). Infection of TNF-KO mice with BCG containing the vector (BCG-vector) at a low dose led to increased bacillary load in all organs and an extensive granulomatous response in the lungs and spleen. The mice succumbed to the infection by approximately 40 days. However, when TNF-KO mice were infected with low doses of BCG-TNF, bacillary growth was controlled, granulomas were small and well differentiated, the spleen was not enlarged, and the mice survived. Infection with high inocula of BCG-TNF resulted in bacterial clearance, but was accompanied by severe inflammation in the lungs and spleen and earlier death compared to the results from the mice infected with high inocula of BCG-vector. Wild-type mice controlled infection with either recombinant strain, but showed decreased survival following high-dose BCG-TNF infection. The effects of TNF-alpha required signaling through an intact receptor, since the differential effects were not observed when TNF-alpha receptor-deficient mice were infected. The results suggest that the relative amount of TNF-alpha at the site of infection determines whether the cytokine is protective or destructive.
Collapse
Affiliation(s)
- L G Bekker
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
27
|
Briscoe H, Roach DR, Meadows N, Rathjen D, Britton WJ. A novel tumor necrosis factor (TNF) mimetic peptide prevents recrudescence of
Mycobacterium bovis
bacillus Calmette‐Guerin (BCG) infection in CD4
+
T cell‐depleted mice. J Leukoc Biol 2000. [DOI: 10.1189/jlb.68.4.538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Helen Briscoe
- Department of Medicine, University of Sydney, NSW 2006, Australia
- Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag No. 6, Newtown, NSW 2042, Australia; and
| | - Daniel R. Roach
- Department of Medicine, University of Sydney, NSW 2006, Australia
- Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag No. 6, Newtown, NSW 2042, Australia; and
| | - Natalie Meadows
- Department of Medicine, University of Sydney, NSW 2006, Australia
| | | | - Warwick J. Britton
- Department of Medicine, University of Sydney, NSW 2006, Australia
- Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag No. 6, Newtown, NSW 2042, Australia; and
| |
Collapse
|
28
|
Abstract
The generation of prolonged immunity to Mycobacterium tuberculosis requires not only an antigen-specific IFN-gamma-producing T cell response, including both CD4 and CD8 T cells, but also the generation of protective granulomatous lesions, whereby the close apposition of activated T cells and macrophages acts to contain bacterial growth. The importance of the granulomatous lesion in controlling this immune response and in limiting both tissue damage and bacterial dissemination has been considered a secondary event but, as the present review illustrates, is no less important in surviving mycobacterial infection than an antigen-specific T-cell response. The formation of a protective granuloma involves the orchestrated production of a host of chemokines and cytokines, the upregulation of their receptors along with upregulation of addressins, selectins and integrins to coordinate the recruitment, migration and retention of cells to and within the granuloma. In the present review, the principal components of the protective response are outlined and the role of granuloma formation and maintenance in mediating prolonged containment of mycobacteria within the lung is addressed.
Collapse
Affiliation(s)
- B M Saunders
- Mycobacterial Research Laboratory, Centenary Institute for Cancer Medicine and Cell Biology, Newtown, New South Wales, Australia.
| | | |
Collapse
|