1
|
McAvoy AC, Threatt PH, Kapcia J, Garg N. Discovery of Homogentisic Acid as a Precursor in Trimethoprim Metabolism and Natural Product Biosynthesis. ACS Chem Biol 2022; 18:711-723. [PMID: 36215670 DOI: 10.1021/acschembio.2c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Opportunistic infections by Burkholderia cenocepacia are life threatening for patients suffering from cystic fibrosis and chronic granulomatous disease. These infections are often associated with variable clinical outcomes, prompting an interest in molecular investigations of phenotypes associated with disease severity. The production of the pyomelanin pigment is one such phenotype, which was recently linked to the ability of clinical strains to carry out biotransformation of the antibiotic trimethoprim. However, this biotransformation product was not identified, and differences in metabolite production associated with pyomelanin pigmentation are poorly understood. Here, we identify several key metabolites produced exclusively by the pyomelanin-producing strains. To provide insight into the structures and biosynthetic origin of these metabolites, we developed a mass spectrometry-based strategy coupling unsupervised in silico substructure prediction with stable isotope labeling referred to as MAS-SILAC (Metabolite Annotation assisted by Substructure discovery and Stable Isotope Labeling by Amino acids in Cell culture). This approach led to discovery of homogentisic acid as a precursor for biosynthesis of several natural products and for biotransformation of trimethoprim, representing a previously unknown mechanism of antibiotic tolerance. This work presents application of computational methods for analysis of untargeted metabolomic data to link the chemotype of pathogenic microorganisms with a specific phenotype. The observations made in this study provide insights into the clinical significance of the melanated phenotype.
Collapse
Affiliation(s)
- Andrew C McAvoy
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Paxton H Threatt
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Joseph Kapcia
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, California 92697-2525, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, ES&T, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Pleiotropic Effects of Hfq on the Cytochrome c Content and Pyomelanin Production in Shewanella oneidensis. Appl Environ Microbiol 2022; 88:e0128922. [PMID: 36073941 PMCID: PMC9499022 DOI: 10.1128/aem.01289-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis is the best understood model microorganism for the study of diverse cytochromes (cytos) c that support its unparallel respiratory versatility. Although RNA chaperone Hfq has been implicated in regulation of cyto c production, little is known about the biological pathways that it affects in this bacterium. In this study, from a spontaneous mutant that secretes pyomelanin and has a lowered cyto c content, we identified Hfq to be the regulator that critically associates with both phenotypes in S. oneidensis. We found that expression of the key genes in biosynthesis and degradation of heme is differentially affected by Hfq at under- and overproduced levels, and through modulating heme levels, Hfq influences the cyto c content. Although Hfq in excess results in overproduction of the enzymes responsible for both generation and removal of homogentisic acid (HGA), the precursor of pyomelanin, it is compromised activity of HmgA that leads to excretion and polymerization of HGA to form pyomelanin. We further show that Hfq mediates HmgA activity by lowering intracellular iron content because HmgA is an iron-dependent enzyme. Overall, our work highlights the significance of Hfq-mediated posttranscriptional regulation in the physiology of S. oneidensis, unraveling unexpected mechanisms by which Hfq affects cyto c biosynthesis and pyomelanin production. IMPORTANCE In bacteria, Hfq has been implicated in regulation of diverse biological processes posttranslationally. In S. oneidensis, Hfq affects the content of cytos c that serve as the basis of its respiratory versatility and potential application in bioenergy and bioremediation. In this study, we found that Hfq differentially regulates heme biosynthesis and degradation, leading to altered cyto c contents. Hfq in excess causes a synthetic effect on HmgA, an enzyme responsible for pyomelanin formation. Overall, the data presented manifest that the biological processes in a given bacterium regulated by Hfq are highly complex, amounting to required coordination among multiple physiological aspects to allow cells to respond to environmental changes promptly.
Collapse
|
3
|
Gong X, Zhao G, Shan W, Guo H, Wang C, Liu Q, Xu B, Wang Y, Guo X. Identification and antioxidant capacity of 4-hydroxyphenylpyruvate dioxygenase (HPPD), a new favored herbicide target, in Apis cerana cerana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105110. [PMID: 35715049 DOI: 10.1016/j.pestbp.2022.105110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD), a nonheme oxygenase, catalyzes the second step of the tyrosine catabolic pathway, which is shared by almost all aerobic life forms. This demonstrates its importance in aerobic biology. We isolated an HPPD homolog from Apis cerana cerana and named it AccHPPD. AccHPPD has an open reading frame (ORF) length of 900 bp and encodes a 299 amino acid protein that has a predicted molecular weight of 34.67 kDa and an isoelectric point of 6.27. Amino acid analysis showed that AccHPPD contained three conserved metal ion active sites, H-101, H-184 and E-267. Real-time fluorescence quantitative PCR (RT-qPCR) analysis showed that AccHPPD mainly existed in specific tissue sites, mainly high in the legs and in the thorax and epidermis, and in specific developmental stages, mainly adults. Under temperature, pesticide, heavy metal and ultraviolet (UV) radiation treatments, the expression level was downregulated, but under H2O2 treatment, the expression level was upregulated. Exogenous expression of the recombinant AccHPPD plasmid in E. coli enhanced the resistance to HgCl2 and H2O2. Inhibition of AccHPPD activity was demonstrated by the upregulation of the tyrosine content after feeding with the inhibitor 2-(2-nitro-4-trifluoromethyl benzoyl)-1,3-cyclohexanedione (NTBC). After silencing of AccHPPD, the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) decreased, and the expression levels of AccBax- and AccCaspase8-related genes were upregulated. The antioxidant genes AccCAT, AccGSTZ1, AccGSTD, AccSOD2, AccTpx3, AccCYP4G11, AccGDTS4, AccGSTO2 and AccMSRA were all upregulated. These results suggest that AccHPPD may serve an integral function in the response of A. cerana cerana to oxidative stress.
Collapse
Affiliation(s)
- Xiangwei Gong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Wenlu Shan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Huijuan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
4
|
Lorquin F, Piccerelle P, Orneto C, Robin M, Lorquin J. New insights and advances on pyomelanin production: from microbial synthesis to applications. J Ind Microbiol Biotechnol 2022; 49:6575554. [PMID: 35482661 PMCID: PMC9338888 DOI: 10.1093/jimb/kuac013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/21/2022] [Indexed: 11/14/2022]
Abstract
Pyomelanin is a brown-black phenolic polymer and results from the oxidation of homogentisic acid (HGA) in the L-tyrosine pathway. As part of the research for natural and active ingredients issued from realistic bioprocesses, this work re-evaluates the HGA pigment and makes an updated inventory of its syntheses, microbial pathways, and properties, with tracks and recent advances for its large-scale production. The mechanism of the HGA polymerization is also well documented. In alkaptonuria, pyomelanin formation leads to connective tissue damages and arthritis, most probably due to the ROS issued from HGA oxidation. While UV radiation on human melanin may generate degradation products, pyomelanin is not photodegradable, is hyperthermostable, and has other properties better than the L-Dopa melanin. This review aims to raise awareness about the potential of this pigment for various applications, not only for skin coloring and protection but also for other cells, materials, and as a promising (semi)conductor for bioelectronics and energy.
Collapse
Affiliation(s)
- Faustine Lorquin
- Aix-Marseille Université, Mediterranean Institute of Oceanology (MIO), 163 avenue de Luminy, 13288 Marseille Cedex 9, France.,Aix-Marseille Université, Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Philippe Piccerelle
- Aix-Marseille Université, Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Caroline Orneto
- Aix-Marseille Université, Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Maxime Robin
- Aix-Marseille Université, Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Jean Lorquin
- Aix-Marseille Université, Mediterranean Institute of Oceanology (MIO), 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
5
|
Natural Melanin: Current Trends, and Future Approaches, with Especial Reference to Microbial Source. Polymers (Basel) 2022; 14:polym14071339. [PMID: 35406213 PMCID: PMC9002885 DOI: 10.3390/polym14071339] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Melanin is a universal natural dark polymeric pigment, arising in microorganisms, animals, and plants. There is a couple of pieces of literature on melanin, each focusing on a different issue, the goal of the present review is to focus on microbial melanin. It has numerous benefits with very few drawbacks. The current situation and expected trends are discussed. Intriguing, numerous studies have provoked a serious necessity for a comprehensive assessment of microbial melanin pigments. So that, such review would help scholars from diverse backgrounds to realize the importance of melanin pigments isolated from microorganisms, with this aim in mind, information, and hypothesis from this review could be the paradigm for studies on melanin in the next era.
Collapse
|
6
|
Hiramatsu Y, Nishida T, Nugraha DK, Sugihara F, Horiguchi Y. Melanin Produced by Bordetella parapertussis Confers a Survival Advantage to the Bacterium during Host Infection. mSphere 2021; 6:e0081921. [PMID: 34643424 PMCID: PMC8513678 DOI: 10.1128/msphere.00819-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Bordetella parapertussis causes respiratory infection in humans, with a mild pertussis (whooping cough)-like disease. The organism produces a brown pigment, the nature and biological significance of which have not been elucidated. Here, by screening a transposon library, we demonstrate that the gene encoding 4-hydroxyphenylpyruvate dioxygenase (HppD) is responsible for production of this pigment. Our results also indicate that the brown pigment produced by the bacterium is melanin, because HppD is involved in the biosynthesis of a type of melanin called pyomelanin, and homogentisic acid, the monomeric precursor of pyomelanin, was detected by high-performance liquid chromatography-mass spectrometry analyses. In an infection assay using macrophages, the hppD-deficient mutant was internalized by THP-1 macrophage-like cells, similar to the wild-type strain, but was less able to survive within the cells, indicating that melanin protects B. parapertussis from intracellular killing in macrophages. Mouse infection experiments also showed that the hppD-deficient mutant was eliminated from the respiratory tract more rapidly than the wild-type strain, although the initial colonization levels were comparable between the two strains. In addition, melanin production by B. parapertussis was not regulated by the BvgAS two-component system, which is the master regulator for the expression of genes contributing to the bacterial infection. Taken together, our findings indicate that melanin produced by B. parapertussis in a BvgAS-independent manner confers a survival advantage to the bacterium during host infection. IMPORTANCE In addition to the Gram-negative bacterium Bordetella pertussis, the etiological agent of pertussis, Bordetella parapertussis also causes respiratory infection in humans, with a mild pertussis-like disease. These bacteria are genetically closely related and share many virulence factors, including adhesins and toxins. However, B. parapertussis is clearly distinguished from B. pertussis by its brown pigment production, the bacteriological significance of which remains unclear. Here, we demonstrate that this pigment is melanin, which is known to be produced by a wide range of organisms from prokaryotes to humans and helps the organisms to survive under various environmental stress conditions. Our results show that melanin confers a survival advantage to B. parapertussis within human macrophages through its protective effect against reactive oxygen species and eventually contributes to respiratory infection of the bacterium in mice. This study proposes melanin as a virulence factor involved in the increased survival of B. parapertussis during host infection.
Collapse
Affiliation(s)
- Yukihiro Hiramatsu
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Takashi Nishida
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Dendi Krisna Nugraha
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Fuminori Sugihara
- Central Instrumentation Laboratory, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Antagonistic Roles of Gallates and Ascorbic Acid in Pyomelanin Biosynthesis of Pseudomonas aeruginosa Biofilms. Curr Microbiol 2021; 78:3843-3852. [PMID: 34554299 DOI: 10.1007/s00284-021-02655-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Primarily synthesized for chelating metal ions from the surrounding media, the pyomelanin plays an important role in bacterial virulence where it is needed for infection and biofilm formation as well as protection from host immune response. In this study, two out of three phenolic acids, gallic acid, and propyl gallate induced pyomelanin in two clinical isolates of Pseudomonas aeruginosa and inhibited biofilm formation. Ascorbic acid treatment reversed the gallic acid and propyl gallate mediated pyomelanin synthesis without reversing the inhibition of the biofilm formation. mRNA expression study revealed the upregulation of homogentisic acid oxidase enzyme by ascorbic acid treatment, possibly contributing towards the inhibition of pyomelanin synthesis. Tannic acid did not show any antibacterial or pyomelanin-induction activities. The synergistic effect of gallates and ascorbic acid in the inhibition of biofilm formation and associated pyomelanin synthesis was evidenced which needs further studies to establish their antibacterial efficacies, especially against the clinical isolates of Pseudomonas sp.
Collapse
|
8
|
An investigation of Burkholderia cepacia complex methylomes via SMRT sequencing and mutant analysis. J Bacteriol 2021; 203:e0068320. [PMID: 33753468 DOI: 10.1128/jb.00683-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacterial genomes can be methylated at particular motifs by methyltransferases (M). This DNA modification allows restriction endonucleases (R) to discriminate between self and foreign DNA. While the accepted primary function of such restriction modification (RM) systems is to degrade incoming foreign DNA, other roles of RM systems and lone R or M components have been found in genome protection, stability and the regulation of various phenotypes. The Burkholderia cepacia complex (Bcc) is a group of closely related opportunistic pathogens with biotechnological potential. Here, we constructed and analysed mutants lacking various RM components in the clinical Bcc isolate Burkholderia cenocepacia H111 and used SMRT sequencing of single mutants to assign the B. cenocepacia H111 Ms to their cognate motifs. DNA methylation is shown to affect biofilm formation, cell shape, motility, siderophore production and membrane vesicle production. Moreover, DNA methylation had a large effect on the maintenance of the Bcc virulence megaplasmid pC3. Our data also suggest that the gp51 M-encoding gene, which is essential in H111 and is located within a prophage, is required for maintaining the bacteriophage in a lysogenic state, thereby ensuring a constant, low level of phage production within the bacterial population.ImportanceWhile genome sequence determines an organism's proteins, methylation of the nucleotides themselves can confer additional properties. In bacteria, Ms modify specific nucleotide motifs to allow discrimination of 'self' from 'non-self' DNA, e.g. from bacteriophages. Restriction enzymes detect 'non-self' methylation patterns and cut foreign DNA. Furthermore, methylation of promoter regions can influence gene expression and hence affect various phenotypes. In this study, we determined the methylated motifs of four strains from the Burkholderia cepacia complex of opportunistic pathogens. We deleted all genes encoding the restriction and modification components in one of these strains, Burkholderia cenocepacia H111. It is shown that DNA methylation affects various phenotypic traits, the most noteworthy being lysogenicity of a bacteriophage and maintenance of a virulence megaplasmid.
Collapse
|
9
|
Tran T, Dawrs SN, Norton GJ, Virdi R, Honda JR. Brought to you courtesy of the red, white, and blue-pigments of nontuberculous mycobacteria. AIMS Microbiol 2020; 6:434-450. [PMID: 33364537 PMCID: PMC7755587 DOI: 10.3934/microbiol.2020026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Pigments are chromophores naturally synthesized by animals, plants, and microorganisms, as well as produced synthetically for a wide variety of industries such as food, pharmaceuticals, and textiles. Bacteria produce various pigments including melanin, pyocyanin, bacteriochlorophyll, violacein, prodigiosin, and carotenoids that exert diverse biological activities as antioxidants and demonstrate anti-inflammatory, anti-cancer, and antimicrobial properties. Nontuberculous mycobacteria (NTM) include over 200 environmental and acid-fast species; some of which can cause opportunistic disease in humans. Early in the study of mycobacteriology, the vast majority of mycobacteria were not known to synthesize pigments, particularly NTM isolates of clinical significance such as the Mycobacterium avium complex (MAC) species. This paper reviews the overall understanding of microbial pigments, their applications, as well as highlights what is currently known about pigments produced by NTM, the circumstances that trigger their production, and their potential roles in NTM survival and virulence.
Collapse
Affiliation(s)
- Tru Tran
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Stephanie N Dawrs
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| | - Grant J Norton
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| | - Ravleen Virdi
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| | - Jennifer R Honda
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
10
|
Eskandari S, Department of Cell and Molecular Biology and Microbiology, University of Isfahan, Isfahan, Iran, Etemadifar Z, Department of Cell and Molecular Biology and Microbiology, University of Isfahan, Isfahan, Iran. Isolation and Characterization of Melanin Producing Pseudomonas stutzeri Strain UIS2 in the Presence of l-tyrosine and Survey of Biological Properties of Its Melanin. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2020; 14:70-83. [DOI: 10.30699/ijmm.14.1.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
|
11
|
Sattar AA, Abate W, Fejer G, Bradley G, Jackson SK. Evaluation of the proinflammatory effects of contaminated bathing water. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1076-1087. [PMID: 31797748 DOI: 10.1080/15287394.2019.1694113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Contaminated marine bathing water has been reported to adversely affect human health. Our data demonstrated a correlation between total endotoxin (lipopolysaccharide; LPS) levels and degree of contamination of marine bathing waters. To assess the potential health implications of LPS present in marine bathing waters, the inflammation-inducing potency of water samples collected at different time points at multiple sampling sites were assessed using a cell culture-based assay. The numbers of fecal indicator bacteria (FIB) were also examined in the same samples. Water samples were used to stimulate two cell culture models: (1) a novel non-transformed continuously growing murine cell line Max Plank Institute (MPI) characteristic of alveolar macrophages and (2) human MonoMac 6 monocyte cell line. The inflammatory potential of the samples was assessed by measuring the release of inflammatory cytokines. The presence of high levels of LPS in contaminated bathing water led to induction of inflammatory response from our in vitro cell-based bioassays suggesting its potential health impact. This finding introduces an in vitro culture assay that reflects the level of LPS in water samples. These observations further promote previous finding that LPS is a reliable surrogate biomarker for fecal contamination of bathing water.
Collapse
Affiliation(s)
- Anas A Sattar
- School of Biomedical and Healthcare Science, Plymouth University, Plymouth, UK
| | - Wondwossen Abate
- School of Biomedical and Healthcare Science, Plymouth University, Plymouth, UK
| | - Gyorgy Fejer
- School of Biomedical and Healthcare Science, Plymouth University, Plymouth, UK
| | - Graham Bradley
- School of Biomedical and Healthcare Science, Plymouth University, Plymouth, UK
| | - Simon K Jackson
- School of Biomedical and Healthcare Science, Plymouth University, Plymouth, UK
| |
Collapse
|
12
|
Singh D, Kumar J, Kumar A. Isolation of pyomelanin from bacteria and evidences showing its synthesis by 4-hydroxyphenylpyruvate dioxygenase enzyme encoded by hppD gene. Int J Biol Macromol 2018; 119:864-873. [DOI: 10.1016/j.ijbiomac.2018.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/29/2018] [Accepted: 08/01/2018] [Indexed: 11/27/2022]
|
13
|
Liang W, Zhang W, Shao Y, Zhao X, Li C. Dual functions of a 4-hydroxyphenylpyruvate dioxygenase for Vibrio splendidus survival and infection. Microb Pathog 2018; 120:47-54. [DOI: 10.1016/j.micpath.2018.04.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023]
|
14
|
Melanin nanoparticles: Antioxidant activities and effects on γ-ray-induced DNA damage in the mouse. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 828:15-22. [DOI: 10.1016/j.mrgentox.2018.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 02/07/2023]
|
15
|
Ketelboeter LM, Bardy SL. Characterization of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione resistance in pyomelanogenic Pseudomonas aeruginosa DKN343. PLoS One 2017; 12:e0178084. [PMID: 28570601 PMCID: PMC5453437 DOI: 10.1371/journal.pone.0178084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 05/07/2017] [Indexed: 01/11/2023] Open
Abstract
Pyomelanin is a reddish-brown pigment that provides bacteria and fungi protection from oxidative stress, and is reported to contribute to infection persistence. Production of this pigment can be inhibited by the anti-virulence agent 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC). The Pseudomonas aeruginosa clinical isolate DKN343 exhibited high levels of resistance to NTBC, and the mechanism of pyomelanin production in this strain was uncharacterized. We determined that pyomelanin production in the clinical Pseudomonas aeruginosa isolate DKN343 was due to a loss of function in homogentisate 1,2-dioxygenase (HmgA). Several potential resistance mechanisms were investigated, and the MexAB-OprM efflux pump is required for resistance to NTBC. DKN343 has a frameshift mutation in NalC, which is a known indirect repressor of the mexAB-oprM operon. This frameshift mutation may contribute to the increased resistance of DKN343 to NTBC. Additional studies investigating the prevalence of resistance in pyomelanogenic microbes are necessary to determine the future applications of NTBC as an anti-virulence therapy.
Collapse
Affiliation(s)
- Laura M. Ketelboeter
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Sonia L. Bardy
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
16
|
Ahmad S, Lee SY, Kong HG, Jo EJ, Choi HK, Khan R, Lee SW. Genetic Determinants for Pyomelanin Production and Its Protective Effect against Oxidative Stress in Ralstonia solanacearum. PLoS One 2016; 11:e0160845. [PMID: 27513990 PMCID: PMC4981395 DOI: 10.1371/journal.pone.0160845] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/26/2016] [Indexed: 11/18/2022] Open
Abstract
Ralstonia solanacearum is a soil-borne plant pathogen that infects more than 200 plant species. Its broad host range and long-term survival under different environmental stress conditions suggest that it uses a variety of mechanisms to protect itself against various types of biotic and abiotic stress. R. solanacearum produces a melanin-like brown pigment in the stationary phase when grown in minimal medium containing tyrosine. To gain deeper insight into the genetic determinants involved in melanin production, transposon-inserted mutants of R. solanacearum strain SL341 were screened for strains with defective melanin-producing capability. In addition to one mutant already known to be involved in pyomelanin production (viz., strain SL341D, with disruption of the hydroxphenylpyruvate dioxygenase gene), we identified three other mutants with disruption in the regulatory genes rpoS, hrpG, and oxyR, respectively. Wild-type SL341 produced pyomelanin in minimal medium containing tyrosine whereas the mutant strains did not. Likewise, homogentisate, a major precursor of pyomelanin, was detected in the culture filtrate of the wild-type strain but not in those of the mutant strains. A gene encoding hydroxyphenylpyruvate dioxygenase exhibited a significant high expression in wild type SL341 compared to other mutant strains, suggesting that pyomelanin production is regulated by three different regulatory proteins. However, analysis of the gene encoding homogentisate dioxygenase revealed no significant difference in its relative expression over time in the wild-type SL341 and mutant strains, except for SL341D, at 72 h incubation. The pigmented SL341 strain also exhibited a high tolerance to hydrogen peroxide stress compared with the non-pigmented SL341D strain. Our study suggests that pyomelanin production is controlled by several regulatory factors in R. solanacearum to confer protection under oxidative stress.
Collapse
Affiliation(s)
- Shabir Ahmad
- Department of Applied Biosciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Seung Yeup Lee
- Department of Applied Biosciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Hyun Gi Kong
- Department of Applied Biosciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Eun Jeong Jo
- Department of Applied Biosciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Hye Kyung Choi
- Department of Applied Biosciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Raees Khan
- Department of Applied Biosciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Seon-Woo Lee
- Department of Applied Biosciences, Dong-A University, Busan, 49315, Republic of Korea
| |
Collapse
|
17
|
Deng P, Wang X, Baird SM, Showmaker KC, Smith L, Peterson DG, Lu S. Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis. Microbiologyopen 2016; 5:353-69. [PMID: 26769582 PMCID: PMC4905989 DOI: 10.1002/mbo3.333] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/22/2015] [Accepted: 12/03/2015] [Indexed: 11/13/2022] Open
Abstract
Burkholderia contaminans MS14 shows significant antimicrobial activities against plant and animal pathogenic fungi and bacteria. The antifungal agent occidiofungin produced by MS14 has great potential for development of biopesticides and pharmaceutical drugs. However, the use of Burkholderia species as biocontrol agent in agriculture is restricted due to the difficulties in distinguishing between plant growth-promoting bacteria and the pathogenic bacteria. The complete MS14 genome was sequenced and analyzed to find what beneficial and virulence-related genes it harbors. The phylogenetic relatedness of B. contaminans MS14 and other 17 Burkholderia species was also analyzed. To research MS14's potential virulence, the gene regions related to the antibiotic production, antibiotic resistance, and virulence were compared between MS14 and other Burkholderia genomes. The genome of B. contaminans MS14 was sequenced and annotated. The genomic analyses reveal the presence of multiple gene sets for antimicrobial biosynthesis, which contribute to its antimicrobial activities. BLAST results indicate that the MS14 genome harbors a large number of unique regions. MS14 is closely related to another plant growth-promoting Burkholderia strain B. lata 383 according to the average nucleotide identity data. Moreover, according to the phylogenetic analysis, plant growth-promoting species isolated from soils and mammalian pathogenic species are clustered together, respectively. MS14 has multiple antimicrobial activity-related genes identified from the genome, but it lacks key virulence-related gene loci found in the pathogenic strains. Additionally, plant growth-promoting Burkholderia species have one or more antimicrobial biosynthesis genes in their genomes as compared with nonplant growth-promoting soil-isolated Burkholderia species. On the other hand, pathogenic species harbor multiple virulence-associated gene loci that are not present in nonpathogenic Burkholderia species. The MS14 genome as well as Burkholderia species genome show considerable diversity. Multiple antimicrobial agent biosynthesis genes were identified in the genome of plant growth-promoting species of Burkholderia. In addition, by comparing to nonpathogenic Burkholderia species, pathogenic Burkholderia species have more characterized homologs of the gene loci known to contribute to pathogenicity and virulence to plant and animals.
Collapse
Affiliation(s)
- Peng Deng
- Departments of Biochemistry, Molecular BiologyEntomology and Plant PathologyMississippi State UniversityMississippi stateMississippi
| | - Xiaoqiang Wang
- Departments of Biochemistry, Molecular BiologyEntomology and Plant PathologyMississippi State UniversityMississippi stateMississippi
| | - Sonya M. Baird
- Departments of Biochemistry, Molecular BiologyEntomology and Plant PathologyMississippi State UniversityMississippi stateMississippi
| | - Kurt C. Showmaker
- Institute for GenomicsBiocomputing and BiotechnologyMississippi State UniversityMississippi stateMississippi
| | - Leif Smith
- Department of BiologyTexas A&M UniversityCollege StationTexas
| | - Daniel G. Peterson
- Institute for GenomicsBiocomputing and BiotechnologyMississippi State UniversityMississippi stateMississippi
| | - Shien Lu
- Departments of Biochemistry, Molecular BiologyEntomology and Plant PathologyMississippi State UniversityMississippi stateMississippi
| |
Collapse
|
18
|
Bae E, Kim H, Rajwa B, Thomas JG, Robinson JP. Current status and future prospects of using advanced computer-based methods to study bacterial colonial morphology. Expert Rev Anti Infect Ther 2015; 14:207-18. [PMID: 26582139 DOI: 10.1586/14787210.2016.1122524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite the advancement of recent molecular technologies, culturing is still considered the gold standard for microbial sample analysis. Here we review three different bacterial colony-based screening modalities that provide significant information beyond the simple shape and color of the colony. The plate imaging technique provides numeration and quantitative spectral reflectance information for each colony, while Raman spectroscopic analysis of bacteria colonies relates the Raman-shifted peaks to specific chemical bonding. Finally, the elastic-light-scatter technique provides a volumetric interaction of the whole colony through laser-bacteria interactions, instantly capturing the morphological traits of the colony and allowing quantitative classifications.
Collapse
Affiliation(s)
- Euiwon Bae
- a School of Mechanical Engineering , Purdue University , West Lafayette , IN , USA
| | - Huisung Kim
- a School of Mechanical Engineering , Purdue University , West Lafayette , IN , USA
| | - Bartek Rajwa
- b Bindley Bioscience Center , Purdue University , West Lafayette , IN , USA
| | - John G Thomas
- c Microbiology Laboratory, Department of Laboratory Medicine , Allegheny Health Network , Pittsburgh , PA , USA
| | - J Paul Robinson
- d School of Veterinary Medicine , Purdue University , West Lafayette , IN , USA.,e Weldon School of Biomedical Engineering , Purdue University , West Lafayette , IN , USA
| |
Collapse
|
19
|
Orlandi VT, Bolognese F, Chiodaroli L, Tolker-Nielsen T, Barbieri P. Pigments influence the tolerance of Pseudomonas aeruginosa PAO1 to photodynamically induced oxidative stress. MICROBIOLOGY-SGM 2015; 161:2298-309. [PMID: 26419906 DOI: 10.1099/mic.0.000193] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen known to be resistant to different classes of antibiotics and disinfectants. P. aeruginosa also displays a certain degree of tolerance to photodynamic therapy (PDT), an alternative antimicrobial approach exploiting a photo-oxidative stress induced by exogenous photosensitizers and visible light. To evaluate whether P. aeruginosa pigments can contribute to its relative tolerance to PDT, we analysed the response to this treatment of isogenic transposon mutants of P. aeruginosa PAO1 with altered pigmentation. In general, in the presence of pigments a higher tolerance to PDT-induced photo-oxidative stress was observed. Hyperproduction of pyomelanin makes the cells much more tolerant to stress caused by either radicals or singlet oxygen generated by different photosensitizers upon photoactivation. Phenazines, pyocyanin and phenazine-1-carboxylic acid, produced in different amounts depending on the cultural conditions, are able to counteract both types of PDT-elicited reactive oxygen species. Hyperproduction of pyoverdine, caused by a mutation in a quorum-sensing gene, rendered P. aeruginosa more tolerant to a photosensitizer that generates mainly singlet oxygen, although in this case the observed tolerance to photo-oxidative stress cannot be exclusively attributed to the presence of the pigment.
Collapse
Affiliation(s)
- Viviana T Orlandi
- 1Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Fabrizio Bolognese
- 1Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Luca Chiodaroli
- 1Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| | - Tim Tolker-Nielsen
- 2Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paola Barbieri
- 1Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
20
|
Han H, Iakovenko L, Wilson AC. Loss of Homogentisate 1,2-Dioxygenase Activity in Bacillus anthracis Results in Accumulation of Protective Pigment. PLoS One 2015; 10:e0128967. [PMID: 26047497 PMCID: PMC4457819 DOI: 10.1371/journal.pone.0128967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/04/2015] [Indexed: 01/28/2023] Open
Abstract
Melanin production is important to the pathogenicity and survival of some bacterial pathogens. In Bacillus anthracis, loss of hmgA, encoding homogentisate 1,2-dioxygenase, results in accumulation of a melanin-like pigment called pyomelanin. Pyomelanin is produced in the mutant as a byproduct of disrupted catabolism of L-tyrosine and L-phenylalanine. Accumulation of pyomelanin protects B. anthracis cells from UV damage but not from oxidative damage. Neither loss of hmgA nor accumulation of pyomelanin alter virulence gene expression, sporulation or germination. This is the first investigation of homogentisate 1,2-dioxygenase activity in the Gram-positive bacteria, and these results provide insight into a conserved aspect of bacterial physiology.
Collapse
Affiliation(s)
- Hesong Han
- Department of Biology, Georgia State University, Atlanta, GA, United States of America
| | - Liudmyla Iakovenko
- Department of Biology, Georgia State University, Atlanta, GA, United States of America
| | - Adam C. Wilson
- Department of Biology, Georgia State University, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
21
|
NTBC treatment of the pyomelanogenic Pseudomonas aeruginosa clinical isolate PA1111 inhibits pigment production and increases sensitivity to oxidative stress. Curr Microbiol 2014; 69:343-8. [PMID: 24801336 PMCID: PMC4113677 DOI: 10.1007/s00284-014-0593-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/01/2014] [Indexed: 10/26/2022]
Abstract
Pyomelanin is a brown/black extracellular pigment with antioxidant and iron acquisition properties that is produced by a number of different bacteria. Production of pyomelanin in Pseudomonas aeruginosa contributes to increased resistance to oxidative stress and persistence in chronic infections. We demonstrate that pyomelanin production can be inhibited by 2-[2-nitro-4-(trifluoromethyl) benzoyl]-1,3-cyclohexanedione (NTBC). This treatment increases sensitivity of pyomelanogenic P. aeruginosa strains to oxidative stress, without altering the growth rate or resistance to aminoglycosides. As such, NTBC has potential to function as an anti-virulence factor in treating pyomelanogenic bacterial infections.
Collapse
|
22
|
Wang Z, Lin B, Mostaghim A, Rubin RA, Glaser ER, Mittraparp-Arthorn P, Thompson JR, Vuddhakul V, Vora GJ. Vibrio campbellii hmgA-mediated pyomelanization impairs quorum sensing, virulence, and cellular fitness. Front Microbiol 2013; 4:379. [PMID: 24376440 PMCID: PMC3858670 DOI: 10.3389/fmicb.2013.00379] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/22/2013] [Indexed: 11/13/2022] Open
Abstract
Melanization due to the inactivation of the homogentisate-1,2-dioxygenase gene (hmgA) has been demonstrated to increase stress resistance, persistence, and virulence in some bacterial species but such pigmented mutants have not been observed in pathogenic members of the Vibrio Harveyi clade. In this study, we used Vibrio campbellii ATCC BAA-1116 as model organism to understand how melanization affected cellular phenotype, metabolism, and virulence. An in-frame deletion of the hmgA gene resulted in the overproduction of a pigment in cell culture supernatants and cellular membranes that was identified as pyomelanin. Unlike previous demonstrations in Vibrio cholerae, Burkholderia cepacia, and Pseudomonas aeruginosa, the pigmented V. campbellii mutant did not show increased UV resistance and was found to be ~2.7 times less virulent than the wild type strain in Penaeus monodon shrimp virulence assays. However, the extracted pyomelanin pigment did confer a higher resistance to oxidative stress when incubated with wild type cells. Microarray-based transcriptomic analyses revealed that the hmgA gene deletion and subsequent pyomelanin production negatively effected the expression of 129 genes primarily involved in energy production, amino acid, and lipid metabolism, and protein translation and turnover. This transcriptional response was mediated in part by an impairment of the quorum sensing regulon as transcripts of the quorum sensing high cell density master regulator LuxR and other operonic members of this regulon were significantly less abundant in the hmgA mutant. Taken together, the results suggest that the pyomelanization of V. campbellii sufficiently impairs the metabolic activities of this organism and renders it less fit and virulent than its isogenic wild type strain.
Collapse
Affiliation(s)
- Zheng Wang
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory Washington, DC, USA
| | - Baochuan Lin
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory Washington, DC, USA
| | - Anahita Mostaghim
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory Washington, DC, USA ; School of Systems Biology, College of Science, George Mason University Fairfax, VA, USA
| | - Robert A Rubin
- Mathematics Department, Whittier College Whittier, CA, USA
| | - Evan R Glaser
- Division of Electronics Science and Technology, Naval Research Laboratory Washington, DC, USA
| | | | - Janelle R Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Varaporn Vuddhakul
- Department of Microbiology, Faculty of Science, Prince of Songkla University Hat Yai, Thailand
| | - Gary J Vora
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory Washington, DC, USA
| |
Collapse
|
23
|
Flydal MI, Chatfield CH, Zheng H, Gunderson FF, Aubi O, Cianciotto NP, Martinez A. Phenylalanine hydroxylase from Legionella pneumophila is a thermostable enzyme with a major functional role in pyomelanin synthesis. PLoS One 2012; 7:e46209. [PMID: 23049981 PMCID: PMC3458870 DOI: 10.1371/journal.pone.0046209] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Legionella pneumophila is a pathogenic bacterium that can cause Legionnaires' disease and other non-pneumonic infections in humans. This bacterium produces a pyomelanin pigment, a potential virulence factor with ferric reductase activity. In this work, we have investigated the role of phenylalanine hydroxylase from L. pneumophila (lpPAH), the product of the phhA gene, in the synthesis of the pyomelanin pigment and the growth of the bacterium in defined compositions. METHODOLOGY/PRINCIPAL FINDINGS Comparative studies of wild-type and phhA mutant corroborate that lpPAH provides the excess tyrosine for pigment synthesis. phhA and letA (gacA) appear transcriptionally linked when bacteria were grown in buffered yeast extract medium at 37°C. phhA is expressed in L. pneumophila growing in macrophages. We also cloned and characterized lpPAH, which showed many characteristics of other PAHs studied so far, including Fe(II) requirement for activity. However, it also showed many particular properties such as dimerization, a high conformational thermal stability, with a midpoint denaturation temperature (T(m)) = 79 ± 0.5°C, a high specific activity at 37°C (10.2 ± 0.3 µmol L-Tyr/mg/min) and low affinity for the substrate (K(m) (L-Phe) = 735 ± 50 µM. CONCLUSIONS/SIGNIFICANCE lpPAH has a major functional role in the synthesis of pyomelanin and promotes growth in low-tyrosine media. The high thermal stability of lpPAH might reflect the adaptation of the enzyme to withstand relatively high survival temperatures.
Collapse
Affiliation(s)
- Marte I. Flydal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Christa H. Chatfield
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Huaixin Zheng
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Felizza F. Gunderson
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Oscar Aubi
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
24
|
Karki HS, Shrestha BK, Han JW, Groth DE, Barphagha IK, Rush MC, Melanson RA, Kim BS, Ham JH. Diversities in virulence, antifungal activity, pigmentation and DNA fingerprint among strains of Burkholderia glumae. PLoS One 2012; 7:e45376. [PMID: 23028972 PMCID: PMC3445519 DOI: 10.1371/journal.pone.0045376] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/17/2012] [Indexed: 11/17/2022] Open
Abstract
Burkholderia glumae is the primary causal agent of bacterial panicle blight of rice. In this study, 11 naturally avirulent and nine virulent strains of B. glumae native to the southern United States were characterized in terms of virulence in rice and onion, toxofalvin production, antifungal activity, pigmentation and genomic structure. Virulence of B. glumae strains on rice panicles was highly correlated to virulence on onion bulb scales, suggesting that onion bulb can be a convenient alternative host system to efficiently determine the virulence of B. glumae strains. Production of toxoflavin, the phytotoxin that functions as a major virulence factor, was closely associated with the virulence phenotypes of B. glumae strains in rice. Some strains of B. glumae showed various levels of antifungal activity against Rhizoctonia solani, the causal agent of sheath blight, and pigmentation phenotypes on casamino acid-peptone-glucose (CPG) agar plates regardless of their virulence traits. Purple and yellow-green pigments were partially purified from a pigmenting strain of B. glumae, 411gr-6, and the purple pigment fraction showed a strong antifungal activity against Collectotrichum orbiculare. Genetic variations were detected among the B. glumae strains from DNA fingerprinting analyses by repetitive element sequence-based PCR (rep-PCR) for BOX-A1R-based repetitive extragenic palindromic (BOX) or enterobacterial repetitive intergenic consensus (ERIC) sequences of bacteria; and close genetic relatedness among virulent but pigment-deficient strains were revealed by clustering analyses of DNA fingerprints from BOX-and ERIC-PCR.
Collapse
Affiliation(s)
- Hari S. Karki
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Bishnu K. Shrestha
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Jae Woo Han
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Donald E. Groth
- Rice Research Station, Louisiana State University Agricultural Center, Rayne, Louisiana, United States of America
| | - Inderjit K. Barphagha
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Milton C. Rush
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Rebecca A. Melanson
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Beom Seok Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
25
|
Ubale RV, D'Souza MJ, Infield DT, McCarty NA, Zughaier SM. Formulation of meningococcal capsular polysaccharide vaccine-loaded microparticles with robust innate immune recognition. J Microencapsul 2012; 30:28-41. [PMID: 22657751 DOI: 10.3109/02652048.2012.692402] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis associated with a high mortality rate. Capsular polysaccharides (CPSs) are a major virulence factor and form the basis for serogroup designation and protective vaccines. The current polysaccharide meningococcal vaccines are available but are very expensive and require chemical conjugation. Here, we report a novel meningococcal vaccine formulation consisting of meningococcal CPS polymers encapsulated in albumin-based biodegradable microparticles that slowly release antigen and induce robust innate immune responses. Vaccines that elicit innate immunity are reported to have enhanced and protective adaptive immune responses. In this study, the meningococcal CPS-loaded microparticles, but not the empty microparticles, induced the release of IL-8, TNF-α and IL-1β, enhanced phagocytic capacity and induced robust autophagy in macrophages. The novel meningococcal vaccine microparticles are robustly taken up by macrophages and elicit strong innate immune responses that enhance antigen presentation which is a prerequisite for inducing adaptive immunity.
Collapse
Affiliation(s)
- Ruhi V Ubale
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA 30341, USA
| | | | | | | | | |
Collapse
|
26
|
Khajo A, Bryan RA, Friedman M, Burger RM, Levitsky Y, Casadevall A, Magliozzo RS, Dadachova E. Protection of melanized Cryptococcus neoformans from lethal dose gamma irradiation involves changes in melanin's chemical structure and paramagnetism. PLoS One 2011; 6:e25092. [PMID: 21966422 PMCID: PMC3178601 DOI: 10.1371/journal.pone.0025092] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/23/2011] [Indexed: 01/17/2023] Open
Abstract
Certain fungi thrive in highly radioactive environments including the defunct Chernobyl nuclear reactor. Cryptococcus neoformans (C. neoformans), which uses L-3,4-dihydroxyphenylalanine (L-DOPA) to produce melanin, was used here to investigate how gamma radiation under aqueous aerobic conditions affects the properties of melanin, with the aim of gaining insight into its radioprotective role. Exposure of melanized fungal cell in aqueous suspensions to doses of γ-radiation capable of killing 50 to 80% of the cells did not lead to a detectable loss of melanin integrity according to EPR spectra of melanin radicals. Moreover, upon UV-visible (Xe-lamp) illumination of melanized cells, the increase in radical population was unchanged after γ-irradiation. Gamma-irradiation of frozen cell suspensions and storage of samples for several days at 77 K however, produced melanin modification noted by a reduced radical population and reduced photoresponse. More direct evidence for structural modification of melanin came from the detection of soluble products with absorbance maxima near 260 nm in supernatants collected after γ-irradiation of cells and cell-free melanin. These products, which include thiobarbituric acid (TBA)-reactive aldehydes, were also generated by Fenton reagent treatment of cells and cell-free melanin. In an assay of melanin integrity based on the metal (Bi+3) binding capacity of cells, no detectable loss in binding was detected after γ-irradiation. Our results show that melanin in C. neoformans cells is susceptible to some damage by hydroxyl radical formed in lethal radioactive aqueous environments and serves a protective role in melanized fungi that involves sacrificial breakdown.
Collapse
Affiliation(s)
- Abdelahad Khajo
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Turick CE, Ekechukwu AA, Milliken CE, Casadevall A, Dadachova E. Gamma radiation interacts with melanin to alter its oxidation-reduction potential and results in electric current production. Bioelectrochemistry 2011; 82:69-73. [PMID: 21632287 DOI: 10.1016/j.bioelechem.2011.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/23/2011] [Accepted: 04/04/2011] [Indexed: 11/19/2022]
Abstract
The presence of melanin pigments in organisms is implicated in radioprotection and in some cases, enhanced growth in the presence of high levels of ionizing radiation. An understanding of this phenomenon will be useful in the design of radioprotective materials. However, the protective mechanism of microbial melanin in ionizing radiation fields has not yet been elucidated. Here we demonstrate through the electrochemical techniques of chronoamperometry, chronopotentiometry and cyclic voltammetry that microbial melanin is continuously oxidized in the presence of gamma radiation. Our findings establish that ionizing radiation interacts with melanin to alter its oxidation-reduction potential. Sustained oxidation resulted in electric current production and was most pronounced in the presence of a reductant, which extended the redox cycling capacity of melanin. This work is the first to establish that gamma radiation alters the oxidation-reduction behavior of melanin, resulting in electric current production. The significance of the work is that it provides the first step in understanding the initial interactions between melanin and ionizing radiation taking place and offers some insight for production of biomimetic radioprotective materials.
Collapse
Affiliation(s)
- Charles E Turick
- Biotechnology Section, Savannah River National Laboratory, Aiken, SC 29808, USA.
| | | | | | | | | |
Collapse
|
28
|
A putative ABC transporter, hatABCDE, is among molecular determinants of pyomelanin production in Pseudomonas aeruginosa. J Bacteriol 2010; 192:5962-71. [PMID: 20870774 DOI: 10.1128/jb.01021-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyomelanin overproduction is a common phenotype among Pseudomonas aeruginosa isolates recovered from cystic fibrosis and urinary tract infections. Its prevalence suggests that it contributes to the persistence of the producing microbial community, yet little is known about the mechanisms of its production. Using transposon mutagenesis, we identified factors that contribute to melanogenesis in a clinical isolate of P. aeruginosa. In addition to two enzymes already known to be involved in its biosynthesis (homogentisate dioxygenase and hydroxyphenylpyruvate dioxygenase), we identified 26 genes that encode regulatory, metabolic, transport, and hypothetical proteins that contribute to the production of homogentisic acid (HGA), the monomeric precursor of pyomelanin. One of these, PA14_57880, was independently identified four times and is predicted to encode the ATP-binding cassette of an ABC transporter homologous to proteins in Pseudomonas putida responsible for the extrusion of organic solvents from the cytosol. Quantification of HGA production by P. aeruginosa PA14 strains missing the predicted subcomponents of this transporter confirmed its role in HGA production: mutants unable to produce the ATP-binding cassette (PA14_57880) or the permease (PA14_57870) produced substantially less extracellular HGA after growth for 20 h than the parental strain. In these mutants, concurrent accumulation of intracellular HGA was observed. In addition, quantitative real-time PCR revealed that intracellular accumulation of HGA elicits upregulation of these transport genes. Based on their involvement in homogentisic acid transport, we rename the genes of this operon hatABCDE.
Collapse
|
29
|
Zughaier S, Karna P, Stephens D, Aneja R. Potent anti-inflammatory activity of novel microtubule-modulating brominated noscapine analogs. PLoS One 2010; 5:e9165. [PMID: 20161797 PMCID: PMC2820095 DOI: 10.1371/journal.pone.0009165] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 01/20/2010] [Indexed: 11/23/2022] Open
Abstract
Noscapine, a plant-derived, non-toxic, over-the-counter antitussive alkaloid has tubulin-binding properties. Based upon the structural resemblance of noscapine to colchicine, a tubulin-binding anti-inflammatory drug, noscapine and its semi-synthetic brominated analogs were examined for in vitro anti-inflammatory activity. Brominated noscapine analogs were found to inhibit cytokine and chemokine release from macrophage cell lines but did not affect cell viability. Brominated noscapine analogs demonstrated anti-inflammatory properties in both TLR- and non-TLR induced in vitro innate immune pathway inflammation models, mimicking septic and sterile infection respectively. In addition, electron microscopy and immunoblotting data indicated that these analogs induced robust autophagy in human macrophages. This study is the first report to identify brominated noscapines as innate immune pathway anti-inflammatory molecules.
Collapse
Affiliation(s)
- Susu Zughaier
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Prasanthi Karna
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - David Stephens
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| |
Collapse
|
30
|
Liu GY, Nizet V. Color me bad: microbial pigments as virulence factors. Trends Microbiol 2009; 17:406-13. [PMID: 19726196 PMCID: PMC2743764 DOI: 10.1016/j.tim.2009.06.006] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/06/2009] [Accepted: 06/08/2009] [Indexed: 01/23/2023]
Abstract
A hallmark feature of several pathogenic microbes is the distinctive color of their colonies when propagated in the clinical laboratory. Such pigmentation comes in a variety of hues, and has often proven useful in presumptive clinical diagnosis. Recent advances in microbial pigment biochemistry and the genetic basis of pigment production have sometimes revealed a more sinister aspect to these curious materials that change the color of reflected light by selective light absorbance. In many cases, the microbial pigment contributes to disease pathogenesis by interfering with host immune clearance mechanisms or by exhibiting pro-inflammatory or cytotoxic properties. We review several examples of pigments that promote microbial virulence, including the golden staphyloxanthin of Staphylococcusaureus, the blue-green pyocyanin of Pseudomonas spp., and the dark brown or black melanin pigments of Cryptococcus neoformans and Aspergillus spp. Targeted pigment neutralisation might represent a viable concept to enhance treatment of certain difficult infectious disease conditions.
Collapse
Affiliation(s)
- George Y Liu
- Division of Pediatric Infectious Diseases and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | |
Collapse
|
31
|
Saldías MS, Valvano MA. Interactions of Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria with epithelial and phagocytic cells. Microbiology (Reading) 2009; 155:2809-2817. [DOI: 10.1099/mic.0.031344-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Burkholderia cenocepacia is a member of the B. cepacia complex (Bcc), a group of opportunistic bacteria that infect the airways of patients with cystic fibrosis (CF) and are extraordinarily resistant to almost all clinically useful antibiotics. Infections in CF patients with Bcc bacteria generally lead to a more rapid decline in lung function, and in some cases to the ‘cepacia syndrome’, a virtually deadly exacerbation of the lung infection with systemic manifestations. These characteristics of Bcc bacteria contribute to higher morbidity and mortality in infected CF patients. In the last 10 years considerable progress has been made in understanding the interactions between Bcc bacteria and mammalian host cells. Bcc isolates can survive either intracellularly within eukaryotic cells or extracellularly in host tissues. They survive within phagocytes and respiratory epithelial cells, and they have the ability to breach the respiratory epithelium layer. Survival and persistence of Bcc bacteria within host cells and tissues are believed to play a key role in pulmonary infection and to contribute to the persistent inflammation observed in patients with CF. This review summarizes recent findings concerning the interaction between Bcc bacteria and epithelial and phagocytic cells.
Collapse
Affiliation(s)
- M. Soledad Saldías
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Miguel A. Valvano
- Department of Medicine, University of Western Ontario, London, ON N6A 5C1, Canada
- Infectious Diseases Research Group, Siebens-Drake Research Institute, Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
32
|
Turick CE, Beliaev AS, Zakrajsek BA, Reardon CL, Lowy DA, Poppy TE, Maloney A, Ekechukwu AA. The role of 4-hydroxyphenylpyruvate dioxygenase in enhancement of solid-phase electron transfer by Shewanella oneidensis MR-1. FEMS Microbiol Ecol 2009; 68:223-5. [PMID: 19573203 DOI: 10.1111/j.1574-6941.2009.00670.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We hypothesized that Shewanella oneidensis MR-1, a model dissimilatory metal-reducing bacterium, could utilize environmentally relevant concentrations of tyrosine to produce pyomelanin for enhanced Fe(III) oxide reduction. Because homogentisate is an intermediate of the tyrosine degradation pathway, and a precursor of a redox-cycling metabolite, pyomelanin, we evaluated the process of homogentisate production by S. oneidensis MR-1, in order to identify the key steps involved in pyomelanin production. We determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. We used genetic analysis and physiological characterization of MR-1 strains either deficient in or displaying substantially increased pyomelanin production. The relative significance imparted by pyomelanin on solid-phase electron transfer was also addressed using electrochemical techniques, which allowed us to extend the genetic and physiological findings to biogeochemical cycling of metals. Based on our findings, environmental production of pyomelanin from available organic precursors could contribute to the survival of S. oneidensis MR-1 when dissolved oxygen concentrations become low, by providing an increased capacity for solid-phase metal reduction. This study demonstrates the role of organic precursors and their concentrations in pyomelanin production, solid phase metal reduction and biogeochemical cycling of iron.
Collapse
Affiliation(s)
- Charles E Turick
- Environmental Science and Biotechnology Department, Savannah River National Laboratory, Aiken, SC 29808, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Identification of specific and universal virulence factors in Burkholderia cenocepacia strains by using multiple infection hosts. Infect Immun 2009; 77:4102-10. [PMID: 19528212 DOI: 10.1128/iai.00398-09] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the past few decades, strains of the Burkholderia cepacia complex have emerged as important pathogens for patients suffering from cystic fibrosis. Identification of virulence factors and assessment of the pathogenic potential of Burkholderia strains have increased the need for appropriate infection models. In previous studies, different infection hosts, including mammals, nematodes, insects, and plants, have been used. At present, however, the extent to which the virulence factors required to infect different hosts overlap is not known. The aim of this study was to analyze the roles of various virulence factors of two closely related Burkholderia cenocepacia strains, H111 and the epidemic strain K56-2, in a multihost pathogenesis system using four different model organisms, namely, Caenorhabditis elegans, Galleria mellonella, the alfalfa plant, and mice or rats. We demonstrate that most of the identified virulence factors are specific for one of the infection models, and only three factors were found to be essential for full pathogenicity in several hosts: mutants defective in (i) quorum sensing, (ii) siderophore production, and (iii) lipopolysaccharide biosynthesis were attenuated in at least three of the infection models and thus may represent promising targets for the development of novel anti-infectives.
Collapse
|
34
|
Rodríguez-Rojas A, Mena A, Martín S, Borrell N, Oliver A, Blázquez J. Inactivation of the hmgA gene of Pseudomonas aeruginosa leads to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infection. MICROBIOLOGY-SGM 2009; 155:1050-1057. [PMID: 19332807 DOI: 10.1099/mic.0.024745-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Clinical isolates of Pseudomonas aeruginosa that hyperproduce a dark-brown pigment are quite often found in the lungs of chronically infected patients, suggesting that they may have an adaptive advantage in chronic infections. We have screened a library of random transposon insertions in P. aeruginosa. Transposon insertions resulting in the hyperproduction of a dark-brown pigment were found to be located in the hmgA gene, which putatively encodes the enzyme homogentisate-1,2-dioxygenase. Complementation studies indicate that hmgA disruption is responsible for the hyperproduction of pyomelanin in both laboratory and clinical isolates. A relationship between hmgA disruption and adaptation to chronic infection was explored and our results show that the inactivation of hmgA produces a slight reduction of killing ability in an acute murine model of lung infection. On the other hand, it also confers decreased clearance and increased persistence in chronic lung infections. Whether pyomelanin production is the cause of the increased adaptation to chronicity or just a side effect of hmgA inactivation is a question to be studied in future; however, this adaptation is consistent with the higher resistance to oxidative stress conferred in vitro by the pyomelanin pigment. Our results clearly demonstrate that hmgA inactivation leads to a better adaptation to chronic infection, and strongly suggest that this mechanism may be exploited in naturally occurring P. aeruginosa strains.
Collapse
Affiliation(s)
- Alexandro Rodríguez-Rojas
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), C/ Darwin 3, Campus UAM, 28049 Madrid, Spain
| | - Ana Mena
- Servicio de Microbiologia, Hospital Son Dureta, C/ Andrea Doria 55, 07014 Palma de Mallorca, Spain
| | - Soledad Martín
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), C/ Darwin 3, Campus UAM, 28049 Madrid, Spain
| | - Nuria Borrell
- Servicio de Microbiologia, Hospital Son Dureta, C/ Andrea Doria 55, 07014 Palma de Mallorca, Spain
| | - Antonio Oliver
- Servicio de Microbiologia, Hospital Son Dureta, C/ Andrea Doria 55, 07014 Palma de Mallorca, Spain
| | - Jesús Blázquez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), C/ Darwin 3, Campus UAM, 28049 Madrid, Spain
| |
Collapse
|
35
|
MacDonald KL, Speert DP. Differential modulation of innate immune cell functions by theBurkholderia cepaciacomplex:Burkholderia cenocepaciabut notBurkholderia multivoransdisrupts maturation and induces necrosis in human dendritic cells. Cell Microbiol 2008; 10:2138-49. [DOI: 10.1111/j.1462-5822.2008.01197.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
36
|
Burkholderia cenocepacia C5424 produces a pigment with antioxidant properties using a homogentisate intermediate. J Bacteriol 2007; 189:9057-65. [PMID: 17933889 DOI: 10.1128/jb.00436-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Burkholderia cenocepacia is a gram-negative opportunistic pathogen that belongs to the Burkholderia cepacia complex. B. cenocepacia can survive intracellularly within phagocytic cells, and some epidemic strains produce a brown melanin-like pigment that can scavenge free radicals, resulting in the attenuation of the host cell oxidative burst. In this work, we demonstrate that the brown pigment produced by B. cenocepacia C5424 is synthesized from a homogentisate (HGA) precursor. The disruption of BCAL0207 (hppD) by insertional inactivation resulted in loss of pigmentation. Steady-state kinetic analysis of the BCAL0207 gene product demonstrated that it has 4-hydroxyphenylpyruvic acid dioxygenase (HppD) activity. Pigmentation could be restored by complementation providing hppD in trans. The hppD mutant was resistant to paraquat challenge but sensitive to H2O2 and to extracellularly generated superoxide anions. Infection experiments in RAW 264.7 murine macrophages showed that the nonpigmented bacteria colocalized in a dextran-positive vacuole, suggesting that they are being trafficked to the lysosome. In contrast, the wild-type strain did not localize with dextran. Colocalization of the nonpigmented strain with dextran was reduced in the presence of the NADPH oxidase inhibitor diphenyleneiodonium, and also the inducible nitric oxide inhibitor aminoguanidine. Together, these observations suggest that the brown pigment produced by B. cenocepacia C5424 is a pyomelanin synthesized from an HGA intermediate that is capable of protecting the organism from in vitro and in vivo sources of oxidative stress.
Collapse
|
37
|
Chatfield CH, Cianciotto NP. The secreted pyomelanin pigment of Legionella pneumophila confers ferric reductase activity. Infect Immun 2007; 75:4062-70. [PMID: 17548481 PMCID: PMC1951983 DOI: 10.1128/iai.00489-07] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virulence of Legionella pneumophila is dependent upon its capacity to acquire iron. To identify genes involved in expression of its siderophore, we screened a mutagenized population of L. pneumophila for strains that were no longer able to rescue the growth of a ferrous transport mutant. However, an unusual mutant was obtained that displayed a strong inhibitory effect on the feoB mutant. Due to an insertion in hmgA that encodes homogentisate 1,2-dioxygenase, the mutant secreted increased levels of pyomelanin, the L. pneumophila pigment that is derived from secreted homogentisic acid (HGA). Thus, we hypothesized that L. pneumophila-secreted HGA-melanin has intrinsic ferric reductase activity, converting Fe(3+) to Fe(2+), but that hyperpigmentation results in excessive reduction of iron that can, in the case of the feoB mutant, be inhibitory to growth. In support of this hypothesis, we demonstrated, for the first time, that wild-type L. pneumophila secretes ferric reductase activity. Moreover, whereas the hyperpigmented mutant had increased secreted activity, an lly mutant specifically impaired for pigment production lacked the activity. Compatible with the nature of HGA-melanins, the secreted ferric reductase activity was positively influenced by the amount of tyrosine in the growth medium, resistant to protease, acid precipitable, and heterogeneous in size. Together, these data represent the first demonstration of pyomelanin-mediated ferric reduction by a pathogenic bacterium.
Collapse
Affiliation(s)
- Christa H Chatfield
- Department of Microbiology-Immunology, Northwestern University Medical School, 320 East Superior Street, Chicago, IL 60611-3010, USA
| | | |
Collapse
|
38
|
Bamford S, Ryley H, Jackson SK. Highly purified lipopolysaccharides from Burkholderia cepacia complex clinical isolates induce inflammatory cytokine responses via TLR4-mediated MAPK signalling pathways and activation of NFkappaB. Cell Microbiol 2006; 9:532-43. [PMID: 17002785 DOI: 10.1111/j.1462-5822.2006.00808.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In cystic fibrosis (CF), bacteria of the Burkholderia cepacia complex (Bcc) can induce a fulminant inflammation with pneumonitis and sepsis. Lipopolysaccharide (LPS) may be an important virulence factor associated with this decline but little is known about the molecular pathogenesis of Bcc LPS. In this study we have investigated the inflammatory response to highly purified LPS from different Bcc clinical isolates and the cellular signalling pathways employed. The inflammatory response (TNFalpha, IL-6) was measured in human MonoMac 6 monocytes and inhibition experiments were used to investigate the Toll-like receptors and associated adaptor molecules and pathways utilized. LPS from all clinical Bcc isolates induced significant pro-inflammatory cytokines and utilized TLR4 and CD14 to mediate activation of mitogen-activated protein kinase pathways, IkappaB-alpha degradation and NFkappaB activation. However, LPS from different clinical isolates of the same clonal strain of Burkholderia cenocepacia were found to induce a varied inflammatory response. LPS from clinical isolates of Burkholderia multivorans was found to activate the inflammatory response via MyD88-independent pathways. This study suggests that LPS alone from clinical isolates of Bcc is an important virulence factor in CF and utilizes TLR4-mediated signalling pathways to induce a significant inflammatory response.
Collapse
Affiliation(s)
- Sarah Bamford
- Department of Medical Microbiology, School of Medicine, Cardiff University, Cardiff, UK
| | | | | |
Collapse
|
39
|
Zughaier SM, Shafer WM, Stephens DS. Antimicrobial peptides and endotoxin inhibit cytokine and nitric oxide release but amplify respiratory burst response in human and murine macrophages. Cell Microbiol 2006; 7:1251-62. [PMID: 16098213 PMCID: PMC1388267 DOI: 10.1111/j.1462-5822.2005.00549.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs), in addition to their antibacterial properties, are also chemotactic and signalling molecules that connect the innate and adaptive immune responses. The role of AMP [alpha defensins, LL-37, a cathepsin G-derived peptide (CG117-136), protegrins (PG-1), polymyxin B (PMX) and LLP1] in modulating the respiratory burst response in human and murine macrophages in the presence of bacterial endotoxin [lipopolysaccharide (LPS) or lipooligosaccharide (LOS)] was investigated. AMP were found to neutralize endotoxin induction of nitric oxide and TNFalpha release in macrophages in a dose-dependent manner. In contrast, macrophages primed overnight with AMP and LOS or LPS significantly enhanced reactive oxygen species (ROS) release compared with cells primed with endotoxin or AMP alone, while no responses were seen in unprimed cells. This enhanced ROS release by macrophages was seen in all cell lines including those obtained from C3H/HeJ (TLR4-/-) mice. Similar effects were also seen when AMP and endotoxin were added directly with zymosan to trigger phagocytosis and the respiratory burst in unprimed RAW 264.7 and C3H/HeJ macrophages. Amplification of ROS release was also demonstrated in a cell-free system of xanthine and xanthine oxidase. Although AMP inhibited cytokine and nitric oxide induction by endotoxin in a TLR4-dependent manner, AMP and endotoxin amplified ROS release in a TLR4-independent manner possibly by exerting a prolonged catalytic effect on the ROS generating enzymes such as the NADPH-oxidase complex.
Collapse
Affiliation(s)
- Susu M Zughaier
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, and Laboratories of Microbial Pathogenesis, Atlanta, GA, USA.
| | | | | |
Collapse
|
40
|
Nappi AJ, Christensen BM. Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:443-459. [PMID: 15804578 DOI: 10.1016/j.ibmb.2005.01.014] [Citation(s) in RCA: 402] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/05/2005] [Accepted: 01/07/2005] [Indexed: 05/24/2023]
Abstract
Insects transmit the causative agents for such debilitating diseases as malaria, lymphatic filariases, sleeping sickness, Chagas' disease, leishmaniasis, river blindness, Dengue, and yellow fever. The persistence of these diseases provides testimony to the genetic capacity of parasites to evolve strategies that ensure their successful development in two genetically diverse host species: insects and mammals. Current efforts to address the problems posed by insect-borne diseases benefit from a growing understanding of insect and mammalian immunity. Of considerable interest are recent genomic investigations that show several similarities in the innate immune effector responses and associated regulatory mechanisms manifested by insects and mammals. One notable exception, however, is the nearly universal presence of a brown-black pigment accompanying cellular innate immunity in insects. This response, which is unique to arthropods and certain other invertebrates, has focused attention on the elements involved in pigment synthesis as causing or contributing to the death of the parasite, and has even prompted speculation that the enzyme cascade mediating melanogenesis constitutes an ill-defined recognition mechanism. Experimental evidence defining the role of melanin and its precursors in insect innate immunity is severely lacking. A great deal of what is known about melanogenesis comes from studies of the process occurring in mammalian systems, where the pigment is synthesized by such diverse cells as those comprising portions of the skin, hair, inner ear, brain, and retinal epithelium. Fortunately, many of the components in the metabolic pathways leading to the formation of melanin have been found to be common to both insects and mammals. This review examines some of the factors that influence enzyme-mediated melanogenic responses, and how these responses likely contribute to blood cell-mediated, target-specific cytotoxicity in immune challenged insects.
Collapse
Affiliation(s)
- A J Nappi
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, WI 53706, USA.
| | | |
Collapse
|
41
|
Ortega X, Hunt TA, Loutet S, Vinion-Dubiel AD, Datta A, Choudhury B, Goldberg JB, Carlson R, Valvano MA. Reconstitution of O-specific lipopolysaccharide expression in Burkholderia cenocepacia strain J2315, which is associated with transmissible infections in patients with cystic fibrosis. J Bacteriol 2005; 187:1324-33. [PMID: 15687196 PMCID: PMC545620 DOI: 10.1128/jb.187.4.1324-1333.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Burkholderia cenocepacia is an opportunistic bacterium that infects patients with cystic fibrosis. B. cenocepacia strains J2315, K56-2, C5424, and BC7 belong to the ET12 epidemic clone, which is transmissible among patients. We have previously shown that transposon mutants with insertions within the O antigen cluster of strain K56-2 are attenuated for survival in a rat model of lung infection. From the genomic DNA sequence of the O antigen-deficient strain J2315, we have identified an O antigen lipopolysaccharide (LPS) biosynthesis gene cluster that has an IS402 interrupting a predicted glycosyltransferase gene. A comparison with the other clonal isolates revealed that only strain K56-2, which produced O antigen and displayed serum resistance, lacked the insertion element inserted within the putative glycosyltransferase gene. We cloned the uninterrupted gene and additional flanking sequences from K56-2 and conjugated this plasmid into strains J2315, C5424, and BC7. All the exconjugants recovered the ability to form LPS O antigen. We also determined that the structure of the strain K56-2 O antigen repeat, which was absent from the LPS of strain J2315, consisted of a trisaccharide unit made of rhamnose and two N-acetylgalactosamine residues. The complexity of the gene organization of the K56-2 O antigen cluster was also investigated by reverse transcription-PCR, revealing several transcriptional units, one of which also contains genes involved in lipid A-core oligosaccharide biosynthesis.
Collapse
Affiliation(s)
- Ximena Ortega
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mahenthiralingam E, Urban TA, Goldberg JB. The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 2005; 3:144-56. [PMID: 15643431 DOI: 10.1038/nrmicro1085] [Citation(s) in RCA: 646] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Burkholderia cepacia complex (Bcc) is a collection of genetically distinct but phenotypically similar bacteria that are divided into at least nine species. Bcc bacteria are found throughout the environment, where they can have both beneficial and detrimental effects on plants and some members can also degrade natural and man-made pollutants. Bcc bacteria are now recognized as important opportunistic pathogens that can cause variable lung infections in cystic fibrosis patients, which result in asymptomatic carriage, chronic infection or 'cepacia syndrome', which is characterized by a rapid decline in lung function that can include invasive disease. Here we highlight the unique characteristics of the Bcc, focusing on the factors that determine virulence.
Collapse
|
43
|
Valvano MA, Keith KE, Cardona ST. Survival and persistence of opportunistic Burkholderia species in host cells. Curr Opin Microbiol 2005; 8:99-105. [PMID: 15694863 DOI: 10.1016/j.mib.2004.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Burkholderia are microorganisms that have a unique ability to adapt and survive in many different environments. They can also serve as biopesticides and be used for the biodegradation of organic compounds. Usually harmless while living in the soil, these bacteria are opportunistic pathogens of plants and immunocompromised patients, and occasionally infect healthy individuals. Some of the species in this genus can also be utilised as biological weapons. They all possess very large genomes and have two or more circular chromosomes. Their survival and persistence, not only in the environment but also in host cells, offers a remarkable example of bacterial adaptation.
Collapse
Affiliation(s)
- Miguel A Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | | | | |
Collapse
|
44
|
Huber B, Feldmann F, Köthe M, Vandamme P, Wopperer J, Riedel K, Eberl L. Identification of a novel virulence factor in Burkholderia cenocepacia H111 required for efficient slow killing of Caenorhabditis elegans. Infect Immun 2004; 72:7220-30. [PMID: 15557647 PMCID: PMC529107 DOI: 10.1128/iai.72.12.7220-7230.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia H111, which was isolated from a cystic fibrosis patient, employs a quorum-sensing (QS) system, encoded by cep, to control the expression of virulence factors as well as the formation of biofilms. The QS system is thought to ensure that pathogenic traits are expressed only when the bacterial population density is high enough to overwhelm the host before it is able to mount an efficient response. While the wild-type strain effectively kills the nematode Caenorhabditis elegans, the pathogenicity of mutants with defective quorum sensing is attenuated. To date, very little is known about the cep-regulated virulence factors required for nematode killing. Here we report the identification of a cep-regulated gene, whose predicted amino acid sequence is highly similar to the QS-regulated protein AidA of the plant pathogen Ralstonia solanacearum. By use of polyclonal antibodies directed against AidA, it is demonstrated that the protein is expressed in the late-exponential phase and accumulates during growth arrest. We show that B. cenocepacia H111 AidA is essential for slow killing of C. elegans but has little effect on fast killing, suggesting that the protein plays a role in the accumulation of the strain in the nematode gut. Thus, AidA appears to be required for establishing an infection-like process rather than acting as a toxin. Furthermore, evidence is provided that AidA is produced not only by B. cenocepacia but also by many other strains of the Burkholderia cepacia complex.
Collapse
Affiliation(s)
- Birgit Huber
- Department of Microbiology, Institute of Plant Biology, University Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
45
|
Liu GY, Doran KS, Lawrence T, Turkson N, Puliti M, Tissi L, Nizet V. Sword and shield: linked group B streptococcal beta-hemolysin/cytolysin and carotenoid pigment function to subvert host phagocyte defense. Proc Natl Acad Sci U S A 2004; 101:14491-6. [PMID: 15381763 PMCID: PMC521972 DOI: 10.1073/pnas.0406143101] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Indexed: 11/18/2022] Open
Abstract
Group B Streptococcus (GBS) is a major cause of pneumonia, bacteremia, and meningitis in neonates and has been found to persist inside host phagocytic cells. The pore-forming GBS beta-hemolysin/cytolysin (betaH/C) encoded by cylE is an important virulence factor as demonstrated in several in vivo models. Interestingly, cylE deletion results not only in the loss of betaH/C activity, but also in the loss of a carotenoid pigment of unknown function. In this study, we sought to define the mechanism(s) by which cylE may contribute to GBS phagocyte resistance and increased virulence potential. We found that cylE-deficient GBS was more readily cleared from a mouse's bloodstream, human whole blood, and isolated macrophage and neutrophil cultures. Survival was linked to the ability of betaH/C to induce cytolysis and apoptosis of the phagocytes. At a lower bacterial inoculum, cylE also contributed to enhanced survival within phagocytes that was attributed to the ability of carotenoid to shield GBS from oxidative damage. In oxidant killing assays, cylE mutants were shown to be more susceptible to hydrogen peroxide, hypochlorite, superoxide, and singlet oxygen. Together, these data suggest a mechanism by which the linked cylE-encoded phenotypes, betaH/C (sword) and carotenoid (shield), act in partnership to thwart the immune phagocytic defenses.
Collapse
Affiliation(s)
- George Y Liu
- Department of Pediatrics, The Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Hunt TA, Kooi C, Sokol PA, Valvano MA. Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infect Immun 2004; 72:4010-22. [PMID: 15213146 PMCID: PMC427415 DOI: 10.1128/iai.72.7.4010-4022.2004] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia (formerly Burkholderia cepacia complex genomovar III) causes chronic lung infections in patients with cystic fibrosis. In this work, we used a modified signature-tagged mutagenesis (STM) strategy for the isolation of B. cenocepacia mutants that cannot survive in vivo. Thirty-seven specialized plasposons, each carrying a unique oligonucleotide tag signature, were constructed and used to examine the survival of 2,627 B. cenocepacia transposon mutants, arranged in pools of 37 unique mutants, after a 10-day lung infection in rats by using the agar bead model. The recovered mutants were screened by real-time PCR, resulting in the identification of 260 mutants which presumably did not survive within the lungs. These mutants were repooled into smaller pools, and the infections were repeated. After a second screen, we isolated 102 mutants unable to survive in the rat model. The location of the transposon in each of these mutants was mapped within the B. cenocepacia chromosomes. We identified mutations in genes involved in cellular metabolism, global regulation, DNA replication and repair, and those encoding bacterial surface structures, including transmembrane proteins and cell surface polysaccharides. Also, we found 18 genes of unknown function, which are conserved in other bacteria. A subset of 12 representative mutants that were individually examined using the rat model in competition with the wild-type strain displayed reduced survival, confirming the predictive value of our STM screen. This study provides a blueprint to investigate at the molecular level the basis for survival and persistence of B. cenocepacia within the airways.
Collapse
Affiliation(s)
- Tracey A Hunt
- Department of Microbiology and Immunology, Dental Sciences Building, Rm. 3014, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
47
|
|
48
|
Tomlin KL, Clark SRD, Ceri H. Green and red fluorescent protein vectors for use in biofilm studies of the intrinsically resistant Burkholderia cepacia complex. J Microbiol Methods 2004; 57:95-106. [PMID: 15003692 DOI: 10.1016/j.mimet.2003.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 11/29/2003] [Accepted: 12/04/2003] [Indexed: 11/24/2022]
Abstract
Cystic fibrosis isolates of the Burkholderia cepacia complex (BCC) have demonstrated a propensity to associate intimately with Pseudomonas aeruginosa in mixed community biofilms, which may impact on their overall pathogenicity during infection of the lungs in cystic fibrosis. Here, we describe the construction and use of novel green and red fluorescent protein expression vectors suitable for labeling biofilm cells of multi-resistant clinical isolates of the BCC for microscopic analysis of both single species biofilms and mixed community associations with P. aeruginosa. Antimicrobial susceptibility testing established that tetracycline and/or trimethoprim were suitable selective agents for widespread use in BCC. The green and red fluorescent protein genes, driven by constitutively active promoters, were cloned into two mobilizable plasmids pBBR1MCS-3 and pBBR1Tp, carrying tetracycline and trimethoprim resistance cassettes, respectively. The fluorescence of transformed BCC and P. aeruginosa planktonic cells was detectable using fluorescence microscopy and/or fluorometry. The plasmids were stable in the absence of selection for at least 3 days in planktonic and biofilm cultures, and fluorescence was still visible in a 4-day glass coverslip flow cell biofilm. The plasmids functioned well to distinguish the two species in a mixed community biofilm, with no indications of plasmid transfer between species or cross-talk of the fluorescent signals. These vectors represent the first green and red fluorescent vectors to be constructed and analyzed specifically for wide spread use in BCC and P. aeruginosa single and mixed biofilm cultures.
Collapse
Affiliation(s)
- Kerry L Tomlin
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | | | | |
Collapse
|
49
|
Zughaier SM, Tzeng YL, Zimmer SM, Datta A, Carlson RW, Stephens DS. Neisseria meningitidis lipooligosaccharide structure-dependent activation of the macrophage CD14/Toll-like receptor 4 pathway. Infect Immun 2004; 72:371-80. [PMID: 14688118 PMCID: PMC343956 DOI: 10.1128/iai.72.1.371-380.2004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Meningococcal lipopoly(oligo)saccharide (LOS) is a major inflammatory mediator of fulminant meningococcal sepsis and meningitis. Highly purified wild-type meningococcal LOS and LOS from genetically defined mutants of Neisseria meningitidis that contained specific mutations in LOS biosynthesis pathways were used to confirm that meningococcal LOS activation of macrophages was CD14/Toll-like receptor 4 (TLR4)-MD-2 dependent and to elucidate the LOS structural requirement for TLR4 activation. Expression of TLR4 but not TLR2 was required, and antibodies to both TLR4 and CD14 blocked meningococcal LOS activation of macrophages. Meningococcal LOS alpha or beta chain oligosaccharide structure did not influence CD14/TLR4-MD-2 activation. However, meningococcal lipid A, expressed by meningococci with defects in 3-deoxy-D-manno-octulosonic acid (KDO) biosynthesis or transfer, resulted in an approximately 10-fold (P < 0.0001) reduction in biologic activity compared to KDO2-containing meningococcal LOS. Removal of KDO2 from LOS by acid hydrolysis also dramatically attenuated cellular responses. Competitive inhibition assays showed similar binding of glycosylated and unglycosylated lipid A to CD14/TLR4-MD-2. A decrease in the number of lipid A phosphate head groups or penta-acylated meningococcal LOS modestly attenuated biologic activity. Meningococcal endotoxin is a potent agonist of the macrophage CD14/TLR4-MD-2 receptor, helping explain the fulminant presentation of meningococcal sepsis and meningitis. KDO2 linked to meningococcal lipid A was structurally required for maximal activation of the human macrophage TLR4 pathway and indicates an important role for KDO-lipid A in endotoxin biologic activity.
Collapse
Affiliation(s)
- Susu M Zughaier
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Melanins are enigmatic pigments that are produced by a wide variety of microorganisms including several species of pathogenic bacteria, fungi and helminths. The study of melanin is difficult because these pigments defy complete biochemical and structural analysis. Nevertheless, the availability of new reagents in the form of monoclonal antibodies and melanin-binding peptides, combined with the application of various physical techniques, has provided insights into the process of melanization. Melanization is important in microbial pathogenesis because it has been associated with virulence in many microorganisms. Melanin appears to contribute to virulence by reducing the susceptibility of melanized microbes to host defence mechanisms. However, the interaction of melanized microbes and the host is complex and includes immune responses to melanin-related antigens. Production of melanin has also been linked to protection against environmental insults. Interference with melanization is a potential strategy for antimicrobial drug and pesticide development. The process of melanization poses fascinating problems in cell biology and provides a type of pathogenic strategy that is common to highly diverse pathogens.
Collapse
Affiliation(s)
- Joshua D Nosanchuk
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | |
Collapse
|