1
|
Parrish KM, Gestal MC. Eosinophils as drivers of bacterial immunomodulation and persistence. Infect Immun 2024; 92:e0017524. [PMID: 39007622 PMCID: PMC11385729 DOI: 10.1128/iai.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Traditionally, eosinophils have been linked to parasitic infections and pathological disease states. However, emerging literature has unveiled a more nuanced and intricate role for these cells, demonstrating their key functions in maintaining mucosal homeostasis. Eosinophils exhibit diverse phenotypes and exert multifaceted effects during infections, ranging from promoting pathogen persistence to triggering allergic reactions. Our investigations primarily focus on Bordetella spp., with particular emphasis on Bordetella bronchiseptica, a natural murine pathogen that induces diseases in mice akin to pertussis in humans. Recent findings from our published work have unveiled a striking interaction between B. bronchiseptica and eosinophils, facilitated by the btrS-mediated mechanism. This interaction serves to enhance pathogen persistence while concurrently delaying adaptive immune responses. Notably, this role of eosinophils is only noted in the absence of a functional btrS signaling pathway, indicating that wild-type B. bronchiseptica, and possibly other Bordetella spp., possess such adeptness in manipulating eosinophils that the true function of these cells remains obscured during infection. In this review, we present the mounting evidence pointing toward eosinophils as targets of bacterial exploitation, facilitating pathogen persistence and fostering chronic infections in diverse mucosal sites, including the lungs, gut, and skin. We underscore the pivotal role of the master regulator of Bordetella pathogenesis, the sigma factor BtrS, in orchestrating eosinophil-dependent immunomodulation within the context of pulmonary infection. These putative convergent strategies of targeting eosinophils offer promising avenues for the development of novel therapeutics targeting respiratory and other mucosal pathogens.
Collapse
Affiliation(s)
- Katelyn M. Parrish
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
2
|
Miguelena Chamorro B, De Luca K, Swaminathan G, Longet S, Mundt E, Paul S. Bordetella bronchiseptica and Bordetella pertussis: Similarities and Differences in Infection, Immuno-Modulation, and Vaccine Considerations. Clin Microbiol Rev 2023; 36:e0016422. [PMID: 37306571 PMCID: PMC10512794 DOI: 10.1128/cmr.00164-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Bordetella pertussis and Bordetella bronchiseptica belong to the genus Bordetella, which comprises 14 other species. B. pertussis is responsible for whooping cough in humans, a severe infection in children and less severe or chronic in adults. These infections are restricted to humans and currently increasing worldwide. B. bronchiseptica is involved in diverse respiratory infections in a wide range of mammals. For instance, the canine infectious respiratory disease complex (CIRDC), characterized by a chronic cough in dogs. At the same time, it is increasingly implicated in human infections, while remaining an important pathogen in the veterinary field. Both Bordetella can evade and modulate host immune responses to support their persistence, although it is more pronounced in B. bronchiseptica infection. The protective immune responses elicited by both pathogens are comparable, while there are important characteristics in the mechanisms that differ. However, B. pertussis pathogenesis is more difficult to decipher in animal models than those of B. bronchiseptica because of its restriction to humans. Nevertheless, the licensed vaccines for each Bordetella are different in terms of formulation, route of administration and immune responses induced, with no known cross-reaction between them. Moreover, the target of the mucosal tissues and the induction of long-lasting cellular and humoral responses are required to control and eliminate Bordetella. In addition, the interaction between both veterinary and human fields are essential for the control of this genus, by preventing the infections in animals and the subsequent zoonotic transmission to humans.
Collapse
Affiliation(s)
- Beatriz Miguelena Chamorro
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Karelle De Luca
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | | | - Stéphanie Longet
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| | - Egbert Mundt
- Boehringer Ingelheim, Global Innovation, Saint-Priest, France
| | - Stéphane Paul
- CIRI – Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Lyon, France
- CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
3
|
Holban AM, Gregoire CM, Gestal MC. Conquering the host: Bordetella spp. and Pseudomonas aeruginosa molecular regulators in lung infection. Front Microbiol 2022; 13:983149. [PMID: 36225372 PMCID: PMC9549215 DOI: 10.3389/fmicb.2022.983149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
When bacteria sense cues from the host environment, stress responses are activated. Two component systems, sigma factors, small RNAs, ppGpp stringent response, and chaperones start coordinate the expression of virulence factors or immunomodulators to allow bacteria to respond. Although, some of these are well studied, such as the two-component systems, the contribution of other regulators, such as sigma factors or ppGpp, is increasingly gaining attention. Pseudomonas aeruginosa is the gold standard pathogen for studying the molecular mechanisms to sense and respond to environmental cues. Bordetella spp., on the other hand, is a microbial model for studying host-pathogen interactions at the molecular level. These two pathogens have the ability to colonize the lungs of patients with chronic diseases, suggesting that they have the potential to share a niche and interact. However, the molecular networks that facilitate adaptation of Bordetella spp. to cues are unclear. Here, we offer a side-by-side comparison of what is known about these diverse molecular mechanisms that bacteria utilize to counteract host immune responses, while highlighting the relatively unexplored interactions between them.
Collapse
Affiliation(s)
- Alina M. Holban
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Courtney M. Gregoire
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
- *Correspondence: Monica C. Gestal, ;
| |
Collapse
|
4
|
Dewan KK, Sedney C, Caulfield AD, Su Y, Ma L, Blas-Machado U, Harvill ET. Probing Immune-Mediated Clearance of Acute Middle Ear Infection in Mice. Front Cell Infect Microbiol 2022; 11:815627. [PMID: 35141173 PMCID: PMC8818953 DOI: 10.3389/fcimb.2021.815627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Acute otitis media (AOM) is commonly caused by bacterial pathobionts of the nasopharynx that ascend the Eustachian tube to cause disease in the middle ears. To model and study the various complexities of AOM, common human otopathogens are injected directly into the middle ear bullae of rodents or are delivered with viral co-infections which contribute to the access to the middle ears in complex and partially understood ways. Here, we present the novel observation that Bordetella bronchiseptica, a well-characterized respiratory commensal/pathogen of mice, also efficiently ascends their Eustachian tubes to colonize their middle ears, providing a flexible mouse model to study naturally occurring AOM. Mice lacking T and/or B cells failed to resolve infections, highlighting the cooperative role of both in clearing middle ear infection. Adoptively transferred antibodies provided complete protection to the lungs but only partially protected the middle ears, highlighting the differences between respiratory and otoimmunology. We present this as a novel experimental system that can capitalize on the strengths of the mouse model to dissect the molecular mechanisms involved in the generation and function of immunity within the middle ear.
Collapse
Affiliation(s)
- Kalyan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- *Correspondence: Kalyan K. Dewan,
| | - Colleen Sedney
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Amanda D. Caulfield
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Yang Su
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Longhuan Ma
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Uriel Blas-Machado
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
Functional Programming of Innate Immune Cells in Response to Bordetella pertussis Infection and Vaccination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:53-80. [PMID: 31432398 DOI: 10.1007/5584_2019_404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite widespread vaccination, B. pertussis remains one of the least controlled vaccine-preventable diseases. Although it is well known that acellular and whole cell pertussis vaccines induce distinct immune functionalities in memory cells, much less is known about the role of innate immunity in this process. In this review, we provide an overview of the known differences and similarities in innate receptors, innate immune cells and inflammatory signalling pathways induced by the pertussis vaccines either licensed or in development and compare this to primary infection with B. pertussis. Despite the crucial role of innate immunity in driving memory responses to B. pertussis, it is clear that a significant knowledge gap remains in our understanding of the early innate immune response to vaccination and infection. Such knowledge is essential to develop the next generation of pertussis vaccines with improved host defense against B. pertussis.
Collapse
|
6
|
A Novel Bvg-Repressed Promoter Causes vrg-Like Transcription of fim3 but Does Not Result in the Production of Serotype 3 Fimbriae in Bvg - Mode Bordetella pertussis. J Bacteriol 2018; 200:JB.00175-18. [PMID: 30061354 DOI: 10.1128/jb.00175-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022] Open
Abstract
In Bordetella pertussis, two serologically distinct fimbriae, FIM2 and FIM3, undergo on/off phase variation independently of each other via variation in the lengths of C stretches in the promoters for their major subunit genes, fim2 and fim3 These two promoters are also part of the BvgAS virulence regulon and therefore, if in an on configuration, are activated by phosporylated BvgA (BvgA~P) under normal growth conditions (Bvg+ mode) but not in the Bvg- mode, inducible by growth in medium containing MgSO4 or other compounds, termed modulators. In the B. pertussis Tohama I strain (FIM2+ FIM3-), the fim3 promoter is in the off state. However, a high level of transcription of the fim3 gene is observed in the Bvg- mode. In this study, we provide an explanation for this anomalous behavior by defining a Bvg-repressed promoter (BRP), located approximately 400 bp upstream of the Pfim3 transcriptional start. Although transcription of the fim3 gene in the Bvg- mode resulted in Fim3 translation, as measured by LacZ translational fusions, no accumulation of Fim3 protein was detectable. We propose that Fim3 protein resulting from translation of mRNA driven by BRP in the Bvg- mode is unstable due to a lack of the fimbrial assembly apparatus encoded by the fimBC genes, located within the fha operon, and therefore is not expressed in the Bvg- mode.IMPORTANCE In Bordetella pertussis, the promoter Pfim3-15C for the major fimbrial subunit gene fim3 is activated by the two-component system BvgAS in the Bvg+ mode but not in the Bvg- mode. However, many transcriptional profiling studies have shown that fim3 is transcribed in the Bvg- mode even when Pfim3 is in a nonpermissive state (Pfim3-13C), suggesting the presence of a reciprocally regulated element upstream of Pfim3 Here, we provide evidence that BRP is the cause of this anomalous behavior of fim3 Although BRP effects vrg-like transcription of fim3 in the Bvg- mode, it does not lead to stable production of FIM3 fimbriae, because expression of the chaperone and usher proteins FimB and FimC occurs only in the Bvg+ mode.
Collapse
|
7
|
β-Defensins Coordinate In Vivo to Inhibit Bacterial Infections of the Trachea. Vaccines (Basel) 2018; 6:vaccines6030057. [PMID: 30154362 PMCID: PMC6161282 DOI: 10.3390/vaccines6030057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 12/20/2022] Open
Abstract
β-defensins are predicted to play an important role in innate immunity against bacterial infections in the airway. We previously observed that a type III-secretion product of Bordetella bronchiseptica inhibits the NF-κB-mediated induction of a β-defensin in airway epithelial cells in vitro. To confirm this in vivo and to examine the relative roles of other β-defensins in the airway, we infected wild-type C57BL/6 mice and mice with a deletion of the mBD-1 gene with B. bronchiseptica wild-type strain, RB50 and its mutant strain lacking the type III-secretion system, WD3. The bacteria were quantified in the trachea and the nasal tissue and mRNA levels of mouse β-defensin-3 (mBD-3) were assessed after 24 h. Infection with the wild-type bacterial strain resulted in lower mBD-3 mRNA levels in the trachea than in mice infected with the type III-deficient strain. Furthermore, we observed an increase in bacterial numbers of RB50 only in the tracheas of mBD-1-deficient mice. Neutrophils were also more abundant on the trachea in RB50 infected WT mice but not in the bronchiolar lavage fluid (BAL), compared with WD3 infected WT and mBD-1−/− mice, indicating that the coordination of β-defensin chemotactic effects may be confined to tracheal epithelial cells (TEC). RB50 decreased the ability of mice to mount an early specific antibody response, seven days after infection in both WT and mBD-1−/− mice but there were no differences in titers between RB50-infected WT and mBD-1−/− mice or between WD3-infected WT and mBD-1−/− mice, indicating mBD-1 was not involved in induction of the humoral immune response to the B. bronchiseptica. Challenge of primary mouse TEC in vitro with RB50 and WD3, along with IL-1β, further corroborated the in vivo studies. The results demonstrate that at least two β-defensins can coordinate early in an infection to limit the growth of bacteria in the trachea.
Collapse
|
8
|
Jurnecka D, Man P, Sebo P, Bumba L. Bordetella pertussis and Bordetella bronchiseptica filamentous hemagglutinins are processed at different sites. FEBS Open Bio 2018; 8:1256-1266. [PMID: 30087831 PMCID: PMC6070651 DOI: 10.1002/2211-5463.12474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/22/2018] [Accepted: 06/05/2018] [Indexed: 12/24/2022] Open
Abstract
Filamentous hemagglutinin (FHA) mediates adherence and plays an important role in lower respiratory tract infections by pathogenic Bordetellae. The mature FHA proteins of B. pertussis (Bp‐FHA) and the B. bronchiseptica (Bb‐FHA) are generated by processing of the respective FhaB precursors by the autotransporter subtilisin‐type protease SphB1. We have used bottom‐up proteomics with differential 16O/18O labeling and show that despite high‐sequence conservation of the corresponding FhaB segments, the mature Bp‐FHA (~ 230 kDa) and Bb‐FHA (~ 243 kDa) proteins are processed at different sites of FhaB, after the Ala‐2348 and Lys‐2479 residues, respectively. Moreover, protease surface accessibility probing by on‐column (on‐line) digestion of the Bp‐FHA and Bb‐FHA proteins yielded different peptide patterns, revealing structural differences in the N‐terminal and C‐terminal domains of the Bp‐FHA and Bb‐FHA proteins. These data indicate specific structural variations between the highly homologous FHA proteins.
Collapse
Affiliation(s)
- David Jurnecka
- Laboratory of Molecular Biology of Bacterial Pathogens Institute of Microbiology Czech Academy of Sciences Prague 4 Czech Republic.,Department of Biochemistry Faculty of Science Charles University in Prague Prague 2 Czech Republic
| | - Petr Man
- Department of Biochemistry Faculty of Science Charles University in Prague Prague 2 Czech Republic.,BioCeV - Institute of Microbiology of the Czech Academy of Sciences Vestec Czech Republic
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens Institute of Microbiology Czech Academy of Sciences Prague 4 Czech Republic
| | - Ladislav Bumba
- Laboratory of Molecular Biology of Bacterial Pathogens Institute of Microbiology Czech Academy of Sciences Prague 4 Czech Republic
| |
Collapse
|
9
|
Taylor-Mulneix DL, Hamidou Soumana I, Linz B, Harvill ET. Evolution of Bordetellae from Environmental Microbes to Human Respiratory Pathogens: Amoebae as a Missing Link. Front Cell Infect Microbiol 2017; 7:510. [PMID: 29322035 PMCID: PMC5732149 DOI: 10.3389/fcimb.2017.00510] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022] Open
Abstract
The genus Bordetella comprises several bacterial species that colonize the respiratory tract of mammals. It includes B. pertussis, a human-restricted pathogen that is the causative agent of Whooping Cough. In contrast, the closely related species B. bronchiseptica colonizes a broad range of animals as well as immunocompromised humans. Recent metagenomic studies have identified known and novel bordetellae isolated from different environmental sources, providing a new perspective on their natural history. Using phylogenetic analysis, we have shown that human and animal pathogenic bordetellae have most likely evolved from ancestors that originated from soil and water. Our recent study found that B. bronchiseptica can evade amoebic predation and utilize Dictyostelium discoideum as an expansion and transmission vector, which suggests that the evolutionary pressure to evade the amoebic predator enabled the rise of bordetellae as respiratory pathogens. Interactions with amoeba may represent the starting point for bacterial adaptation to eukaryotic cells. However, as bacteria evolve and adapt to a novel host, they can become specialized and restricted to a specific host. B. pertussis is known to colonize and cause infection only in humans, and this specialization to a closed human-to-human lifecycle has involved genome reduction and the loss of ability to utilize amoeba as an environmental reservoir. The discoveries from studying the interaction of Bordetella species with amoeba will elicit a better understanding of the evolutionary history of these and other important human pathogens.
Collapse
Affiliation(s)
- Dawn L Taylor-Mulneix
- Department of Infectious Diseases, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Illiassou Hamidou Soumana
- Department of Infectious Diseases, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Bodo Linz
- Department of Infectious Diseases, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
10
|
Kilgore PE, Salim AM, Zervos MJ, Schmitt HJ. Pertussis: Microbiology, Disease, Treatment, and Prevention. Clin Microbiol Rev 2016; 29:449-86. [PMID: 27029594 PMCID: PMC4861987 DOI: 10.1128/cmr.00083-15] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pertussis is a severe respiratory infection caused by Bordetella pertussis, and in 2008, pertussis was associated with an estimated 16 million cases and 195,000 deaths globally. Sizeable outbreaks of pertussis have been reported over the past 5 years, and disease reemergence has been the focus of international attention to develop a deeper understanding of pathogen virulence and genetic evolution of B. pertussis strains. During the past 20 years, the scientific community has recognized pertussis among adults as well as infants and children. Increased recognition that older children and adolescents are at risk for disease and may transmit B. pertussis to younger siblings has underscored the need to better understand the role of innate, humoral, and cell-mediated immunity, including the role of waning immunity. Although recognition of adult pertussis has increased in tandem with a better understanding of B. pertussis pathogenesis, pertussis in neonates and adults can manifest with atypical clinical presentations. Such disease patterns make pertussis recognition difficult and lead to delays in treatment. Ongoing research using newer tools for molecular analysis holds promise for improved understanding of pertussis epidemiology, bacterial pathogenesis, bioinformatics, and immunology. Together, these advances provide a foundation for the development of new-generation diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Paul E Kilgore
- Department of Pharmacy Practice, Eugene Applebaum Collage of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Abdulbaset M Salim
- Department of Pharmacy Practice, Eugene Applebaum Collage of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Marcus J Zervos
- Division of Infectious Diseases, Department of Internal Medicine, Henry Ford Health System and Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Heinz-Josef Schmitt
- Medical and Scientific Affairs, Pfizer Vaccines, Paris, France Department of Pediatrics, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
11
|
Xiao C, Bao G, Liu Y, Wei Q, Ji Q, Liu Y, Pan L. Greater efficacy of the ECMS-oil adjuvant over other formulations on immune responses against Bordetella bronchiseptica in rabbits and the underlying mechanism. Int Immunopharmacol 2016; 38:194-203. [PMID: 27288753 DOI: 10.1016/j.intimp.2016.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022]
Abstract
In this study, the adjuvant effects of the extract of Cochinchina momordica seed ECMS+oil, oil alone, ECMS alone, conventional alum adjuvant on inactivated Bordetella bronchiseptica (Bb) vaccine or control using antigen alone without adjuvant were evaluated along with the underlying mechanism. The results in experiment A demonstrated that antibody levels in Bb whole cell protein in the ECMS800μg+oil group were significantly higher than in the other adjuvant groups (p<0.05) on day 21. The agglutination antibody titer was also higher than the other groups (p<0.05) on day 37. The ECMS800μg+oil group improved cellular immune responses compared to other adjuvant groups, including control using antigen alone without adjuvant and the PBS group (p<0.05). After Bb challenge, the ECMS800μg+oil group showed the highest protection rate, which was significantly higher than ECMS alone or control using antigen alone without adjuvant and the PBS group (p<0.05 and p<0.01). IgA cells in the ECMS800μg+oil group differed significantly from the IgA cells of other groups in the lungs (p<0.01). The results of cell recruitment showed that the number of lymphocytes in the ECMS400μg+oil were higher than the number of cells for other groups except the ECMS(100μg/800μg)+oil groups (p<0.05). Intermediate cells in the ECMS(100μg/400μg)+oil groups were higher than the number of cells for other groups, including the control using antigen alone group (p<0.05). Neutrophils in the ECMS(100μg/400μg/800μg)+oil groups were significantly higher than the ECMS 800μg and control using antigen alone groups (p<0.05). White blood cells in the ECMS100μg+oil group were significantly higher than the oil, ECMS800μg and control using antigen alone groups (p<0.05). IL-2 expression in the ECMS800μg+oil group was significantly higher than other groups, except for the ECMS400μg+oil group (p<0.05). IL-4 expression in the ECMS800μg+oil group was significantly higher than other groups (p<0.05). GATA3 in the ECMS800μg+oil groups was significantly higher than the oil, ECMS800μg and control using antigen alone group (p<0.05). ECMS-oil adjuvant mixture could most effectively protect B. bronchiseptica immunized rabbits and, therefore, could be an alternative way of improving B. bronchiseptica vaccination in rabbits.
Collapse
Affiliation(s)
- Chenwen Xiao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Yaping Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Lijun Pan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| |
Collapse
|
12
|
Bacterial Metabolism in the Host Environment: Pathogen Growth and Nutrient Assimilation in the Mammalian Upper Respiratory Tract. Microbiol Spectr 2016; 3. [PMID: 26185081 DOI: 10.1128/microbiolspec.mbp-0007-2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogens evolve in specific host niches and microenvironments that provide the physical and nutritional requirements conducive to their growth. In addition to using the host as a source of food, bacterial pathogens must avoid the immune response to their presence. The mammalian upper respiratory tract is a site that is exposed to the external environment, and is readily colonized by bacteria that live as resident flora or as pathogens. These bacteria can remain localized, descend to the lower respiratory tract, or traverse the epithelium to disseminate throughout the body. By virtue of their successful colonization of the respiratory epithelium, these bacteria obtain the nutrients needed for growth, either directly from host resources or from other microbes. This chapter describes the upper respiratory tract environment, including its tissue and mucosal structure, prokaryotic biota, and biochemical composition that would support microbial life. Neisseria meningitidis and the Bordetella species are discussed as examples of bacteria that have no known external reservoirs but have evolved to obligately colonize the mammalian upper respiratory tract.
Collapse
|
13
|
Cattelan N, Dubey P, Arnal L, Yantorno OM, Deora R. Bordetella biofilms: a lifestyle leading to persistent infections. Pathog Dis 2015; 74:ftv108. [PMID: 26586694 DOI: 10.1093/femspd/ftv108] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2015] [Indexed: 12/21/2022] Open
Abstract
Bordetella bronchiseptica and B. pertussis are Gram-negative bacteria that cause respiratory diseases in animals and humans. The current incidence of whooping cough or pertussis caused by B. pertussis has reached levels not observed since the 1950s. Although pertussis is traditionally known as an acute childhood disease, it has recently resurged in vaccinated adolescents and adults. These individuals often become silent carriers, facilitating bacterial circulation and transmission. Similarly, vaccinated and non-vaccinated animals continue to be carriers of B. bronchiseptica and shed bacteria resulting in disease outbreaks. The persistence mechanisms of these bacteria remain poorly characterized. It has been proposed that adoption of a biofilm lifestyle allows persistent colonization of the mammalian respiratory tract. The history of Bordetella biofilm research is only a decade long and there is no single review article that has exclusively focused on this area. We systematically discuss the role of Bordetella factors in biofilm development in vitro and in the mouse respiratory tract. We further outline the implications of biofilms to bacterial persistence and transmission in humans and for the design of new acellular pertussis vaccines.
Collapse
Affiliation(s)
- Natalia Cattelan
- Microbial Biofilm Laboratory, CINDEFI-CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata (1900), Argentina
| | - Purnima Dubey
- Department of Pathology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Laura Arnal
- Microbial Biofilm Laboratory, CINDEFI-CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata (1900), Argentina
| | - Osvaldo M Yantorno
- Microbial Biofilm Laboratory, CINDEFI-CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata (1900), Argentina
| | - Rajendar Deora
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| |
Collapse
|
14
|
Scheller EV, Cotter PA. Bordetella filamentous hemagglutinin and fimbriae: critical adhesins with unrealized vaccine potential. Pathog Dis 2015; 73:ftv079. [PMID: 26416077 DOI: 10.1093/femspd/ftv079] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
Pertussis, or whooping cough, is a highly contagious respiratory disease that is caused by the Gram-negative bacterium Bordetella pertussis, which is transmitted exclusively from human to human. While vaccination against B. pertussis has been successful, replacement of the whole cell vaccine with an acellular component vaccine has correlated with reemergence of the disease, especially in adolescents and infants. Based on their presumed importance in mediating adherence to host tissues, filamentous hemagglutinin (FHA) and fimbria (FIM) were selected as components of most acellular pertussis vaccines. In this review, we describe the biogenesis of FHA and FIM, recent data that show that these factors do, in fact, play critical roles in adherence to respiratory epithelium, and evidence that they also contribute to persistence in the lower respiratory tract by modulating the host immune response. We also discuss shortcomings of whole cell and acellular pertussis vaccines and the possibility that FHA and FIM could serve as effective protective antigens in next-generation vaccines.
Collapse
Affiliation(s)
- Erich V Scheller
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599-7290, USA
| | - Peggy A Cotter
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC 27599-7290, USA
| |
Collapse
|
15
|
Villarino Romero R, Osicka R, Sebo P. Filamentous hemagglutinin of Bordetella pertussis: a key adhesin with immunomodulatory properties? Future Microbiol 2015; 9:1339-60. [PMID: 25517899 DOI: 10.2217/fmb.14.77] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The filamentous hemagglutinin of pathogenic Bordetellae is a prototype of a large two-partner-system-secreted and β-structure-rich bacterial adhesin. It exhibits several binding activities that may facilitate bacterial adherence to airway mucosa and host phagocytes in the initial phases of infection. Despite three decades of research on filamentous hemagglutinin, there remain many questions on its structure-function relationships, integrin interactions and possible immunomodulatory signaling capacity. Here we review the state of knowledge on this important virulence factor and acellular pertussis vaccine component. Specific emphasis is placed on outstanding questions that are yet to be answered.
Collapse
Affiliation(s)
- Rodrigo Villarino Romero
- Institute of Microbiology of the Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | | | | |
Collapse
|
16
|
Cooperative roles for fimbria and filamentous hemagglutinin in Bordetella adherence and immune modulation. mBio 2015; 6:e00500-15. [PMID: 26015497 PMCID: PMC4447244 DOI: 10.1128/mbio.00500-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bordetella fimbriae (FIM) are generally considered to function as adhesins despite a lack of experimental evidence supporting this conclusion for Bordetella pertussis and evidence against a requirement for FIM in adherence of Bordetella bronchiseptica to mammalian cell lines. Using B. bronchiseptica and mice, we developed an in vivo adherence assay that revealed that FIM do function as critically important adhesins in the lower respiratory tract. In the first few days postinoculation, FIM-deficient B. bronchiseptica induced a more robust inflammatory response than wild-type bacteria did, suggesting that FIM, like filamentous hemagglutinin (FHA), allow B. bronchiseptica to suppress the innate immune response to infection. Localization analyses indicated that FIM are required for efficient attachment to airway epithelium, as bacteria lacking FIM localized to alveoli. FHA-deficient bacteria, in contrast, localized to airways. Bacteria unable to produce both FIM and FHA localized to alveoli and caused increased inflammation and histopathology identical to that caused by FIM-deficient bacteria, demonstrating that lack of FIM is epistatic to lack of FHA. Coinoculation experiments provided evidence that wild-type B. bronchiseptica suppresses inflammation locally within the respiratory tract and that both FHA and FIM are required for defense against clearance by the innate immune system. Altogether, our data suggest that FIM-mediated adherence to airway epithelium is a critical first step in Bordetella infection that allows FHA-dependent interactions to mediate tight adherence, suppression of inflammation, and resistance to inflammatory cell-mediated clearance. Our results suggest that mucosal antibodies capable of blocking FIM-mediated interactions could prevent bacterial colonization of the lower respiratory tract. Although fimbriae (FIM) have been shown to be important mediators of adherence for many bacterial pathogens, there is surprisingly little experimental evidence supporting this role for Bordetella fimbria. Our results provide the first demonstration that Bordetella FIM function as adhesins in vivo, specifically to airway epithelium. Furthermore, our results suggest that FIM mediate initial interactions with airway epithelial cells that are followed by tight filamentous hemagglutinin (FHA)-mediated binding and that together, FIM and FHA allow Bordetella to suppress inflammation, leading to prolonged colonization. Given the shortcoming of the current acellular component pertussis (aP) vaccine in preventing colonization, these findings suggest that generation of antibodies capable of blocking FIM-mediated adherence could potentially prevent Bordetella colonization.
Collapse
|
17
|
Bart MJ, Harris SR, Advani A, Arakawa Y, Bottero D, Bouchez V, Cassiday PK, Chiang CS, Dalby T, Fry NK, Gaillard ME, van Gent M, Guiso N, Hallander HO, Harvill ET, He Q, van der Heide HGJ, Heuvelman K, Hozbor DF, Kamachi K, Karataev GI, Lan R, Lutyńska A, Maharjan RP, Mertsola J, Miyamura T, Octavia S, Preston A, Quail MA, Sintchenko V, Stefanelli P, Tondella ML, Tsang RSW, Xu Y, Yao SM, Zhang S, Parkhill J, Mooi FR. Global population structure and evolution of Bordetella pertussis and their relationship with vaccination. mBio 2014; 5:e01074. [PMID: 24757216 PMCID: PMC3994516 DOI: 10.1128/mbio.01074-14] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 03/19/2014] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis causes pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-cell vaccines (WCVs) to less effective acellular vaccines (ACVs), waning immunity, and pathogen adaptation. Pathogen adaptation is suggested by antigenic divergence between vaccine strains and circulating strains and by the emergence of strains with increased pertussis toxin production. We applied comparative genomics to a worldwide collection of 343 B. pertussis strains isolated between 1920 and 2010. The global phylogeny showed two deep branches; the largest of these contained 98% of all strains, and its expansion correlated temporally with the first descriptions of pertussis outbreaks in Europe in the 16th century. We found little evidence of recent geographical clustering of the strains within this lineage, suggesting rapid strain flow between countries. We observed that changes in genes encoding proteins implicated in protective immunity that are included in ACVs occurred after the introduction of WCVs but before the switch to ACVs. Furthermore, our analyses consistently suggested that virulence-associated genes and genes coding for surface-exposed proteins were involved in adaptation. However, many of the putative adaptive loci identified have a physiological role, and further studies of these loci may reveal less obvious ways in which B. pertussis and the host interact. This work provides insight into ways in which pathogens may adapt to vaccination and suggests ways to improve pertussis vaccines. IMPORTANCE Whooping cough is mainly caused by Bordetella pertussis, and current vaccines are targeted against this organism. Recently, there have been increasing outbreaks of whooping cough, even where vaccine coverage is high. Analysis of the genomes of 343 B. pertussis isolates from around the world over the last 100 years suggests that the organism has emerged within the last 500 years, consistent with historical records. We show that global transmission of new strains is very rapid and that the worldwide population of B. pertussis is evolving in response to vaccine introduction, potentially enabling vaccine escape.
Collapse
Affiliation(s)
| | - Simon R. Harris
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Abdolreza Advani
- Swedish Institute for Communicable Disease Control (SMI), Solna, Sweden
| | | | - Daniela Bottero
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | | | - Pamela K. Cassiday
- National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | | | - Tine Dalby
- Microbiology & Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - Norman K. Fry
- Public Health England—Respiratory and Vaccine Preventable Bacteria Reference Unit, Colindale, United Kingdom
| | - María Emilia Gaillard
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - Marjolein van Gent
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Centre for Infectious Diseases Control (CIb), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Hans O. Hallander
- Swedish Institute for Communicable Disease Control (SMI), Solna, Sweden
| | - Eric T. Harvill
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Qiushui He
- Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Finland
| | - Han G. J. van der Heide
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Centre for Infectious Diseases Control (CIb), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kees Heuvelman
- Centre for Infectious Diseases Research, Diagnostics and Screening (IDS), Centre for Infectious Diseases Control (CIb), National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Daniela F. Hozbor
- Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
| | - Kazunari Kamachi
- National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Gennady I. Karataev
- Gamaleya Research Institute for Epidemiology and Microbiology, Ministry of Health Russian Federation, Moscow, Russian Federation
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Anna Lutyńska
- National Institute of Public Health, National Institute of Hygiene, Warsaw, Poland
| | - Ram P. Maharjan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jussi Mertsola
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Tatsuo Miyamura
- National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Andrew Preston
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Michael A. Quail
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Paola Stefanelli
- Department of Infectious, Parasitic & Immune-Mediated Diseases, Istituto Superiore di Sanita, Rome, Italy
| | - M. Lucia Tondella
- National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Raymond S. W. Tsang
- Laboratory for Syphilis Diagnostics and Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yinghua Xu
- National Institute for Food and Drug Control, Beijing, Republic of China
| | - Shu-Man Yao
- Centers for Disease Control, Taipei, Taiwan, Republic of China
| | - Shumin Zhang
- National Institute for Food and Drug Control, Beijing, Republic of China
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | | |
Collapse
|
18
|
Yacoub AT, Katayama M, Tran J, Zadikany R, Kandula M, Greene J. Bordetella bronchiseptica in the immunosuppressed population - a case series and review. Mediterr J Hematol Infect Dis 2014; 6:e2014031. [PMID: 24804004 PMCID: PMC4010603 DOI: 10.4084/mjhid.2014.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/20/2014] [Indexed: 11/08/2022] Open
Abstract
Organisms that are not known to cause serious infection in the immunocompetent population can, in fact, cause devastating illness in immunosuppressed neutropenic populations especially those who are undergoing hematopoietic stem cell transplantation (HSCT), and solid organ transplantation or a history of malignancy. One organism of interest isolated from immunosuppressed patients at our institution was Bordetella bronchiseptica. It is known to cause respiratory tract disease in the animal population which includes dogs, cats, and rabbits. This organism rarely causes serious infection in the immunocompetent population. However; in immunosuppressed patients, it can cause serious pulmonary disease. We present three cases of B. bronchiseptica pneumonia in patients with a history of malignancy.
Collapse
Affiliation(s)
- Abraham T. Yacoub
- H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612-9497
| | - Mitsuya Katayama
- University of South Florida, Division of Infectious Diseases and International Medicine, 1 Tampa General Circle, G323 Tampa, FL 33606
| | - JoAnn Tran
- University of South Florida Morsani College of Medicine, 12901 Bruce B. Down Blvd, Tampa, Fl 33612-4742
| | - Ronit Zadikany
- University of South Florida Morsani College of Medicine, 12901 Bruce B. Down Blvd, Tampa, Fl 33612-4742
| | - Manasa Kandula
- H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, Florida 33612-9497
| | - John Greene
- H. Lee Moffitt Cancer Center and Research Institute, University of South Florida College of Medicine, 12902 Magnolia Drive, Tampa, Florida 33612-9497
| |
Collapse
|
19
|
Abstract
Pertussis, also known as whooping cough, has recently re-emerged as a major public health threat despite high levels of vaccination against the aetiological agent Bordetella pertussis. In this Review, we describe the pathogenesis of this disease, with a focus on recent mechanistic insights into B. pertussis virulence-factor function. We also discuss the changing epidemiology of pertussis and the challenges facing vaccine development. Despite decades of research, many aspects of B. pertussis physiology and pathogenesis remain poorly understood. We highlight knowledge gaps that must be addressed to develop improved vaccines and therapeutic strategies.
Collapse
|
20
|
Comparative analyses of a cystic fibrosis isolate of Bordetella bronchiseptica reveal differences in important pathogenic phenotypes. Infect Immun 2014; 82:1627-37. [PMID: 24470470 DOI: 10.1128/iai.01453-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bordetella bronchiseptica is a Gram-negative bacterium that infects and causes disease in a wide variety of animals. B. bronchiseptica also infects humans, thereby demonstrating zoonotic transmission. An extensive characterization of human B. bronchiseptica isolates is needed to better understand the distinct genetic and phenotypic traits associated with these zoonotic transmission events. Using whole-genome transcriptome and CGH analysis, we report that a B. bronchiseptica cystic fibrosis isolate, T44625, contains a distinct genomic content of virulence-associated genes and differentially expresses these genes compared to the sequenced model laboratory strain RB50, a rabbit isolate. The differential gene expression pattern correlated with unique phenotypes exhibited by T44625, which included lower motility, increased aggregation, hyperbiofilm formation, and an increased in vitro capacity to adhere to respiratory epithelial cells. Using a mouse intranasal infection model, we found that although defective in establishing high bacterial burdens early during the infection process, T44625 persisted efficiently in the mouse nose. By documenting the unique genomic and phenotypic attributes of T44625, this report provides a blueprint for understanding the successful zoonotic potential of B. bronchiseptica and other zoonotic bacteria.
Collapse
|
21
|
Mason E, Henderson MW, Scheller EV, Byrd MS, Cotter PA. Evidence for phenotypic bistability resulting from transcriptional interference of bvgAS in Bordetella bronchiseptica. Mol Microbiol 2013; 90:716-33. [PMID: 24007341 PMCID: PMC4216693 DOI: 10.1111/mmi.12394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 11/27/2022]
Abstract
Bordetella species cause respiratory infections in mammals. Their master regulatory system BvgAS controls expression of at least three distinct phenotypic phases in response to environmental cues. The Bvg⁺ phase is necessary and sufficient for respiratory infection while the Bvg⁻ phase is required for survival ex vivo. We obtained large colony variants (LCVs) from the lungs of mice infected with B. bronchiseptica strain RBX9, which contains an in-frame deletion mutation in fhaB, encoding filamentous haemagglutinin. RBX9 also yielded LCVs when switched from Bvg⁻ phase conditions to Bvg⁺ phase conditions in vitro. We determined that LCVs are composed of both Bvg⁺ and Bvg⁻ phase bacteria and that they result from defective bvgAS positive autoregulation. The LCV phenotype was linked to the presence of a divergent promoter 5' to bvgAS, suggesting a previously undescribed mechanism of transcriptional interference that, in this case, leads to feedback-based bistability (FBM). Our results also indicate that a small proportion of RBX9 bacteria modulates to the Bvg⁻ phase in vivo. In addition to providing insight into transcriptional interference and FBM, our data provide an example of an in-frame deletion mutation exerting a 'polar' effect on nearby genes.
Collapse
Affiliation(s)
- Eliza Mason
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Michael W. Henderson
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Erich V. Scheller
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Matthew S. Byrd
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| |
Collapse
|
22
|
The virulence factors of Bordetella pertussis: talented modulators of host immune response. Arch Immunol Ther Exp (Warsz) 2013; 61:445-57. [PMID: 23955529 DOI: 10.1007/s00005-013-0242-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 08/04/2013] [Indexed: 01/05/2023]
Abstract
Approximately 40 million whooping cough cases and between 200,000 and 400,000 pertussis-linked deaths are recorded each year. Although several types of vaccines are licensed and widely used, Bordetella pertussis continues to circulate in populations with high vaccine coverage of infants and children due to the waning of protection induced by the vaccination. B. pertussis typically expresses a wide array of virulence factors which promote bacterial adhesion and invasion by altering the local environment, including pertussis toxin, tracheal cytotoxin, adenylate cyclase toxin, filamentous hemagglutinin, and the lipooligosaccharide. The virulence factors of B. pertussis also possess immunomodulatory properties, exerted through their enzymatic and receptor-binding activities. Both pro- and anti-inflammatory effects are mediated, that can subvert host innate and adaptive immunity and favor the onset of a long-term infection. This review describes the capacities of B. pertussis virulence factors to modulate host immune responses and the mechanisms employed, which have been the subject of extensive research in the recent years, both in murine and human experimental systems. Knowledge of these mechanisms is gaining increasing importance, since it could provide in the near future the basis for the identification of therapeutic agents for modulating the immune system as well as novel molecular targets to treat pertussis.
Collapse
|
23
|
Hester SE, Lui M, Nicholson T, Nowacki D, Harvill ET. Identification of a CO2 responsive regulon in Bordetella. PLoS One 2012; 7:e47635. [PMID: 23112828 PMCID: PMC3480411 DOI: 10.1371/journal.pone.0047635] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 09/19/2012] [Indexed: 01/13/2023] Open
Abstract
Sensing the environment allows pathogenic bacteria to coordinately regulate gene expression to maximize survival within or outside of a host. Here we show that Bordetella species regulate virulence factor expression in response to carbon dioxide levels that mimic in vivo conditions within the respiratory tract. We found strains of Bordetella bronchiseptica that did not produce adenylate cyclase toxin (ACT) when grown in liquid or solid media with ambient air aeration, but produced ACT and additional antigens when grown in air supplemented to 5% CO(2). Transcriptome analysis and quantitative real time-PCR analysis revealed that strain 761, as well as strain RB50, increased transcription of genes encoding ACT, filamentous hemagglutinin (FHA), pertactin, fimbriae and the type III secretion system in 5% CO(2) conditions, relative to ambient air. Furthermore, transcription of cyaA and fhaB in response to 5% CO(2) was increased even in the absence of BvgS. In vitro analysis also revealed increases in cytotoxicity and adherence when strains were grown in 5% CO(2). The human pathogens B. pertussis and B. parapertussis also increased transcription of several virulence factors when grown in 5% CO(2), indicating that this response is conserved among the classical bordetellae. Together, our data indicate that Bordetella species can sense and respond to physiologically relevant changes in CO(2) concentrations by regulating virulence factors important for colonization, persistence and evasion of the host immune response.
Collapse
Affiliation(s)
- Sara E. Hester
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Graduate Program in Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Minghsun Lui
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tracy Nicholson
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United State of America
| | - Daryl Nowacki
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Graduate Program in Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Eric T. Harvill
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
24
|
Noël CR, Mazar J, Melvin JA, Sexton JA, Cotter PA. The prodomain of the Bordetella two-partner secretion pathway protein FhaB remains intracellular yet affects the conformation of the mature C-terminal domain. Mol Microbiol 2012; 86:988-1006. [PMID: 23035892 DOI: 10.1111/mmi.12036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2012] [Indexed: 12/26/2022]
Abstract
Two-partner secretion (TPS) systems use β-barrel proteins of the Omp85-TpsB superfamily to transport large exoproteins across the outer membranes of Gram-negative bacteria. The Bordetella FHA/FhaC proteins are prototypical of TPS systems in which the exoprotein contains a large C-terminal prodomain that is removed during translocation. Although it is known that the FhaB prodomain is required for FHA function in vivo, its role in FHA maturation has remained mysterious. We show here that the FhaB prodomain is required for the extracellularly located mature C-terminal domain (MCD) of FHA to achieve its proper conformation. We show that the C-terminus of the prodomain is retained intracellularly and that sequences within the N-terminus of the prodomain are required for this intracellular localization. We also identify sequences at the C-terminus of the MCD that are required for release of mature FHA from the cell surface. Our data support a model in which the intracellularly located prodomain affects the final conformation of the extracellularly located MCD. We hypothesize that maturation triggers cleavage and degradation of the prodomain.
Collapse
Affiliation(s)
- Christopher R Noël
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | | | | | | | | |
Collapse
|
25
|
Ahuja U, Liu M, Tomida S, Park J, Souda P, Whitelegge J, Li H, Harvill ET, Parkhill J, Miller JF. Phenotypic and genomic analysis of hypervirulent human-associated Bordetella bronchiseptica. BMC Microbiol 2012; 12:167. [PMID: 22863321 PMCID: PMC3462115 DOI: 10.1186/1471-2180-12-167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/17/2012] [Indexed: 01/17/2023] Open
Abstract
Background B. bronchiseptica infections are usually associated with wild or domesticated animals, but infrequently with humans. A recent phylogenetic analysis distinguished two distinct B. bronchiseptica subpopulations, designated complexes I and IV. Complex IV isolates appear to have a bias for infecting humans; however, little is known regarding their epidemiology, virulence properties, or comparative genomics. Results Here we report a characterization of the virulence of human-associated complex IV B. bronchiseptica strains. In in vitro cytotoxicity assays, complex IV strains showed increased cytotoxicity in comparison to a panel of complex I strains. Some complex IV isolates were remarkably cytotoxic, resulting in LDH release levels in A549 cells that were 10- to 20-fold greater than complex I strains. In vivo, a subset of complex IV strains was found to be hypervirulent, with an increased ability to cause lethal pulmonary infections in mice. Hypercytotoxicity in vitro and hypervirulence in vivo were both dependent on the activity of the bsc T3SS and the BteA effector. To clarify differences between lineages, representative complex IV isolates were sequenced and their genomes were compared to complex I isolates. Although our analysis showed there were no genomic sequences that can be considered unique to complex IV strains, there were several loci that were predominantly found in complex IV isolates. Conclusion Our observations reveal a T3SS-dependent hypervirulence phenotype in human-associated complex IV isolates, highlighting the need for further studies on the epidemiology and evolutionary dynamics of this B. bronchiseptica lineage.
Collapse
Affiliation(s)
- Umesh Ahuja
- Department of Microbiology, Immunology and Molecular Genetics, University of California, BSRB 254, 615 Charles E, Young Drive East, Los Angeles, CA 90095-1747, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Arnal L, Serra DO, Cattelan N, Castez MF, Vázquez L, Salvarezza RC, Yantorno OM, Vela ME. Adhesin contribution to nanomechanical properties of the virulent Bordetella pertussis envelope. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7461-7469. [PMID: 22515332 DOI: 10.1021/la300811m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Adherence to a biological surface allows bacteria to colonize and persist within the host and represents an essential first step in the pathogenesis of most bacterial diseases. Consequently, the physicochemical properties of the outer membrane in bacteria play a key role for attachment to surfaces and therefore for biofilm formation. Bordetella pertussis is a Gram-negative bacterium that colonizes the respiratory tract of humans, producing whooping cough or pertussis, a highly infectious disease. B. pertussis uses various adhesins exposed on its surface to promote cell-surface and cell-cell interactions. The most dominant adhesin function is displayed by filamentous hemagglutinin (FHA). B. pertussis Tohama I wild-type (Vir+) strain and two defective mutants, an avirulent (Vir-) and a FHA-deficient (FHA-) B. pertussis strains were studied by AFM under physiological conditions to evaluate how the presence or absence of adhesins affects the mechanical properties of the B. pertussis cell surface. Quantitative information on the nanomechanical properties of the bacterial envelope was obtained by AFM force-volume analysis. These studies suggested that the presence of virulence factors is correlated with an increase in the average membrane rigidity, which is largely influenced by the presence of FHA. Moreover, for this system we built a nanoscale stiffness map that reveals an inhomogeneous spatial distribution of Young modulus as well as the presence of rigid nanodomains on the cell surface.
Collapse
Affiliation(s)
- L Arnal
- Facultad de Ciencias Exactas, Centro de Investigación y Desarrollo de Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), UNLP. 50 No. 227, 1900 La Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Contribution of Bordetella filamentous hemagglutinin and adenylate cyclase toxin to suppression and evasion of interleukin-17-mediated inflammation. Infect Immun 2012; 80:2061-75. [PMID: 22473603 DOI: 10.1128/iai.00148-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bordetella pertussis and Bordetella bronchiseptica establish respiratory infections with notorious efficiency. Our previous studies showed that the fhaB genes of B. pertussis and B. bronchiseptica, which encode filamentous hemagglutinin (FHA), are functionally interchangeable and provided evidence that FHA-deficient B. bronchiseptica induces more inflammation in the lungs of mice than wild-type B. bronchiseptica. We show here that the robust inflammatory response to FHA-deficient B. bronchiseptica is characterized by the early and sustained influx of interleukin-17 (IL-17)-positive neutrophils and macrophages and, at 72 h postinoculation, IL-17-positive CD4(+) T cells, suggesting that FHA allows the bacteria to suppress the development of an IL-17-mediated inflammatory response. We also show that the cyaA genes of B. pertussis and B. bronchiseptica, which encode adenylate cyclase toxin (ACT), are functionally interchangeable and that ACT, specifically its catalytic activity, is required for B. bronchiseptica to resist phagocytic clearance but is neither required for nor inhibitory of the induction of inflammation if bacteria are present in numbers sufficient to persist during the first 3 days postinoculation. Incubation of bone marrow-derived macrophages with a ΔcyaA strain caused decreased production of IL-1β and increased production of tumor necrosis factor alpha (TNF-α) and IL-12, while incubation with a ΔcyaA ΔfhaB strain caused increased production of IL-23. These data suggest that FHA and ACT both contribute to suppress the recruitment of neutrophils and the development of an IL-17-mediated immune response. To our knowledge, this is the first demonstration of a microbial pathogen suppressing IL-17-mediated inflammation in vivo as a strategy to evade innate immunity.
Collapse
|
28
|
A novel sensor kinase is required for Bordetella bronchiseptica to colonize the lower respiratory tract. Infect Immun 2011; 79:3216-28. [PMID: 21606184 DOI: 10.1128/iai.00005-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacterial virulence is influenced by the activity of two-component regulator systems (TCSs), which consist of membrane-bound sensor kinases that allow bacteria to sense the external environment and cytoplasmic, DNA-binding response regulator proteins that control appropriate gene expression. Respiratory pathogens of the Bordetella genus require the well-studied TCS BvgAS to control the expression of many genes required for colonization of the mammalian respiratory tract. Here we describe the identification of a novel gene in Bordetella bronchiseptica, plrS, the product of which shares sequence homology to several NtrY-family sensor kinases and is required for B. bronchiseptica to colonize and persist in the lower, but not upper, respiratory tract in rats and mice. The plrS gene is located immediately 5' to and presumably cotranscribed with a gene encoding a putative response regulator, supporting the idea that PlrS and the product of the downstream gene may compose a TCS. Consistent with this hypothesis, the PlrS-dependent colonization phenotype requires a conserved histidine that serves as the site of autophosphorylation in other sensor kinases, and in strains lacking plrS, the production and/or cellular localization of several immune-recognized proteins is altered in comparison to that in the wild-type strain. Because plrS is required for colonization and persistence only in the lower respiratory tract, a site where innate and adaptive immune mechanisms actively target infectious agents, we hypothesize that its role may be to allow Bordetella to resist the host immune response.
Collapse
|
29
|
The Bordetella avium BAV1965-1962 fimbrial locus is regulated by temperature and produces fimbriae involved in adherence to turkey tracheal tissue. Infect Immun 2011; 79:2423-9. [PMID: 21464081 DOI: 10.1128/iai.01169-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica cause respiratory tract disease in mammals, whereas Bordetella avium causes respiratory tract disease in avian hosts. While there are striking similarities between the diseases caused by the mammalian- and avian-adapted bordetellae, differences at the genetic level may account for their different host tropisms. Bacterial pathogens utilize the chaperone-usher pathway to assemble extracellular multisubunit structures (fimbriae) that play a role in virulence. Fimbriae of the mammalian bordetellae mediate attachment to the host respiratory epithelium. They are assembled by a single chaperone/usher system encoded by the fimbrial biogenesis operon fimA-D. B. avium contains a homologous fimbrial operon (BAV1965-1962), and we report here the functionality of this locus. Reverse transcription (RT)-PCR and quantitative PCR analyses demonstrated that transcription of the locus is regulated by temperature. By immuno-transmission electron microscopy (TEM), BAV1965-containing fimbriae were observed on bacteria grown at 37°C but not those grown at 22°C. A mutant in which BAV1965-1962 was deleted displayed significantly lower levels of adherence to turkey tracheal rings than the wild type. Thus, the BAV1965-1962 fimbrial locus is functional, its expression is regulated in response to temperature, and it produces fimbriae involved in adherence to host respiratory tract tissue.
Collapse
|
30
|
Okamba FR, Arella M, Music N, Jia JJ, Gottschalk M, Gagnon CA. Potential use of a recombinant replication-defective adenovirus vector carrying the C-terminal portion of the P97 adhesin protein as a vaccine against Mycoplasma hyopneumoniae in swine. Vaccine 2010; 28:4802-9. [DOI: 10.1016/j.vaccine.2010.04.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/25/2010] [Accepted: 04/26/2010] [Indexed: 11/16/2022]
|
31
|
Pertactin is required for Bordetella species to resist neutrophil-mediated clearance. Infect Immun 2010; 78:2901-9. [PMID: 20421378 DOI: 10.1128/iai.00188-10] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pertactin (PRN) is an autotransporter protein produced by all members of the Bordetella bronchiseptica cluster, which includes B. pertussis, B. parapertussis, and B. bronchiseptica. It is a primary component of acellular pertussis vaccines, and anti-PRN antibody titers correlate with protection. In vitro studies have suggested that PRN functions as an adhesin and that an RGD motif located in the center of the passenger domain is important for this function. Two regions of PRN that contain sequence repeats (region 1 [R1] and R2) show polymorphisms among strains and have been implicated in vaccine-driven evolution. We investigated the role of PRN in pathogenesis using B. bronchiseptica and natural-host animal models. A Deltaprn mutant did not differ from wild-type B. bronchiseptica in its ability to adhere to epithelial and macrophage-like cells in vitro or to establish respiratory infection in rats but was cleared much faster than wild-type bacteria in a mouse lung inflammation model. Unlike wild-type B. bronchiseptica, the Deltaprn mutant was unable to cause a lethal infection in SCID-Bg mice, but, like wild-type bacteria, it was lethal for neutropenic mice. These results suggest that PRN plays a critical role in allowing Bordetella to resist neutrophil-mediated clearance. Mutants producing PRN proteins in which the RGD motif was replaced with RGE or in which R1 and R2 were deleted were indistinguishable from wild-type bacteria in all assays, suggesting that these sequences do not contribute to PRN function.
Collapse
|
32
|
Cross-species protection mediated by a Bordetella bronchiseptica strain lacking antigenic homologs present in acellular pertussis vaccines. Infect Immun 2010; 78:2008-16. [PMID: 20176797 DOI: 10.1128/iai.01142-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Bordetella species are Gram-negative bacterial pathogens that are characterized by long-term colonization of the mammalian respiratory tract and are causative agents of respiratory diseases in humans and animals. Despite widespread and efficient vaccination, there has been a world-wide resurgence of pertussis, which remains the leading cause of vaccine-preventable death in developed countries. It has been proposed that current acellular vaccines (Pa) composed of only a few bacterial proteins may be less efficacious because of vaccine-induced antigenic shifts and adaptations. To gain insight into the development of a newer generation of vaccines, we constructed a Bordetella bronchiseptica strain (LPaV) that does not express the antigenic homologs included in any of the Pa vaccines currently in use. This strain also lacks adenylate cyclase toxin, an essential virulence factor, and BipA, a surface protein. While LPaV colonized the mouse nose as efficiently as the wild-type strain, it was highly deficient in colonization of the lower respiratory tract and was attenuated in induction of inflammation and injury to the lungs. Strikingly, to our surprise, we found that in an intranasal murine challenge model, LPaV elicited cross-species protection against both B. bronchiseptica and Bordetella pertussis. Our data suggest the presence of immunogenic protective components other than those included in the pertussis vaccine. Combined with the whole-genome sequences of many Bordetella spp. that are available, the results of this study should serve as a platform for strategic development of the next generation of acellular pertussis vaccines.
Collapse
|
33
|
Microarray and functional analysis of growth phase-dependent gene regulation in Bordetella bronchiseptica. Infect Immun 2009; 77:4221-31. [PMID: 19667046 DOI: 10.1128/iai.00136-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Growth phase-dependent gene regulation has recently been demonstrated to occur in Bordetella pertussis, with many transcripts, including known virulence factors, significantly decreasing during the transition from logarithmic to stationary-phase growth. Given that B. pertussis is thought to have derived from a Bordetella bronchiseptica-like ancestor, we hypothesized that growth phase-dependent gene regulation would also occur in B. bronchiseptica. Microarray analysis revealed and quantitative real-time PCR (qRT-PCR) confirmed that growth phase-dependent gene regulation occurs in B. bronchiseptica, resulting in prominent temporal shifts in global gene expression. Two virulence phenotypes associated with these gene expression changes were tested. We found that growth-dependent increases in expression of some type III secretion system (TTSS) genes led to a growth phase-dependent increase in a TTSS-dependent function, cytotoxicity. Although the transcription of genes encoding adhesins previously shown to mediate adherence was decreased in late-log and stationary phases, we found that the adherence of B. bronchiseptica did not decrease in these later phases of growth. Microarray analysis revealed and qRT-PCR confirmed that growth phase-dependent gene regulation occurred in both Bvg(+) and Bvg(-) phase-locked mutants, indicating that growth phase-dependent gene regulation in B. bronchiseptica can function independently from the BvgAS regulatory system.
Collapse
|
34
|
Egberink H, Addie D, Belák S, Boucraut-Baralon C, Frymus T, Gruffydd-Jones T, Hartmann K, Hosie MJ, Lloret A, Lutz H, Marsilio F, Pennisi MG, Radford AD, Thiry E, Truyen U, Horzinek MC. Bordetella bronchiseptica infection in cats. ABCD guidelines on prevention and management. J Feline Med Surg 2009; 11:610-4. [PMID: 19481041 PMCID: PMC11132281 DOI: 10.1016/j.jfms.2009.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OVERVIEW Bordetella bronchiseptica is a Gram-negative bacterium that colonises the respiratory tract of mammals and is considered to be a primary pathogen of domestic cats. It is sensible to consider B bronchiseptica as a rare cause of zoonotic infections. The bacterium is susceptible to common disinfectants. INFECTION The bacterium is shed in oral and nasal secretions of infected cats. Dogs with respiratory disease are an infection risk for cats. The microorganism colonises the ciliated epithelium of the respiratory tract of the host, establishing chronic infections. DISEASE SIGNS A wide range of respiratory signs has been associated with B bronchiseptica infection, from a mild illness with fever, coughing, sneezing, ocular discharge and lymphadenopathy to severe pneumonia with dyspnoea, cyanosis and death. DIAGNOSIS Bacterial culture and PCR lack sensitivity. Samples for isolation can be obtained from the oropharynx (swabs) or via transtracheal wash/ bronchoalveolar lavage. DISEASE MANAGEMENT Antibacterial therapy is indicated, even if the signs are mild. Where sensitivity data are unavailable, tetracyclines are recommended. Doxycycline is the antimicrobial of choice. Cats with severe B bronchiseptica infection require supportive therapy and intensive nursing care. VACCINATION RECOMMENDATIONS In some European countries an intranasal modified-live virus vaccine is available. The modified-live product is licensed for use as a single vaccination with annual boosters. Cats should not be routinely vaccinated against B bronchiseptica (non-core), since the infection generally causes only a mild disease.
Collapse
|
35
|
Contribution of Bordetella bronchiseptica filamentous hemagglutinin and pertactin to respiratory disease in swine. Infect Immun 2009; 77:2136-46. [PMID: 19237531 DOI: 10.1128/iai.01379-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella bronchiseptica is pervasive in swine populations and plays multiple roles in respiratory disease. Most studies addressing virulence factors of B. bronchiseptica are based on isolates derived from hosts other than pigs. Two well-studied virulence factors implicated in the adhesion process are filamentous hemagglutinin (FHA) and pertactin (PRN). We hypothesized that both FHA and PRN would serve critical roles in the adhesion process and be necessary for colonization of the swine respiratory tract. To investigate the role of FHA and PRN in Bordetella pathogenesis in swine, we constructed mutants containing an in-frame deletion of the FHA or the PRN structural gene in a virulent B. bronchiseptica swine isolate. Both mutants were compared to the wild-type swine isolate for their ability to colonize and cause disease in swine. Colonization of the FHA mutant was lower than that of the wild type at all respiratory tract sites and time points examined and caused limited to no disease. In contrast, the PRN mutant caused similar disease severity relative to the wild type; however, colonization of the PRN mutant was reduced relative to the wild type during early and late infection and induced higher anti-Bordetella antibody titers. Together, our results indicate that despite inducing different pathologies and antibody responses, both FHA and PRN are necessary for optimal colonization of the swine respiratory tract.
Collapse
|
36
|
Julio SM, Inatsuka CS, Mazar J, Dieterich C, Relman DA, Cotter PA. Natural-host animal models indicate functional interchangeability between the filamentous haemagglutinins of Bordetella pertussis and Bordetella bronchiseptica and reveal a role for the mature C-terminal domain, but not the RGD motif, during infection. Mol Microbiol 2009; 71:1574-90. [PMID: 19220744 DOI: 10.1111/j.1365-2958.2009.06623.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria of the Bordetella genus cause respiratory tract infections. Both broad host range (e.g. Bordetella bronchiseptica) and human-adapted (e.g. Bordetella pertussis) strains produce a surface-exposed and secreted protein called filamentous haemagglutinin (FHA) that functions in adherence and immunomodulation. Previous studies using B. pertussis and cultured mammalian cells identified several FHA domains with potential roles in host cell interactions, including an Arg-Gly-Asp (RGD) triplet that was reported to bind integrins on epithelial cells and monocytes to activate host signalling pathways. We show here that, in contrast to our previous report, the fhaB genes of B. pertussis and B. bronchiseptica are functionally interchangeable, at least with regard to the various in vitro and in vivo assays investigated. This result is significant because it indicates that information obtained studying FHA using B. bronchiseptica and natural-host animal models should apply to B. pertussis FHA as well. We also show that the C-terminus of mature FHA, which we name the MCD, mediates adherence to epithelial and macrophage-like cells and is required for colonization of the rat respiratory tract and modulation of the inflammatory response in mouse lungs. We could not, however, detect a role for the RGD in any of these processes.
Collapse
Affiliation(s)
- Steven M Julio
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9610, USA
| | | | | | | | | | | |
Collapse
|
37
|
Heikkinen E, Xing DK, Olander RM, Hytönen J, Viljanen MK, Mertsola J, He Q. Bordetella pertussis isolates in Finland: serotype and fimbrial expression. BMC Microbiol 2008; 8:162. [PMID: 18816412 PMCID: PMC2562373 DOI: 10.1186/1471-2180-8-162] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 09/25/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bordetella pertussis causes whooping cough or pertussis in humans. It produces several virulence factors, of which the fimbriae are considered adhesins and elicit immune responses in the host. B. pertussis has three distinct serotypes Fim2, Fim3 or Fim2,3. Generally, B. pertussis Fim2 strains predominate in unvaccinated populations, whereas Fim3 strains are often isolated in vaccinated populations. In Finland, pertussis vaccination was introduced in 1952. The whole-cell vaccine contained two strains, 18530 (Fim3) since 1962 and strain 1772 (Fim2,3) added in 1976. After that the vaccine has remained the same until 2005 when the whole-cell vaccine was replaced by the acellular vaccine containing pertussis toxin and filamentous hemagglutinin. Our aims were to study serotypes of Finnish B. pertussis isolates from 1974 to 2006 in a population with > 90% vaccination coverage and fimbrial expression of the isolates during infection. Serotyping was done by agglutination and serotype-specific antibody responses were determined by blocking ELISA. RESULTS Altogether, 1,109 isolates were serotyped. Before 1976, serotype distributions of Fim2, Fim3 and Fim2,3 were 67%, 19% and 10%, respectively. From 1976 to 1998, 94% of the isolates were Fim2 serotype. Since 1999, the frequency of Fim3 strains started to increase and reached 83% during a nationwide epidemic in 2003. A significant increase in level of serum IgG antibodies against purified fimbriae was observed between paired sera of 37 patients. The patients infected by Fim3 strains had antibodies which blocked the binding of monoclonal antibodies to Fim3 but not to Fim2. Moreover, about one third of the Fim2 strain infected patients developed antibodies capable of blocking of binding of both anti-Fim2 and Fim3 monoclonal antibodies. CONCLUSION Despite extensive vaccinations in Finland, B. pertussis Fim2 strains were the most common serotype. Emergence of Fim3 strains started in 1999 and coincided with nationwide epidemics. Results of serotype-specific antibody responses suggest that Fim2 strains could express Fim3 during infection, showing a difference in fimbrial expression between in vivo and in vitro.
Collapse
Affiliation(s)
- Eriikka Heikkinen
- Pertussis Reference Laboratory, National Public Health Institute, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
38
|
Serendipitous discovery of an immunoglobulin-binding autotransporter in Bordetella species. Infect Immun 2008; 76:2966-77. [PMID: 18426869 DOI: 10.1128/iai.00323-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the serendipitous discovery of BatB, a classical-type Bordetella autotransporter (AT) protein with an approximately 180-kDa passenger domain that remains noncovalently associated with the outer membrane. Like genes encoding all characterized protein virulence factors in Bordetella species, batB transcription is positively regulated by the master virulence regulatory system BvgAS. BatB is predicted to share similarity with immunoglobulin A (IgA) proteases, and we showed that BatB binds Ig in vitro. In vivo, a Bordetella bronchiseptica DeltabatB mutant was unable to overcome innate immune defenses and was cleared from the lower respiratory tracts of mice more rapidly than wild-type B. bronchiseptica. This defect was abrogated in SCID mice, suggesting that BatB functions to resist clearance during the first week postinoculation in a manner dependent on B- and T-cell-mediated activities. Taken together with the previous demonstration that polymorphonuclear neutrophils (PMN) are critical for the control of B. bronchiseptica in mice, our data support the hypothesis that BatB prevents nonspecific antibodies from facilitating PMN-mediated clearance during the first few days postinoculation. Neither of the strictly human-adapted Bordetella subspecies produces a fully functional BatB protein; nucleotide differences within the putative promoter region prevent batB transcription in Bordetella pertussis, and although expressed, the batB gene of human-derived Bordetella parapertussis (B. parapertussis(hu)) contains a large in-frame deletion relative to batB of B. bronchiseptica. Taken together, our data suggest that BatB played an important role in the evolution of virulence and host specificity among the mammalian-adapted bordetellae.
Collapse
|
39
|
Sloan GP, Love CF, Sukumar N, Mishra M, Deora R. The Bordetella Bps polysaccharide is critical for biofilm development in the mouse respiratory tract. J Bacteriol 2007; 189:8270-6. [PMID: 17586629 PMCID: PMC2168688 DOI: 10.1128/jb.00785-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetellae are respiratory pathogens that infect both humans and animals. Bordetella bronchiseptica establishes asymptomatic and long-term to life-long infections of animal nasopharynges. While the human pathogen Bordetella pertussis is the etiological agent of the acute disease whooping cough in infants and young children, it is now being increasingly isolated from the nasopharynges of vaccinated adolescents and adults who sometimes show milder symptoms, such as prolonged cough illness. Although it has been shown that Bordetella can form biofilms in vitro, nothing is known about its biofilm mode of existence in mammalian hosts. Using indirect immunofluorescence and scanning electron microscopy, we examined nasal tissues from mice infected with B. bronchiseptica. Our results demonstrate that a wild-type strain formed robust biofilms that were adherent to the nasal epithelium and displayed architectural attributes characteristic of a number of bacterial biofilms formed on inert surfaces. We have previously shown that the Bordetella Bps polysaccharide encoded by the bpsABCD locus is critical for the stability and maintenance of three-dimensional structures of biofilms. We show here that Bps is essential for the formation of efficient nasal biofilms and is required for the colonization of the nose. Our results document a biofilm lifestyle for Bordetella in mammalian respiratory tracts and highlight the essential role of the Bps polysaccharide in this process and in persistence of the nares.
Collapse
Affiliation(s)
- Gina Parise Sloan
- Program in Molecular Genetics, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
40
|
Amela I, Cedano J, Querol E. Pathogen proteins eliciting antibodies do not share epitopes with host proteins: a bioinformatics approach. PLoS One 2007; 2:e512. [PMID: 17551592 PMCID: PMC1885212 DOI: 10.1371/journal.pone.0000512] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 05/04/2007] [Indexed: 12/20/2022] Open
Abstract
The best way to prevent diseases caused by pathogens is by the use of vaccines. The advent of genomics enables genome-wide searches of new vaccine candidates, called reverse vaccinology. The most common strategy to apply reverse vaccinology is by designing subunit recombinant vaccines, which usually generate an humoral immune response due to B-cell epitopes in proteins. A major problem for this strategy is the identification of protective immunogenic proteins from the surfome of the pathogen. Epitope mimicry may lead to auto-immune phenomena related to several human diseases. A sequence-based computational analysis has been carried out applying the BLASTP algorithm. Therefore, two huge databases have been created, one with the most complete and current linear B-cell epitopes, and the other one with the surface-protein sequences of the main human respiratory bacterial pathogens. We found that none of the 7353 linear B-cell epitopes analysed shares any sequence identity region with human proteins capable of generating antibodies, and that only 1% of the 2175 exposed proteins analysed contain a stretch of shared sequence with the human proteome. These findings suggest the existence of a mechanism to avoid autoimmunity. We also propose a strategy for corroborating or warning about the viability of a protein linear B-cell epitope as a putative vaccine candidate in a reverse vaccinology study; so, epitopes without any sequence identity with human proteins should be very good vaccine candidates, and the other way around.
Collapse
Affiliation(s)
- Isaac Amela
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Cedano
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
41
|
Serra D, Bosch A, Russo DM, Rodríguez ME, Zorreguieta A, Schmitt J, Naumann D, Yantorno O. Continuous nondestructive monitoring of Bordetella pertussis biofilms by Fourier transform infrared spectroscopy and other corroborative techniques. Anal Bioanal Chem 2007; 387:1759-67. [PMID: 17216159 DOI: 10.1007/s00216-006-1079-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 12/04/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
This work describes the application of several analytical techniques to characterize the development of Bordetella pertussis biofilms and to examine, in particular, the contribution of virulence factors in this development. Growth of surface-attached virulent and avirulent B. pertussis strains was monitored in continuous-flow chambers by techniques such as the crystal violet method, and nondestructive methodologies like fluorescence microscopy and Fourier transform (FT) IR spectroscopy. Additionally, B. pertussis virulent and avirulent strains expressing green fluorescent protein were grown adhered to the base of a glass chamber of 1-microm thickness. Three-dimensional images of mature biofilms, acquired by confocal laser scanning microscopy, were quantitatively analysed by means of the computer program COMSTAT. Our results indicate that only the virulent (Bvg(+)) phase of B. pertussis is able to attach to surfaces and develop a mature biofilm. In the virulent phase these bacteria are capable of producing a biofilm consisting of microcolonies of approximately 200 microm in diameter and 24 microm in depth. FTIR spectroscopy allowed us not only to follow the dynamics of biofilm growth through specific biomass and biofilm marker absorption bands, but also to monitor the maturation of the biofilm by means of the increase of the carbohydrate-to-protein ratio.
Collapse
Affiliation(s)
- Diego Serra
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, CONICET), Facultad de Ciencias Exactas, UNLP, Calles 50 y 115, 1900 La Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Huebner ES, Christman B, Dummer S, Tang YW, Goodman S. Hospital-acquired Bordetella bronchiseptica infection following hematopoietic stem cell transplantation. J Clin Microbiol 2006; 44:2581-3. [PMID: 16825386 PMCID: PMC1489478 DOI: 10.1128/jcm.00510-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two patients who had undergone nonmyeloablative allogeneic stem cell transplantation 53 and 112 days earlier and were being monitored at the same transplant center developed severe Bordetella bronchiseptica infections within 3 days of each other. Pulsed-field gel electrophoresis analysis indicated that the isolates from the two cases were identical. Neither patient had had direct contact with animals since transplantation. These findings strongly support nosocomial transmission of B. bronchiseptica.
Collapse
Affiliation(s)
- Elizabeth S Huebner
- Department of Medicine, Vanderbilt University Hospital, Medical Center, 4605 TVC, Nashville, TN 37232-5310, USA
| | | | | | | | | |
Collapse
|
43
|
Mazar J, Cotter PA. Topology and maturation of filamentous haemagglutinin suggest a new model for two‐partner secretion. Mol Microbiol 2006; 62:641-54. [PMID: 16999837 DOI: 10.1111/j.1365-2958.2006.05392.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two-partner secretion (TPS) is the most widely distributed secretion pathway known. These systems export large exoproteins through highly conserved channel-forming beta-barrel proteins. Filamentous haemagglutinin (FHA), expressed by Bordetella species, is the prototypical TPS family member. Here we show that the C-terminus of mature FHA, as opposed to the N-terminus as previously proposed, is exposed on the cell surface and is required for mediating adherence to cultured epithelial cells. We show that the C-terminus of the FHA pro-protein (FhaB) is required for FHA function in vitro and in vivo and we show that cleavage of FhaB to form FHA is not the mechanism by which FHA is released from the cell. Based on these data, we propose a new model for TPS. This model provides an explanation for the energetics of export of globular protein domains across membranes in the absence of ATP and it suggests a new mechanism for the control of protein folding.
Collapse
Affiliation(s)
- Joseph Mazar
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9610, USA
| | | |
Collapse
|
44
|
Sebaihia M, Preston A, Maskell DJ, Kuzmiak H, Connell TD, King ND, Orndorff PE, Miyamoto DM, Thomson NR, Harris D, Goble A, Lord A, Murphy L, Quail MA, Rutter S, Squares R, Squares S, Woodward J, Parkhill J, Temple LM. Comparison of the genome sequence of the poultry pathogen Bordetella avium with those of B. bronchiseptica, B. pertussis, and B. parapertussis reveals extensive diversity in surface structures associated with host interaction. J Bacteriol 2006; 188:6002-15. [PMID: 16885469 PMCID: PMC1540077 DOI: 10.1128/jb.01927-05] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella avium is a pathogen of poultry and is phylogenetically distinct from Bordetella bronchiseptica, Bordetella pertussis, and Bordetella parapertussis, which are other species in the Bordetella genus that infect mammals. In order to understand the evolutionary relatedness of Bordetella species and further the understanding of pathogenesis, we obtained the complete genome sequence of B. avium strain 197N, a pathogenic strain that has been extensively studied. With 3,732,255 base pairs of DNA and 3,417 predicted coding sequences, it has the smallest genome and gene complement of the sequenced bordetellae. In this study, the presence or absence of previously reported virulence factors from B. avium was confirmed, and the genetic bases for growth characteristics were elucidated. Over 1,100 genes present in B. avium but not in B. bronchiseptica were identified, and most were predicted to encode surface or secreted proteins that are likely to define an organism adapted to the avian rather than the mammalian respiratory tracts. These include genes coding for the synthesis of a polysaccharide capsule, hemagglutinins, a type I secretion system adjacent to two very large genes for secreted proteins, and unique genes for both lipopolysaccharide and fimbrial biogenesis. Three apparently complete prophages are also present. The BvgAS virulence regulatory system appears to have polymorphisms at a poly(C) tract that is involved in phase variation in other bordetellae. A number of putative iron-regulated outer membrane proteins were predicted from the sequence, and this regulation was confirmed experimentally for five of these.
Collapse
Affiliation(s)
- Mohammed Sebaihia
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Inatsuka CS, Julio SM, Cotter PA. Bordetella filamentous hemagglutinin plays a critical role in immunomodulation, suggesting a mechanism for host specificity. Proc Natl Acad Sci U S A 2005; 102:18578-83. [PMID: 16339899 PMCID: PMC1317942 DOI: 10.1073/pnas.0507910102] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bordetella pertussis, the causative agent of the acute childhood respiratory disease whooping cough, is a human-adapted variant of Bordetella bronchiseptica, which displays a broad host range and typically causes chronic, asymptomatic infections. These pathogens express a similar but not identical surface-exposed and secreted protein called filamentous hemagglutinin (FHA) that has been proposed to function as both a primary adhesin and an immunomodulator. To test the hypothesis that FHA plays an important role in determining host specificity and/or the propensity to cause acute versus chronic disease, we constructed a B. bronchiseptica strain expressing FHA from B. pertussis (FHA(Bp)) and compared it with wild-type B. bronchiseptica in several natural-host infection models. FHA(Bp) was able to substitute for FHA from B. bronchiseptica (FHA(Bb)) with regard to its ability to mediate adherence to several epithelial and macrophage-like cell lines in vitro, but it was unable to substitute for FHA(Bb) in vivo. Specifically, FHA(Bb), but not FHA(Bp), allowed B. bronchiseptica to colonize the lower respiratory tracts of rats, to modulate the inflammatory response in the lungs of immunocompetent mice, resulting in decreased lung damage and increased bacterial persistence, to induce a robust anti-Bordetella antibody response in these immunocompetent mice, and to overcome innate immunity and cause a lethal infection in immunodeficient mice. These results indicate a critical role for FHA in B. bronchiseptica-mediated immunomodulation, and they suggest a role for FHA in host specificity.
Collapse
Affiliation(s)
- Carol S Inatsuka
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106-9610, USA
| | | | | |
Collapse
|
46
|
López-Boado YS, Cobb LM, Deora R. Bordetella bronchiseptica flagellin is a proinflammatory determinant for airway epithelial cells. Infect Immun 2005; 73:7525-34. [PMID: 16239555 PMCID: PMC1273857 DOI: 10.1128/iai.73.11.7525-7534.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Motility is an important virulence phenotype for many bacteria, and flagellin, the monomeric component of flagella, is a potent proinflammatory factor. Of the three Bordetella species, Bordetella pertussis and Bordetella parapertussis are nonmotile human pathogens, while Bordetella bronchiseptica expresses flagellin and causes disease in animals and immunocompromised human hosts. The BvgAS two-component signal transduction system regulates phenotypic-phase transition (Bvg+, Bvg-, and Bvg(i)) in bordetellae. The Bvg- phase of B. bronchiseptica is characterized by the expression of flagellin and the repression of adhesins and toxins necessary for the colonization of the respiratory tract. B. bronchiseptica naturally infects a variety of animal hosts and constitutes an excellent model to study Bordetella pathogenesis. Using in vitro coculture models of bacteria and human lung epithelial cells, we studied the effects of B. bronchiseptica flagellin on host defense responses. Our results show that B. bronchiseptica flagellin is a potent proinflammatory factor that induces chemokine, cytokine, and host defense gene expression. Furthermore, we investigated receptor specificity in the response to B. bronchiseptica flagellin. Our results show that B. bronchiseptica flagellin is able to signal effectively through both human and mouse Toll-like receptor 5.
Collapse
Affiliation(s)
- Yolanda S López-Boado
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
47
|
Fernández J, Sisti F, Bottero D, Gaillard ME, Hozbor D. Constitutive expression of bvgR-repressed factors is not detrimental to the Bordetella bronchiseptica–host interaction. Res Microbiol 2005; 156:843-50. [PMID: 16002267 DOI: 10.1016/j.resmic.2005.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Revised: 03/10/2005] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
Bordetella bronchiseptica infection requires the activation of virulence genes by the two-component BvgAS regulatory system, which also activates bvgR, a repressor of another set of genes called avirulence genes. Whether or not BvgR-repressed genes play a role in pathogenesis is poorly understood. To evaluate their possible contribution to the bacteria-host interaction we constructed a B. bronchiseptica bvgR insertional mutant (BbBvgR mutant). As expected, this mutant simultaneously expressed virulence and avirulence markers. In vitro experiments demonstrated that, although the BbBvgR mutant expressed avirulence factors during its virulent state, the bacteria adhered to and survived within human epithelial cells as efficiently as the wild-type strain. The mutant was not impaired for colonization of the respiratory tract in vivo, as it was effectively cleared from lungs during the same time period as the wild-type strain.
Collapse
Affiliation(s)
- Julieta Fernández
- Instituto de Bioquímica y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900), La Plata, República Argentina
| | | | | | | | | |
Collapse
|
48
|
Julio SM, Cotter PA. Characterization of the filamentous hemagglutinin-like protein FhaS in Bordetella bronchiseptica. Infect Immun 2005; 73:4960-71. [PMID: 16041011 PMCID: PMC1201180 DOI: 10.1128/iai.73.8.4960-4971.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filamentous hemagglutinin (FHA) is a large (>200 kDa), rod-shaped protein expressed by bordetellae that is both surface-associated and secreted. FHA mediates bacterial adherence to epithelial cells and macrophages in vitro and is absolutely required for tracheal colonization in vivo. The recently sequenced Bordetella bronchiseptica genome revealed the presence of a gene, fhaS, that is nearly identical to fhaB, the FHA structural gene. We show that although fhaS expression requires the BvgAS virulence control system, it is maximal only under a subset of conditions in which BvgAS is active, suggesting an additional level of regulation. We also show that, like FHA, FhaS undergoes a C-terminal proteolytic processing event and is both surface-associated and secreted and that export across the outer membrane requires the channel-forming protein FhaC. Unlike FHA, however, FhaS was unable to mediate adherence of B. bronchiseptica to epithelial cell lines in vitro and was not required for respiratory tract colonization in vivo. In a coinfection experiment, a DeltafhaS strain was out-competed by wild-type B. bronchiseptica, indicating that fhaS is expressed in vivo and that FhaS contributes to bacterial fitness in a manner revealed when the mutant must compete with wild-type bacteria. These data suggest that FHA and FhaS perform distinct functions during the Bordetella infectious cycle. A survey of various Bordetella strains revealed two distinct fhaS alleles that segregate according to pathogen host range and that B. parapertussis(hu) most likely acquired its fhaS allele from B. pertussis horizontally, suggesting fhaS may contribute to host-species specificity.
Collapse
Affiliation(s)
- Steven M Julio
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106-9610, USA
| | | |
Collapse
|
49
|
Edwards JA, Groathouse NA, Boitano S. Bordetella bronchiseptica adherence to cilia is mediated by multiple adhesin factors and blocked by surfactant protein A. Infect Immun 2005; 73:3618-26. [PMID: 15908391 PMCID: PMC1111863 DOI: 10.1128/iai.73.6.3618-3626.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the virulent state (Bvg+), Bordetella bronchiseptica expresses adhesins and toxins that mediate adherence to the upper airway epithelium, an essential early step in pathogenesis. In this study, we used a rabbit tracheal epithelial cell binding assay to test how specific host or pathogen factors contribute to ciliary binding. The host antimicrobial agent surfactant protein A (SP-A) effectively reduced ciliary binding by Bvg+ B. bronchiseptica. To evaluate the relative contributions of bacterial adhesins and toxins to ciliary binding, we used mutant strains of B. bronchiseptica in the binding assay. When compared to Bvg+ or Bvg- phase-locked B. bronchiseptica strains, single-knockout strains lacking one of the known adhesins (filamentous hemagglutinin, pertactin, or fimbriae) displayed an intermediate ciliary binding capacity throughout the coincubation. A B. bronchiseptica strain deficient in adenylate cyclase-hemolysin toxin also displayed an intermediate level of adherence between Bvg+ and Bvg- strains and had the lowest ciliary affinity of any of the Bvg+ phase strains tested. A B. bronchiseptica strain that was missing dermonecrotic toxin also displayed intermediate binding; however, this strain displayed ciliary binding significantly higher than most of the adhesin knockouts tested. Taken together, these findings suggest that virulent-state B. bronchiseptica expresses multiple adhesins with overlapping contributions to ciliary adhesion and that host production of SP-A can provide innate immunity by blocking bacterial adherence to the ciliated epithelium.
Collapse
Affiliation(s)
- Jessica A Edwards
- Arizona Respiratory Center, Room 2338, AHSC Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ 85724-5030, USA
| | | | | |
Collapse
|
50
|
Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 2005; 18:326-82. [PMID: 15831828 PMCID: PMC1082800 DOI: 10.1128/cmr.18.2.326-382.2005] [Citation(s) in RCA: 810] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella respiratory infections are common in people (B. pertussis) and in animals (B. bronchiseptica). During the last two decades, much has been learned about the virulence determinants, pathogenesis, and immunity of Bordetella. Clinically, the full spectrum of disease due to B. pertussis infection is now understood, and infections in adolescents and adults are recognized as the reservoir for cyclic outbreaks of disease. DTaP vaccines, which are less reactogenic than DTP vaccines, are now in general use in many developed countries, and it is expected that the expansion of their use to adolescents and adults will have a significant impact on reducing pertussis and perhaps decrease the circulation of B. pertussis. Future studies should seek to determine the cause of the unique cough which is associated with Bordetella respiratory infections. It is also hoped that data gathered from molecular Bordetella research will lead to a new generation of DTaP vaccines which provide greater efficacy than is provided by today's vaccines.
Collapse
Affiliation(s)
- Seema Mattoo
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1752, USA
| | | |
Collapse
|