1
|
Dishan A, Gönülalan Z. Lacticaseibacillus paracasei AD22 Stress Response in Brined White Cheese Matrix: In Vitro Probiotic Profiles and Molecular Characterization. Probiotics Antimicrob Proteins 2025; 17:1725-1738. [PMID: 38421575 PMCID: PMC12055941 DOI: 10.1007/s12602-024-10216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 03/02/2024]
Abstract
Functionalizing foods involve discovering and integrating new candidate health-promoting bacteria into the food matrix. This study aimed (i) to reveal the probiotic potential of autochthonous Lacticaseibacillus paracasei AD22 by a series of in vitro tests and molecular characterization and (ii) to evaluate its application to the matrix of brined white cheese, which is the most common cheese in Türkiye, in terms of survival and stress response. To evaluate in vitro probiotic characteristics, L. paracasei AD22 was exposed to functional, technological, and safety tests. Pilot scale production was conducted to integrate L. paracasei AD22 into the brined white cheese matrix. The expression levels of stress-related genes (dnaK, groES, ftsH, argH, and hsp20) were detected by reverse-transcriptase polymerase chain reaction to determine the transcriptional stress response during ripening. The presence of genes encoding stress-related proteins was determined by whole-genome sequence analysis using a subsystem approach; the presence of antibiotic resistance and virulence genes was determined by ResFinder4.1 and VirulenceFinder 2.0 databases. The BAGEL4 database determined the presence of bacteriocin clusters. L. paracasei AD22 was found to survive in pH 2 and medium with 12% NaCl and did not cause hemolysis. Adhesion of the strain to Caco2 cells was 76.26 ± 4.81% and it had coaggregation/autoaggregation properties. It was determined that L. paracasei AD22 exceeded 7 log cfu/g in the cheese matrix at the end of the ripening period. Total mesophilic aerobes decreased in the cheese inoculated with L. paracasei AD22 after the 45th day of ripening. While hsp20 and groES genes were downregulated during ripening, argH was upregulated. Both downregulation and upregulation were observed in dnaK and ftsH. Fold changes indicating the expression levels of dnaK, groES, ftsH, argH, and hsp20 genes were not statistically significant during ripening (p > 0.05). Whole-genome sequence profiles revealed that the strain did not contain antibiotic and virulence genes but bacteriocin clusters encoding Enterolysin A (Class III bacteriocin), Carnosine CP52 (class II bacteriocin), Enterocin X beta chain (Class IIc bacteriocin), and the LanT region. Subsystems approach manifested that the most functional part of the genomic distribution belonged to metabolism, protein processing, and stress response functions. The study findings highlight that L. paracasei AD22 will provide biotechnological innovation as a probiotic adjunct because it contains tolerance factors and probiotic characteristics to produce new functional foods.
Collapse
Affiliation(s)
- Adalet Dishan
- Faculty of Veterinary Medicine, Dept. of Food Hygiene and Technology, Yozgat Bozok University, Yozgat, Türkiye.
| | - Zafer Gönülalan
- Faculty of Veterinary Medicine, Dept. of Veterinary Public Health, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
2
|
Prabhakar YK, Skariah S, Shanmugam G, Shome R. Molecular epidemiology, immunobiology, genomics and proteomics insights into bovine brucellosis. Vet Microbiol 2025; 305:110505. [PMID: 40233684 DOI: 10.1016/j.vetmic.2025.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Brucella species are intracellular Gram-negative bacteria that cause brucellosis, a global zoonosis that impacts cattle productivity and public health. Both cattle and buffaloes are susceptible to bovine brucellosis, which can lead to severe degenerative changes in uterine mucosa of non-pregnant animals, including ulcerative endometritis and fibrosis. Vasculitis, localized coagulative necrosis, and ulceration of the uterine mucosa have all been reported in pregnant animals. Male testicles get inflamed due to Brucella, which results in infertility. This review article covers the molecular epidemiology, pathophysiology, immunobiology, genomics, and proteomics of Brucella, with an emphasis on novel discoveries and more recent research, especially on bovine brucellosis. The integration of molecular pathology and sero-prevalence data provide the insights into epidemiology, transmission dynamics, and genetic diversity of bovine brucellosis. The immunobiological response studies of brucellosis have provided insights into the tactics employed by Brucella to infect host cells and elude immune responses. Proteomics was utilized to find biomarkers for both acute and chronic brucellosis, which resulted in the identification of proteins with differential expression linked to immune response, inflammation, and extracellular matrix modulation. The genetic diversity, virulence factors, and evolution of Brucella strains were mostly investigated using genomics. The genomic makeup and architecture of Brucella isolates were examined using whole-genome sequencing, which revealed genetic markers linked to pathogenicity and drug resistance. This review provides possible treatment targets, diagnostic biomarkers, and vaccine candidates, contributing to molecular understanding of bovine brucellosis.
Collapse
Affiliation(s)
- Y K Prabhakar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India
| | - Somy Skariah
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India
| | - G Shanmugam
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India
| | - Rajeswari Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru 560 064, India.
| |
Collapse
|
3
|
Sharma A, Tayal S, Bhatnagar S. Analysis of stress response in multiple bacterial pathogens using a network biology approach. Sci Rep 2025; 15:15342. [PMID: 40316612 PMCID: PMC12048639 DOI: 10.1038/s41598-025-91269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/19/2025] [Indexed: 05/04/2025] Open
Abstract
Stress response in bacterial pathogens promotes adaptation, virulence and antibiotic resistance. In this study, a network approach is applied to identify the common central mediators of stress response in five emerging opportunistic pathogens; Enterococcus faecium Aus0004, Staphylococcus aureus subsp. aureus USA300, Klebsiella pneumoniae MGH 78,578, Pseudomonas aeruginosa PAO1, and Mycobacterium tuberculosis H37Rv. A Protein-protein interaction network (PPIN) was constructed for each stressor using Cytoscape3.7.1 from the differentially expressed genes obtained from Gene expression omnibus datasets. A merged PPIN was constructed for each bacterium. Hub-bottlenecks in each network were the central stress response proteins and common pathways enriched in stress response were identified using KOBAS3.0. 31 hub-bottlenecks were common to each individual stress response, merged networks in all five pathogens and an independent cross stress (CS) response dataset of Escherichia coli. The 31 central nodes are in the RpoS mediated general stress regulon and also regulated by other stress response systems. Analysis of the 20 common metabolic pathways modulating stress response in all five bacteria showed that carbon metabolism pathway had the highest crosstalk with other pathways like amino acid biosynthesis and purine metabolism pathways. The central proteins identified can serve as targets for novel wide-spectrum antibiotics to overcome multidrug resistance.
Collapse
Affiliation(s)
- Anjali Sharma
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Sonali Tayal
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
4
|
Basharat Z, Foster LJ, Abbas S, Yasmin A. Comparative Proteomics of Bacteria Under Stress Conditions. Methods Mol Biol 2025; 2859:129-162. [PMID: 39436600 DOI: 10.1007/978-1-0716-4152-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Bacteria are unicellular organisms with the ability to exist in the harshest of climate and cope with sub-optimal fluctuating environmental conditions. They accomplish this by modification of their internal cellular environment. When external conditions are varied, change in the cell is triggered at the transcriptional level, which usually leads to proteolysis and rewiring of the proteome. Changes in cellular homeostasis, modifications in proteome, and dynamics of such survival mechanisms can be studied using various scientific techniques. Our focus in this chapter would be on comparative proteomics of bacteria under stress conditions using approaches like 2D electrophoresis accompanied by N-terminal sequencing and recently, mass spectrometry. More than 170 such studies on bacteria have been accomplished till to date and involve analysis of whole cells as well as that of cellular fractions, i.e., outer membrane, inner membrane, cell envelope, cytoplasm, thylakoid, lipid bodies, etc. Similar studies conducted on gram-negative and gram-positive model organism, i.e., Escherichia coli and Bacillus subtilis, respectively, have been summarized. Vital information, hypothesis about conservation of stress-specific proteome, and conclusions are also presented in the light of research conducted over the last decades.
Collapse
Affiliation(s)
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| | - Sidra Abbas
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Azra Yasmin
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan.
| |
Collapse
|
5
|
Nandini P, Jakka P, Murugan S, Mazumdar V, Kumar D, Prakash R, Barbuddhe SB, Radhakrishnan G. Immuno-profiling of Brucella proteins for developing improved vaccines and DIVA capable serodiagnostic assays for brucellosis. Front Microbiol 2023; 14:1253349. [PMID: 37860136 PMCID: PMC10582347 DOI: 10.3389/fmicb.2023.1253349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
Brucellosis remains a worldwide zoonotic disease with a serious impact on public health and livestock productivity. Controlling brucellosis in livestock is crucial for limiting human infections in the absence of effective human vaccines. Brucellosis control measures are majorly dependent on rigorous monitoring of disease outbreaks and mass vaccination of livestock. Live attenuated vaccines are available for livestock vaccination that play a vital role in brucellosis control programs in many countries. Even though the existing animal vaccines confer protection against brucellosis, they carry some drawbacks, including their infectivity to humans and interference with sero-monitoring. The available serodiagnostic assays for brucellosis depend on detecting anti-LPS antibodies in the serum. Since diagnosis plays a vital role in controlling brucellosis, developing improved serodiagnostic assays with enhanced specificity, sensitivity and DIVA capability is required. Therefore, it is essential to identify novel antigens for developing improved vaccines and serodiagnostic assays for brucellosis. In the present study, we performed a high throughput immunoprofiling of B. melitensis protein microarray using brucellosis-positive human and animal serum samples. The screening identified several serodominant proteins of Brucella that exhibited common or differential reactivity with sera from animals and humans. Subsequently, we cloned, expressed, and purified ten serodominant proteins, followed by analyzing their potential to develop next-generation vaccines and improved serodiagnostic assays for brucellosis. Further, we demonstrated the protective efficacy of one of the serodominant proteins against the B. melitensis challenge in mice. We found that the seroreactive protein, Dps (BMEI1980), strongly reacted with brucellosis-positive serum samples, but it did not react with sera from B. abortus S19-vaccinated cattle, indicating DIVA capability. A prototype lateral flow assay and indirect ELISA based on Dps protein exhibited high sensitivity, specificity, and DIVA capability. Thus, the present study identified promising candidates for developing improved vaccines and affordable, DIVA-capable serodiagnostic assays for animal and human brucellosis.
Collapse
Affiliation(s)
- Prachita Nandini
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Padmaja Jakka
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Subathra Murugan
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Varadendra Mazumdar
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
- Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Deepak Kumar
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Richa Prakash
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | | | | |
Collapse
|
6
|
de la Garza-García JA, Ouahrani-Bettache S, Lyonnais S, Ornelas-Eusebio E, Freddi L, Al Dahouk S, Occhialini A, Köhler S. Comparative Genome-Wide Transcriptome Analysis of Brucella suis and Brucella microti Under Acid Stress at pH 4.5: Cold Shock Protein CspA and Dps Are Associated With Acid Resistance of B. microti. Front Microbiol 2021; 12:794535. [PMID: 34966374 PMCID: PMC8710502 DOI: 10.3389/fmicb.2021.794535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Brucellae are facultative intracellular coccobacilli causing brucellosis, one of the most widespread bacterial zoonosis affecting wildlife animals, livestock and humans. The genus Brucella comprises classical and atypical species, such as Brucella suis and Brucella microti, respectively. The latter is characterized by increased metabolic activity, fast growth rates, and extreme acid resistance at pH 2.5, suggesting an advantage for environmental survival. In addition, B. microti is more acid-tolerant than B. suis at the intermediate pH of 4.5. This acid-resistant phenotype of B. microti may have major implications for fitness in soil, food products and macrophages. Our study focused on the identification and characterization of acid resistance determinants of B. suis and B. microti in Gerhardt's minimal medium at pH 4.5 and 7.0 for 20 min and 2 h by comparative RNA-Seq-based transcriptome analysis, validated by RT-qPCR. Results yielded a common core response in both species with a total of 150 differentially expressed genes, and acidic pH-dependent genes regulated specifically in each species. The identified core response mechanisms comprise proton neutralization or extrusion from the cytosol, participating in maintaining physiological intracellular pH values. Differential expression of 441 genes revealed species-specific mechanisms in B. microti with rapid physiological adaptation to acid stress, anticipating potential damage to cellular components and critical energy conditions. Acid stress-induced genes encoding cold shock protein CspA, pseudogene in B. suis, and stress protein Dps were associated with survival of B. microti at pH 4.5. B. suis response with 284 specifically regulated genes suggested increased acid stress-mediated protein misfolding or damaging, triggering the set-up of repair strategies countering the consequences rather than the origin of acid stress and leading to subsequent loss of viability. In conclusion, our work supports the hypothesis that increased acid stress resistance of B. microti is based on selective pressure for the maintenance of functionality of critical genes, and on specific differential gene expression, resulting in rapid adaptation.
Collapse
Affiliation(s)
- Jorge A de la Garza-García
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | - Safia Ouahrani-Bettache
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | | | - Erika Ornelas-Eusebio
- Unité des Zoonoses Bactériennes and Unité d'Epidémiologie, Laboratoire de Santé Animale, ANSES, University Paris-Est, Maisons-Alfort, France
| | - Luca Freddi
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | | | - Alessandra Occhialini
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | - Stephan Köhler
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| |
Collapse
|
7
|
Sauceda-Becerra R, Barrios-García H, Martínez-Burnes J, Arellano-Reynoso B, Benítez-Guzmán A, Hernández-Castro R, Alva-Pérez J. Brucella melitensis invA gene (BME_RS01060) transcription is promoted under acidic stress conditions. Arch Microbiol 2021; 204:52. [DOI: 10.1007/s00203-021-02664-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
|
8
|
Sun J, Dong H, Peng X, Liu Y, Jiang H, Feng Y, Li Q, Zhu L, Qin Y, Ding J. Deletion of the Transcriptional Regulator MucR in Brucella canis Affects Stress Responses and Bacterial Virulence. Front Vet Sci 2021; 8:650942. [PMID: 34250056 PMCID: PMC8267065 DOI: 10.3389/fvets.2021.650942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
The transcriptional regulator MucR is related to normal growth, stress responses and Brucella virulence, and affects the expression of various virulence-related genes in smooth-type Brucella strains. However, the function of MucR in the rough-type Brucella canis remains unknown. In this study, we discovered that MucR protein was involved in resistance to heat stress, iron-limitation, and various antibiotics in B. canis. In addition, the expression level of various bacterial flagellum-related genes was altered in mucR mutant strain. Deletion of this transcriptional regulator in B. canis significantly affected Brucella virulence in RAW264.7 macrophage and mice infection model. To gain insight into the genetic basis for distinctive phenotypic properties exhibited by mucR mutant strain, RNA-seq was performed and the result showed that various genes involved in translation, ribosomal structure and biogenesis, signal transduction mechanisms, energy production, and conversion were significantly differently expressed in ΔmucR strain. Overall, these studies have not only discovered the phenotype of mucR mutant strain but also preliminarily uncovered the molecular mechanism between the transcriptional regulator MucR, stress response and bacterial virulence in B. canis.
Collapse
Affiliation(s)
- Jiali Sun
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Hao Dong
- Veterinary Diagnostic Laboratory, China Animal Disease Control Center, Beijing, China.,Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaowei Peng
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Yufu Liu
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Hui Jiang
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Yu Feng
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Qiaoling Li
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Liangquan Zhu
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Yuming Qin
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| | - Jiabo Ding
- National Reference Laboratory for Animal Brucellosis, China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
9
|
Nilsson JF, Castellani LG, Draghi WO, Mogro EG, Wibberg D, Winkler A, Hansen LH, Schlüter A, Pühler A, Kalinowski J, Torres Tejerizo GA, Pistorio M. Global transcriptome analysis of Rhizobium favelukesii LPU83 in response to acid stress. FEMS Microbiol Ecol 2020; 97:5998221. [PMID: 33220679 DOI: 10.1093/femsec/fiaa235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Acidic environments naturally occur worldwide and inappropriate agricultural management may also cause acidification of soils. Low soil pH values are an important barrier in the plant-rhizobia interaction. Acidic conditions disturb the establishment of the efficient rhizobia usually used as biofertilizer. This negative effect on the rhizobia-legume symbiosis is mainly due to the low acid tolerance of the bacteria. Here, we describe the identification of relevant factors in the acid tolerance of Rhizobium favelukesii using transcriptome sequencing. A total of 1924 genes were differentially expressed under acidic conditions, with ∼60% underexpressed. Rhizobium favelukesii acid response mainly includes changes in the energy metabolism and protein turnover, as well as a combination of mechanisms that may contribute to this phenotype, including GABA and histidine metabolism, cell envelope modifications and reverse proton efflux. We confirmed the acid-sensitive phenotype of a mutant in the braD gene, which showed higher expression under acid stress. Remarkably, 60% of the coding sequences encoded in the symbiotic plasmid were underexpressed and we evidenced that a strain cured for this plasmid featured an improved performance under acidic conditions. Hence, this work provides relevant information in the characterization of genes associated with tolerance or adaptation to acidic stress of R. favelukesii.
Collapse
Affiliation(s)
- Juliet F Nilsson
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Lucas G Castellani
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Walter O Draghi
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Ezequiel G Mogro
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Daniel Wibberg
- CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - Anika Winkler
- CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | - L H Hansen
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | | | - Alfred Pühler
- CeBiTec, Bielefeld University, D-33615, Bielefeld, Germany
| | | | - Gonzalo A Torres Tejerizo
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| | - Mariano Pistorio
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 49 y 115, 1900 La Plata, Argentina
| |
Collapse
|
10
|
Genomic Analysis of Natural Rough Brucella melitensis Rev.1 Vaccine Strains: Identification and Characterization of Mutations in Key Genes Associated with Bacterial LPS Biosynthesis and Virulence. Int J Mol Sci 2020; 21:ijms21249341. [PMID: 33302421 PMCID: PMC7762576 DOI: 10.3390/ijms21249341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022] Open
Abstract
Brucella species are facultative intracellular bacteria that cause brucellosis, a zoonotic world-wide disease. The live attenuated B. melitensis Rev.1 vaccine strain is widely used for the control of brucellosis in the small ruminant population. However, Rev.1 induces antibodies against the O-polysaccharide (O-PS) of the smooth lipopolysaccharide thus, it is difficult to differentiate between infected and vaccinated animals. Hence, rough Brucella strains lacking the O-PS have been introduced. In the current study, we conducted a comprehensive comparative analysis of the genome sequence of two natural Rev.1 rough strains, isolated from sheep, against that of 24 Rev.1 smooth strains and the virulent reference strain B. melitensis 16M. We identified and characterized eight vital mutations within highly important genes associated with Brucella lipopolysaccharide (LPS) biosynthesis and virulence, which may explain the mechanisms underlying the formation of the Rev.1 rough phenotype and may be used to determine the mechanism underlying virulence attenuation. Further complementation studies aimed to estimate the specific role of these mutations in affecting Brucella morphology and virulence will serve as a basis for the design of new attenuated vaccines for animal immunization against brucellosis.
Collapse
|
11
|
The Twin-Arginine Translocation System Is Important for Stress Resistance and Virulence of Brucella melitensis. Infect Immun 2020; 88:IAI.00389-20. [PMID: 32778612 DOI: 10.1128/iai.00389-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
Brucella, the causative agent of brucellosis, is a stealthy intracellular pathogen that is highly pathogenic to a range of mammals, including humans. The twin-arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane and has been implicated in virulence in many bacterial pathogens. However, the roles of the Tat system and related substrates in Brucella remain unclear. We report here that disruption of Tat increases the sensitivity of Brucella melitensis M28 to the membrane stressor sodium dodecyl sulfate (SDS), indicating cell envelope defects, as well as to EDTA. In addition, mutating Tat renders M28 bacteria more sensitive to oxidative stress caused by H2O2 Further, loss of Tat significantly attenuates B. melitensis infection in murine macrophages ex vivo Using a mouse model for persistent infection, we demonstrate that Tat is required for full virulence of B. melitensis M28. Genome-wide in silico prediction combined with an in vivo amidase reporter assay indicates that at least 23 proteins are authentic Tat substrates, and they are functionally categorized into solute-binding proteins, oxidoreductases, cell envelope biosynthesis enzymes, and others. A comprehensive deletion study revealed that 6 substrates contribute significantly to Brucella virulence, including an l,d-transpeptidase, an ABC transporter solute-binding protein, and a methionine sulfoxide reductase. Collectively, our work establishes that the Tat pathway plays a critical role in Brucella virulence.
Collapse
|
12
|
Pan-Proteomic Analysis and Elucidation of Protein Abundance among the Closely Related Brucella Species, Brucella abortus and Brucella melitensis. Biomolecules 2020; 10:biom10060836. [PMID: 32486122 PMCID: PMC7355635 DOI: 10.3390/biom10060836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
Brucellosis is a zoonotic infection caused by bacteria of the genus Brucella. The species, B. abortus and B. melitensis, major causative agents of human brucellosis, share remarkably similar genomes, but they differ in their natural hosts, phenotype, antigenic, immunogenic, proteomic and metabolomic properties. In the present study, label-free quantitative proteomic analysis was applied to investigate protein expression level differences. Type strains and field strains were each cultured six times, cells were harvested at a midlogarithmic growth phase and proteins were extracted. Following trypsin digestion, the peptides were desalted, separated by reverse-phase nanoLC, ionized using electrospray ionization and transferred into an linear trap quadrapole (LTQ) Orbitrap Velos mass spectrometer to record full scan MS spectra (m/z 300–1700) and tandem mass spectrometry (MS/MS) spectra of the 20 most intense ions. Database matching with the reference proteomes resulted in the identification of 826 proteins. The Cluster of Gene Ontologies of the identified proteins revealed differences in bimolecular transport and protein synthesis mechanisms between these two strains. Among several other proteins, antifreeze proteins, Omp10, superoxide dismutase and 30S ribosomal protein S14 were predicted as potential virulence factors among the proteins differentially expressed. All mass spectrometry data are available via ProteomeXchange with identifier PXD006348.
Collapse
|
13
|
The expression of type II TA system genes following exposure to the sub-inhibitory concentration of gentamicin and acid stress in Brucella spp. Microb Pathog 2020; 144:104194. [PMID: 32289464 DOI: 10.1016/j.micpath.2020.104194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/13/2020] [Accepted: 04/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Brucellosis is one of the most common diseases that afflicts both humans and animals. Bacteria react to stress conditions using different mechanisms one of which is Toxin-Antitoxin (TA) systems. It is believed that the Toxin-Antitoxin (TA) systems have a key role in the chronicity of the disease. This study investigated the expression of TA system genes under acid and antibiotic stresses in Brucella spp. METHODS Fifty Brucella isolates (17 isolated from animals and 31 isolated from human specimens, and two standard strains) were analyzed using PCR (using two pairs of primers). Then, to determine the effects of sub-MIC of gentamicin on bacterial survival and growth, colony forming unit was quantitated and turbidity was assessed following the treatment of Brucella spp, with ½ MIC of gentamicin at different time intervals. Furthermore, the colony forming unit of Brucella spp, was assessed under acid stress (pH = 5.5) compared to the control (pH = 7.6). Moreover, the expression of TA system genes in Brucella spp, was evaluated 1 h after treatment using qRT-PCR method. RESULTS A total of 50 isolates, including 41 (82%) Brucella melitensis and 7 (14%) Brucella abortus with two standard strains Brucella melitensis (16 M) and Brucella abortus (B19) were investigated. Our results revealed the reduced growth of Brucella spp. in the presence of sub-MIC of gentamicin compared to the control. Furthermore, according to the results of qRT-PCR assay, gentamicin could increase the expression of TA system genes. Also, results of qRT-PCR showed that under acid stress, the expression of TA system gene COGT/COGAT decreased compared to the control. CONCLUSION Although the exact role of the TA systems in response to stress is still unclear, our study provided information on the effect of the type II TA systems under the acid and antibiotic stress conditions. However, further studies are still required.
Collapse
|
14
|
Salmon-Divon M, Kornspan D. Transcriptomic analysis of smooth versus rough Brucella melitensis Rev.1 vaccine strains reveals insights into virulence attenuation. Int J Med Microbiol 2019; 310:151363. [PMID: 31699441 DOI: 10.1016/j.ijmm.2019.151363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/10/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Brucella melitensis Rev.1 is the live attenuated Elberg-originated vaccine strain of the facultative intracellular Brucella species, and is widely used to control brucellosis in small ruminants. However, Rev.1 may cause abortions in small ruminants that have been vaccinated during the last trimester of gestation, it is pathogenic to humans, and it induces antibodies directed at the O-polysaccharide (O-PS) of the smooth lipopolysaccharide, thus making it difficult to distinguish between vaccinated and infected animals. Rough Brucella strains, which lack O-PS and are considered less pathogenic, have been introduced to address these drawbacks; however, as Rev.1 confers a much better immunity than the rough mutants, it is still considered the reference vaccine for the prophylaxis of brucellosis in small ruminants. Therefore, developing an improved vaccine strain, which lacks the Rev.1 drawbacks, is a highly evaluated task, which requires a better understanding of the molecular mechanisms underlying the virulence attenuation of Rev.1 smooth strains and of natural Rev.1 rough strains, which are currently only partly understood. As the acidification of the Brucella-containing vacuole during the initial stages of infection is crucial for their survival, identifying the genes that contribute to their survival in an acidic environment versus a normal environment will greatly assist our understanding of the molecular pathogenic mechanisms and the attenuated virulence of the Rev.1 strain. Here, we compared the transcriptomes of the smooth and natural rough Rev.1 strains, each grown under either normal or acidic conditions. We found 12 key genes that are significantly downregulated in the Rev.1 rough strains under normal pH, as compared with Rev.1 smooth strains, and six highly important genes that are significantly upregulated in the smooth strains under acidic conditions, as compared with Rev.1 rough strains. All 18 differentially expressed genes are associated with bacterial virulence and survival and may explain the attenuated virulence of the rough Rev.1 strains versus smooth Rev.1 strains, thus providing new insights into the virulence attenuation mechanisms of Brucella. These highly important candidate genes may facilitate the design of new and improved brucellosis vaccines.
Collapse
Affiliation(s)
- Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel; Adelson School of Medicine, Ariel University, Israel.
| | - David Kornspan
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel.
| |
Collapse
|
15
|
Nilsson JF, Castellani LG, Draghi WO, Pérez-Giménez J, Torres Tejerizo GA, Pistorio M. Proteomic Analysis of Rhizobium favelukesii LPU83 in Response to Acid Stress. J Proteome Res 2019; 18:3615-3629. [PMID: 31432679 DOI: 10.1021/acs.jproteome.9b00275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Acid soils constitute a severe problem for leguminous crops mainly through a disturbance in rhizobium-legume interactions. Rhizobium favelukesii-an acid-tolerant rhizobium able to nodulate alfalfa-is highly competitive for nodule occupation under acid conditions but inefficient for biologic nitrogen fixation. In this work, we obtained a general description of the acid-stress response of R. favelukesii LPU83 by means of proteomics by comparing the total proteome profiles in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. Thus, a total of 336 proteins were identified with a significant differential expression, 136 of which species were significantly overexpressed and 200 underexpressed in acidity. An in silico functional characterization with those respective proteins revealed a complex and pleiotropic response by these rhizobia involving components of oxidative phosphorylation, glutamate metabolism, and peptidoglycan biosynthesis, among other pathways. Furthermore, a lower permeability was evidenced in the acid-stressed cells along with several overexpressed proteins related to γ-aminobutyric acid metabolism, such as the gene product of livK, which gene was mutated. This mutant exhibited an acid-sensitive phenotype in agreement with the proteomics results. We conclude that both the γ-aminobutyric acid metabolism and a modified cellular envelope could be relevant to acid tolerance in R. favelukesii.
Collapse
Affiliation(s)
- Juliet F Nilsson
- 1IBBM (Instituto de Biotecnologı́a y Biologı́a Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas , Universidad Nacional de La Plata , Calles 49 y 115 , (1900) La Plata , Argentina
| | - Lucas G Castellani
- 1IBBM (Instituto de Biotecnologı́a y Biologı́a Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas , Universidad Nacional de La Plata , Calles 49 y 115 , (1900) La Plata , Argentina
| | - Walter O Draghi
- 1IBBM (Instituto de Biotecnologı́a y Biologı́a Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas , Universidad Nacional de La Plata , Calles 49 y 115 , (1900) La Plata , Argentina
| | - Julieta Pérez-Giménez
- 1IBBM (Instituto de Biotecnologı́a y Biologı́a Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas , Universidad Nacional de La Plata , Calles 49 y 115 , (1900) La Plata , Argentina
| | - Gonzalo A Torres Tejerizo
- 1IBBM (Instituto de Biotecnologı́a y Biologı́a Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas , Universidad Nacional de La Plata , Calles 49 y 115 , (1900) La Plata , Argentina
| | - Mariano Pistorio
- 1IBBM (Instituto de Biotecnologı́a y Biologı́a Molecular), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas , Universidad Nacional de La Plata , Calles 49 y 115 , (1900) La Plata , Argentina
| |
Collapse
|
16
|
Teng T, Xi B, Chen K, Pan L, Xie J, Xu P. Comparative transcriptomic and proteomic analyses reveal upregulated expression of virulence and iron transport factors of Aeromonas hydrophila under iron limitation. BMC Microbiol 2018; 18:52. [PMID: 29866030 PMCID: PMC5987420 DOI: 10.1186/s12866-018-1178-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/05/2018] [Indexed: 12/26/2022] Open
Abstract
Background Iron plays important roles in the growth, reproduction and pathogenicity of Aeromonas hydrophila. In this study, we detected and compared the mRNA and protein expression profiles of A. hydrophila under normal and iron restricted medium with 200 μM 2,2-Dipyridyl using RNA Sequencing (RNA-seq) and isobaric tags for relative and absolute quantification (iTRAQ) analyses. Results There were 1204 genes (601 up- and 603 down-regulated) and 236 proteins (90 up- and 146 down-regulated) shown to be differentially expressed, and 167 genes and proteins that showed consistent expression. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the differentially expressed genes and proteins were mainly involved in iron ion transport, protein activity, energy metabolism and virulence processes. Further validation of the RNA-seq and iTRAQ results by quantitative real-time PCR (qPCR) revealed that 18 of the 20 selected genes were consistently expressed. The iron-ion absorption and concentration of A. hydrophila under iron-limited conditions were enhanced, and most virulence factors (protease activity, hemolytic activity, lipase activity, and swimming ability) were also increased. Artificial A. hydrophila infection caused higher mortality in cyprinid Megalobrama amblycephala under iron-limited conditions. Conclusion Understanding the responses of pathogenic Aeromonas hydrophila within the hostile environment of the fish host, devoid of free iron, is important to reveal bacterial infection and pathogenesis. This study further confirmed the previous finding that iron-limitation efficiently enhanced the virulence of A. hydrophila using multi-omics analyses. We identified differentially expressed genes and proteins, related to enterobactin synthesis and virulence establishment, that play important roles in addressing iron scarcity. Electronic supplementary material The online version of this article (10.1186/s12866-018-1178-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Teng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Kai Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liangkun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China. .,Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
17
|
Guerrero-Castro J, Lozano L, Sohlenkamp C. Dissecting the Acid Stress Response of Rhizobium tropici CIAT 899. Front Microbiol 2018; 9:846. [PMID: 29760688 PMCID: PMC5936775 DOI: 10.3389/fmicb.2018.00846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/12/2018] [Indexed: 11/27/2022] Open
Abstract
Rhizobium tropici CIAT899 is a nodule-forming α-proteobacterium displaying intrinsic resistance to several abiotic stress conditions such as low pH and high temperatures, which are common in tropical environments. It is a good competitor for Phaseolus vulgaris (common bean) nodule occupancy at low pH values, however little is known about the genetic and physiological basis of the tolerance to acidic conditions. To identify genes in R. tropici involved in pH stress response we combined two different approaches: (1) A Tn5 mutant library of R. tropici CIAT899 was screened and 26 acid-sensitive mutants were identified. For 17 of these mutants, the transposon insertion sites could be identified. (2) We also studied the transcriptomes of cells grown under different pH conditions using RNA-Seq. RNA was extracted from cells grown for several generations in minimal medium at 6.8 or 4.5 (adapted cells). In addition, we acid-shocked cells pre-grown at pH 6.8 for 45 min at pH 4.5. Of the 6,289 protein-coding genes annotated in the genome of R. tropici CIAT 899, 383 were differentially expressed under acidic conditions (pH 4.5) vs. control condition (pH 6.8). Three hundred and fifty one genes were induced and 32 genes were repressed; only 11 genes were induced upon acid shock. The acid stress response of R. tropici CIAT899 is versatile: we found genes encoding response regulators and membrane transporters, enzymes involved in amino acid and carbohydrate metabolism and proton extrusion, in addition to several hypothetical genes. Our findings enhance our understanding of the core genes that are important during the acid stress response in R. tropici.
Collapse
Affiliation(s)
- Julio Guerrero-Castro
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Luis Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Christian Sohlenkamp
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
18
|
Zai X, Yang Q, Yin Y, Li R, Qian M, Zhao T, Li Y, Zhang J, Fu L, Xu J, Chen W. Relative Quantitative Proteomic Analysis of Brucella abortus Reveals Metabolic Adaptation to Multiple Environmental Stresses. Front Microbiol 2017; 8:2347. [PMID: 29238329 PMCID: PMC5712581 DOI: 10.3389/fmicb.2017.02347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/15/2017] [Indexed: 11/19/2022] Open
Abstract
Brucella spp. are facultative intracellular pathogens that cause chronic brucellosis in humans and animals. The virulence of Brucella primarily depends on its successful survival and replication in host cells. During invasion of the host tissue, Brucella is simultaneously subjected to a variety of harsh conditions, including nutrient limitation, low pH, antimicrobial defenses, and extreme levels of reactive oxygen species (ROS) via the host immune response. This suggests that Brucella may be able to regulate its metabolic adaptation in response to the distinct stresses encountered during its intracellular infection of the host. An investigation into the differential proteome expression patterns of Brucella grown under the relevant stress conditions may contribute toward a better understanding of its pathogenesis and adaptive response. Here, we utilized a mass spectrometry-based label-free relative quantitative proteomics approach to investigate and compare global proteomic changes in B. abortus in response to eight different stress treatments. The 3 h short-term in vitro single-stress and multi-stress conditions mimicked the in vivo conditions of B. abortus under intracellular infection, with survival rates ranging from 3.17 to 73.17%. The proteomic analysis identified and quantified a total of 2,272 proteins and 74% of the theoretical proteome, thereby providing wide coverage of the B. abortus proteome. By including eight distinct growth conditions and comparing these with a control condition, we identified a total of 1,221 differentially expressed proteins (DEPs) that were significantly changed under the stress treatments. Pathway analysis revealed that most of the proteins were involved in oxidative phosphorylation, ABC transporters, two-component systems, biosynthesis of secondary metabolites, the citrate cycle, thiamine metabolism, and nitrogen metabolism; constituting major response mechanisms toward the reconstruction of cellular homeostasis and metabolic balance under stress. In conclusion, our results provide a better understanding of the global metabolic adaptations of B. abortus associated with distinct environmental stresses. The identification of proteins necessary for stress resistance is crucial toward elucidating the infectious process in order to control brucellosis, and may facilitate the discovery of novel therapeutic targets and effective vaccines.
Collapse
Affiliation(s)
- Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qiaoling Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Mengying Qian
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Taoran Zhao
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ling Fu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
19
|
Wang L, Yang G, Qi L, Li X, Jia L, Xie J, Qiu S, Li P, Hao R, Wu Z, Du X, Li W, Song H. A Novel Small RNA Regulates Tolerance and Virulence in Shigella flexneri by Responding to Acidic Environmental Changes. Front Cell Infect Microbiol 2016; 6:24. [PMID: 27014636 PMCID: PMC4782007 DOI: 10.3389/fcimb.2016.00024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/12/2016] [Indexed: 12/20/2022] Open
Abstract
Shigella flexneri is an important cause of bacillary dysentery in developing countries. Small regulatory RNAs (sRNAs) play essential roles in diverse cellular processes. We found a novel sRNA Ssr1 based on RT-PCR, northern blot, and 5′RACE in S. flexneri. Ssr1 responds to acidic environmental changes, as shown by a strong linear correlation between the pH value and Ssr1 expression (R = 0.785, P < 0.05) using the qRT-PCR method. Deletion of Ssr1 results in growth retardation at pH values ranging from 5.0 to 7.0 (P < 0.05), and the survival rate was reduced by 22% in acidic conditions (pH 3.0). Additionally, virulence was significantly increased in an Ssr1 mutant strain, as revealed in a murine lung invasion model and survival model assays. By using the sTarPicker method and proteomic analysis, we considered that DnaK, which is a major factor that confers acidic stress tolerance, may be a direct target of Ssr1. We also found that Ssr1 may enhance virulence by directly targeting OmpA; this leads to altered expression of genes in the type three secretion system (T3SS). This work provides new insight into the mechanism of adaptation to environmental stress and into the pathogenesis of Shigella.
Collapse
Affiliation(s)
- Ligui Wang
- Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China; Center of Computational Biology, Beijing Institute of Basic Medical SciencesBeijing, China
| | - Guang Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Lihua Qi
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Xiang Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Leili Jia
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Jing Xie
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Shaofu Qiu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Peng Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - RongZhang Hao
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Zhihao Wu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Xinying Du
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Wuju Li
- Center of Computational Biology, Beijing Institute of Basic Medical Sciences Beijing, China
| | - Hongbin Song
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| |
Collapse
|
20
|
Hop HT, Arayan LT, Simborio HL, Reyes AWB, Min W, Lee HJ, Lee JJ, Chang HH, Kim S. An evaluation of ELISA using recombinant Brucella abortus bacterioferritin (Bfr) for bovine brucellosis. Comp Immunol Microbiol Infect Dis 2016; 45:16-9. [PMID: 27012915 DOI: 10.1016/j.cimid.2016.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 11/17/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022]
Abstract
To date, detection of antibodies against the lipopolysaccharide portion is the backbone of most serodiagnostic methods for brucellosis screening. However this pose a risk for false positive reactions related to other pathogens especially that of Yersinia enterocolitica O:9 which has the most prominent cross reactivity with Brucella spp. In this study, cloning and expression of Brucella abortus bacterioferritin (Bfr) was accomplished by PCR amplification into an expression vector system, and purification of a recombinant B. abortus Bfr (rBfr). The immunogenicity of rBfr was confirmed by Western blot with Brucella-positive bovine serum. To determine whether rBfr has a potential benefit for use in the serodiagnosis of bovine brucellosis, rBfr-based ELISA was performed. Interestingly, rBfr was able to detect anti-Brucella antibodies in positive sera in a dependent manner of TAT values but did not show an immunoreaction with negative samples. Particularly, average OD492 values at the lowest, medium and highest TAT titer levels were 1.4, 2.2 and 2.6-fold increase compared with the cutoff value, respectively. The accuracy, specificity and sensitivity of rBfr showed 89.09%, 93.6% and 85.33%, respectively. These findings suggest that rBfr might be a good candidate for serological diagnosis development of bovine brucellosis.
Collapse
Affiliation(s)
- Huynh Tan Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Republic of Korea
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Republic of Korea
| | - Hannah Leah Simborio
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Republic of Korea
| | | | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Republic of Korea
| | - Jin Ju Lee
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do 430-757, Republic of Korea
| | - Hong Hee Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
21
|
Liu Q, Liu X, Yan F, He Y, Wei J, Zhang Y, Liu L, Sun Y. Comparative transcriptome analysis of Brucella melitensis in an acidic environment: Identification of the two-component response regulator involved in the acid resistance and virulence of Brucella. Microb Pathog 2015; 91:92-8. [PMID: 26691825 DOI: 10.1016/j.micpath.2015.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 01/01/2023]
Abstract
Brucella melitensis, encounters a very stressful environment in phagosomes, especially low pH levels. So identifying the genes that contribute to the replication and survival within an acidic environment is critical in understanding the pathogenesis of the Brucella bacteria. In our research, comparative transcriptome with RNA-seq were used to analyze the changes of genes in normal-medium culture and in pH4.4-medium culture. The results reveal that 113 genes expressed with significant differences (|log2Ratio| ≥ 3); about 44% genes expressed as up-regulated. With GO term analysis, structural constituent of the ribosome, rRNA binding, structural molecule activity, and cation-transporting ATPase activity were significantly enriched (p-value ≤ 0.05). These genes distributed in 51 pathways, in which ribosome and photosynthesis pathways were significantly enriched. Six pathways (oxidative phosphorylation, iron-transporting, bacterial secretion system, transcriptional regulation, two-component system, and ABC transporters pathways) tightly related to the intracellular survival and virulence of Brucella were analyzed. A two-component response regulator gene in the transcriptional regulation pathway, identified through gene deletion and complementary technologies, played an important role in the resistance to the acid-resistance and virulence of Brucella.
Collapse
Affiliation(s)
- Qianhong Liu
- Jilin Agricultural Science and Technology University, Jilin 132101, China.
| | - Xingyu Liu
- Guangzhou Airport Entry-Exit Inspection and Quarantine Brueau of P.R.C, Guangzhou 510470, China
| | - Feng Yan
- Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Yuhua He
- Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Jie Wei
- Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Yuanyuan Zhang
- Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Lu Liu
- Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Youpeng Sun
- Jilin Agricultural Science and Technology University, Jilin 132101, China
| |
Collapse
|
22
|
RNA-seq reveals the critical role of OtpR in regulating Brucella melitensis metabolism and virulence under acidic stress. Sci Rep 2015; 5:10864. [PMID: 26242322 PMCID: PMC4542472 DOI: 10.1038/srep10864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/29/2015] [Indexed: 02/07/2023] Open
Abstract
The response regulator OtpR is critical for the growth, morphology and virulence of Brucella melitensis. Compared to its wild type strain 16 M, B. melitensis 16 MΔotpR mutant has decreased tolerance to acid stress. To analyze the genes regulated by OtpR under acid stress, we performed RNA-seq whole transcriptome analysis of 16 MΔotpR and 16 M. In total, 501 differentially expressed genes were identified, including 390 down-regulated and 111 up-regulated genes. Among these genes, 209 were associated with bacterial metabolism, including 54 genes involving carbohydrate metabolism, 13 genes associated with nitrogen metabolism, and seven genes associated with iron metabolism. The 16 MΔotpR also decreased capacity to utilize different carbon sources and to tolerate iron limitation in culture experiments. Notably, OtpR regulated many Brucella virulence factors essential for B. melitensis intracellular survival. For instance, the virB operon encoding type IV secretion system was significantly down-regulated, and 36 known transcriptional regulators (e.g., vjbR and blxR) were differentially expressed in 16 MΔotpR. Selected RNA-seq results were experimentally confirmed by RT-PCR and RT-qPCR. Overall, these results deciphered differential phenomena associated with virulence, environmental stresses and cell morphology in 16 MΔotpR and 16 M, which provided important information for understanding the detailed OtpR-regulated interaction networks and Brucella pathogenesis.
Collapse
|
23
|
Kumar CMS, Mande SC, Mahajan G. Multiple chaperonins in bacteria--novel functions and non-canonical behaviors. Cell Stress Chaperones 2015; 20:555-74. [PMID: 25986150 PMCID: PMC4463927 DOI: 10.1007/s12192-015-0598-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/05/2023] Open
Abstract
Chaperonins are a class of molecular chaperones that assemble into a large double ring architecture with each ring constituting seven to nine subunits and enclosing a cavity for substrate encapsulation. The well-studied Escherichia coli chaperonin GroEL binds non-native substrates and encapsulates them in the cavity thereby sequestering the substrates from unfavorable conditions and allowing the substrates to fold. Using this mechanism, GroEL assists folding of about 10-15 % of cellular proteins. Surprisingly, about 30 % of the bacteria express multiple chaperonin genes. The presence of multiple chaperonins raises questions on whether they increase general chaperoning ability in the cell or have developed specific novel cellular roles. Although the latter view is widely supported, evidence for the former is beginning to appear. Some of these chaperonins can functionally replace GroEL in E. coli and are generally indispensable, while others are ineffective and likewise are dispensable. Additionally, moonlighting functions for several chaperonins have been demonstrated, indicating a functional diversity among the chaperonins. Furthermore, proteomic studies have identified diverse substrate pools for multiple chaperonins. We review the current perception on multiple chaperonins and their physiological and functional specificities.
Collapse
Affiliation(s)
- C M Santosh Kumar
- Laboratory of Structural Biology, National Centre for Cell Science, Pune, 411007, India,
| | | | | |
Collapse
|
24
|
Wang Y, Ke Y, Xu J, Wang L, Wang T, Liang H, Zhang W, Gong C, Yuan J, Zhuang Y, An C, Lei S, Du X, Wang Z, Li W, Yuan X, Huang L, Yang X, Chen Z. Identification of a Novel Small Non-Coding RNA Modulating the Intracellular Survival of Brucella melitensis. Front Microbiol 2015; 6:164. [PMID: 25852653 PMCID: PMC4365724 DOI: 10.3389/fmicb.2015.00164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022] Open
Abstract
Bacterial small non-coding RNAs (sRNAs) are gene expression modulators respond to environmental changes, stressful conditions, and pathogenesis. In this study, by using a combined bioinformatic and experimental approach, eight novel sRNA genes were identified in intracellular pathogen Brucella melitensis. BSR0602, one sRNA that was highly induced in stationary phase, was further examined and found to modulate the intracellular survival of B. melitensis. BSR0602 was present at very high levels in vitro under stresses similar to those encountered during infection in host macrophages. Furthermore, BSR0602 was found to be highly expressed in the spleens of infected mice, suggesting its potential role in the control of pathogenesis. BSR0602 targets the mRNAs coding for gntR, a global transcriptional regulator, which is required for B. melitensis virulence. Overexpression of BSR0602 results in distinct reduction in the gntR mRNA level. B. melitensis with high level of BSR0602 is defective in bacteria intracellular survival in macrophages and defective in growth in the spleens of infected mice. Therefore, BSR0602 may directly inhibit the expression of gntR, which then impairs Brucellae intracellular survival and contributes to Brucella infection. Our findings suggest that BSR0602 is responsible for bacterial adaptation to stress conditions and thus modulate B. melitensis intracellular survival.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces , Beijing , China
| | - Yuehua Ke
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Jie Xu
- Laboratory of Clinical Immunology in Jiangsu Province, Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University , Suzhou , China
| | - Ligui Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Tongkun Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences , Beijing , China
| | - Hui Liang
- Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces , Beijing , China
| | - Wei Zhang
- Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces , Beijing , China
| | - Chunli Gong
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Jiuyun Yuan
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Yubin Zhuang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Chang An
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Shuangshuang Lei
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Xinying Du
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Zhoujia Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Wenna Li
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Xitong Yuan
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Liuyu Huang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| | - Xiaoli Yang
- Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces , Beijing , China
| | - Zeliang Chen
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences , Beijing , China
| |
Collapse
|
25
|
Lee JJ, Simborio HL, Reyes AWB, Kim DG, Hop HT, Min W, Her M, Jung SC, Yoo HS, Kim S. Immunoproteomic identification of immunodominant antigens independent of the time of infection in Brucella abortus 2308-challenged cattle. Vet Res 2015; 46:17. [PMID: 25885057 PMCID: PMC4345015 DOI: 10.1186/s13567-015-0147-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 01/13/2015] [Indexed: 11/27/2022] Open
Abstract
Brucellosis is a vital zoonotic disease caused by Brucella, which infects a wide range of animals and humans. Accurate diagnosis and reliable vaccination can control brucellosis in domestic animals. This study examined novel immunogenic proteins that can be used to detect Brucella abortus infection or as an effective subcellular vaccine. In an immunoproteomic assay, 55 immunodominant proteins from B. abortus 544 were observed using two dimensional electrophoresis (2DE) and immunoblot profiles with antisera from B. abortus-infected cattle at the early (week 3), middle (week 7), and late (week 10) periods, after excluding protein spots reacting with antisera from Yersinia enterocolitica O:9-infected and non-infected cattle. Twenty-three selected immunodominant proteins whose spots were observed at all three infection periods were identified using MALDI-MS/MS. Most of these proteins identified by immunoblot and mass spectrometry were determined by their subcellular localization and predicted function. We suggest that the detection of prominent immunogenic proteins during the infection period can support the development of advanced diagnostic methods with high specificity and accuracy; subsidiarily, these proteins can provide supporting data to aid in developing novel vaccine candidates.
Collapse
Affiliation(s)
- Jin Ju Lee
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-757, Republic of Korea.
| | - Hannah Leah Simborio
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| | - Alisha Wehdnesday Bernardo Reyes
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| | - Dae Geun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| | - Huynh Tan Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| | - Moon Her
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-757, Republic of Korea.
| | - Suk Chan Jung
- Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, 430-757, Republic of Korea.
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, Republic of Korea.
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, Republic of Korea. .,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
26
|
Ghasemi A, Zarnani AH, Ghoodjani A, Rezania S, Salari MH, Jeddi-Tehrani M. Identification of a new immunogenic candidate conferring protection against Brucella melitensis infection in Mice. Mol Immunol 2014; 62:142-9. [DOI: 10.1016/j.molimm.2014.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/19/2014] [Accepted: 06/11/2014] [Indexed: 01/18/2023]
|
27
|
Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014; 38:1091-125. [PMID: 24898062 DOI: 10.1111/1574-6976.12076] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022] Open
Abstract
As part of their life cycle, neutralophilic bacteria are often exposed to varying environmental stresses, among which fluctuations in pH are the most frequent. In particular, acid environments can be encountered in many situations from fermented food to the gastric compartment of the animal host. Herein, we review the current knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress. Because organic and inorganic acids have deleterious effects on the activity of the biological macromolecules to the point of significantly reducing growth and even threatening their viability, it is not unexpected that neutralophilic bacteria have evolved a number of different protective mechanisms, which provide them with an advantage in otherwise life-threatening conditions. The overall logic of these is to protect the cell from the deleterious effects of a harmful level of protons. Among the most favoured mechanisms are the pumping out of protons, production of ammonia and proton-consuming decarboxylation reactions, as well as modifications of the lipid content in the membrane. Several examples are provided to describe mechanisms adopted to sense the external acidic pH. Particular attention is paid to Escherichia coli extreme acid resistance mechanisms, the activity of which ensure survival and may be directly linked to virulence.
Collapse
Affiliation(s)
- Peter Lund
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
28
|
Alva-Pérez J, Arellano-Reynoso B, Hernández-Castro R, Suárez-Güemes F. The invA gene of Brucella melitensis is involved in intracellular invasion and is required to establish infection in a mouse model. Virulence 2014; 5:563-74. [PMID: 24667775 DOI: 10.4161/viru.28589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Some of the mechanisms underlying the invasion and intracellular survival of B. melitensis are still unknown, including the role of a subfamily of NUDIX enzymes, which have been described in other bacterial species as invasins and are present in Brucella spp. We have generated a mutation in the coding gene of one of these proteins, the invA gene (BMEI0215) of B. melitensis strain 133, to understand its role in virulence. HeLa cell invasion results showed that mutant strain survival was decreased 5-fold compared with that of the parental strain at 2 h pi (P<0.001). In a goat macrophage infection assay, mutant strain replication was 8-fold less than in the parental strain at 24 h pi (P<0.001); yet, at 48 h pi, no significant differences in intracellular replication were observed. Additionally, colocalization of the invA mutant with calregulin was significantly lower at 24 h pi compared with that of the parental strain. Furthermore, the mutant strain exhibited a low level of colocalization with cathepsin D, which was similar to the parental strain colocalization at 24 h pi. In vivo infection results demonstrated that spleen colonization was significantly lower with the mutant than with the parental strain. The immune response, measured in terms of antibody switching and IFN-γ transcription, was similar for Rev1 and infection with the mutant, although it was lower than the immune response elicited by the parental strain. Consequently, these results indicate that the invA gene is important during invasion but not for intracellular replication. Additionally, mutation of the invA gene results in in vivo attenuation.
Collapse
Affiliation(s)
- Jorge Alva-Pérez
- Department of Microbiology and Immunology; College of Veterinary Medicine; National Autonomous University of Mexico; Mexico DF, Mexico
| | - Beatriz Arellano-Reynoso
- Department of Microbiology and Immunology; College of Veterinary Medicine; National Autonomous University of Mexico; Mexico DF, Mexico
| | - Rigoberto Hernández-Castro
- Department of Ecology of Pathogen Agents; General Hospital "Dr. Manuel Gea González"; National Health Department; Mexico DF, Mexico
| | - Francisco Suárez-Güemes
- Department of Microbiology and Immunology; College of Veterinary Medicine; National Autonomous University of Mexico; Mexico DF, Mexico
| |
Collapse
|
29
|
Al Dahouk S, Jubier-Maurin V, Neubauer H, Köhler S. Quantitative analysis of the Brucella suis proteome reveals metabolic adaptation to long-term nutrient starvation. BMC Microbiol 2013; 13:199. [PMID: 24007556 PMCID: PMC3844638 DOI: 10.1186/1471-2180-13-199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 09/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During the infection process, bacteria are confronted with various stress factors including nutrient starvation. In an in vitro model, adaptation strategies of nutrient-starved brucellae, which are facultative intracellular pathogens capable of long-term persistence, were determined. RESULTS Long-term nutrient starvation in a medium devoid of carbon and nitrogen sources resulted in a rapid decline in viability of Brucella suis during the first three weeks, followed by stabilization of the number of viable bacteria for a period of at least three weeks thereafter. A 2D-Difference Gel Electrophoresis (DIGE) approach allowed the characterization of the bacterial proteome under these conditions. A total of 30 proteins showing altered concentrations in comparison with bacteria grown to early stationary phase in rich medium were identified. More than half of the 27 significantly regulated proteins were involved in bacterial metabolism with a marked reduction of the concentrations of enzymes participating in amino acid and nucleic acid biosynthesis. A total of 70% of the significantly regulated proteins showed an increased expression, including proteins involved in the adaptation to harsh conditions, in regulation, and in transport. CONCLUSIONS The adaptive response of Brucella suis most likely contributes to the long-term survival of the pathogen under starvation conditions, and may play a key role in persistence.
Collapse
Affiliation(s)
- Sascha Al Dahouk
- Federal Institute for Risk Assessment, Diedersdorfer Weg 1, D-12277, Berlin Germany.
| | | | | | | |
Collapse
|
30
|
Cui M, Wang T, Xu J, Ke Y, Du X, Yuan X, Wang Z, Gong C, Zhuang Y, Lei S, Su X, Wang X, Huang L, Zhong Z, Peng G, Yuan J, Chen Z, Wang Y. Impact of Hfq on global gene expression and intracellular survival in Brucella melitensis. PLoS One 2013; 8:e71933. [PMID: 23977181 PMCID: PMC3747064 DOI: 10.1371/journal.pone.0071933] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/04/2013] [Indexed: 01/30/2023] Open
Abstract
Brucella melitensis is a facultative intracellular bacterium that replicates within macrophages. The ability of brucellae to survive and multiply in the hostile environment of host macrophages is essential to its virulence. The RNA-binding protein Hfq is a global regulator that is involved in stress resistance and pathogenicity. Here we demonstrate that Hfq is essential for stress adaptation and intracellular survival in B. melitensis. A B. melitensis hfq deletion mutant exhibits reduced survival under environmental stresses and is attenuated in cultured macrophages and mice. Microarray-based transcriptome analyses revealed that 359 genes involved in numerous cellular processes were dysregulated in the hfq mutant. From these same samples the proteins were also prepared for proteomic analysis to directly identify Hfq-regulated proteins. Fifty-five proteins with significantly affected expression were identified in the hfq mutant. Our results demonstrate that Hfq regulates many genes and/or proteins involved in metabolism, virulence, and stress responses, including those potentially involved in the adaptation of Brucella to the oxidative, acid, heat stress, and antibacterial peptides encountered within the host. The dysregulation of such genes and/or proteins could contribute to the attenuated hfq mutant phenotype. These findings highlight the involvement of Hfq as a key regulator of Brucella gene expression and facilitate our understanding of the role of Hfq in environmental stress adaptation and intracellular survival of B. melitensis.
Collapse
Affiliation(s)
- Mingquan Cui
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Tongkun Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Xu
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Yuehua Ke
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Xinying Du
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Xitong Yuan
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Zhoujia Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Chunli Gong
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Yubin Zhuang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Shuangshuang Lei
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Xiao Su
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Xuesong Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Liuyu Huang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya’an, China
| | - Jing Yuan
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Zeliang Chen
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Yufei Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Dhar MS, Gupta V, Virdi JS. Detection, distribution and characterization of novel superoxide dismutases from Yersinia enterocolitica Biovar 1A. PLoS One 2013; 8:e63919. [PMID: 23704955 PMCID: PMC3660340 DOI: 10.1371/journal.pone.0063919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/09/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Superoxide dismutases (SODs) cause dismutation of superoxide radicals to hydrogen peroxide and oxygen. Besides protecting the cells against oxidative damage by endogenously generated oxygen radicals, SODs play an important role in intraphagocytic survival of pathogenic bacteria. The complete genome sequences of Yersinia enterocolitica strains show presence of three different sod genes. However, not much is known about the types of SODs present in Y. enterocolitica, their characteristics and role in virulence and intraphagocytic survival of this organism. METHODOLOGY/PRINCIPAL FINDINGS This study reports detection and distribution of the three superoxide dismutase (sodA, sodB and sodC) genes in 59 strains of Y. enterocolitica and related species. The majority (94%) of the strains carried all three genes and constitutive expression of sodA and sodB was detected in 88% of the strains. Expression of sodC was not observed in any of the strains. The sodA, sodB and sodC genes of Y. enterocolitica were cloned in pET28a (+) vector. Recombinant SodA (82 kDa) and SodB (21 kDa) were expressed as homotetramer and monomer respectively, and showed activity over a broad range of pH (3.0-8.0) and temperature (4-70°C). SodA and SodB showed optimal activity at 4°C under acidic pH of 6.0 and 4.0 respectively. The secondary structures of recombinant SodA and SodB were studied using circular dichroism. Production of YeSodC was not observed even after cloning and expression in E. coli BL21(DE3) cells. A SodA(-) SodB(-) Escherichia coli strain which was unable to grow in medium supplemented with paraquat showed normal growth after complementation with Y. enterocolitica SodA or SodB. CONCLUSIONS/SIGNIFICANCE This is the first report on the distribution and characterization of superoxide dismutases from Y. enterocolitica. The low pH optima of both SodA and SodB encoded by Y. enterocolitica seem to implicate their role in acidic environments such as the intraphagocytic vesicles.
Collapse
Affiliation(s)
- Mahesh Shanker Dhar
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Vatika Gupta
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Jugsharan Singh Virdi
- Microbial Pathogenicity Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
32
|
Gupta A, Mir SS, Jackson KE, Lim EE, Shah P, Sinha A, Siddiqi MI, Ralph SA, Habib S. Recycling factors for ribosome disassembly in the apicoplast and mitochondrion ofPlasmodium falciparum. Mol Microbiol 2013; 88:891-905. [DOI: 10.1111/mmi.12230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Ankit Gupta
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| | - Snober S. Mir
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| | - Katherine E. Jackson
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Melbourne Vic. 3010 Australia
| | - Erin E. Lim
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Melbourne Vic. 3010 Australia
| | - Priyanka Shah
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| | - Ashima Sinha
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| | - Mohammad Imran Siddiqi
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology; Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Melbourne Vic. 3010 Australia
| | - Saman Habib
- Division of Molecular and Structural Biology; CSIR-Central Drug Research Institute; Lucknow India
| |
Collapse
|
33
|
Qi J, Du Y, Bai H, Zhu X, Hu M, Luo Y, Liu Y. Global Protein Expression Profile Response ofEscherichia coliATCC 25922 Exposed to Enrofloxacin. Microb Drug Resist 2013; 19:6-14. [DOI: 10.1089/mdr.2012.0097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hua Bai
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaoling Zhu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ming Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanbo Luo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
34
|
Ke Y, Wang Y, Yuan X, Zhong Z, Qu Q, Zhou D, Zeng X, Xu J, Wang Z, Du X, Wang T, Yang R, Zhen Q, Yu Y, Huang L, Chen Z. Altered Transcriptome of the B. melitensis Vaccine Candidate 16MΔvjbR, Implications for Development of Genetically Marked Live Vaccine. Indian J Microbiol 2012; 52:575-80. [PMID: 24293713 DOI: 10.1007/s12088-012-0293-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/16/2012] [Indexed: 11/24/2022] Open
Abstract
The VjbR protein induced antibody responses in both human and animal brucellosis, and the vjbR mutant 16MΔvjbR is an ideal vaccine candidate because of the feasibility of using the VjbR as diagnostic antigen. To further characterize this vaccine candidate and provide information for vaccine development, in the present study, a whole genome DNA microarray of 16M were used to compare the transcriptome of the vjbR mutant to that of the wild type strains. A total of 126 genes were greatly differentially expressed in the vjbR mutant. A great proportion of virB and flagellar genes were differentially expressed in the vjbR mutant, implying that the vjbR regulate expression of virulence genes by sensing intracellular environments. Interestingly, the virB genes are regulated by the vjbR in independent manners as shown by their different fold changes and transcription abundances. A number of genes involved in translation, stress response, amino acid transport and metabolism, cell wall/membrane biogenesis, energy production and conversion, translation were differentially expressed. The vjbR mutant showed increased sensitivity to stresses of nutrition limitation, oxidative stress and acidification, and decreased survival in macrophage and mice, being consistent with its transcription profiles. These results indicated that the quorum sensing regulator vjbR could sense intracellular environments and response to them by regulate expression of virulence genes and other intracellular survival related genes, and therefore contribute to Brucella survival in host cells. This also provided direct evidence for the rational vaccine design by using antigenic global regulator for future development of genetically marked vaccine for brucellosis.
Collapse
Affiliation(s)
- Yuehua Ke
- Department of Infectious Disease Control, Beijing Institute of Disease Control and Prevention, No. 20, Dongdajie, Fengtai District, Beijing, 100071 People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abbady A, Al-Daoude A, Al-Mariri A, Zarkawi M, Muyldermans S. Chaperonin GroEL a Brucella immunodominant antigen identified using Nanobody and MALDI-TOF-MS technologies. Vet Immunol Immunopathol 2012; 146:254-63. [DOI: 10.1016/j.vetimm.2012.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 01/10/2012] [Accepted: 01/17/2012] [Indexed: 02/02/2023]
|
36
|
Pajuaba ACAM, Silva DAO, Almeida KC, Cunha-Junior JP, Pirovani CP, Camillo LR, Mineo JR. Immunoproteomics of Brucella abortus
reveals differential antibody profiles between S19-vaccinated and naturally infected cattle. Proteomics 2012; 12:820-31. [DOI: 10.1002/pmic.201100185] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ana C. A. M. Pajuaba
- Laboratory of Immunoparasitology; Institute of Biomedical Sciences; Universidade Federal de Uberlândia; Uberlândia MG Brazil
| | - Deise A. O. Silva
- Laboratory of Immunoparasitology; Institute of Biomedical Sciences; Universidade Federal de Uberlândia; Uberlândia MG Brazil
- Laboratory of Allergy and Clinical Immunology; Institute of Biomedical Sciences; Universidade Federal de Uberlândia; Uberlândia MG Brazil
| | - Karine C. Almeida
- Laboratory of Allergy and Clinical Immunology; Institute of Biomedical Sciences; Universidade Federal de Uberlândia; Uberlândia MG Brazil
| | - Jair P. Cunha-Junior
- Laboratory of Immunoparasitology; Institute of Biomedical Sciences; Universidade Federal de Uberlândia; Uberlândia MG Brazil
| | - Carlos P. Pirovani
- Laboratory of Proteomic; Center of Biotechnology and Genetics; Universidade Estadual de Santa Cruz; Ilhéus BA Brazil
| | - Luciana R. Camillo
- Laboratory of Proteomic; Center of Biotechnology and Genetics; Universidade Estadual de Santa Cruz; Ilhéus BA Brazil
| | - José R. Mineo
- Laboratory of Immunoparasitology; Institute of Biomedical Sciences; Universidade Federal de Uberlândia; Uberlândia MG Brazil
| |
Collapse
|
37
|
Bekker OB, Mavletova DA, Lyubimova IK, Mironcheva TA, Shtil’ AA, Danilenko VN. Induction of programmed lysis in Streptomyces lividans culture by the inhibitors of eukaryotic type serine/threonine protein kinases. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712020038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
38
|
Characterization of Campylobacter jejuni RacRS reveals roles in the heat shock response, motility, and maintenance of cell length homogeneity. J Bacteriol 2012; 194:2342-54. [PMID: 22343300 DOI: 10.1128/jb.06041-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Campylobacter jejuni commensally colonizes the cecum of birds. The RacR (reduced ability to colonize) response regulator was previously shown to be important in avian colonization. To explore the means by which RacR and its cognate sensor kinase RacS may modulate C. jejuni physiology and colonization, ΔracR and ΔracS mutations were constructed in the invasive, virulent strain 81-176, and extensive phenotypic analyses were undertaken. Both the ΔracR and ΔracS mutants exhibited a ~100-fold defect in chick colonization despite no (ΔracS) or minimal (ΔracR) growth defects at 42 °C, the avian body temperature. Each mutant was defective for colony formation at 44°C and in the presence of 0.8% NaCl, both of which are stresses associated with the heat shock response. Promoter-reporter and real-time quantitative PCR (RT-qPCR) analyses revealed that RacR activates racRS and represses dnaJ. Although disregulation of several other heat shock genes was not observed at 38°C, the ΔracR and ΔracS mutants exhibited diminished upregulation of these genes upon a rapid temperature upshift. Furthermore, the ΔracR and ΔracS mutants displayed increased length heterogeneity during exponential growth, with a high proportion of filamented bacteria. Filamented bacteria had reduced swimming speed and were defective for invasion of Caco-2 epithelial cells. Soft-agar studies also revealed that the loss of racR or racS resulted in whole-population motility defects in viscous medium. These findings reveal new roles for RacRS in C. jejuni physiology, each of which is likely important during colonization of the avian host.
Collapse
|
39
|
Van Parys A, Boyen F, Leyman B, Verbrugghe E, Haesebrouck F, Pasmans F. Tissue-specific Salmonella Typhimurium gene expression during persistence in pigs. PLoS One 2011; 6:e24120. [PMID: 21887378 PMCID: PMC3161100 DOI: 10.1371/journal.pone.0024120] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 08/05/2011] [Indexed: 01/08/2023] Open
Abstract
Salmonellosis caused by Salmonella Typhimurium is one of the most important bacterial zoonotic diseases. The bacterium persists in pigs resulting in asymptomatic 'carrier pigs', generating a major source for Salmonella contamination of pork. Until now, very little is known concerning the mechanisms used by Salmonella Typhimurium during persistence in pigs. Using in vivo expression technology (IVET), a promoter-trap method based on ΔpurA attenuation of the parent strain, we identified 37 Salmonella Typhimurium genes that were expressed 3 weeks post oral inoculation in the tonsils, ileum and ileocaecal lymph nodes of pigs. Several genes were expressed in all three analyzed organs, while other genes were only expressed in one or two organs. Subsequently, the identified IVET transformants were pooled and reintroduced in pigs to detect tissue-specific gene expression patterns. We found that efp and rpoZ were specifically expressed in the ileocaecal lymph nodes during Salmonella peristence in pigs. Furthermore, we compared the persistence ability of substitution mutants for the IVET-identified genes sifB and STM4067 to that of the wild type in a mixed infection model. The ΔSTM4067::kanR was significantly attenuated in the ileum contents, caecum and caecum contents and faeces of pigs 3 weeks post inoculation, while deletion of the SPI-2 effector gene sifB did not affect Salmonella Typhimurium persistence. Although our list of identified genes is not exhaustive, we found that efp and rpoZ were specifically expressed in the ileocaecal lymph nodes of pigs and we identified STM4067 as a factor involved in Salmonella persistence in pigs. To our knowledge, our study is the first to identify Salmonella Typhimurium genes expressed during persistence in pigs.
Collapse
Affiliation(s)
- Alexander Van Parys
- Ghent University, Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases, Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
40
|
Chen Y, Xue S, Zhou Y, Yang JJ. Calciomics: prediction and analysis of EF-hand calcium binding proteins by protein engineering. Sci China Chem 2010; 53:52-60. [PMID: 20802784 PMCID: PMC2926812 DOI: 10.1007/s11426-010-0011-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 10/09/2009] [Indexed: 12/11/2022]
Abstract
Ca(2+) plays a pivotal role in the physiology and biochemistry of prokaryotic and mammalian organisms. Viruses also utilize the universal Ca(2+) signal to create a specific cellular environment to achieve coexistence with the host, and to propagate. In this paper we first describe our development of a grafting approach to understand site-specific Ca(2+) binding properties of EF-hand proteins with a helix-loop-helix Ca(2+) binding motif, then summarize our prediction and identification of EF-hand Ca(2+) binding sites on a genome-wide scale in bacteria and virus, and next report the application of the grafting approach to probe the metal binding capability of predicted EF-hand motifs within the streptococcal hemoprotein receptor (Shr) of Streptococcus pyrogenes and the nonstructural protein 1 (nsP1) of Sindbis virus. When methods such as the grafting approach are developed in conjunction with prediction algorithms we are better able to probe continuous Ca(2+)-binding sites that have been previously underrepresented due to the limitation of conventional methodology.
Collapse
Affiliation(s)
- YanYi Chen
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - ShengHui Xue
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - YuBin Zhou
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| | - Jenny Jie Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
41
|
The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity. PLoS Genet 2009; 5:e1000785. [PMID: 20041198 PMCID: PMC2788695 DOI: 10.1371/journal.pgen.1000785] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 11/23/2009] [Indexed: 12/14/2022] Open
Abstract
Bifidobacteria, one of the relatively dominant components of the human intestinal microbiota, are considered one of the key groups of beneficial intestinal bacteria (probiotic bacteria). However, in addition to health-promoting taxa, the genus Bifidobacterium also includes Bifidobacterium dentium, an opportunistic cariogenic pathogen. The genetic basis for the ability of B. dentium to survive in the oral cavity and contribute to caries development is not understood. The genome of B. dentium Bd1, a strain isolated from dental caries, was sequenced to completion to uncover a single circular 2,636,368 base pair chromosome with 2,143 predicted open reading frames. Annotation of the genome sequence revealed multiple ways in which B. dentium has adapted to the oral environment through specialized nutrient acquisition, defences against antimicrobials, and gene products that increase fitness and competitiveness within the oral niche. B. dentium Bd1 was shown to metabolize a wide variety of carbohydrates, consistent with genome-based predictions, while colonization and persistence factors implicated in tissue adhesion, acid tolerance, and the metabolism of human saliva-derived compounds were also identified. Global transcriptome analysis demonstrated that many of the genes encoding these predicted traits are highly expressed under relevant physiological conditions. This is the first report to identify, through various genomic approaches, specific genetic adaptations of a Bifidobacterium taxon, Bifidobacterium dentium Bd1, to a lifestyle as a cariogenic microorganism in the oral cavity. In silico analysis and comparative genomic hybridization experiments clearly reveal a high level of genome conservation among various B. dentium strains. The data indicate that the genome of this opportunistic cariogen has evolved through a very limited number of horizontal gene acquisition events, highlighting the narrow boundaries that separate commensals from opportunistic pathogens.
Collapse
|
42
|
Zhong Z, Wang Y, Qiao F, Wang Z, Du X, Xu J, Zhao J, Qu Q, Dong S, Sun Y, Huang L, Huang K, Chen Z. Cytotoxicity of Brucella smooth strains for macrophages is mediated by increased secretion of the type IV secretion system. Microbiology (Reading) 2009; 155:3392-3402. [DOI: 10.1099/mic.0.030619-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Some Brucella rough mutants cause cytotoxicity that resembles oncosis and necrosis in macrophages. This cytotoxicity requires the type IV secretion system (T4SS). In rough mutants, the cell-surface O antigen is shortened and the T4SS structure is thus exposed on the surface. Cytotoxicity effector proteins can therefore be more easily secreted. This enhanced secretion of effector proteins might cause the increased levels of cytotoxicity observed. However, whether this cytotoxicity is unique to the rough mutant and is mediated by overexpression of the T4SS has not been definitively determined. To test this, in the present study, a virB inactivation mutant (BMΔvirB) and an overexpression strain (BM-VIR) of a smooth Brucella melitensis strain (BM) were constructed and their cytotoxicity for macrophages and intracellular survival capability were analysed and compared. Cytotoxicity was detected in macrophages infected with higher concentrations of strains BM or BM-VIR, but not in those infected with BMΔvirB. The quorum sensing signal molecule N-dodecanoyl-dl-homoserine lactone (C12-HSL), a molecule that can inhibit expression of virB, inhibited the cytotoxicity of BM and BM-VIR, but not of BMΔvirB. These results indicated that overexpression of virB is responsible for Brucella cytotoxicity in macrophages. Transcription analysis showed that virB is regulated in a cell-density-dependent manner both in in vitro culture and during macrophage infection. When compared with BM, BM-VIR showed a reduced survival capacity in macrophages and mice, but both strains demonstrated similar resistance to in vitro stress conditions designed to simulate intracellular environments. Taken together, the cytotoxicity of Brucella for macrophages is probably mediated by increased secretion of effector proteins that results from overexpression of virB or an increase in the number of bacterial cells. The observation that both inactivation and overexpression of virB are detrimental for Brucella intracellular survival also indicated that the expression of virB is tightly regulated in a cell-density-dependent manner.
Collapse
Affiliation(s)
- Zhijun Zhong
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Yufei Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Feng Qiao
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Zhoujia Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Xinying Du
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Jie Xu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Jin Zhao
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Qing Qu
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Shicun Dong
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Yansong Sun
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Liuyu Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Zeliang Chen
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing 100071, PR China
| |
Collapse
|
43
|
Zhang X, Ren J, Li N, Liu W, Wu Q. Disruption of the BMEI0066 gene attenuates the virulence of Brucella melitensis and decreases its stress tolerance. Int J Biol Sci 2009; 5:570-7. [PMID: 19742243 PMCID: PMC2737717 DOI: 10.7150/ijbs.5.570] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 08/25/2009] [Indexed: 01/20/2023] Open
Abstract
Brucella melitensis is a facultative intracellular pathogen. An operon composed of BMEI0066, which encodes a two-component response regulator CenR, and BMEI0067, which encodes a cAMP-dependent protein kinase regulatory subunit, has been predicted to exist in many bacterial species. However, little is known about the function of this operon. In order to characterize this operon and assess its role in virulence, we constructed a marked deletion mutant of BMEI0066. The mutant was less able to withstand hyperosmotic conditions than wild-type (16M), but showed no significant difference with 16M when challenged by H2O2. The mutant also showed increased sensitivity to elevated temperature (42°C) and a reduced survival ratio under acidic conditions compared with 16M. The mutant failed to replicate in cultured murine macrophages and was rapidly cleared from the spleens of experimentally infected BALB/c mice. These findings suggest that these operon products make an important contribution to pathogenesis in mice, probably by allowing B. melitensis to adapt to the harsh environment encountered within host macrophages.
Collapse
Affiliation(s)
- Xinglin Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | | | | | | | | |
Collapse
|
44
|
Lamontagne J, Forest A, Marazzo E, Denis F, Butler H, Michaud JF, Boucher L, Pedro I, Villeneuve A, Sitnikov D, Trudel K, Nassif N, Boudjelti D, Tomaki F, Chaves-Olarte E, Guzmán-Verri C, Brunet S, Côté-Martin A, Hunter J, Moreno E, Paramithiotis E. Intracellular adaptation of Brucella abortus. J Proteome Res 2009; 8:1594-609. [PMID: 19216536 DOI: 10.1021/pr800978p] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrophages were infected with virulent Brucella abortus strain 2308 or attenuated strain 19. Intracellular bacteria were recovered at different times after infection and their proteomes compared. The virulent strain initially reduced most biosynthesis and altered its respiration; adaptations reversed later in infection. The attenuated strain was unable to match the magnitude of the virulent strain's adjustments. The results provide insight into mechanisms utilized by Brucella to establish intracellular infections.
Collapse
Affiliation(s)
- Julie Lamontagne
- Caprion Proteomics, Inc., 7150 Alexander-Fleming, Montreal, Quebec, Canada, H4S 2C8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang Y, Chen Z, Qiao F, Ying T, Yuan J, Zhong Z, Zhou L, Du X, Wang Z, Zhao J, Dong S, Jia L, Yuan X, Yang R, Sun Y, Huang L. Comparative proteomics analyses reveal the virB of B. melitensis affects expression of intracellular survival related proteins. PLoS One 2009; 4:e5368. [PMID: 19401764 PMCID: PMC2670520 DOI: 10.1371/journal.pone.0005368] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/18/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Brucella melitensis is a facultative, intracellular, pathogenic bacterium that replicates within macrophages. The type IV secretion system encoded by the virB operon (virB) is involved in Brucella intracellular survival. However, the underlying molecular mechanisms, especially the target proteins affected by the virB, remain largely unclear. METHODOLOGY/PRINCIPAL FINDINGS In order to define the proteins affected by virB, the proteomes of wild-type and the virB mutant were compared under in vitro conditions where virB was highly activated. The differentially expressed proteins were identified by MALDI-TOF-MS. Forty-four down-regulated and eighteen up-regulated proteins which exhibited a 2-fold or greater change were identified. These proteins included those involved in amino acid transport and metabolism, lipid metabolism, energy production, cell membrane biogenesis, translation, post-translational modifications and protein turnover, as well as unknown proteins. Interestingly, several important virulence related proteins involved in intracellular survival, including VjbR, DnaK, HtrA, Omp25, and GntR, were down-regulated in the virB mutant. Transcription analysis of virB and vjbR at different growth phase showed that virB positively affect transcription of vjbR in a growth phase dependent manner. Quantitative RT-PCR showed that transcription of these genes was also affected by virB during macrophage cell infection, consistent with the observed decreased survival of the virB mutant in macrophage. CONCLUSIONS/SIGNIFICANCE These data indicated that the virB operon may control the intracellular survival of Brucella by affecting the expression of relevant proteins.
Collapse
Affiliation(s)
- Yufei Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
| | - Zeliang Chen
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
- * E-mail: (ZC); (LH)
| | - Feng Qiao
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
| | - Tianyi Ying
- Beijing Institute of Pharmaceutical Chemistry, Beijing, China
| | - Jing Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
| | - Zhijun Zhong
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
| | - Lei Zhou
- Institute of Microbiology and Epidemiology, Academy of Military Medical Science, Beijing, China
| | - Xinying Du
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
| | - Zhoujia Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
| | - Jin Zhao
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
| | - Shicun Dong
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
| | - Leili Jia
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
| | - Xitong Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
| | - Ruifu Yang
- Institute of Microbiology and Epidemiology, Academy of Military Medical Science, Beijing, China
| | - Yansong Sun
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
| | - Liuyu Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Science, Beijing, China
- * E-mail: (ZC); (LH)
| |
Collapse
|
46
|
Amirmozafari N, Ghazi F, Mostafazadeh A, Mostafaie A, Rajabnia R. Comparison of heat shock response in Brucella abortus and Brucella melitensis. Pak J Biol Sci 2008; 11:188-194. [PMID: 18817188 DOI: 10.3923/pjbs.2008.188.194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Heat shock protein (hsp) is highly conserved, that serves a wide range of function in protein folding and transport. It protect from various type of stress including heat shocks. However, it is well known that the virulence of B. melitensis is more than B. abortus, but there is not any strong evidence to verify it. For this purpose, in refer to potent antigenicity of hsps in various infectious as well as some hsp molecules act as potent activator of macrophage (danger signal), we hypothesized that difference in virulence between B. abortus and B. melitensis may be originated from difference in pattern of response to heat shock induced by high degree of fever that usually present in brucellosis. To this end, five B. abortus and five B. melitensis strains isolated from cows and human, were subjected to 39, 40 and 42 degrees C heat shocks. The bacterial whole cell proteins were extracted and resolved by SDS-PAGE. Western blotting was used to detect antibody production against the extracted bacterial proteins especially hsp60 in both control and patient sera. SDS-PAGE gels revealed protein bands mainly in the range of 10-100 kDa. The amounts of a 60 kDa protein band (hsp60) was significantly enhanced following heat shock at 42 degrees C in relation to the unheated cells in both bacterial species. The heat shock responses in B. abortus and B. melitensis point to the higher production of a 60 kDa protein (hsp60) in both bacterial species, especially in B. abortus. It seems that, lower hsp60 production by B. melitensis would induce a relatively much lower immune response against the bacterium leading to its greater virulence potentials; the sera from Brucellosis patients reacted with several of these cell derived protein bands in western blots, none of which were reactive with sera from healthy individuals. The western blot protein bands showed striking differences. This observation points to the immunogenic properties of hsps, specially the overwhelming response to hsp-60. Therefore, hsp-60 can be a good antigenic candidate for engineering subunit vaccine against Brucella, as well as for ELISA test development.
Collapse
Affiliation(s)
- N Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | | | | |
Collapse
|
47
|
Yuan ZC, Liu P, Saenkham P, Kerr K, Nester EW. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J Bacteriol 2008. [PMID: 17993523 DOI: 10.1128/jb.01387-1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Agrobacterium tumefaciens transferred DNA (T-DNA) transfer requires that the virulence genes (vir regulon) on the tumor-inducing (Ti) plasmid be induced by plant phenolic signals in an acidic environment. Using transcriptome analysis, we found that these acidic conditions elicit two distinct responses: (i) a general and conserved response through which Agrobacterium modulates gene expression patterns to adapt to environmental acidification and (ii) a highly specialized acid-mediated signaling response involved in Agrobacterium-plant interactions. Overall, 78 genes were induced and 74 genes were repressed significantly under acidic conditions (pH 5.5) compared to neutral conditions (pH 7.0). Microarray analysis not only confirmed previously identified acid-inducible genes but also uncovered many new acid-induced genes which may be directly involved in Agrobacterium-plant interactions. These genes include virE0, virE1, virH1, and virH2. Further, the chvG-chvI two-component system, previously shown to be critical for virulence, was also induced under acid conditions. Interestingly, acidic conditions induced a type VI secretion system and a putative nonheme catalase. We provide evidence suggesting that acid-induced gene expression was independent of the VirA-VirG two-component system. Our results, together with previous data, support the hypothesis that there is three-step sequential activation of the vir regulon. This process involves a cascade regulation and hierarchical signaling pathway featuring initial direct activation of the VirA-VirG system by the acid-activated ChvG-ChvI system. Our data strengthen the notion that Agrobacterium has evolved a mechanism to perceive and subvert the acidic conditions of the rhizosphere to an important signal that initiates and directs the early virulence program, culminating in T-DNA transfer.
Collapse
Affiliation(s)
- Ze-Chun Yuan
- Department of Microbiology, Box 357242, University of Washington, Seattle, WA 98195-7242, USA
| | | | | | | | | |
Collapse
|
48
|
Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J Bacteriol 2007; 190:494-507. [PMID: 17993523 DOI: 10.1128/jb.01387-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Agrobacterium tumefaciens transferred DNA (T-DNA) transfer requires that the virulence genes (vir regulon) on the tumor-inducing (Ti) plasmid be induced by plant phenolic signals in an acidic environment. Using transcriptome analysis, we found that these acidic conditions elicit two distinct responses: (i) a general and conserved response through which Agrobacterium modulates gene expression patterns to adapt to environmental acidification and (ii) a highly specialized acid-mediated signaling response involved in Agrobacterium-plant interactions. Overall, 78 genes were induced and 74 genes were repressed significantly under acidic conditions (pH 5.5) compared to neutral conditions (pH 7.0). Microarray analysis not only confirmed previously identified acid-inducible genes but also uncovered many new acid-induced genes which may be directly involved in Agrobacterium-plant interactions. These genes include virE0, virE1, virH1, and virH2. Further, the chvG-chvI two-component system, previously shown to be critical for virulence, was also induced under acid conditions. Interestingly, acidic conditions induced a type VI secretion system and a putative nonheme catalase. We provide evidence suggesting that acid-induced gene expression was independent of the VirA-VirG two-component system. Our results, together with previous data, support the hypothesis that there is three-step sequential activation of the vir regulon. This process involves a cascade regulation and hierarchical signaling pathway featuring initial direct activation of the VirA-VirG system by the acid-activated ChvG-ChvI system. Our data strengthen the notion that Agrobacterium has evolved a mechanism to perceive and subvert the acidic conditions of the rhizosphere to an important signal that initiates and directs the early virulence program, culminating in T-DNA transfer.
Collapse
|
49
|
Delpino MV, Estein SM, Fossati CA, Baldi PC, Cassataro J. Vaccination with Brucella recombinant DnaK and SurA proteins induces protection against Brucella abortus infection in BALB/c mice. Vaccine 2007; 25:6721-6729. [PMID: 17686554 DOI: 10.1016/j.vaccine.2007.07.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/28/2007] [Accepted: 07/04/2007] [Indexed: 01/18/2023]
Abstract
The immunogenicity and protective efficacy of recombinant SurA (rSurA) and rDnaK from Brucella spp. were evaluated in BALB/c mice. Immunization with rSurA in adjuvant induced a vigorous immunoglobulin G (IgG) response, with higher IgG2a than IgG1 titers. In addition, after in vitro stimulation with rSurA, spleen cells from rSurA-immunized mice produced interleukin-2 (IL-2), interferon (IFN)-gamma, IL-4 and IL-5. Immunization with rDnaK plus adjuvant induced a strong humoral response resulting in similar anti-rDnaK IgG titers than immunization with rDnaK alone. IgG2a titers predominated over IgG1 in mice injected with rDnaK alone or rDnaK plus adjuvant. Spleen cells from mice immunized with rDnaK plus adjuvant secreted IFN-gamma and IL-2 upon stimulation with rDnaK and induced a specific cytotoxic response. On the contrary, mice immunized with rDnaK alone did not exhibit a specific T helper or cytotoxic response in vitro. Mice given rSurA or rDnaK with adjuvant exhibited a significant degree of protection whereas immunization with rDnaK alone induced a low but still statistically significant level of protection against B. abortus infection. All studied vaccines were less protected than mice immunized with H38 or B. abortus strain 19 control vaccines. Altogether these results suggest that rSurA or rDnaK induce partial protection against B. abortus infection and could be useful candidates for the development of subunit vaccines against brucellosis.
Collapse
Affiliation(s)
- Maria Victoria Delpino
- Instituto de Estudios de la Inmunidad Humoral (IDEHU-CONICET), Facultad de Farmacia y Bioquímica, UBA, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
50
|
De Mot R, Schoofs G, Nagy I. Proteome analysis of Streptomyces coelicolor mutants affected in the proteasome system reveals changes in stress-responsive proteins. Arch Microbiol 2007; 188:257-71. [PMID: 17486317 DOI: 10.1007/s00203-007-0243-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 02/19/2007] [Accepted: 04/02/2007] [Indexed: 12/17/2022]
Abstract
Prokaryotic 20S proteasomes are confined to archaebacteria and actinomycetes. Bacterial targets of this compartmentalized multi-subunit protease have not yet been identified and its physiological function in prokaryotes remains unknown. In this study, intracellular and extracellular proteomes of Streptomyces coelicolor A3(2) mutants affected in the structural genes of the 20S proteasome, in the gene encoding the presumed proteasome-accessory AAA ATPase ARC, or in two putative proteasome-associated actinomycete-specific genes (sco1646, sco1647) were analysed, revealing modified patterns of stress-responsive proteins. In addition, the extracellular protease profile of the sco1647 mutant was significantly altered. The most prominent change, common to the four mutants, was a strongly increased level of the non-heme chloroperoxidase SCO0465, coinciding with an increased resistance to cumene hydroperoxide.
Collapse
Affiliation(s)
- René De Mot
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | | | | |
Collapse
|