1
|
Ojasanya RA, Weese JS, Poljak Z, Sobkowich KE, Kukathasan U, Bernardo TM. Antimicrobial-resistance of Escherichia coli in dogs and cats: A scoping review. PLoS One 2025; 20:e0323246. [PMID: 40445958 PMCID: PMC12124559 DOI: 10.1371/journal.pone.0323246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/06/2025] [Indexed: 06/02/2025] Open
Abstract
Pathogenic Escherichia coli causes a range of clinical manifestations in dogs and cats, and the use of antimicrobials in pets is associated with the risk of antimicrobial resistance (AMR). Pets contribute to the dissemination of AMR both within their species and to humans. This study conducts a scoping review to assess the existing evidence on the AMR of E. coli in dogs and cats, noting the purpose of antimicrobial susceptibility testing (AST) and determining the knowledge gaps to inform future research. The search utilized specific and generic strings aligned with the research objectives, spanning databases such as MEDLINE®, Web of Science, Biological Science Collection, AGRICOLA, CAB Direct, and Google Scholar, from January 1990 to July 2023. The study selection included only articles published in English and related to primary research. Following deduplication, the initial search identified 1,205 studies. After a detailed full-text review, 108 independent studies were identified. Studies on the AMR of E. coli in companion animals are largely concentrated in North America and Western Europe. Most of the studies were observational and were conducted in veterinary clinics. AST was primarily conducted to guide the antimicrobial treatment of E. coli infections in pets. Although not all studies provided clinical histories, among those that did, multi-drug resistant (MDR) E. coli was reported in both healthy and ailing pets. The detection of MDR E. coli in healthy and sick pets serve as a clarion call for antimicrobial stewardship. However, the limited number of studies dedicated to AMR monitoring and surveillance programs for companion animals raises a substantial concern.
Collapse
Affiliation(s)
- Rasaq A. Ojasanya
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - J. Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Ontario, Canada
- Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Kurtis E. Sobkowich
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Uththami Kukathasan
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Theresa M. Bernardo
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Ontario, Canada
| |
Collapse
|
2
|
Gilbertie JM, Sheahan BJ, Vaden SL, Jacob ME. Canine urothelial cell model to study intracellular bacterial community development by uropathogenic Escherichia coli. PLoS One 2025; 20:e0316834. [PMID: 39787183 PMCID: PMC11717241 DOI: 10.1371/journal.pone.0316834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections of both dogs and humans, with most caused by uropathogenic Escherichia coli (UPEC). Recurrent UPEC infections are a major concern in the treatment and management of UTIs in both species. In humans, the ability of UPECs to form intracellular bacterial communities (IBCs) within urothelial cells has been implicated in recurrent UTIs. However, the role of IBCs has not been explored in the pathogenesis of canine recurrent UTIs. In this study, we identified IBCs in both urine and bladder tissue from dogs with UPEC associated UTIs. In addition, we showed that UPECs derived from canine UTIs form IBCs within primary canine urothelial cells. As in human UTIs, formation of IBCs by canine UPECs correlated with the presence of the fimH gene as those isolates lacking the fimH gene formed fewer IBCs in canine urothelial cells then those harboring the fimH gene. Additionally, UPEC strains from clinical cases classified as recurrent UTIs had higher rates of IBC formation than UPEC strains from non-recurrent UTIs. These IBCs were tolerant to treatment with enrofloxacin, cefpodoxime and doxycycline at 150, 50 and 50 μg/mL respectively, which are representative of the concentrations achieved in canine urine after standard dosing. This is consistent with the clinical perspective that current UTIs are a common condition of dogs and are difficult to manage through antimicrobial treatment. Additionally, the dog could prove to be a powerful model of IBC formation as they are natural models of UPEC-causing UTIs and have similar pathophysiology of IBC formation.
Collapse
Affiliation(s)
- Jessica M. Gilbertie
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| | - Breanna J. Sheahan
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina United States of America
| | - Shelly L. Vaden
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina United States of America
| | - Megan E. Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
3
|
Abad-Fau A, Sevilla E, Oro A, Martín-Burriel I, Moreno B, Morales M, Bolea R. Multidrug resistance in pathogenic Escherichia coli isolates from urinary tract infections in dogs, Spain. Front Vet Sci 2024; 11:1325072. [PMID: 38585298 PMCID: PMC10996866 DOI: 10.3389/fvets.2024.1325072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/12/2024] [Indexed: 04/09/2024] Open
Abstract
Escherichia coli (E. coli) is a pathogen frequently isolated in cases of urinary tract infections (UTIs) in both humans and dogs and evidence exists that dogs are reservoirs for human infections. In addition, E. coli is associated to increasing antimicrobial resistance rates. This study focuses on the analysis of antimicrobial resistance and the presence of selected virulence genes in E. coli isolates from a Spanish dog population suffering from UTI. This collection of isolates showed an extremely high level of phenotypic resistance to 1st-3rd generation cephalosporins, followed by penicillins, fluoroquinolones and amphenicols. Apart from that, 13.46% of them were considered extended-spectrum beta-lactamase producers. An alarmingly high percentage (71.15%) of multidrug resistant isolates were also detected. There was a good correlation between the antimicrobial resistance genes found and the phenotypic resistance expressed. Most of the isolates were classified as extraintestinal pathogenic E. coli, and two others harbored virulence factors related to diarrheagenic pathotypes. A significant relationship between low antibiotic resistance and high virulence factor carriage was found, but the mechanisms behind it are still poorly understood. The detection of high antimicrobial resistance rates to first-choice treatments highlights the need of constant antimicrobial resistance surveillance, as well as continuous revision of therapeutic guidelines for canine UTI to adapt them to changes in antimicrobial resistance patterns.
Collapse
Affiliation(s)
- Ana Abad-Fau
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
| | - Eloisa Sevilla
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Ainara Oro
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragon, Universidad de Zaragoza, Zaragoza, Spain
| | - Bernardino Moreno
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Mariano Morales
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Albéitar Laboratories, Zaragoza, Spain
| | - Rosa Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
4
|
McGlynn A, Mrofchak R, Madan R, Madden C, Jahid MJ, Mollenkopf D, Wittum T, Justice SS, Rudinsky A, Hokamp J, Hale V. Longitudinal examination of urine pH, specific gravity, protein, culture, and antimicrobial resistance profiles in healthy dogs. J Vet Intern Med 2023; 37:2219-2229. [PMID: 37682015 PMCID: PMC10658500 DOI: 10.1111/jvim.16860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Urine is routinely evaluated in dogs to assess health. Reference ranges for many urine properties are well established, but the scope of variation in these properties over time within healthy dogs is not well characterized. OBJECTIVES Longitudinally characterize urine properties in healthy dogs over 3 months. ANIMALS Fourteen healthy client-owned dogs. METHODS In this prospective study, dogs were evaluated for health; then, mid-stream free-catch urine was collected from each dog at 12 timepoints over 3 months. Urine pH, urine specific gravity (USG), protein, cultures, and antimicrobial resistance profiles were assessed at each timepoint. RESULTS Urine pH varied within and between dogs over time (Friedman's test: within P = .03; between P < .005). However, USG, protein, and bacterial diversity of urine were consistent within dogs over time, and only varied between dogs (Kruskal-Wallis: between all P < .005). Antimicrobial resistant isolates were identified in 12 out of 14 dogs with 34 of 48 of the isolates demonstrating resistance to amoxicillin. CONCLUSIONS AND CLINICAL IMPORTANCE Urine pH should be assessed at multiple timepoints via pH meter before making clinical decisions. Mid-stream free-catch urine with high concentrations of bacteria (>105 CFU/mL) should not be considered the only indicator of urinary tract infection. Bacterial isolates from dogs in this study had widespread resistance to amoxicillin/oxacillin underscoring the need for antimicrobial stewardship.
Collapse
Affiliation(s)
- Andrew McGlynn
- College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Ryan Mrofchak
- Department of Veterinary Preventive MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Rushil Madan
- College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
- College of Public HealthThe Ohio State UniversityColumbusOhioUSA
| | - Christopher Madden
- Department of Veterinary Preventive MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Mohammad Jawad Jahid
- Department of Veterinary Preventive MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Dixie Mollenkopf
- Department of Veterinary Preventive MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Thomas Wittum
- Department of Veterinary Preventive MedicineThe Ohio State UniversityColumbusOhioUSA
| | | | - Adam Rudinsky
- Department of Veterinary Clinical SciencesThe Ohio State University College of Veterinary MedicineColumbusOhioUSA
| | - Jessica Hokamp
- Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOhioUSA
| | - Vanessa Hale
- Department of Veterinary Preventive MedicineThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
5
|
Mrofchak R, Madden C, Evans MV, Kisseberth WC, Dhawan D, Knapp DW, Hale VL. Urine and fecal microbiota in a canine model of bladder cancer and comparison of canine and human urine microbiota. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2154858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ryan Mrofchak
- Department of Veterinary Preventive Medicine, Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - Christopher Madden
- Department of Veterinary Preventive Medicine, Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - Morgan V. Evans
- Department of Veterinary Preventive Medicine, Ohio State University College of Veterinary Medicine, Columbus, OH, USA
- Divison of Environmental Health Sciences, Ohio State University College of Public Health, Columbus, OH, USA
| | - William C. Kisseberth
- Department of Veterinary Preventive Medicine, Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | - Deepika Dhawan
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Deborah W. Knapp
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Vanessa L. Hale
- Department of Veterinary Preventive Medicine, Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| |
Collapse
|
6
|
Ruetten H, Vezina CM. Relevance of dog as an animal model for urologic diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:35-65. [PMID: 35595352 DOI: 10.1016/bs.pmbts.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We utilize animal models in urologic research to improve understanding of urinary physiology, determine the etiology of many urologic diseases, and discover and test novel therapeutic interventions. Dogs have a similar urinary tract anatomy and physiology to human and they develop many urologic diseases spontaneously. This chapter offers detailed comparisons of urinary tract anatomy, physiology, and the most common urologic diseases between humans and dogs. Dogs offer a unique opportunity for urologic research because they can be studied in research colonies and in client owned cohorts. Dogs also are among a limited number of non-human species that require continence and socially appropriate urinary behaviors (ex. going to the bathroom outside, training to not have submissive urination, etc.). These features make dogs unique in the animal kingdom and make them an ideal animal model for urologic research.
Collapse
Affiliation(s)
- Hannah Ruetten
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Chad M Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
7
|
Ramos CP, Kamei CYI, Viegas FM, de Melo Barbieri J, Cunha JLR, Hounmanou YMG, Coura FM, Santana JA, Lobato FCF, Bojesen AM, Silva ROS. Fecal Shedding of Multidrug Resistant Escherichia coli Isolates in Dogs Fed with Raw Meat-Based Diets in Brazil. Antibiotics (Basel) 2022; 11:antibiotics11040534. [PMID: 35453285 PMCID: PMC9029118 DOI: 10.3390/antibiotics11040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022] Open
Abstract
The practice of feeding dogs raw meat-based diets (RMBDs) is growing in several countries, and the risks associated with the ingestion of pathogenic and antimicrobial-resistant Escherichia coli in dogs fed these diets are largely unknown. We characterized E. coli strains isolated from dogs fed either an RMBD or a conventional dry feed, according to the phylogroup, virulence genes, and antimicrobial susceptibility profiles of the bacteria. Two hundred and sixteen E. coli strains were isolated. Dogs fed RMBDs shed E. coli strains from the phylogroup E more frequently and were positive for the E. coli heat-stable enterotoxin 1-encoding gene. Isolates from RMBD-fed dogs were also frequently positive for multidrug-resistant E. coli isolates including extended-spectrum beta-lactamase (ESBL) producers. Whole-genome sequencing of seven ESBL-producing E. coli strains revealed that they predominantly harbored blaCTX-M-55, and two strains were also positive for the colistin-resistant gene mcr-1. These results suggest that feeding an RMBD can affect the dog’s microbiota, change the frequency of certain phylogroups, and increase the shedding of diarrheagenic E. coli. Also, feeding an RMBD seemed to be linked with the fecal shedding of multidrug-resistant E. coli, including the spread of strains harboring mobilizable colistin resistance and ESBL genes. This finding is of concern for both animal and human health.
Collapse
Affiliation(s)
- Carolina Pantuzza Ramos
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Carolina Yumi Iceri Kamei
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Flávia Mello Viegas
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Jonata de Melo Barbieri
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - João Luís Reis Cunha
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark; (Y.M.G.H.); (A.M.B.)
| | - Fernanda Morcatti Coura
- Departamento de Ciências Agrárias, Instituto Federal de Minas Gerais (IFMG), Bambuí 38900-000, Brazil;
| | - Jordana Almeida Santana
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Francisco Carlos Faria Lobato
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark; (Y.M.G.H.); (A.M.B.)
| | - Rodrigo Otávio Silveira Silva
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30123-970, Brazil; (C.P.R.); (C.Y.I.K.); (F.M.V.); (J.d.M.B.); (J.L.R.C.); (J.A.S.); (F.C.F.L.)
- Correspondence:
| |
Collapse
|
8
|
Nascimento JAS, Santos FF, Santos-Neto JF, Trovão LO, Valiatti TB, Pinaffi IC, Vieira MAM, Silva RM, Falsetti IN, Santos ACM, Gomes TAT. Molecular Epidemiology and Presence of Hybrid Pathogenic Escherichia coli among Isolates from Community-Acquired Urinary Tract Infection. Microorganisms 2022; 10:microorganisms10020302. [PMID: 35208757 PMCID: PMC8874565 DOI: 10.3390/microorganisms10020302] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Urinary tract infections (UTI) affect community and healthcare patients worldwide and may have different clinical outcomes. We assessed the phylogenetic origin, the presence of 43 virulence factors (VFs) of diarrheagenic and extraintestinal pathogenic Escherichia coli, and the occurrence of hybrid strains among E. coli isolates from 172 outpatients with different types of UTI. Isolates from phylogroup B2 (46%) prevailed, followed by phylogroups A (15.7%) and B1 (12.2%), with similar phylogenetic distribution in symptomatic and asymptomatic patients. The most frequent VFs according to their functional category were fimA (94.8%), ompA (83.1%), ompT (63.3%), chuA (57.6%), and vat (22%). Using published molecular criteria, 34.3% and 18.0% of the isolates showed intrinsic virulence and uropathogenic potential, respectively. Two strains carried the eae and escV genes and one the aggR gene, which classified them as hybrid strains. These hybrid strains interacted with renal and bladder cells, reinforcing their uropathogenic potential. The frequency of UPEC strains bearing a more pathogenic potential in the outpatients studied was smaller than reported in other regions. Our data contribute to deepening current knowledge about the mechanisms involved in UTI pathogenesis, especially among hybrid UPEC strains, as these could colonize the host’s intestine, leading to intestinal infections followed by UTI.
Collapse
Affiliation(s)
- Júllia A. S. Nascimento
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
| | - Fernanda F. Santos
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (F.F.S.); (T.B.V.)
| | - José F. Santos-Neto
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
| | - Liana O. Trovão
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
| | - Tiago B. Valiatti
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (F.F.S.); (T.B.V.)
| | - Isabel C. Pinaffi
- Laboratório Santa Cruz Medicina Diagnóstica, Mogi Guaçu 13840-052, Brazil; (I.C.P.); (I.N.F.)
| | - Mônica A. M. Vieira
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
| | - Rosa M. Silva
- Laboratório de Enterobactérias, Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil;
| | - Ivan N. Falsetti
- Laboratório Santa Cruz Medicina Diagnóstica, Mogi Guaçu 13840-052, Brazil; (I.C.P.); (I.N.F.)
| | - Ana C. M. Santos
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
| | - Tânia A. T. Gomes
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
- Correspondence: ; Tel.: +55-11-5576-4848
| |
Collapse
|
9
|
Elankumaran P, Browning GF, Marenda MS, Reid CJ, Djordjevic SP. Close genetic linkage between human and companion animal extraintestinal pathogenic Escherichia coli ST127. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100106. [PMID: 35128493 PMCID: PMC8803956 DOI: 10.1016/j.crmicr.2022.100106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli ST127, a recently emerged global pathogen noted for high virulence gene carriage, is a leading cause of urinary tract and blood stream infections. ST127 is frequently isolated from humans and companion animals; however, it is unclear if they are distinct or related populations of ST127. We performed a phylogenomic analysis of 299 E. coli ST127 of diverse epidemiological origin to characterize their population structure, genetic determinants of virulence, antimicrobial resistance, and repertoire of mobile genetic elements with a focus on plasmids. The core gene phylogeny was divided into 13 clusters, the largest of which (BAP4) contained the majority of human and companion animal origin isolates. This dominant cluster displayed genetic differences to the remainder of the phylogeny, most notably alternative gene alleles encoding important virulence factors including lipid A, flagella, and K capsule. Furthermore, numerous close genetic linkages (<30 SNPs) between human and companion animal isolates were observed within the cluster. Carriage of antimicrobial resistance genes in the collection was limited, but virulence gene carriage was extensive. We found evidence of pUTI89-like virulence plasmid carriage in over a third of isolates, localised to four of the major phylogenetic clusters. Our study supports global scale repetitive transfer of E. coli ST127 lineages between humans and companion animals, particularly within the dominant BAP4 cluster.
Collapse
Affiliation(s)
- Paarthiphan Elankumaran
- iThree Institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Cameron J. Reid
- iThree Institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Steven P. Djordjevic
- iThree Institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
10
|
Verma A, Carney K, Taylor M, Amsler K, Morgan J, Gruszynski K, Erol E, Carter C, Locke S, Callipare A, Shah DH. Occurrence of potentially zoonotic and cephalosporin resistant enteric bacteria among shelter dogs in the Central and South-Central Appalachia. BMC Vet Res 2021; 17:313. [PMID: 34563197 PMCID: PMC8467218 DOI: 10.1186/s12917-021-03025-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background Antimicrobial resistance and presence of zoonotic enteropathogens in shelter dogs pose a public health risk to shelter workers and potential adopters alike. In this study we investigated the prevalence of zoonotic bacterial pathogens and cephalosporin resistant (CefR) enteric bacteria in the feces of apparently healthy shelter dogs in the Cumberland Gap Region (CGR) in the US states of Kentucky, Tennessee and Virginia. Results Fecal samples of 59 dogs from 10 shelters in the CGR of Central and South-Central Appalachia were screened for the presence of Campylobacter jejuni, Clostridium perfringens, Salmonella and CefR enteric bacteria. C. jejuni, C. perfringens were detected by PCR based assays. Culture and PCR were used for Salmonella detection. Of 59 dogs, fecal samples from 14 (23.7%) and 8 (13.6%) dogs tested positive for cpa and hipO genes of C. perfringens and C. jejuni, respectively. Salmonella was not detected in any of the tested samples by PCR or culture. CefR enteric bacteria were isolated on MacConkey agar supplemented with ceftiofur followed by identification using MALDI-TOF. Fecal samples from 16 dogs (27.1%) yielded a total of 18 CefR enteric bacteria. Majority of CefR isolates (14/18, 77.8%) were E. coli followed by, one isolate each of Enterococcus hirae, Acinetobacter baumannii, Acinetobacter pittii, and Pseudomonas aeruginosa. CefR enteric bacteria were tested for resistance against 19- or 24-antibiotic panels using broth microdilution method. Seventeen (94.4%) CefR bacteria were resistant to more than one antimicrobial agent, and 14 (77.8%) displayed multidrug resistance (MDR). Conclusions This study shows that shelter dogs within the CGR not only carry zoonotic bacterial pathogens, but also shed multidrug resistant enteric bacteria in their feces that may pose public health risks.
Collapse
Affiliation(s)
- Ashutosh Verma
- College of Veterinary Medicine, Harrogate, USA. .,Center for Infectious, Zoonotic and Vector-borne diseases, Harrogate, USA.
| | - Kimberly Carney
- College of Veterinary Medicine, Harrogate, USA.,Center for Animal and Human Health in Appalachia, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN, 37752, USA
| | | | | | - Joey Morgan
- College of Veterinary Medicine, Harrogate, USA
| | - Karen Gruszynski
- College of Veterinary Medicine, Harrogate, USA.,Center for Animal and Human Health in Appalachia, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN, 37752, USA
| | - Erdal Erol
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, Kentucky, USA
| | - Craig Carter
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, Kentucky, USA
| | - Stephan Locke
- Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, Kentucky, USA
| | | | - Devendra H Shah
- Department of Veterinary Microbiology & Pathology, Washington State University College of Veterinary Medicine, Pullman, Washington, USA.
| |
Collapse
|
11
|
Phylogenetic Classification, Biofilm-Forming Capacity, Virulence Factors, and Antimicrobial Resistance in Uropathogenic Escherichia coli (UPEC). Curr Microbiol 2020; 77:3361-3370. [PMID: 32910213 DOI: 10.1007/s00284-020-02173-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) is the main cause of urinary tract infections; in recent years, its importance as a pathogen has increased due to the emergence of hypervirulent and multiresistant strains. In this study, 190 urinary isolates of E. coli were assigned into the seven phylogenetic groups A (11.1%), B1 (4.7%), B2 (46.8%), C (5.8%) D (25.3%) F (2.6%), and Clade I (2.1%), and various virulence genes were examined with polymerase chain reaction methods. All isolates had at least one virulence factor of the 9 analyzed fyuA (81.1%), fimH (96.8%), iutA (74.7%), ompT (66.8%), kpsMTII (66.8%), traT (58.9%), PAI (43.6%), PapAH (26.3%), and usp (3.2%). The results showed a direct relationship between the virulence factors and phylogenetic group A and B2. Further, virulence genetic profiles fimH, fyuA, ompT, traT, and kpsMTII correlated with the production of strong biofilm, multidrug resistance, and the production of moderate hemolysin. These results suggest that these strains may become reservoirs of genes that encode virulence factors, which could be transferred horizontally enhancing their genomic background and high possibility of acquiring new genetic information for possible dissemination. This study provides the first description of phylogroups in UPEC in the Colombian Caribbean and the association with virulence factor profile, antimicrobial susceptibility, and their possible role in the epidemiology in Colombia.
Collapse
|
12
|
A Kadry A, M Al-Kashef N, M El-Ganiny A. Distribution of genes encoding adhesins and biofilm formation capacity among Uropathogenic Escherichia coli isolates in relation to the antimicrobial resistance. Afr Health Sci 2020; 20:238-247. [PMID: 33402912 PMCID: PMC7750046 DOI: 10.4314/ahs.v20i1.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Escherichia coli is the most predominant pathogen involved in UTIs. Mainly, fimbrial surface appendages are implicated in adherence to urothelium besides non-fimbrial proteins. Objectives to determine prevalence of genes encoding fimbrial and non-fimbrial proteins among Uropathogenic Escherichia coli (UPEC). Furthermore, distribution of these genes and biofilm formation capacity were investigated in relation to antimicrobial resistance. Methods Antimicrobial susceptibility of 112 UPEC isolates was performed using disc diffusion method. ESBL production was confirmed by double disc synergy test. Genes encoding fimbrial and non-fimbrial proteins were detected using PCR and biofilm formation was investigated using microtitre plate assay. Results UPEC isolates exhibited high resistance against doxycyclines (88.39 %), β-lactams (7.14–86.6%), sulphamethoxazole-trimethoprim (53.75%) and fluoro-quinolones (50%). Fifty percent of tested isolates were ESBL producers. PapGII gene was statistically more prevalent among pyelonephritis isolates. SfaS, focG and picU genes were statistically associated with fluoroquinolone (FQs) sensitive isolates and Dr/afaBC gene was statistically associated with ESBL production. Moreover, non-MDR isolates produced sturdier biofilm. Conclusion PapGII adhesin variant seems to have a critical role in colonization of upper urinary tract. There is a possible link between antimicrobial resistance and virulence being capable of affecting the distribution of some genes besides its negative impact on biofilm formation.
Collapse
|
13
|
Thornton LA, Burchell RK, Burton SE, Lopez-Villalobos N, Pereira D, MacEwan I, Fang C, Hatmodjo AC, Nelson MA, Grinberg A, Velathanthiri N, Gal A. The Effect of Urine Concentration and pH on the Growth of Escherichia Coli in Canine Urine In Vitro. J Vet Intern Med 2018; 32:752-756. [PMID: 29469957 PMCID: PMC5866962 DOI: 10.1111/jvim.15045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/11/2017] [Accepted: 12/19/2017] [Indexed: 11/28/2022] Open
Abstract
Background Lower urinary tract infections are common in dogs, and Escherichia coli is the most common bacterial pathogen isolated. The literature has conflicting evidence regarding the inhibitory effects of urine concentration and pH on E. coli growth. Hypothesis/Objectives To determine the effect of different pH and urine concentrations on E. coli growth in vitro. Animals Voided urine samples from 10 apparently healthy spayed female dogs were used. Methods A matrix of 9 urine specific gravity (USG; 1.010, 1.020, and 1.030) and pH (5.5, 7.0, and 8.5) combinations was prepared by diluting and titrating filtered voided urine samples. Three E. coli isolates were obtained from urine of female dogs with signs of lower urinary tract infection and cultured at different urine pH and USG combinations in wells of a microtiter plate. The number of E. coli colony‐forming units (CFU) per mL of urine was calculated after aerobic incubation of the urine at 37°C for 18 hours, and statistically compared. Results Significant differences were identified in the mean log CFU/mL among different combinations of pH and USG. The lowest log CFU/mL were observed in alkaline concentrated urine (pH 8.5 and USG 1.030). Conclusions and Clinical Importance Escherichia coli in vitro growth was higher in neutral to acidic and diluted urine compared to alkaline and concentrated urine. The impact of non‐alkalizing diluting diets on the incidence of E. coli lower urinary tract infections should be further explored.
Collapse
Affiliation(s)
- L A Thornton
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - R K Burchell
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - S E Burton
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - N Lopez-Villalobos
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - D Pereira
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - I MacEwan
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - C Fang
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - A C Hatmodjo
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - M A Nelson
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - A Grinberg
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - N Velathanthiri
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| | - A Gal
- School of Veterinary Sciences, Massey University, Palmerston North, Manawatu-Wanganui, New Zealand
| |
Collapse
|
14
|
Derakhshandeh A, Eraghi V, Boroojeni AM, Niaki MA, Zare S, Naziri Z. Virulence factors, antibiotic resistance genes and genetic relatedness of commensal Escherichia coli isolates from dogs and their owners. Microb Pathog 2018; 116:241-245. [PMID: 29410122 DOI: 10.1016/j.micpath.2018.01.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 01/21/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
Abstract
Escherichia coli (E. coli) is a normal flora of gastrointestinal tracts of humans and warm-blooded animals including dogs that has close vicinity with humans. Because the inter-species transmission of E. coli between pets and human beings, within a household, obtaining more information about the epidemiology, genetics, virulence factors, and antibiotic resistance of E. coli from dogs and their owners will help to control the inter-species transmission and treatment of E. coli infections. In this study we characterize and compare the antibiotic resistance and virulence profiles of fecal E. coli isolates from dogs and their owners. A total of 149 commensal E. coli isolates comprised 62 isolates from dogs, 56 isolates from their owners and 31 isolates from humans with no pet as control were collected. Extracted DNA was assessed for the presence of antibiotic resistance genes cmlA (chloramphenicol), sulI (sulfamethoxazole), floR (florfenicol) and blaCTX-M1 (cefotaxime) and virulence genes (papA, ompT, hlyD, traT, tsh and cnf1). To determine the extent of genetic relatedness of isolates, RAPD-PCR was performed. sulI and traT genes were the most dominant resistance profile and the most prevalent virulence gene in all groups, respectively, while hlyD had the lowest frequency among investigated virulence genes. Based on RAPD-PCR analysis clonal sharing between dogs and their owners were observed in 2/28 (7.1%) potential within-household clone-sharing pairs. Allowing dog to lick on owner's face, dog sex (female dogs), dog's sexual status (intact dogs) and times of disposing the feces (≥twice a day) were associated with a higher percentage of RAPD profile similarity (P < 0.05). The current study did not show an obvious evidence to prove considerable transmission of fecal E. coli from dogs to their owners. But in two households, there were relationship between isolates from dogs and their owners.
Collapse
Affiliation(s)
- Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Vida Eraghi
- Department of Pathobiology, Biotechnology Section, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Malihe Akbarzadeh Niaki
- Department of Pathobiology, Biotechnology Section, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sahar Zare
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Zahra Naziri
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
15
|
Zong B, Liu W, Zhang Y, Wang X, Chen H, Tan C. Effect of kpsM on the virulence of porcine extraintestinal pathogenic Escherichia coli. FEMS Microbiol Lett 2016; 363:fnw232. [PMID: 27737948 DOI: 10.1093/femsle/fnw232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/30/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, extraintestinal pathogenic Escherichia coli (ExPEC) has been found to pose a great threat to human and animal health, but its pathogenic mechanism is not fully understood yet. Capsular polysaccharide, an essential virulence factor in these bacteria, can damage the host immune system, and kpsM is a member of the gene cluster responsible for capsular polysaccharide synthesis. In this study, whole sequence alignment of the virulent strain PCN033 and the attenuated strain PCN061 revealed that kpsM exists in PCN033 but not in PCN061. To determine its function and biological characteristics, we deleted kpsM from PCN033 by homologous recombination. The results of adhesion assays, phagocytosis assays and serum bactericidal assays together with the results of colonization assays in mice indicate that the deletion of kpsM decreases the virulence of porcine ExPEC. Our findings about the biological characteristics of kpsM help to elucidate the complex pathogenic mechanism of ExPEC.
Collapse
Affiliation(s)
- Bingbing Zong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Wugang Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.,Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
16
|
Piras C, Soggiu A, Greco V, Martino PA, Del Chierico F, Putignani L, Urbani A, Nally JE, Bonizzi L, Roncada P. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog. J Proteomics 2015; 127:365-76. [PMID: 26066767 DOI: 10.1016/j.jprot.2015.05.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 01/25/2023]
Abstract
Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. This study has been performed in order to unravel the mechanism of induced enrofloxacin resistance in canine E. coli isolates that represent a good tool to study this pathology. The isolated E. coli has been induced with enrofloxacin and studied through 2D DIGE and shotgun MS. Discovered differentially expressed proteins are principally involved in antibiotic resistance and linked to oxidative stress response, to DNA protection and to membrane permeability. Moreover, since enrofloxacin is an inhibitor of DNA gyrase, the overexpression of DNA starvation/stationary phase protection protein (Dsp) could be a central point to discover the mechanism of this clone to counteract the effects of enrofloxacin. In parallel, the dramatic decrease of the synthesis of the outer membrane protein W, which represents one of the main gates for enrofloxacin entrance, could explain additional mechanism of E. coli defense against this antibiotic. All 2D DIGE and MS data have been deposited into the ProteomeXchange Consortium with identifier PXD002000 and DOI http://dx.doi.org/10.6019/PXD002000. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- Cristian Piras
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Alessio Soggiu
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Viviana Greco
- Fondazione Santa Lucia - IRCCS, Rome, Italy; Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma "Tor Vergata", Italy
| | - Piera Anna Martino
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | | | - Lorenza Putignani
- Parasitology and Metagenomics Units, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Urbani
- Fondazione Santa Lucia - IRCCS, Rome, Italy; Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma "Tor Vergata", Italy
| | - Jarlath E Nally
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, United States
| | - Luigi Bonizzi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Paola Roncada
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy; Istituto Sperimentale Italiano L. Spallanzani, Milano, Italy.
| |
Collapse
|
17
|
Lluque A, Mosquito S, Gomes C, Riveros M, Durand D, Tilley DH, Bernal M, Prada A, Ochoa TJ, Ruiz J. Virulence factors and mechanisms of antimicrobial resistance in Shigella strains from periurban areas of Lima (Peru). Int J Med Microbiol 2015; 305:480-90. [PMID: 25998616 DOI: 10.1016/j.ijmm.2015.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 04/22/2015] [Accepted: 04/28/2015] [Indexed: 12/25/2022] Open
Abstract
The study was aimed to describe the serotype, mechanisms of antimicrobial resistance, and virulence determinants in Shigella spp. isolated from Peruvian children. Eighty three Shigella spp. were serogrouped and serotyped being established the antibiotic susceptibility. The presence of 12 virulence factors (VF) and integrase 1 and 2, along with commonly found antibiotic resistance genes was established by PCR. S. flexneri was the most relevant serogroup (55 isolates, 66%), with serotype 2a most frequently detected (27 of 55, 49%), followed by S. boydii and S. sonnei at 12 isolates each (14%) and S. dysenteriae (four isolates, 5%). Fifty isolates (60%) were multi-drug resistant (MDR) including 100% of S. sonnei and 64% of S. flexneri. Resistance levels were high to trimethoprim-sulfamethoxazole (86%), tetracycline (74%), ampicillin (67%), and chloramphenicol (65%). Six isolates showed decreased azithromycin susceptibility. No isolate was resistant to nalidixic acid, ciprofloxacin, nitrofurantoin, or ceftriaxone. The most frequent resistance genes were sul2 (95%), tet(B) (92%), cat (80%), dfrA1 (47%), blaOXA-1like (40%), with intl1 and intl2 detected in 51 and 52% of the isolates, respectively. Thirty-one different VF profiles were observed, being the ipaH (100%), sen (77%), virA and icsA (75%) genes the most frequently found. Differences in the prevalence of VF were observed between species with S. flexneri isolates, particularly serotype 2a, possessing high numbers of VF. In conclusion, this study highlights the high heterogeneity of Shigella VF and resistance genes, and prevalence of MDR organisms within this geographic region.
Collapse
Affiliation(s)
- Angela Lluque
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru
| | - Susan Mosquito
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru
| | - Cláudia Gomes
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Maribel Riveros
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru
| | - David Durand
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru
| | | | - María Bernal
- U.S Naval Medical Research Unit No.6, Callao, Peru
| | - Ana Prada
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru
| | - Theresa J Ochoa
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru; Center for Infectious Disease, University of Texas School of Public Health, Houston, USA.
| | - Joaquim Ruiz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
18
|
Houseflies (Musca domestica) as Vectors for Extended-Spectrum β-Lactamase-Producing Escherichia coli on Spanish Broiler Farms. Appl Environ Microbiol 2015; 81:3604-11. [PMID: 25795670 DOI: 10.1128/aem.04252-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/09/2015] [Indexed: 12/28/2022] Open
Abstract
Flies may act as potential vectors for the spread of resistant bacteria to different environments. This study was intended to evaluate the presence of Escherichia coli strains resistant to cephalosporins in flies captured in the areas surrounding five broiler farms. Phenotypic and molecular characterization of the resistant population was performed by different methods: MIC determination, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and phylotyping. The presence of extended-spectrum beta-lactamase (ESBL) genes, their plasmid location, and the mobile genetic elements involved in their mobilization were studied. Additionally, the presence of 35 genes associated with virulence was evaluated. Out of 682 flies captured, 42 yielded ESBL-producing E. coli. Of these isolates, 23 contained bla(CTX-M-1), 18 contained bla(CTX-M-14), and 1 contained bla(CTX-M-9). ESBL genes were associated mainly with the presence of the IncI1 and IncFIB replicons. Additionally, all the strains were multiresistant, and five of them also harbored qnrS. Identical PFGE profiles were found for E. coli isolates obtained from flies at different sampling times, indicating a persistence of the same clones in the farm environment over months. According to their virulence genes, 81% of the isolates were considered avian-pathogenic E. coli (APEC) and 29% were considered extraintestinal pathogenic E. coli (ExPEC). The entrance of flies into broiler houses constitutes a considerable risk for colonization of broilers with multidrug-resistant E. coli. ESBLs in flies reflect the contamination status of the farm environment. Additionally, this study demonstrates the potential contribution of flies to the dissemination of virulence and resistance genes into different ecological niches.
Collapse
|
19
|
Lüthje P, Brauner A. Virulence factors of uropathogenic E. coli and their interaction with the host. Adv Microb Physiol 2014; 65:337-72. [PMID: 25476769 DOI: 10.1016/bs.ampbs.2014.08.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Urinary tract infections (UTIs) belong to the most common infectious diseases worldwide. The most frequently isolated pathogen from uncomplicated UTIs is Escherichia coli. To establish infection in the urinary tract, E. coli has to overcome several defence strategies of the host, including the urine flow, exfoliation of urothelial cells, endogenous antimicrobial factors and invading neutrophils. Thus, uropathogenic E. coli (UPEC) harbour a number of virulence and fitness factors enabling the bacterium to resist and overcome these different defence mechanisms. There is no particular factor which allows the identification of UPEC among the commensal faecal flora apart from the ability to enter the urinary tract and cause an infection. Many of potential virulence or fitness factors occur moreover with high redundancy. Fimbriae are inevitable for adherence to and invasion into the host cells; the type 1 pilus is an established virulence factor in UPEC and indispensable for successful infection of the urinary tract. Flagella and toxins promote bacterial dissemination, while different iron-acquisition systems allow bacterial survival in the iron-limited environment of the urinary tract. The immune response to UPEC is primarily mediated by toll-like receptors recognising lipopolysaccharide, flagella and other structures on the bacterial surface. UPEC have the capacity to subvert this immune response of the host by means of actively impacting on pro-inflammatory signalling pathways, or by physical masking of immunogenic structures. The large repertoire of bacterial virulence and fitness factors in combination with host-related differences results in a complex interaction between host and pathogen in the urinary tract.
Collapse
Affiliation(s)
- Petra Lüthje
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
20
|
P1PK, GLOB, and FORS Blood Group Systems and GLOB Collection: Biochemical and Clinical Aspects. Do We Understand It All Yet? Transfus Med Rev 2014; 28:126-36. [DOI: 10.1016/j.tmrv.2014.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 01/09/2023]
|
21
|
Escherichia coli Strains Isolated from the Uteri Horn, Mouth, and Rectum of Bitches Suffering from Pyometra: Virulence Factors, Antimicrobial Susceptibilities, and Clonal Relationships among Strains. Int J Microbiol 2014; 2014:979584. [PMID: 24734047 PMCID: PMC3966421 DOI: 10.1155/2014/979584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/02/2013] [Accepted: 01/23/2014] [Indexed: 11/17/2022] Open
Abstract
Pyometra is recognized as one of the main causes of disease and death in the bitch, and Escherichia coli is the major pathogen associated with this disease. In this study, 70 E. coli isolates from the uteri horn, mouth, and rectum of bitches suffering from the disease and 43 E. coli isolates from the rectum of clinically healthy bitches were examined for the presence of uropathogenic virulence genes and susceptibility to antimicrobial drugs. DNA profiles of isolates from uteri horn and mouth in bitches with pyometra were compared by REP, ERIC, and BOX-PCR. Virulence gene frequencies detected in isolates from canine pyometra were as follows: 95.7% fim, 27.1% iss, 25.7% hly, 18.5% iuc, and 17.1% usp. Predominant resistance was determined for cephalothin, ampicillin, and nalidixic acid among the isolates from all sites examined. Multidrug resistance was found on ∼50% pyometra isolates. Using the genotypic methods some isolates from uteri, pus, and saliva of the same bitch proved to have identical DNA profiles which is a reason for concern due to the close relationship between household pets and humans.
Collapse
|
22
|
Wang X, Wang J, Hao H, Qiu L, Liu H, Chen S, Dang R, Yang Z. Pathogenic Providencia alcalifaciens Strain that Causes Fatal Hemorrhagic Pneumonia in Piglets. Curr Microbiol 2013; 68:278-84. [DOI: 10.1007/s00284-013-0470-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
|
23
|
Brooks JW, Roberts EL, Kocher K, Kariyawasam S, DebRoy C. Fatal pneumonia caused by Extraintestinal Pathogenic Escherichia coli (ExPEC) in a juvenile cat recovered from an animal hoarding incident. Vet Microbiol 2013; 167:704-7. [PMID: 24041770 DOI: 10.1016/j.vetmic.2013.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/13/2013] [Accepted: 08/16/2013] [Indexed: 11/17/2022]
Abstract
The current study describes isolation of Extraintestinal Pathogenic Escherichia coli (ExPEC) from a juvenile male cat that died after being rescued from an animal hoarding incident. Grossly, there was evidence of pneumonia and renal abscessation. Histologically, there was diffuse interstitial pneumonia with necrosis and necrotizing and suppurative nephritis with colonies of coccobacilli. Within the lung, kidney, and mesentery there was necrotizing and suppurative vasculitis with thrombosis and coccobacilli. E. coli strain belonging to serotype O6:H1 that carried many of the virulence genes associated with ExPEC was isolated from the lung and kidney. The cat was part of a community of approximately 60 cats that lived in a house in a residential neighborhood, in which multiple cats had died. The case was of major significance to public health, as first responders, animal health professionals, and other community members were likely exposed to ExPEC, which is known to have zoonotic potential. It is important that pet owners, animal health and public health professionals, and first responders be made aware of the potential for zoonotic diseases.
Collapse
Affiliation(s)
- Jason W Brooks
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
24
|
Krekeler N, Marenda M, Browning G, Holden K, Charles J, Wright P. The role of Type 1, P and S fimbriae in binding of Escherichia coli to the canine endometrium. Vet Microbiol 2013; 164:399-404. [DOI: 10.1016/j.vetmic.2013.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
|
25
|
Momtaz H, Karimian A, Madani M, Safarpoor Dehkordi F, Ranjbar R, Sarshar M, Souod N. Uropathogenic Escherichia coli in Iran: serogroup distributions, virulence factors and antimicrobial resistance properties. Ann Clin Microbiol Antimicrob 2013; 12:8. [PMID: 23627669 PMCID: PMC3651382 DOI: 10.1186/1476-0711-12-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/21/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are one of the most common bacterial infections with global expansion. These infections are predominantly caused by uropathogenic Escherichia coli (UPEC). METHODS Totally, 123 strains of Escherichia coli isolated from UTIs patients, using bacterial culture method were subjected to polymerase chain reactions for detection of various O- serogroups, some urovirulence factors, antibiotic resistance genes and resistance to 13 different antibiotics. RESULTS According to data, the distribution of O1, O2, O6, O7 and O16 serogroups were 2.43%, besides O22, O75 and O83 serogroups were 1.62%. Furthermore, the distribution of O4, O8, O15, O21 and O25 serogroups were 5.69%, 3.25%, 21.13%, 4.06% and 26.01%, respectively. Overall, the fim virulence gene had the highest (86.17%) while the usp virulence gene had the lowest distributions of virulence genes in UPEC strains isolated from UTIs patients. The vat and sen virulence genes were not detected in any UPEC strains. Totally, aadA1 (52.84%), and qnr (46.34%) were the most prevalent antibiotic resistance genes while the distribution of cat1 (15.44%), cmlA (15.44%) and dfrA1 (21.95%) were the least. Resistance to penicillin (100%) and tetracycline (73.98%) had the highest while resistance to nitrofurantoin (5.69%) and trimethoprim (16.26%) had the lowest frequencies. CONCLUSIONS This study indicated that the UPEC strains which harbored the high numbers of virulence and antibiotic resistance genes had the high ability to cause diseases that are resistant to most antibiotics. In the current situation, it seems that the administration of penicillin and tetracycline for the treatment of UTIs is vain.
Collapse
Affiliation(s)
- Hassan Momtaz
- Department of Microbiology, ShahreKord Branch, Islamic Azad University, P.O. Box: 166, ShahreKord, Iran.
| | | | | | | | | | | | | |
Collapse
|
26
|
Qin X, Hu F, Wu S, Ye X, Zhu D, Zhang Y, Wang M. Comparison of adhesin genes and antimicrobial susceptibilities between uropathogenic and intestinal commensal Escherichia coli strains. PLoS One 2013; 8:e61169. [PMID: 23593422 PMCID: PMC3621879 DOI: 10.1371/journal.pone.0061169] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 03/08/2013] [Indexed: 11/30/2022] Open
Abstract
The presence of adhesins is arguably an important determinant of pathogenicity for Uropathogenic Escherichia coli (UPEC). Antimicrobial susceptibilities were tested by agar dilution method, fifteen adhesin genes were detected by polymerase chain reaction, and multilocus sequence typing (MLST) was analyzed in 70 UPEC isolates and 41 commensal E. coli strains. Extended-spectrum β-lactamase (ESBL) was determined with confirmatory test. The prevalence of ESBL-producers in UPEC (53%, 37/70) was higher than the commensal intestinal isolates (7%, 3/41), and 97% (36/37) of the ESBL-producing UPEC harbored blaCTX-M genes. afa was present in 36% (10/28) UPEC isolates from recurrent lower urinary tract infection (UTI), and none in the acute pyelonephritis, acute uncomplicated cystitis or commensal strains (P<0.0001). papG was detected in 28% (20/70) of UPEC isolates, while 5% (2/41) of the commensal strains were papG positive (P = 0.0025), and the prevalence of papG was significantly higher in acute pyelonephritis group (71%) than the other two UTI groups (P<0.0001). The prevalence of flu, yqi, yadN and ygiL was significantly higher in UPEC isolates than in the commensal strains. ESBL-producing UPEC showed a lower prevalence of adhesin genes compared with non-ESBL-producing strains. The MLST profiles were different between UPEC and commensal strains, with ST131 (19%, 13/70) and ST10 (20%, 8/41) being the most common MLSTs, respectively. This study demonstrated that several adhesin genes were more prevalent in UPEC isolates than in commensal E. coli, and afa may be associated with recurrent lower UTI whereas papG is more frequently associated with acute pyelonephritis.
Collapse
Affiliation(s)
- Xiaohua Qin
- Huashan Hospital and Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fupin Hu
- Huashan Hospital and Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi Wu
- Huashan Hospital and Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Ye
- Huashan Hospital and Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Demei Zhu
- Huashan Hospital and Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Zhang
- Huashan Hospital and Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Minggui Wang
- Huashan Hospital and Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
27
|
Becker Saidenberg A, Robaldo Guedes NM, Fernandes Seixas GH, da Costa Allgayer M, Pacífico de Assis E, Fabio Silveira L, Anne Melville P, Benites NR. A Survey for Escherichia coli Virulence Factors in Asymptomatic Free-Ranging Parrots. ISRN VETERINARY SCIENCE 2012; 2012:984813. [PMID: 23738135 PMCID: PMC3658587 DOI: 10.5402/2012/984813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/20/2012] [Indexed: 11/23/2022]
Abstract
Parrots in captivity are frequently affected by Escherichia coli (E. coli) infections. The objective of this study was to collect information on the carrier state for E. coli pathotypes in asymptomatic free-ranging parrots. Cloacal swabs were collected from nestlings of Hyacinth, Lear's macaws and Blue-fronted Amazon parrots and tested by polymerase chain reaction (PCR) for virulence factors commonly found in enteropathogenic, avian pathogenic, and uropathogenic E. coli strains. In total, 44 samples were cultured and E. coli isolates were yielded, from which DNA was extracted and processed by PCR. Genes commonly found in APEC isolates from Blue-fronted Amazon parrots and Hyacinth macaws were expressed in 14 of these 44 samples. One atypical EPEC isolate was obtained from a sample from Lear's macaw. The most commonly found gene was the increased serum survival (iss) gene. This is the first report, that describes such pathotypes in asymptomatic free-living parrots. The findings of this study suggest the presence of a stable host/parasite relationship at the time of the sampling brings a new understanding to the role that E. coli plays in captive and wild parrots. Such information can be used to improve husbandry protocols as well as help conservation efforts of free-living populations.
Collapse
Affiliation(s)
- André Becker Saidenberg
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, 05508 270 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Prominence of an O75 clonal group (clonal complex 14) among non-ST131 fluoroquinolone-resistant Escherichia coli causing extraintestinal infections in humans and dogs in Australia. Antimicrob Agents Chemother 2012; 56:3898-904. [PMID: 22526317 DOI: 10.1128/aac.06120-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolone (FQ)-resistant extraintestinal pathogenic Escherichia coli (FQ(r) ExPEC) strains from phylogenetic group B2 are undergoing epidemic spread. Isolates belonging to phylogenetic group B2 are generally more virulent than other E. coli isolates; therefore, resistance to FQs among group B2 isolates is concerning. Although clonal expansion of sequence type 131 (ST131) is a major factor, the contribution of additional clonal groups has not been quantified. Group B2 FQ(r) ExPEC isolates from humans (n = 250) and dogs (n = 12) in Australia were screened for ST131, a recently recognized and rapidly emerging multidrug-resistant and virulent clonal group that is important in both human and companion animal medicine. Non-ST131 isolates underwent virulence genotyping, PCR-based O typing, partial multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and FQ resistance mechanism analysis. Of 49 non-ST131 isolates (45 human, 4 canine), 49% (24 human, 2 canine) represented O-type O75 and exhibited conserved virulence genotypes (F10 papA allele, iha, fimH, sat, vat, fyuA, iutA, kpsMII, usp, ompT, malX, K1/K5 capsule) and MLST allele profiles corresponding with clonal complex CC14. Two clusters, each containing canine and human isolates, were identified by PFGE (differentiated by K1 and K5 capsules). Australian FQ(r) O75 isolates exhibited commonality with an historical FQ-susceptible O75 urosepsis isolate (also CC14). The isolation from humans and dogs of highly similar FQ(r) derivatives of the classic O75:K1/K5 (CC14) ExPEC lineage suggests recent acquisition of FQ resistance and potential cross-host-species transfer. This lineage should be targeted with ST131 in future epidemiological investigations of FQ(r) ExPEC.
Collapse
|
29
|
Crémet L, Corvec S, Bémer P, Bret L, Lebrun C, Lesimple B, Miegeville AF, Reynaud A, Lepelletier D, Caroff N. Orthopaedic-implant infections by Escherichia coli: molecular and phenotypic analysis of the causative strains. J Infect 2011; 64:169-75. [PMID: 22115736 DOI: 10.1016/j.jinf.2011.11.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Little is known about Escherichia coli Orthopaedic Implant Infections (OII) pathogenesis. Thus, we compared 30 clinical strains isolated in this context with 30 clinical strains of faecal origin, in order to identify phenotypic and genetic features related to E. coli OII. METHODS Phylogenetic analysis and detection of 19 virulence genes were performed by PCR. Ability to form biofilm was studied using the crystal violet reference method and the innovative BioFilm Ring Test(®). RESULTS Most of the OII isolates (56.7%) belonged to the virulence-associated phylogenetic group B2, but did not present a specific set of virulence factors. S fimbriae was the only adhesin significantly associated with OII isolates. Isolates varied greatly in their ability to form biofilm but OII isolates did not produce significantly more biofilm in vitro than isolates of faecal origin, whatever the method used. CONCLUSIONS Neither a specific pathogenic signature nor an increased ability to form biofilm in vitro was detected in E. coli strains isolated from OII. Nevertheless, genetic properties of these isolates could provide a clue to their origin. Hence, we found that virulence factors of uropathogenic strains and urological disorders were frequently detected among our OII cohort.
Collapse
Affiliation(s)
- Lise Crémet
- Service de Bactériologie-Hygiène, CHU de Nantes, 9 quai Moncousu 44093 Nantes Cedex 1, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Commonality among fluoroquinolone-resistant sequence type ST131 extraintestinal Escherichia coli isolates from humans and companion animals in Australia. Antimicrob Agents Chemother 2011; 55:3782-7. [PMID: 21646486 DOI: 10.1128/aac.00306-11] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli sequence type 131 (ST131), an emergent multidrug-resistant extraintestinal pathogen, has spread epidemically among humans and was recently isolated from companion animals. To assess for human-companion animal commonality among ST131 isolates, 214 fluoroquinolone-resistant extraintestinal E. coli isolates (205 from humans, 9 from companion animals) from diagnostic laboratories in Australia, provisionally identified as ST131 by PCR, selectively underwent PCR-based O typing and bla(CTX-M-15) detection. A subset then underwent multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE) analysis, extended virulence genotyping, antimicrobial susceptibility testing, and fluoroquinolone resistance genotyping. All isolates were O25b positive, except for two O16 isolates and one O157 isolate, which (along with six O25b-positive isolates) were confirmed by MLST to be ST131. Only 12% of isolates (25 human, 1 canine) exhibited bla(CTX-M-15). PFGE analysis of 20 randomly selected human and all 9 companion animal isolates showed multiple instances of ≥94% profile similarity across host species; 12 isolates (6 human, 6 companion animal) represented pulsotype 968, the most prevalent ST131 pulsotype in North America (representing 23% of a large ST131 reference collection). Virulence gene and antimicrobial resistance profiles differed minimally, without host species specificity. The analyzed ST131 isolates also exhibited a conserved, host species-independent pattern of chromosomal fluoroquinolone resistance mutations. However, eight (89%) companion animal isolates, versus two (10%) human isolates, possessed the plasmid-borne qnrB gene (P < 0.001). This extensive across-species strain commonality, plus the similarities between Australian and non-Australian ST131 isolates, suggest that ST131 isolates are exchanged between humans and companion animals both within Australia and intercontinentally.
Collapse
|
31
|
Stenske KA, Bemis DA, Gillespie BE, D'Souza DH, Oliver SP, Draughon FA, Matteson KJ, Bartges JW. Comparison of clonal relatedness and antimicrobial susceptibility of fecal Escherichia coli from healthy dogs and their owners. Am J Vet Res 2010; 70:1108-16. [PMID: 19719426 DOI: 10.2460/ajvr.70.9.1108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine prevalence of within-household sharing of fecal Escherichia coli between dogs and their owners on the basis of pulsed-field gel electrophoresis (PFGE), compare antimicrobial susceptibility between isolates from dogs and their owners, and evaluate epidemiologic features of cross-species sharing by use of a questionnaire. SAMPLE POPULATION 61 healthy dog-owner pairs and 30 healthy control humans. PROCEDURES 3 fecal E coli colonies were isolated from each participant; PFGE profiles were used to establish relatedness among bacterial isolates. Susceptibility to 17 antimicrobials was determined via disk diffusion. A questionnaire was used to evaluate signalment, previous antimicrobial therapy, hygiene, and relationship with dog. RESULTS A wide array of PFGE profiles was observed in E coli isolates from all participants. Within-household sharing occurred with 9.8% prevalence, and across-household sharing occurred with 0.3% prevalence. No behaviors were associated with increased clonal sharing between dog and owner. No differences were found in susceptibility results between dog-owner pairs. Control isolates were more likely than canine isolates to be resistant to ampicillin and trimethoprim-sulfamethoxazole. Owners and control humans carried more multdrug-resistant E coli than did dogs. CONCLUSIONS AND CLINICAL RELEVANCE Within-household sharing of E coli was detected more commonly than across-household sharing, but both direct contact and environmental reservoirs may be routes of cross-species sharing of bacteria and genes for resistance. Cross-species bacterial sharing is a potential public health concern, and good hygiene is recommended.
Collapse
Affiliation(s)
- Katherine A Stenske
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Carvallo FR, DebRoy C, Baeza E, Hinckley L, Gilbert K, Choi SJ, Risatti G, Smyth JA. Necrotizing Pneumonia and Pleuritis Associated with Extraintestinal Pathogenic Escherichia Coli in a Tiger (Panthera Tigris) Cub. J Vet Diagn Invest 2010; 22:136-40. [DOI: 10.1177/104063871002200130] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) cause diseases in humans and animals, affecting organs outside the alimentary canal. In recent years, ExPEC have been reported as a cause of fatal pneumonia in dogs, cats, and in a horse. In the current report, a fatal case of pneumonia and pleuritis is described in a 4-week-old tiger ( Panthera tigris) cub associated with ExPEC. The cub was presented with a sudden-onset respiratory illness and died after a few hours. Postmortem examination of the cub revealed an acute necrotizing pneumonia. The alveolar spaces were filled with large numbers of inflammatory cells (predominantly macrophages), edema, fibrin strands, and short bacillary bacteria. Escherichia coli O6:H31 was isolated in pure culture from the affected lung. It carried virulence genes cnf-1, sfa, fim, hlyD, and papG allele III, which are known to be associated with ExPEC strains. No evidence of infection by any other agent was detected. This is the first report, to the authors' knowledge, in which ExPEC has been associated with pneumonia in tigers.
Collapse
Affiliation(s)
- Francisco R. Carvallo
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT
| | - Chitrita DebRoy
- the E. coli Reference Center, The Pennsylvania State University, University Park, PA
| | | | - Lynn Hinckley
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT
| | - Kelly Gilbert
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT
| | - Soo Jeon Choi
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT
| | - Guillermo Risatti
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT
| | - Joan A. Smyth
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT
| |
Collapse
|
33
|
Stenske KA, Bemis DA, Gillespie BE, Oliver SP, Draughon FA, Matteson KJ, Bartges JW. Prevalence of urovirulence genes cnf, hlyD, sfa/foc, and papGIII in fecal Escherichia coli from healthy dogs and their owners. Am J Vet Res 2009; 70:1401-6. [PMID: 19878023 DOI: 10.2460/ajvr.70.11.1401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the prevalence of 4 urovirulence genes in fecal Escherichia coli isolates from healthy dogs and their owners and to determine whether detection of E coli strains with these genes was associated with a history of urinary tract infection (UTI). SAMPLE POPULATION 61 healthy dog-owner pairs and 30 healthy non-dog owners. PROCEDURES A fecal specimen was obtained from each participant, and 3 colonies of E coli were isolated from each specimen. A multiplex PCR assay was used to detect 4 genes encoding virulence factors: cytotoxic necrotizing factor (cnf), hemolysin (hlyD), s-fimbrial and F1C fimbriae adhesin (sfa/foc), and pilus associated with pyelonephritis G allele III (papGIII). Human participants completed a questionnaire to provide general information and any history of UTI for themselves and, when applicable, their dog. RESULTS 26% (16/61) of dogs, 18% (11/61) of owners, and 20% (6/30) of non-dog owners had positive test results for >or= 1 E coli virulence gene. One or more genes were identified in fecal E coli isolates of both dog and owner in 2% (1/61) of households. There was no difference in the detection of any virulence factor between dog-owner pairs. Female owner history of UTI was associated with detection of each virulence factor in E coli strains isolated from their dogs' feces. CONCLUSIONS AND CLINICAL RELEVANCE Dogs and humans harbored fecal E coli strains possessing the genes cnf, hlyD, sfa/foc, and papGIII that encode urovirulence factors. It was rare for both dog and owner to have fecal E coli strains with these virulence genes.
Collapse
Affiliation(s)
- Katherine A Stenske
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Antão EM, Wieler LH, Ewers C. Adhesive threads of extraintestinal pathogenic Escherichia coli. Gut Pathog 2009; 1:22. [PMID: 20003270 PMCID: PMC2797515 DOI: 10.1186/1757-4749-1-22] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/10/2009] [Indexed: 12/25/2022] Open
Abstract
The ability to adhere to host surfaces is by far the most vital step in the successful colonization by microbial pathogens. Colonization begins with the attachment of the bacterium to receptors expressed by cells forming the lining of the mucosa. Long hair like extracellular appendages called fimbriae, produced by most Gram-negative pathogens, mediate specific attachment to the epithelial cell surface. Associated with the fimbriae is a protein called an adhesin, which directs high-affinity binding to specific cell surface components. In the last couple of years, an enormous amount of research has been undertaken that deals with understanding how bacterial pathogens adhere to host cells. E. coli in all probability is one of the best studied free-living organisms. A group of E. coli called Extraintestinal pathogenic E. coli (ExPEC) including both human and animal pathogens like Uropathogenic E. coli (UPEC), Newborn meningitic E. coli (NMEC) and Avian pathogenic E. coli (APEC), have been found to harbour many fimbriae including Type 1 fimbriae, P fimbriae, curli fibres, S fimbriae, F1C fimbriae, Dr fimbriae, afimbrial adhesins, temperature-sensitive haemagglutinin and many novel adhesin gene clusters that have not yet been characterized. Each of these adhesins is unique due to the recognition of an adhesin-specific receptor, though as a group these adhesins share common genomic organization. A newly identified putative adhesin temporarily termed ExPEC Adhesin I, encoded by gene yqi, has been recently found to play a significant role in the pathogenesis of APEC infection, thus making it an interesting candidate for future research. The aim of this review is to describe the role of ExPEC adhesins during extraintestinal infections known till date, and to suggest the idea of investigating their potential role in the colonization of the host gut which is said to be a reservoir for ExPEC.
Collapse
Affiliation(s)
- Esther-Maria Antão
- Institut für Mikrobiologie und Tierseuchen, Freie Universität Berlin, Philippstr, 13, 10115 Berlin, Germany.
| | | | | |
Collapse
|
35
|
Highland MA, Byrne BA, Debroy C, Samitz EM, Peterson TS, Oslund KL. Extraintestinal pathogenic Escherichia coli-induced pneumonia in three kittens and fecal prevalence in a clinically healthy cohort population. J Vet Diagn Invest 2009; 21:609-15. [PMID: 19737755 DOI: 10.1177/104063870902100504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Three kittens, ages 5, 9, and 17 weeks, were found dead by separate caregivers and were submitted for necropsy. At gross necropsy, each kitten had hemorrhagic or bloody fibrinoserous thoracic fluid and differing distributions of pulmonary consolidation. On histologic examination, the pulmonary lesion in each kitten was similar and was characterized by acute necrotizing and hemorrhagic pneumonia and pleuritis, with numerous intralesional small Gram-negative rods. A pure culture of a distinct serotype of Escherichia coli was identified in lung tissue from each kitten (O4H5, O6H7, O6H5). Lung isolates, genotyped by polymerase chain reaction, carried genes that are characteristic of extraintestinal pathogenic E. coli (ExPEC), including cnf-1, papG allele I, papA, papC, sfa, fim, hlyD, malX, iroN, fyuA, kpsMII, and ompT. Escherichia coli isolates from the intestines of 2 of the kittens were 100% related to the respective lung isolate, as determined by pulsed-field gel electrophoresis. Cultures of fecal samples collected from a clinically healthy cohort population of kittens revealed 16 of 19 tested kittens (84%) to be shedding hemolytic E. coli. Ten different serotypes were identified from 43 hemolytic E. coli fecal isolates from the cohort population, each of which had a genetic profile consistent with that typical of ExPEC. To the authors' knowledge, this is the first report to describe a cluster of isolated cases of pneumonia in kittens caused by distinct serotypes of ExPEC and to evaluate the prevalence of hemolytic E. coli carrying ExPEC-associated genes in the feces of a cohort population of kittens.
Collapse
Affiliation(s)
- Margaret A Highland
- Department of Pathology, University of Wisconsin, School of Veterinary Medicine, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Virulence potential of Escherichia coli isolates from skin and soft tissue infections. J Clin Microbiol 2009; 47:1811-7. [PMID: 19357208 DOI: 10.1128/jcm.01421-08] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains frequently are isolated from skin and soft tissue infections (SSTI); however, their virulence potential has not yet been extensively studied. In the present study, we characterized 102 E. coli SSTI strains isolated mostly from surgical and traumatic wounds, foot ulcers, and decubitus. The strains were obtained from the Institute of Microbiology and Immunology, University of Ljubljana, Slovenia. Phylogenetic backgrounds, virulence factors (VFs), and antibiotic resistance profiles were determined. Correlations between VFs and phylogenetic groups were established and analyzed with regard to patient factors. Further, the associations of the three most prevalent antibiotic resistance patterns with virulence potential were analyzed. Our results showed that the majority of the studied strains (64%) [corrected] belonged to the B2 phylogenetic group. The most prevalent VF was ompT (80%), while toxin genes cnf1 and hlyA were found with prevalences of 32 and 30%, respectively. None of the investigated bacterial characteristics were significantly associated with patient gender, age, type of infection, or immunodeficiency. The most prevalent antibiotic resistance pattern was resistance to ampicillin (46%), followed by resistance to tetracycline (25%) and fluoroquinolones (21%). Strains resistant to ciprofloxacin exhibited a significantly reduced prevalence of cnf1 (P < 0.05) and usp (P < 0.01). Our study revealed that E. coli isolates from SSTIs exhibit a remarkable virulence potential that is comparable to that of E. coli isolates from urinary tract infections and bacteremia.
Collapse
|
37
|
DebRoy C, Roberts E, Jayarao BM, Brooks JW. Bronchopneumonia associated with extraintestinal pathogenic Escherichia coli in a horse. J Vet Diagn Invest 2008; 20:661-4. [PMID: 18776106 DOI: 10.1177/104063870802000524] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) strains carrying distinct virulence attributes are known to cause diseases in humans and animals and infect organs other than the gastrointestinal tract. A fatal case of bronchopneumonia in a 12-year-old female Quarterhorse was investigated. Following postmortem examination, E. coli, Enterococcus sp., and Klebsiella pneumonia were isolated from the lungs, which contained multifocal intra-alveolar accumulations of neutrophils and macrophages with edema, hemorrhage, and fibrin. The strain of E. coli belonged to O2H21 and carried virulence genes cnf1, sfa, foc, fimA, and papG allele I that are known to be associated with ExPEC strains. The strain was resistant to several antimicrobials including clindamycin, erythromycin, oxacillin, penicillin, and rifampin. This is the first report, to the authors' knowledge, in which ExPEC O2H21 has been associated with fatal bronchopneumonia in a horse.
Collapse
Affiliation(s)
- Chitrita DebRoy
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, PA 16802, USA.
| | | | | | | |
Collapse
|
38
|
Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Appl Environ Microbiol 2008; 75:184-92. [PMID: 18997030 DOI: 10.1128/aem.01324-08] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although research has increasingly focused on the pathogenesis of avian pathogenic Escherichia coli (APEC) infections and the "APEC pathotype" itself, little is known about the reservoirs of these bacteria. We therefore compared outbreak strains isolated from diseased chickens (n = 121) with nonoutbreak strains, including fecal E. coli strains from clinically healthy chickens (n = 211) and strains from their environment (n = 35) by determining their virulence gene profiles, phylogenetic backgrounds, responses to chicken serum, and in vivo pathogenicities in a chicken infection model. In general, by examining 46 different virulence-associated genes we were able to distinguish the three groups of avian strains, but some specific fecal and environmental isolates had a virulence gene profile that was indistinguishable from that determined for outbreak strains. In addition, a substantial number of phylogenetic EcoR group B2 strains, which are known to include potent human and animal extraintestinal pathogenic E. coli (ExPEC) strains, were identified among the APEC strains (44.5%) as well as among the fecal E. coli strains from clinically healthy chickens (23.2%). Comparably high percentages (79.2 to 89.3%) of serum-resistant strains were identified for all three groups of strains tested, bringing into question the usefulness of this phenotype as a principal marker for extraintestinal virulence. Intratracheal infection of 5-week-old chickens corroborated the pathogenicity of a number of nonoutbreak strains. Multilocus sequence typing data revealed that most strains that were virulent in chicken infection experiments belonged to sequence types that are almost exclusively associated with extraintestinal diseases not only in birds but also in humans, like septicemia, urinary tract infection, and newborn meningitis, supporting the hypothesis that not the ecohabitat but the phylogeny of E. coli strains determines virulence. These data provide strong evidence for an avian intestinal reservoir hypothesis which could be used to develop intestinal intervention strategies. These strains pose a zoonotic risk because either they could be transferred directly from birds to humans or they could serve as a genetic pool for ExPEC strains.
Collapse
|
39
|
Multiple-host sharing, long-term persistence, and virulence of Escherichia coli clones from human and animal household members. J Clin Microbiol 2008; 46:4078-82. [PMID: 18945846 DOI: 10.1128/jcm.00980-08] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During a 3-year surveillance, six household members (five humans and the family dog) yielded 14 Escherichia coli clones. Virulence genes, group B2, and having caused cystitis (in the mother or dog) corresponded to colonization endpoints (number of samples, colonies, hosts, and dates). The dog's cystitis clone was the most extensively recovered clone.
Collapse
|
40
|
The DNA Sequence of the Escherichia coli O22 O-Antigen Gene Cluster and Detection of Pathogenic Strains Belonging to E. coli Serogroups O22 and O91 by Multiplex PCR Assays Targeting Virulence Genes and Genes in the Respective O-Antigen Gene Clusters. FOOD ANAL METHOD 2008. [DOI: 10.1007/s12161-008-9046-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Relationship between Escherichia coli strains causing acute cystitis in women and the fecal E. coli population of the host. J Clin Microbiol 2008; 46:2529-34. [PMID: 18495863 DOI: 10.1128/jcm.00813-08] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Previous epidemiological assessments of the prevalence versus special-pathogenicity hypothesis for urinary tract infection (UTI) pathogenesis in women may have been confounded by underlying host population differences between women with UTI and healthy controls and have not considered the clonal complexity of the fecal Escherichia coli population of the host. In the present study, 42 women with acute uncomplicated cystitis served as their own controls for an analysis of the causative E. coli strain and the concurrent intestinal E. coli population. Clonality among the urine isolate and 30 fecal colonies per subject was assessed by repetitive-element PCR and macrorestriction analysis. Each unique clone underwent PCR-based phylotyping and virulence genotyping. Molecular analysis resolved 109 unique clones (4 urine-only, 38 urine-fecal, and 67 fecal-only clones). Urine clones exhibited a significantly higher prevalence of group B2 than fecal-only clones (69% versus 10%; P < 0.001) and higher aggregate virulence scores (mean, 6.2 versus 2.9; P < 0.001). In multilevel regression models for predicting urine clone status, significant positive predictors included group B2, 10 individual virulence traits, the aggregate virulence score, fecal dominance, relative fecal abundance, and (unique to the present study) a pauciclonal fecal sample. In summary, within the fecal E. coli populations of women with acute cystitis, pauciclonality, clonal dominance, virulence, and group B2 status are closely intertwined. Phylogenetic group B2 status and/or associated virulence factors may promote fecal abundance and pauciclonality, thereby contributing to upstream steps in UTI pathogenesis. This relationship suggests a possible reconciliation of the prevalence and special-pathogenicity hypotheses.
Collapse
|
42
|
Shoaf-Sweeney KD, Hutkins RW. Adherence, anti-adherence, and oligosaccharides preventing pathogens from sticking to the host. ADVANCES IN FOOD AND NUTRITION RESEARCH 2008; 55:101-61. [PMID: 18772103 DOI: 10.1016/s1043-4526(08)00402-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For many pathogenic bacteria, infections are initiated only after the organism has first adhered to the host cell surface. If adherence can be inhibited, then the subsequent infection can also be inhibited. This approach forms the basis of anti-adherence strategies, which have been devised to prevent a variety of bacterial infections. In this chapter, the molecular basis by which respiratory, urinary, and gastrointestinal tract pathogens adhere to host cells will be described. The five general types of anti-adherence agents will also be reviewed. The most well-studied are the receptor analogs, which include oligosaccharides produced synthetically or derived from natural sources, including milk, berries, and other plants. Their ability to inhibit pathogen adherence may lead to development of novel, food-grade anti-infective agents that are inexpensive and safe.
Collapse
Affiliation(s)
- Kari D Shoaf-Sweeney
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | |
Collapse
|
43
|
Sura R, Van Kruiningen HJ, DebRoy C, Hinckley LS, Greenberg KJ, Gordon Z, French RA. Extraintestinal pathogenic Escherichia coli-induced acute necrotizing pneumonia in cats. Zoonoses Public Health 2007; 54:307-13. [PMID: 17894641 DOI: 10.1111/j.1863-2378.2007.01067.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are pathogens involved in several disease conditions, ranging from urinary tract infection to meningitis in humans and animals. They comprise epidemiologically and phylogenetically distinct strains, affecting most species and involving any organ or anatomical site. Here, we report fatal cases of necrotizing pneumonia in cats. Over a 1-week period, 13 cats from an animal shelter in Stamford, Connecticut were presented for necropsy. All had a clinical history of acute respiratory disease. The gross and microscopic findings for all the cats were consistent. Escherichia coli was uniformly isolated from the lungs of all the tested cats. All the isolates were haemolytic, genetically related as determined by enterobacterial repetitive intergenic consensus PCR, and harboured genes encoding for cytotoxic necrotizing factor-1 and fimbriae and adhesions that are characteristic of ExPEC, implying a point source clonal outbreak. As cats are common household pets, this report raises concerns regarding zoonotic potential (in either direction) for these ExPEC strains.
Collapse
Affiliation(s)
- R Sura
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Virulence genotypes and phylogenetic background of Escherichia coli serogroup O6 isolates from humans, dogs, and cats. J Clin Microbiol 2007; 46:417-22. [PMID: 18003805 DOI: 10.1128/jcm.00674-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular evidence is limited for the hypothesis that humans, dogs, and cats can become colonized and infected with similar virulent Escherichia coli strains. To further assess this possibility, archived E. coli O6 isolates (n = 130) from humans (n = 55), dogs (n = 59), and cats (n = 16), representing the three main H (flagellar) types within serogroup O6 (H1, H7, and H31), were analyzed, along with selected reference strains. Isolates underwent PCR-based phylotyping, multilocus sequence typing, PCR-based detection of 55 virulence-associated genes, and XbaI pulsed-field gel electrophoresis (PFGE) profiling. Three major sequence types (STs), which corresponded closely with H types, accounted for 99% of the 130 O6 isolates. Each ST included human, dog, and cat isolates; two included reference pyelonephritis isolates CFT073 (O6:K2:H1) and 536 (O6:K15:H31). Virulence genotypes overlapped considerably among host species, despite statistically significant differences between human and pet isolates. Several human and dog isolates from ST127 (O6:H31) exhibited identical virulence genotypes and highly similar PFGE profiles, consistent with cross-species exchange of specific E. coli clones. In conclusion, the close similarity in the genomic backbone and virulence genotype between certain human- and animal-source E. coli isolates within serogroup O6 supports the hypothesis of zoonotic potential.
Collapse
|
45
|
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) possesses virulence traits that allow it to invade, colonize, and induce disease in bodily sites outside of the gastrointestinal tract. Human diseases caused by ExPEC include urinary tract infections, neonatal meningitis, sepsis, pneumonia, surgical site infections, as well as infections in other extraintestinal locations. ExPEC-induced diseases represent a large burden in terms of medical costs and productivity losses. In addition to human illnesses, ExPEC strains also cause extraintestinal infections in domestic animals and pets. A commonality of virulence factors has been demonstrated between human and animal ExPEC, suggesting that the organisms are zoonotic pathogens. ExPEC strains have been isolated from food products, in particular from raw meats and poultry, indicating that these organisms potentially represent a new class of foodborne pathogens. This review discusses various aspects of ExPEC, including its presence in food products, in animals used for food or as companion pets; the diseases ExPEC can cause; and the virulence factors and virulence mechanisms that cause disease.
Collapse
Affiliation(s)
- James L Smith
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA.
| | | | | |
Collapse
|
46
|
Jiang SC, Chu W, Olson BH, He JW, Choi S, Zhang J, Le JY, Gedalanga PB. Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria. Appl Microbiol Biotechnol 2007; 76:927-34. [PMID: 17589839 DOI: 10.1007/s00253-007-1047-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/22/2007] [Accepted: 05/23/2007] [Indexed: 10/23/2022]
Abstract
Three independent microbial source tracking (MST) methods were applied to a small urban subwatershed in Orange County, California. Fifty-seven water samples collected over summer 2002 were analyzed for human adenovirus and enterovirus. Enterococci and E. coli were isolated for antibiotic resistance analysis (ARA) and for PCR identification of human- and animal-specific toxin genes, respectively. All water samples were PCR negative for human enteroviruses and E. coli human-specific toxin gene. E. coli toxin markers revealed the presence of toxin genes specific to bird, rabbit, and cow. Enterococci ARA results supported this conclusion and indicated that fecal bacteria from bird and wild animal feces as well as soil were the predominant source found in the watershed. An E. coli, isolated from the watershed and inoculated back into the heat-sterilized storm drain water, increased 4 log units within 6 days. Collectively, these results suggest that bird and wild animal feces, soil amendments, and/or fecal coliform growth in the storm drain are the major contributors to the fecal bacterial pollution in downstream areas. However, human adenoviruses were detected on two occasions. Fecal bacterial concentrations were not elevated on these two occasions, suggesting that the elevated levels of fecal indicator bacteria in this small watershed could be unrelated to the source of human adenovirus.
Collapse
Affiliation(s)
- Sunny C Jiang
- Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lane MC, Mobley HLT. Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int 2007; 72:19-25. [PMID: 17396114 DOI: 10.1038/sj.ki.5002230] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
P fimbria, a mannose-resistant adhesin of uropathogenic Escherichia coli (UPEC), has been shown to be associated with acute pyelonephritis. The pap gene cluster encodes the proteins required for P-fimbrial biogenesis, including papG, which encodes the tip adhesin. The three most studied PapG molecular variants, which are shown to bind distinct isoreceptors, are PapGI, -II, and -III. PapGII preferentially binds globoside, or GbO4, a glycolipid isoreceptor of the human kidney. Studies using different animal models of ascending urinary tract infection (UTI) have demonstrated a variable role for P fimbriae, and specifically PapGII-mediated adherence, in renal colonization. The disparities in the results obtained from those studies are likely to be attributed to the differences in animal models and UPEC strains utilized. One explanation that is discussed in detail is the contribution of multiple fimbriae of UPEC that potentially mediate adherence to the mammalian kidney. Overall, P fimbriae appear to play some role in mediating adherence to uroepithelial cells in vivo and establishing an inflammatory response during renal colonization, thus contributing to kidney damage during acute pyelonephritis. To verify that P fimbriae contribute to the pathogenesis of UPEC during ascending UTI (and in particular acute pyelonephritis), future studies should be conducted to satisfy fully all three tenets of the molecular Koch's postulates, including complementation of a mutated allele.
Collapse
Affiliation(s)
- M C Lane
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
48
|
Takahashi A, Kanamaru S, Kurazono H, Kunishima Y, Tsukamoto T, Ogawa O, Yamamoto S. Escherichia coli isolates associated with uncomplicated and complicated cystitis and asymptomatic bacteriuria possess similar phylogenies, virulence genes, and O-serogroup profiles. J Clin Microbiol 2006; 44:4589-92. [PMID: 17065267 PMCID: PMC1698404 DOI: 10.1128/jcm.02070-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic and serological characteristics of Escherichia coli isolates from patients with uncomplicated cystitis (UC), complicated cystitis (CC), and complicated asymptomatic bacteriuria (CASB) were determined. Phylogenetic group B2 was predominant in all categories. The prevalences of 14 out of 18 virulence factor genes were similar among the three categories, while pap, iha, ompT, and PAI were more frequently seen in isolates associated with UC than CC or CASB.
Collapse
Affiliation(s)
- Akira Takahashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Thumbikat P, Waltenbaugh C, Schaeffer AJ, Klumpp DJ. Antigen-specific responses accelerate bacterial clearance in the bladder. THE JOURNAL OF IMMUNOLOGY 2006; 176:3080-6. [PMID: 16493067 DOI: 10.4049/jimmunol.176.5.3080] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Urinary tract infections (UTIs) cause patient morbidity and have a substantial economic impact. Half of all women will suffer a UTI at least once, and 25% of these women will have recurrent infections. That 75% of previously infected women do not become reinfected strongly suggests a role for an adaptive immune response. The goal of this study was to characterize the adaptive immune responses to uropathogenic Escherichia coli (UPEC), the predominant uropathogen. A novel murine model of UTI reinfection was developed using the prototypic cystitis UPEC isolate NU14 harboring a plasmid encoding OVA as a unique antigenic marker. Bacterial colonization of the bladder was quantified following one or more infections with NU14-OVA. Animals developed anti-OVA serum IgG and IgM titers after the initial infection and marked up-regulation of activation markers on splenic T cells. We observed a 95% reduction in bacterial colonization upon reinfection, and splenic leukocytes showed Ag-specific proliferation in vitro. Adoptive transfer of splenic T cells or passive transfer of serum from previously infected mice protected naive syngeneic mice from UPEC colonization. These findings support our hypothesis that adaptive immune responses to UPEC protect the bladder from reinfection and form the basis of understanding susceptibility to recurrent UTI in women.
Collapse
Affiliation(s)
- Praveen Thumbikat
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
50
|
Ron EZ. Host specificity of septicemic Escherichia coli: human and avian pathogens. Curr Opin Microbiol 2005; 9:28-32. [PMID: 16384724 DOI: 10.1016/j.mib.2005.12.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 12/14/2005] [Indexed: 11/29/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) strains are the cause of a diverse spectrum of invasive human and animal infections, often leading to septicemia. ExPEC strains contain virulence factors that enable them to survive in the host blood and tissues. Most of these virulence factors are distributed in ExPEC strains in a host-independent fashion. Genomic analyses of these strains provide evidence for numerous recombinational events and horizontal gene transfer, as well as for a high diversity of virulence factors. In studies of human and avian septicemic strains of serotypes O2 and O78 it appears that there is a positive correlation between virulence, invasiveness and clonal origin. Yet, it is clear that clonal division in these strains, as well as distribution of virulence factors, is independent of the host and closely related clones reside in different hosts. Although the possibility exists that ExPEC strains do have a certain degree of host specificity, which is not obvious from genomic studies, it is clear that the similarity of virulence factors presents a significant zoonotic risk.
Collapse
Affiliation(s)
- Eliora Z Ron
- Department of Molecular Microbiology and Biotechnology, The George S Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.
| |
Collapse
|