1
|
Mahesh PP, Kolape J, Sultana H, Neelakanta G. McFarland Standards-Based Spectrophotometry Method for Calculating Approximate Multiplicity of Infection for an Obligate Intracellular Bacterium Anaplasma phagocytophilum. Microorganisms 2025; 13:662. [PMID: 40142553 PMCID: PMC11945594 DOI: 10.3390/microorganisms13030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular Gram-negative bacterium that causes human granulocytic anaplasmosis. Assessing the number of these bacteria is important for in vitro and in vivo infection studies. Colony count is used to set references for the multiplicity of infections in the case of culturable bacteria. However, the number of bacteria present inside the host cells, in which the bacteria are maintained, can be considered in the case of obligate intracellular bacteria. McFarland standards are a series of turbidity-based standards used to visually assess the approximate number of culturable bacteria. The turbidity of each standard can be related to their respective absorbances or optical densities (ODs). In this study, we describe a simple method to assess the approximate number of A. phagocytophilum based on McFarland standards. The ODs of cell-free crude extracts of A. phagocytophilum were used to assess the approximate number of bacteria while considering that the cell debris also contributes to the ODs. The consistency of this method was also tested using the bacterial cultures grown at different times. In summary, we provide a simple method to estimate the number of obligate intracellular bacteria for use in in vitro infection studies.
Collapse
Affiliation(s)
- P. P. Mahesh
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (P.P.M.); (H.S.)
| | - Jaydeep Kolape
- Advanced Microscopy and Imaging Center, College of Arts and Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (P.P.M.); (H.S.)
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (P.P.M.); (H.S.)
| |
Collapse
|
2
|
Lind MCH, Naimi WA, Chiarelli TJ, Sparrer T, Ghosh M, Shapiro L, Carlyon JA. Anaplasma phagocytophilum invasin AipA interacts with CD13 to elicit Src kinase signaling that promotes infection. mBio 2024; 15:e0156124. [PMID: 39324816 PMCID: PMC11481542 DOI: 10.1128/mbio.01561-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Host-microbe interactions that facilitate entry into mammalian cells are essential for obligate intracellular bacterial survival and pathogenesis. Anaplasma phagocytophilum is an obligate intracellular bacterium that invades neutrophils to cause granulocytic anaplasmosis. The invasin-receptor pairs and signaling events that induce Anaplasma uptake are inadequately defined. A. phagocytophilum invasion protein A orchestrates entry via residues 9-21 (AipA9-21) engaging an unknown receptor. Yeast two-hybrid screening suggested that AipA binds within C-terminal amino acids 851-967 of CD13 (aminopeptidase N), a multifunctional protein that, when crosslinked, initiates Src kinase and Syk signaling that culminates in endocytosis. Co-immunoprecipitation validated the interaction and confirmed that it requires the AipA N-terminus. CD13 ectopic expression on non-phagocytic cells increased susceptibility to A. phagocytophilum infection. Antibody blocking and enzymatic inhibition experiments found that the microbe exploits CD13 but not its ectopeptidase activity to infect myeloid cells. A. phagocytophilum induces Src and Syk phosphorylation during invasion. Inhibitor treatment established that Src is key for A. phagocytophilum infection, while Syk is dispensable and oriented the pathogen-invoked signaling pathway by showing that Src is activated before Syk. Disrupting the AipA-CD13 interaction with AipA9-21 or CD13781-967 antibody inhibited Src and Syk phosphorylation and also infection. CD13 crosslinking antibody that induces Src and Syk signaling restored infectivity of anti-AipA9-21-treated A. phagocytophilum. The bacterium poorly infected CD13 knockout mice, providing the first demonstration that CD13 is important for microbial infection in vivo. Overall, A. phagocytophilum AipA9-21 binds CD13 to induce Src signaling that mediates uptake into host cells, and CD13 is critical for infection in vivo. IMPORTANCE Diverse microbes engage CD13 to infect host cells. Yet invasin-CD13 interactions, the signaling they invoke for pathogen entry, and the relevance of CD13 to infection in vivo are underexplored. Dissecting these concepts would advance fundamental understanding of a convergently evolved infection strategy and could have translational benefits. Anaplasma phagocytophilum infects neutrophils to cause granulocytic anaplasmosis, an emerging disease for which there is no vaccine and few therapeutic options. We found that A. phagocytophilum uses its surface protein and recently identified protective immunogen, AipA, to bind CD13 to elicit Src kinase signaling, which is critical for infection. We elucidated the AipA CD13 binding domain, which CD13 region AipA engages, and established that CD13 is key for A. phagocytophilum infection in vivo. Disrupting the AipA-CD13 interaction could be utilized to prevent granulocytic anaplasmosis and offers a model that could be applied to protect against multiple infectious diseases.
Collapse
Affiliation(s)
- Mary Clark H. Lind
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Waheeda A. Naimi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Tavis Sparrer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| | - Mallika Ghosh
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Linda Shapiro
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
3
|
Eskeland S, Bø-Granquist EG, Stuen S, Lybeck K, Wilhelmsson P, Lindgren PE, Makvandi-Nejad S. Temporal patterns of gene expression in response to inoculation with a virulent Anaplasma phagocytophilum strain in sheep. Sci Rep 2023; 13:20399. [PMID: 37989861 PMCID: PMC10663591 DOI: 10.1038/s41598-023-47801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this study was to characterize the gene expression of host immune- and cellular responses to a Norwegian virulent strain of Anaplasma phagocytophilum, the cause of tick-borne fever in sheep. Ten sheep were intravenously inoculated with a live virulent strain of A. phagocytophilum. Clinical-, observational-, hematological data as well as bacterial load, flow cytometric cell count data from peripheral blood mononuclear cells and host's gene expression post infection was analysed. The transcriptomic data were assessed for pre-set time points over the course of 22 days following the inoculation. Briefly, all inoculated sheep responded with clinical signs of infection 3 days post inoculation and onwards with maximum bacterial load observed on day 6, consistent with tick-borne fever. On days, 3-8, the innate immune responses and effector processes such as IFN1 signaling pathways and cytokine mediated signaling pathways were observed. Several pathways associated with the adaptive immune responses, namely T-cell activation, humoral immune responses, B-cell activation, and T- and B-cell differentiation dominated on the days of 8, 10 and 14. Flow-cytometric analysis of the PBMCs showed a reduction in CD4+CD25+ cells on day 10 and 14 post-inoculation and a skewed CD4:CD8 ratio indicating a reduced activation and proliferation of CD4-T-cells. The genes of important co-stimulatory molecules such as CD28 and CD40LG, important in T- and B-cell activation and proliferation, did not significantly change or experienced downregulation throughout the study. The absence of upregulation of several co-stimulatory molecules might be one possible explanation for the low activation and proliferation of CD4-T-cells during A. phagocytophilum infection, indicating a suboptimal CD4-T-cell response. The upregulation of T-BET, EOMES and IFN-γ on days 8-14 post inoculation, indicates a favoured CD4 Th1- and CD8-response. The dynamics and interaction between CD4+CD25+ and co-stimulatory molecules such as CD28, CD80, CD40 and CD40LG during infection with A. phagocytophilum in sheep needs further investigation in the future.
Collapse
Affiliation(s)
- Sveinung Eskeland
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway.
| | - Erik G Bø-Granquist
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Elizabeth Stephansens Vei 15, 1433, Ås, Norway
| | - Snorre Stuen
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Kyrkjevegen 332/334, 4325, Sandnes, Norway
| | - Kari Lybeck
- Norwegian Veterinary Institute, Elizabeth Stephansens Vei 1, 1433, Ås, Norway
| | - Peter Wilhelmsson
- Division of Clinical Microbiology, Laboratory Medicine, National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Region Jönköping County, 553 05, Jönköping, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | | |
Collapse
|
4
|
Underwood J, Harvey C, Lohstroh E, Pierce B, Chambers C, Guzman Valencia S, Oliva Chávez AS. Anaplasma phagocytophilum Transmission Activates Immune Pathways While Repressing Wound Healing in the Skin. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121965. [PMID: 36556330 PMCID: PMC9781593 DOI: 10.3390/life12121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis (HGA), is an obligate intracellular bacterium transmitted by the bite of black-legged ticks, Ixodes scapularis. The main host cells in vertebrates are neutrophils. However, the first site of entry is in the skin during tick feeding. Given that the initial responses within skin are a crucial determinant of disease outcome in vector-borne diseases, we used a non-biased approach to characterize the transcriptional changes that take place at the bite during I. scapularis feeding and A. phagocytophilum transmission. Experimentally infected ticks were allowed to feed for 3 days on C57BL/6J mice to allow bacterial transmission and establishment. Skin biopsies were taken from the attachment site of uninfected ticks and A. phagocytophilum-infected ticks. Skin without ticks (intact skin) was used as baseline. RNA was isolated and sequenced using next-generation sequencing (NGS). The differentially expressed genes were used to identify over-represented pathways by gene ontology (GO) and pathway enrichment (PE). Anaplasma phagocytophilum transmission resulted in the activation of interferon signaling and neutrophil chemotaxis pathways in the skin. Interestingly, it also led to the downregulation of genes encoding extracellular matrix (ECM) components, and upregulation of metalloproteinases, suggesting that A. phagocytophilum delays wound healing responses and may increase vascular permeability at the bite site.
Collapse
Affiliation(s)
- Jacob Underwood
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
- Navy Entomology Center of Excellence, United States Navy, Jacksonville, FL 32212, USA
| | - Cristina Harvey
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | - Elizabeth Lohstroh
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | - Branden Pierce
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | - Cross Chambers
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
| | | | - Adela S. Oliva Chávez
- Department of Entomology, Texas A&M University, College Station, TX 77845, USA
- Correspondence: ; Tel.: +1-979-845-1946
| |
Collapse
|
5
|
Naimi WA, Gumpf JJ, Cockburn CL, Camus S, Chalfant CE, Li PL, Carlyon JA. Functional inhibition or genetic deletion of acid sphingomyelinase bacteriostatically inhibits Anaplasma phagocytophilum infection in vivo. Pathog Dis 2021; 79:ftaa072. [PMID: 33220685 PMCID: PMC7787905 DOI: 10.1093/femspd/ftaa072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Anaplasma phagocytophilum infects neutrophils to cause granulocytic anaplasmosis. It poorly infects mice deficient in acid sphingomyelinase (ASM), a lysosomal enzyme critical for cholesterol efflux, and wild-type mice treated with desipramine that functionally inhibits ASM. Whether inhibition or genetic deletion of ASM is bacteriostatic or bactericidal for A. phagocytophilum and desipramine's ability to lower pathogen burden requires a competent immune system were unknown. Anaplasma phagocytophilum-infected severe combined immunodeficiency disorder (SCID) mice were administered desipramine or PBS, followed by the transfer of blood to naïve wild-type mice. Next, infected wild-type mice were given desipramine or PBS followed by transfer of blood to naïve SCID mice. Finally, wild-type or ASM-deficient mice were infected and blood transferred to naïve SCID mice. The percentage of infected neutrophils was significantly reduced in all desipramine-treated or ASM-deficient mice and in all recipients of blood from these mice. Infection was markedly lower in ASM-deficient and desipramine-treated wild-type mice versus desipramine-treated SCID mice. Yet, infection was never ablated. Thus, ASM activity contributes to optimal A. phagocytophilum infection in vivo, pharmacologic inhibition or genetic deletion of ASM impairs infection in a bacteriostatic and reversible manner and A. phagocytophilum is capable of co-opting ASM-independent lipid sources.
Collapse
Affiliation(s)
- Waheeda A Naimi
- Department of Microbiology and Immunology, Virginia Commonwealth University (VCU) Medical Center, VCU School of Medicine, Richmond, VA, 23398 USA
| | - Jacob J Gumpf
- Department of Microbiology and Immunology, Virginia Commonwealth University (VCU) Medical Center, VCU School of Medicine, Richmond, VA, 23398 USA
| | - Chelsea L Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University (VCU) Medical Center, VCU School of Medicine, Richmond, VA, 23398 USA
| | - Sarah Camus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University (VCU) Medical Center, VCU School of Medicine, Richmond, VA, 23298 USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL,33620 USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA
- The Moffitt Cancer Center, Tampa, FL 33620, USA
- Research Service, James A. Haley Veterans' Hospital, Tampa, FL 33612, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University (VCU) Medical Center, VCU School of Medicine, Richmond, VA, 23298 USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University (VCU) Medical Center, VCU School of Medicine, Richmond, VA, 23398 USA
| |
Collapse
|
6
|
Gussmann K, Kirschnek S, von Loewenich FD. Interferon-γ-dependent control of Anaplasma phagocytophilum by murine neutrophil granulocytes. Parasit Vectors 2017; 10:329. [PMID: 28697801 PMCID: PMC5506630 DOI: 10.1186/s13071-017-2274-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/05/2017] [Indexed: 01/06/2023] Open
Abstract
Background Anaplasma phagocytophilum is a Gram-negative obligate intracellular bacterium that is transmitted by ticks of the Ixodes ricinus complex. It replicates in neutrophils and elicits febrile disease in humans and animals. Because of its striking tropism for neutrophils, A. phagocytophilum has been used as a model organism to study the immune response against obligate intracellular pathogens. In mice, the control of A. phagocytophilum in the early phase of infection is dependent on natural killer cell-derived interferon-γ (IFN-γ). In contrast, the final elimination strictly requires CD4+ T-cells. It is a matter of debate, whether neutrophils serve only as host cells or as killer cells as well. Results To study this, we used in vitro generated murine neutrophils with defects in major antimicrobial molecules such as NADPH-oxidase (gp91phox−/−), myeloperoxidase (MPO−/−) and inducible nitric oxide synthase (iNOS−/−). However, bacterial growth in gene-deficient neutrophils was comparable to that in wild-type cells. Whereas gp91phox and MPO expression remained unchanged, the infection led to an induction of iNOS. In neutrophils stimulated with IFN-γ, bacterial growth was significantly impaired, and iNOS was induced. However, the antibacterial effect of IFN-γ was still seen in iNOS−/− neutrophils. Conclusion Thus, murine in vitro generated neutrophils stimulated with IFN-γ seem to act as killer cells by an iNOS-independent mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2274-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathrin Gussmann
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, D-79104, Freiburg, Germany
| | - Susanne Kirschnek
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, D-79104, Freiburg, Germany
| | - Friederike D von Loewenich
- Department of Medical Microbiology and Hygiene, University of Mainz, Obere Zahlbacherstrasse 67, D-55131, Mainz, Germany.
| |
Collapse
|
7
|
Rennoll-Bankert KE, Garcia-Garcia JC, Sinclair SH, Dumler JS. Chromatin-bound bacterial effector ankyrin A recruits histone deacetylase 1 and modifies host gene expression. Cell Microbiol 2015; 17:1640-52. [PMID: 25996657 DOI: 10.1111/cmi.12461] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/11/2015] [Accepted: 05/17/2015] [Indexed: 11/29/2022]
Abstract
Control of host epigenetics is becoming evident as a mechanism by which symbionts and pathogens survive. Anaplasma phagocytophilum, an obligate intracellular bacterium, down-regulates multiple host defence genes where histone deacetylase 1 (HDAC1) binds and histone 3 is deacetylated at their promoters, including the NADPH oxidase component, CYBB. How HDAC1 is targeted to defence gene promoters is unknown. Ankyrin A (AnkA), an A. phagocytophilum type IV secretion system effector, enters the granulocyte nucleus, binds stretches of AT-rich DNA and alters transcription of antimicrobial defence genes, including down-regulation of CYBB. Here we found AnkA binds to a predicted matrix attachment region in the proximal CYBB promoter. Using the CYBB promoter as a model of cis-gene silencing, we interrogated the mechanism of AnkA-mediated CYBB repression. The N-terminus of AnkA was critical for nuclear localization, the central ANK repeats and C-terminus were important for DNA binding, and most promoter activity localized to the central ANK repeats. Furthermore, a direct interaction between AnkA and HDAC1 was detected at the CYBB promoter, and was critical for AnkA-mediated CYBB repression. This novel microbial manipulation of host chromatin and gene expression provides important evidence of the direct effects that prokaryotic nuclear effectors can exert over host transcription and function.
Collapse
Affiliation(s)
- Kristen E Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Sara H Sinclair
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Stephen Dumler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
The tick salivary protein sialostatin L2 inhibits caspase-1-mediated inflammation during Anaplasma phagocytophilum infection. Infect Immun 2014; 82:2553-64. [PMID: 24686067 DOI: 10.1128/iai.01679-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saliva from arthropod vectors facilitates blood feeding by altering host inflammation. Whether arthropod saliva counters inflammasome signaling, a protein scaffold that regulates the activity of caspase-1 and cleavage of interleukin-1β (IL-1β) and IL-18 into mature molecules, remains elusive. In this study, we provide evidence that a tick salivary protein, sialostatin L2, inhibits inflammasome formation during pathogen infection. We show that sialostatin L2 targets caspase-1 activity during host stimulation with the rickettsial agent Anaplasma phagocytophilum. A. phagocytophilum causes macrophage activation and hemophagocytic syndrome features. The effect of sialostatin L2 in macrophages was not due to direct caspase-1 enzymatic inhibition, and it did not rely on nuclear factor κB or cathepsin L signaling. Reactive oxygen species from NADPH oxidase and the Loop2 domain of sialostatin L2 were important for the regulatory process. Altogether, our data expand the knowledge of immunoregulatory pathways of tick salivary proteins and unveil an important finding in inflammasome biology.
Collapse
|
9
|
Dumler JS. The biological basis of severe outcomes in Anaplasma phagocytophilum infection. ACTA ACUST UNITED AC 2011; 64:13-20. [PMID: 22098465 DOI: 10.1111/j.1574-695x.2011.00909.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/20/2011] [Accepted: 11/10/2011] [Indexed: 11/29/2022]
Abstract
Anaplasma phagocytophilum causes granulocytic anaplasmosis, an acute disease in humans that is also often subclinical. However, 36% are hospitalized, 7% need intensive care, and the case fatality rate is 0.6%. The biological basis for severe disease is not understood. Despite A. phagocytophilum's mechanisms to subvert neutrophil antimicrobial responses, whether these mechanisms lead to disease is unclear. In animals, inflammatory lesions track with IFNγ and IL-10 expression and infection of Ifng(-/-) mice leads to increased pathogen load but inhibition of inflammation. Suppression of STAT signaling in horses impacts IL-10 and IFN-γ expression, and also suppresses disease severity. Similar inhibition of inflammation with infection of NKT-deficient mice suggests that innate immune responses are key for disease. With severe disease, tissues can demonstrate hemophagocytosis, and measures of macrophage activation/hemophagocytic syndromes (MAS/HPS) support the concept of human granulocytic anaplasmosis as an immunopathologic disease. MAS/HPS are related to defective cytotoxic lymphocytes that ordinarily diminish inflammation. Pilot studies in mice show cytotoxic lymphocyte activation with A. phagocytophilum infection, yet suppression of cytotoxic responses from both NKT and CD8 cells, consistent with the development of MAS/HPS. Whether severity relates to microbial factors or genetically determined diversity in human immune and inflammatory response needs more investigation.
Collapse
Affiliation(s)
- J Stephen Dumler
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin Microbiol Rev 2011; 24:469-89. [PMID: 21734244 PMCID: PMC3131063 DOI: 10.1128/cmr.00064-10] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Anaplasma phagocytophilum persists in nature by cycling between mammals and ticks. Human infection by the bite of an infected tick leads to a potentially fatal emerging disease called human granulocytic anaplasmosis. A. phagocytophilum is an obligatory intracellular bacterium that replicates inside mammalian granulocytes and the salivary gland and midgut cells of ticks. A. phagocytophilum evolved the remarkable ability to hijack the regulatory system of host cells. A. phagocytophilum alters vesicular traffic to create an intracellular membrane-bound compartment that allows replication in seclusion from lysosomes. The bacterium downregulates or actively inhibits a number of innate immune responses of mammalian host cells, and it upregulates cellular cholesterol uptake to acquire cholesterol for survival. It also upregulates several genes critical for the infection of ticks, and it prolongs tick survival at freezing temperatures. Several host factors that exacerbate infection have been identified, including interleukin-8 (IL-8) and cholesterol. Host factors that overcome infection include IL-12 and gamma interferon (IFN-γ). Two bacterial type IV secretion effectors and several bacterial proteins that associate with inclusion membranes have been identified. An understanding of the molecular mechanisms underlying A. phagocytophilum infection will foster the development of creative ideas to prevent or treat this emerging tick-borne disease.
Collapse
|
11
|
Liu L, Jia F, Yuan G, Chen Z, Yao J, Li H, Fang C. Tyrosine hydroxylase, interleukin-1beta and tumor necrosis factor-alpha are overexpressed in peripheral blood mononuclear cells from schizophrenia patients as determined by semi-quantitative analysis. Psychiatry Res 2010; 176:1-7. [PMID: 20067853 DOI: 10.1016/j.psychres.2008.10.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 08/26/2008] [Accepted: 10/23/2008] [Indexed: 01/13/2023]
Abstract
The aim of this study is to profile the peripheral biomarkers (tyrosine hydroxylase, TH; interleukin-1beta, IL-1beta; and tumor necrosis factor-alpha, TNF-alpha) for schizophrenia and explore their relations with clinical symptoms. Thirty-nine patients with schizophrenia were evaluated using the Positive and Negative Syndrome Scale (PANSS), and 25 siblings and 30 normal healthy subjects were used as controls. The mRNA expression levels of TH, IL-1beta and TNF-alpha in peripheral blood mononuclear cells, as determined with semi-quantitative reverse transcription-polymerase chain reaction, were all significantly increased in both patients (3-fold) and siblings (2-fold) as compared with normal control. Both IL-1beta and TNF-alpha were significantly correlated with scores on the general psychopathology subscale of the PANSS. A significant positive correlation between IL-1beta and TH expression was found in both sibling and normal controls, but not in patients, while a positive correlation between IL-1beta and TNF-alpha was significant in all the groups. These results suggest that TH, IL-1beta and TNF-alpha are overexpressed in the peripheral blood mononuclear cells of schizophrenia patients, perhaps due to the hereditary factors. IL-1beta and TNF-alpha may influence the symptoms of schizophrenia in the cognition dysfunction and anxiety/depression domains of the PANSS.
Collapse
Affiliation(s)
- Liang Liu
- Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Saccharomyces cerevisiae and Candida albicans stimulate cytokine secretion from human neutrophil-like HL-60 cells differentiated with retinoic acid or dimethylsulfoxide. Biosci Biotechnol Biochem 2009; 73:2600-8. [PMID: 19966493 DOI: 10.1271/bbb.90410] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated whether non-pathogenic Saccharomyces cerevisiae and human commensal opportunistic pathogenic Candida albicans stimulate cytokine responses of human neutrophil-like HL-60 cells pre-treated with either 1 microM retinoic acid or 1.25% dimethyl sulfoxide (DMSO). Intact and heat-killed S. cerevisiae enhanced secretion of interleukin (IL)-1beta, IL-6, IL-8, IL-12, IL-18, MCP-1/CCL2 and TNF-alpha from retinoic acid-treated HL-60 cells, accompanied by alterations in mRNA expression of the cytokines. Heat-killed C. albicans promoted secretion of IL-6, IL-8, IL-12, MCP-1 and TNF-alpha, while intact C. albicans slightly enhanced secretion of IL-1beta, IL-8 and IL-18. In response to yeast stimuli, retinoic acid-treated HL-60 cells generally secreted cytokines more strongly than DMSO-treated HL-60 cells. Gene expression levels of Toll-like receptor (TLR)1, TLR2, TLR4, TLR6 and dectin-1 in HL-60 cells were additionally affected by retinoic acid or DMSO and by co-culturing with S. cerevisiae or C. albicans. Our results suggest that both intact and heat-killed S. cerevisiae and C. albicans induce cytokine responses of neutrophils in the intestine, and stimulate host immune function.
Collapse
|
13
|
Rikihisa Y. Molecular events involved in cellular invasion by Ehrlichia chaffeensis and Anaplasma phagocytophilum. Vet Parasitol 2009; 167:155-66. [PMID: 19836896 DOI: 10.1016/j.vetpar.2009.09.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ehrlichia chaffeensis and Anaplasma phagocytophilum are obligatory intracellular bacteria that preferentially replicate inside leukocytes by utilizing biological compounds and processes of these primary host defensive cells. These bacteria incorporate cholesterol from the host for their survival. Upon interaction with host monocytes and granulocytes, respectively, these bacteria usurp the lipid raft domain containing GPI-anchored protein to induce a series of signaling events that result in internalization of the bacteria. Monocytes and neutrophils usually kill invading microorganisms by fusion of the phagosomes containing the bacteria with granules containing both antimicrobial peptides and lysosomal hydrolytic enzymes and/or through sequestering vital nutrients. However, E. chaffeensis and A. phagocytophilum alter vesicular traffic to create a unique intracellular membrane-bound compartment that allows their replication in seclusion from lysosomal killing. These bacteria are quite sensitive to reactive oxygen species (ROS), so in order to survive in host cells that are primary mediators of ROS-induced killing, they inhibit activation of NADPH oxidase and assembly of this enzyme in their inclusion compartments. Moreover, host phagocyte activation and differentiation, apoptosis, and IFN-gamma signaling pathways are inhibited by these bacteria. Through reductive evolution, lipopolysaccharide and peptidoglycan that activate the innate immune response, have been eliminated from these gram-negative bacteria at the genomic level. Upon interaction with new host cells, bacterial genes encoding the Type IV secretion apparatus and the two-component regulatory system are up-regulated to sense and adapt to the host environment. Thus dynamic signal transduction events concurrently proceed both in the host cells and in the invading E. chaffeensis and A. phagocytophilum bacteria for successful establishment of intracellular infection. Several bacterial surface-exposed proteins and porins are recently identified. Further functional studies on Ehrlichia and Anaplasma effector or ligand molecules and cognate host cell receptors will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied towards treatment, diagnosis, and control of ehrlichiosis and anaplasmosis.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
14
|
Garcia-Garcia JC, Barat NC, Trembley SJ, Dumler JS. Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum. PLoS Pathog 2009; 5:e1000488. [PMID: 19543390 PMCID: PMC2694362 DOI: 10.1371/journal.ppat.1000488] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 05/27/2009] [Indexed: 11/19/2022] Open
Abstract
Intracellular bacteria have evolved mechanisms that promote survival within hostile host environments, often resulting in functional dysregulation and disease. Using the Anaplasma phagocytophilum–infected granulocyte model, we establish a link between host chromatin modifications, defense gene transcription and intracellular bacterial infection. Infection of THP-1 cells with A. phagocytophilum led to silencing of host defense gene expression. Histone deacetylase 1 (HDAC1) expression, activity and binding to the defense gene promoters significantly increased during infection, which resulted in decreased histone H3 acetylation in infected cells. HDAC1 overexpression enhanced infection, whereas pharmacologic and siRNA HDAC1 inhibition significantly decreased bacterial load. HDAC2 does not seem to be involved, since HDAC2 silencing by siRNA had no effect on A. phagocytophilum intracellular propagation. These data indicate that HDAC up-regulation and epigenetic silencing of host cell defense genes is required for A. phagocytophilum infection. Bacterial epigenetic regulation of host cell gene transcription could be a general mechanism that enhances intracellular pathogen survival while altering cell function and promoting disease. Although the main function of defense cells is to eliminate invading infections, some intracellular bacterial pathogens manage to turn defense cells into suitable hosts for bacterial propagation. In doing so, intracellular pathogens dysregulate host cell function and cause disease. With genomic and metabolic resources thousands of times more limited than the host's, intracellular bacteria have evolved very efficient mechanisms to globally subvert the host defense. Here, we define a mechanism by which the intracellular pathogen Anaplasma phagocytophilum globally inhibits host cell defenses by affecting mechanisms of epigenetic control of defense gene expression. Silencing or inhibition of the host protein HDAC1 has a negative effect on intracellular bacterial replication, whereas HDAC1 overexpression leads to defense gene silencing and facilitates intracellular bacterial survival. This study not only provides new insight into a mechanism of host cell subversion, but also identifies a potential target for future development of novel therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jose C. Garcia-Garcia
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nicole C. Barat
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah J. Trembley
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - J. Stephen Dumler
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
Comparative moleculo-immunological analysis of swamp- and riverine-type water buffaloes responses. Cytokine 2009; 46:273-82. [DOI: 10.1016/j.cyto.2009.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 01/15/2009] [Accepted: 02/12/2009] [Indexed: 11/23/2022]
|
16
|
Loftus JP, Black SJ, Pettigrew A, Abrahamsen EJ, Belknap JK. Early laminar events involving endothelial activation in horses with black walnut– induced laminitis. Am J Vet Res 2007; 68:1205-11. [DOI: 10.2460/ajvr.68.11.1205] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Lin Q, Zhang C, Rikihisa Y. Analysis of involvement of the RecF pathway in p44 recombination in Anaplasma phagocytophilum and in Escherichia coli by using a plasmid carrying the p44 expression and p44 donor loci. Infect Immun 2006; 74:2052-62. [PMID: 16552034 PMCID: PMC1418890 DOI: 10.1128/iai.74.4.2052-2062.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum, the etiologic agent of human granulocytic anaplasmosis, has a large paralog cluster (approximate 90 members) that encodes the 44-kDa major outer membrane proteins (P44s). Gene conversion at a single p44 expression locus leads to P44 antigenic variation. Homologs of genes for the RecA-dependent RecF pathway, but not the RecBCD or RecE pathways, of recombination were detected in the A. phagocytophilum genome. In the present study, we examined whether the RecF pathway is involved in p44 gene conversion. The recombination intermediate structure between a donor p44 and the p44 expression locus of A. phagocytophilum was detected in an HL-60 cell culture by Southern blot analysis followed by sequencing the band and in blood samples from infected SCID mice by PCR, followed by sequencing. The sequences were consistent with the RecF pathway recombination: a half-crossover structure, consisting of the donor p44 locus connected to the 3' conserved region of the recipient p44 in the p44 expression locus in direct orientation. To determine whether the p44 recombination intermediate structure can be generated in a RecF-active Escherichia coli strain, we constructed a double-origin plasmid carrying the p44 expression locus and a donor p44 locus and introduced the plasmid into various E. coli strains. The recombination intermediate was recovered in an E. coli strain with active RecF recombination pathway but not in strains with deficient RecF pathway. Our results support the view that the p44 gene conversion in A. phagocytophilum occurs through the RecF pathway.
Collapse
Affiliation(s)
- Quan Lin
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | | | | |
Collapse
|
18
|
Liang MD, Zhang Y, McDevit D, Marecki S, Nikolajczyk BS. The interleukin-1beta gene is transcribed from a poised promoter architecture in monocytes. J Biol Chem 2006; 281:9227-37. [PMID: 16439360 DOI: 10.1074/jbc.m510700200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cytokine transcription is usually regulated by transcription factor binding and chromatin remodeling following an inducing signal. By contrast, these data showed the interleukin (IL)-1beta promoter assembles into a "poised" structure, as evidenced by nuclease accessibility and loss of core histones immediately surrounding the transcription start site. Strikingly, these properties do not change upon transcriptional activation by lipopolysaccharide. Furthermore, association of two key transcriptional activators, PU.1 and C/EBPbeta, is robust pre- and post-stimulation indicating the IL-1beta promoter is packaged into a nontranscribed but poised promoter architecture in cells capable of rapidly inducing IL-1beta. Monocyte stimulation causes recruitment of a third factor, IRF-4, to the IL-1beta enhancer. PU.1 phosphorylation at a CK2 kinase consensus element is required for this recruitment. We showed that CK2 phosphorylates PU.1, CK2 inhibitors abrogate IL-1beta induction, and CK2 inducibly associates with the IL-1beta enhancer. Taken together, these data indicate a novel two-step mechanism for IL-1beta transcription: 1) formation of a poised chromatin architecture, and 2) phosphorylation of an enhancer-bound factor that recruits other activators. We propose that this poised structure may generally characterize rapidly activated genes.
Collapse
Affiliation(s)
- Michael D Liang
- Department of Pathology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
19
|
Sukumaran B, Carlyon JA, Cai JL, Berliner N, Fikrig E. Early transcriptional response of human neutrophils to Anaplasma phagocytophilum infection. Infect Immun 2006; 73:8089-99. [PMID: 16299303 PMCID: PMC1307096 DOI: 10.1128/iai.73.12.8089-8099.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum, an unusual obligate intracellular pathogen that persists within neutrophils, causes human anaplasmosis (previously known as human granulocytic ehrlichiosis). To study the effects of this pathogen on the transcriptional profile of its host cell, we performed a comprehensive DNA microarray analysis of the early (4-h) transcriptional response of human neutrophils to A. phagocytophilum infection. A. phagocytophilum infection resulted in the up- and down-regulation of 177 and 67 neutrophil genes, respectively. These data were verified by quantitative reverse transcription-PCR of selected genes. Notably, the up-regulation of many antiapoptotic genes, including the BCL2A1, BIRC3, and CFLAR genes, and the down-regulation of the proapoptotic TNFSF10 gene were observed. Genes involved in inflammation, innate immunity, cytoskeletal remodeling, and vesicular transport also exhibited differential expression. Vascular endothelial growth factor was also induced. These data suggest that A. phagocytophilum may alter selected host pathways in order to facilitate its survival within human neutrophils. To gain further insight into the bacterium's influence on host cell gene expression, this report presents a detailed comparative analysis of our data and other gene expression profiling studies of A. phagocytophilum-infected neutrophils and promyelocytic cell lines.
Collapse
Affiliation(s)
- Bindu Sukumaran
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, The Anlyan Center for Medical Research and Education, New Haven, CT 06520-8031, USA
| | | | | | | | | |
Collapse
|
20
|
Choi KS, Park JT, Dumler JS. Anaplasma phagocytophilum delay of neutrophil apoptosis through the p38 mitogen-activated protein kinase signal pathway. Infect Immun 2006; 73:8209-18. [PMID: 16299317 PMCID: PMC1307085 DOI: 10.1128/iai.73.12.8209-8218.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human granulocytic anaplasmosis is caused by the obligate intracellular bacterium Anaplasma phagocytophilum. The bacterium avoids host innate defenses in part by infecting, surviving in, and propagating in neutrophils, as well as by inhibiting neutrophil apoptosis. However, the mechanisms of A. phagocytophilum survival in neutrophils and the inhibition of spontaneous apoptosis are not well understood. In this study, we demonstrated that antiapoptotic Mcl-1 protein (Bcl-2 family) expression is maintained and that inhibition of procaspase-3 processing occurs in A. phagocytophilum-infected human neutrophils. An evaluation of p38 mitogen-activated protein kinase (MAPK) showed evidence of increased phosphorylation with infection. Moreover, antagonism of p38 MAPK by the inhibitor SB203580 reversed apoptosis inhibition in live or heat-killed A. phagocytophilum-infected neutrophils. A role for the autocrine or paracrine production of antiapoptotic interleukin 8 (IL-8) expressed with A. phagocytophilum infection was excluded by the use of IL-8-, IL-8R1 (CXCR1)-, and IL-8R2 (CXCR2)-blocking antibodies. As previously demonstrated, the antiapoptotic effect was initially mediated by exposure to A. phagocytophilum components in heat-killed bacteria. However, an important role for active infection is demonstrated by the additional delay in apoptosis with intracellular growth and the refractory abrogation of this response by the p38 MAPK inhibitor 3 to 6 h after neutrophil infection. These results suggest that the initial activation of the p38 MAPK pathway leading to A. phagocytophilum-delayed neutrophil apoptosis is bypassed with active intracellular infection. Moreover, active intracellular infection contributes more to the overall delay in apoptosis than do components of heat-killed A. phagocytophilum alone.
Collapse
Affiliation(s)
- Kyoung-Seong Choi
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 624, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
21
|
Abstract
Human and animal infections by Anaplasmataceae are increasingly recognized as important and potentially fatal arthropod-transmitted diseases. Since the first recognition and implementation of diagnostic methods for human infection by Ehrlichia chaffeensis and Anaplasma phagocytophilum, the incidence of infections has linearly increased. Moreover, diagnostic and epidemiological testing indicates that "ehrlichia" infections are globally distributed and suggests that additional agents of human and veterinary "ehrlichiosis" will be identified. With increasing disease identification has come recognition that the infections can be severe, with approximately one-half of patients requiring hospitalization for complications including respiratory distress, myocarditis, neurological complications, hepatitis, a septic or toxic shock-like disease, opportunistic infections, and death in 0.5 to 3.0%. An understanding of the diseases, pathophysiology, pathogenesis, control, and management will best be developed through fundamental investigations. Advances in comprehension as to the separate contributions of bacteria and host are crucial since most data now suggest that alterations in host neutrophil function and protection from innate and adaptive immunity also contribute to disease manifestations. It is reasonable to operate from the hypothesis that these host cell functional changes ultimately benefit bacterial survival while inadvertently eliciting clinical disease in poorly adapted hosts. A firmer basis for the scientific understanding of Anaplasmataceae biology will allow logical and rational approaches toward infection control, prevention, and treatment.
Collapse
Affiliation(s)
- J Stephen Dumler
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
Lin Q, Rikihisa Y. Establishment of cloned Anaplasma phagocytophilum and analysis of p44 gene conversion within an infected horse and infected SCID mice. Infect Immun 2005; 73:5106-14. [PMID: 16041027 PMCID: PMC1201200 DOI: 10.1128/iai.73.8.5106-5114.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diverse p44 alleles at the p44 expression locus (p44Es) encoding surface-exposed major membrane proteins, P44s, of Anaplasma phagocytophilum were hypothesized to be garnered by recombination to enact antigenic variation. However, this hypothesis has not been proven so far, due to inability to clone this obligate intragranulocytic rickettsia. To define the p44E recombination, we developed a novel method to clone A. phagocytophilum. This isogenic cloned population containing a defined p44E was used to infect a naive horse and severe combined immunodeficiency (SCID) mice. During a 58-day infection period in the blood of the horse, p44E conversion was evident in a total of 11 new p44Es, 48% (115/242) of the sequenced p44E population. During a 50-day infection period in the blood of SCID mice, p44E conversion was manifested in a total of 13 new p44Es, 42% (192/460) of the p44E population. Thus, similar levels of p44E convertants were detected in either the presence or absence of an acquired immune system, suggesting that T- and B-cell immune pressure was not essential for recombination and/or selection of the p44E variants. Analysis of sequentially changed p44Es revealed that the entire central hypervariable region of donor p44 pseudogenes or of donor full-length p44s replaced the same region of the resident p44E as a cassette. Putative recombination points were detected within p44 conserved regions flanking the central hypervariable region by the TOPALi analysis. Our results unambiguously demonstrated p44E recombination. The cloning method developed would facilitate precise analysis of the recombination process and the extent of diversity which the recombination creates in the antigenic repertoire.
Collapse
Affiliation(s)
- Quan Lin
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210-1093, USA
| | | |
Collapse
|
23
|
Ge Y, Yoshiie K, Kuribayashi F, Lin M, Rikihisa Y. Anaplasma phagocytophilum inhibits human neutrophil apoptosis via upregulation of bfl-1, maintenance of mitochondrial membrane potential and prevention of caspase 3 activation. Cell Microbiol 2005; 7:29-38. [PMID: 15617521 DOI: 10.1111/j.1462-5822.2004.00427.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The inhibition of neutrophil apoptosis plays a central role in human granulocytic anaplasmosis. Intracellular signalling pathways through which the obligatory intracellular bacterium Anaplasma phagocytophilum inhibits the spontaneous apoptosis of human peripheral blood neutrophils were investigated. bfl-1 mRNA levels in uninfected neutrophils after 12 h in culture were reduced to approximately 5-25% of 0 h levels, but remained high in infected neutrophils. The eukaryotic RNA synthesis inhibitor, actinomycin D, prevented the maintenance of bfl-1 mRNA levels by A. phagocytophilum. Differences in mcl-1, bax, bcl-w, bad or bak mRNA levels in infected versus uninfected neutrophils were not remarkable. By using mitochondrial fluorescent dyes, Mitotracker Red and JC-1, it was found that most uninfected neutrophils lost mitochondrial membrane potential after 10-12 h incubation, whereas A. phagocytophilum-infected neutrophils maintained high membrane potential. Caspase 3 activity and the degree of apoptosis were lower in dose-dependent manner in A. phagocytophilum-infected neutrophils at 16 h post infection, as compared to uninfected neutrophils. Anti-active caspase 3 antibody labelling showed less positively stained population in infected neutrophils compared to those in uninfected neutrophils after 12 h incubation. These results suggest that A. phagocytophilum inhibits human neutrophil apoptosis via transcriptional upregulation of bfl-1 and inhibition of mitochondria-mediated activation of caspase 3.
Collapse
Affiliation(s)
- Yan Ge
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
24
|
Borjesson DL, Kobayashi SD, Whitney AR, Voyich JM, Argue CM, Deleo FR. Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils. THE JOURNAL OF IMMUNOLOGY 2005; 174:6364-72. [PMID: 15879137 DOI: 10.4049/jimmunol.174.10.6364] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polymorphonuclear leukocytes (PMNs or neutrophils) are essential to human innate host defense. However, some bacterial pathogens circumvent destruction by PMNs and thereby cause disease. Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis, survives within PMNs in part by altering normal host cell processes, such as production of reactive oxygen species (ROS) and apoptosis. To investigate the molecular basis of A. phagocytophilum survival within neutrophils, we used Affymetrix microarrays to measure global changes in human PMN gene expression following infection with A. phagocytophilum. Notably, A. phagocytophilum uptake induced fewer perturbations in host cell gene regulation compared with phagocytosis of Staphylococcus aureus. Although ingestion of A. phagocytophilum did not elicit significant PMN ROS, proinflammatory genes were gradually up-regulated, indicating delayed PMN activation rather than loss of proinflammatory capacity normally observed during phagocytosis-induced apoptosis. Importantly, ingestion of A. phagocytophilum failed to trigger the neutrophil apoptosis differentiation program that typically follows phagocytosis and ROS production. Heat-killed A. phagocytophilum caused some similar initial alterations in neutrophil gene expression and function, which included delaying normal PMN apoptosis and blocking Fas-induced programmed cell death. However, at 24 h, down-regulation of PMN gene transcription may be more reliant on active infection. Taken together, these findings suggest two separate antiapoptotic processes may work concomitantly to promote bacterial survival: 1) uptake of A. phagocytophilum fails to trigger the apoptosis differentiation program usually induced by bacteria, and 2) a protein or molecule on the pathogen surface can mediate an early delay in spontaneous neutrophil apoptosis.
Collapse
Affiliation(s)
- Dori L Borjesson
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Wang X, Rikihisa Y, Lai TH, Kumagai Y, Zhi N, Reed SM. Rapid sequential changeover of expressed p44 genes during the acute phase of Anaplasma phagocytophilum infection in horses. Infect Immun 2004; 72:6852-9. [PMID: 15557606 PMCID: PMC529143 DOI: 10.1128/iai.72.12.6852-6859.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophilum immunodominant polymorphic major surface protein P44s have been hypothesized to go through antigenic variation, but the within-host dynamics of p44 expression has not been demonstrated. In the present study we investigated the composition and changes of p44 transcripts in the blood during the acute phase of well-defined laboratory A. phagocytophilum infections in naive equine hosts. Three traveling waves of sequential population changeovers of the p44 transcript species were observed within a single peak of rickettsemia of less than 1 month. During the logarithmic increase, the rapid switch-off of the initial dominant transcript p44-18 occurred regardless of whether the bacterium was transmitted by ticks or by intravenous inoculation. Each of the subsequently dominant p44 transcript species was phylogenetically dissimilar from p44-18. Development of antibody to the hypervariable region of P44-18 during the rickettsemia suggests the suppression of dominance of immuno-cross-reactive p44 populations. When A. phagocytophilum was preincubated with plasma from the infected horse and then coincubated with HL-60 cells, the dominance of the p44-18 transcript was rapidly suppressed in vitro and most of the newly emerged p44 transcript species were previously undetected in this horse. This work provides experimental evidence of within-host p44 antigenic variation. Results suggest that the rapid and synchronized switch of expression is an intrinsic property of p44s reinitiated after transmission to naive mammalian hosts and shaped upon exposure to immune plasma.
Collapse
Affiliation(s)
- Xueqi Wang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210-1093, USA
| | | | | | | | | | | |
Collapse
|
26
|
Lin Q, Rikihisa Y, Massung RF, Woldehiwet Z, Falco RC. Polymorphism and transcription at the p44-1/p44-18 genomic locus in Anaplasma phagocytophilum strains from diverse geographic regions. Infect Immun 2004; 72:5574-81. [PMID: 15385454 PMCID: PMC517535 DOI: 10.1128/iai.72.10.5574-5581.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A polymorphic multigene family (p44) of Anaplasma phagocytophilum encodes the immunodominant 44-kDa major outer membrane proteins. With p44-specific PCR and gene-specific probes, p44-1 was found in all human isolates from New York State but not in isolates from Minnesota, whereas p44-18 and two other p44 species were found in isolates from both regions. We therefore sequenced the genomic locus corresponding to the p44-1/p44-18 tandem locus of A. phagocytophilum HZ in 14 other geographically divergent strains from various hosts. The locus was found in all 14 strains, and p44-18 was conserved among all 13 United States isolates studied. In all nine northeastern strains, p44-1 was conserved. However, in three of the Minnesota strains and in one California strain, p44-1 was replaced at this genomic locus by the novel gene p44-61 (p44-61/18), whose hypervariable region (hv) was a chimera of p44-20hv and p44-23hv. The conserved base sequence within the hv region linked the two segments. In contrast, in the Old Sourhope strain isolated from sheep in the United Kingdom, only a single and distinct p44, p44-OS, was found in this locus. This suggests different rates of evolution of p44-1 and p44-18 at this locus and conservation of the locus within strains isolated from the same geographic region. Locus-specific reverse transcription-PCR revealed expression of p44-1 by New York and p44-61 by Minnesota strains at this locus. These p44 loci provide insight into the molecular evolution and functional divergence of p44 paralogs and may serve as markers for typing strains from different geographic regions.
Collapse
Affiliation(s)
- Quan Lin
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210-1093, USA
| | | | | | | | | |
Collapse
|
27
|
Lin Q, Rikihisa Y, Felek S, Wang X, Massung RF, Woldehiwet Z. Anaplasma phagocytophilum has a functional msp2 gene that is distinct from p44. Infect Immun 2004; 72:3883-9. [PMID: 15213131 PMCID: PMC427402 DOI: 10.1128/iai.72.7.3883-3889.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The msp2 and p44 genes encode polymorphic major outer membrane proteins that are considered unique to the intraerythrocytic agent of Anaplasma marginale and the intragranulocytic agent of Anaplasma phagocytophilum, respectively. In the present study, however, we found an msp2 gene in A. phagocytophilum that was remarkably conserved among A. phagocytophilum strains from human granulocytic anaplasmosis (HGA) patients, ticks, and a horse from various regions in the United States, but the gene was different in a sheep isolate from the United Kingdom. The msp2 gene in the A. phagocytophilum strain HZ genome was a single-copy gene and was located downstream of two Ehrlichia chaffeensis omp-1 homologs and a decarboxylase gene (ubiD). The msp2 gene was expressed by A. phagocytophilum in the blood from HGA patients NY36 and NY37 and by A. phagocytophilum isolates from these patients cultured in HL-60 cells at 37 degrees C. The msp2 gene was also expressed in a DBA/2 mouse infected by attaching ticks infected with strain NTN-1 and in a horse experimentally infected by attaching strain HZ-infected ticks. However, the transcript of the msp2 gene was undetectable in A. phagocytophilum strain HZ in SCID mice and Ixodes scapularis ticks infected with strain NTN-1. These results indicate that msp2 is functional in various strains of A. phagocytophilum, and relative expression ratios of msp2 to p44 vary in different infected hosts. These findings may be important in understanding roles that Msp2 proteins play in granulocytic ehrlichia infection and evolution of the polymorphic major outer membrane protein gene families in Anaplasma species.
Collapse
Affiliation(s)
- Quan Lin
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210-1093, USA
| | | | | | | | | | | |
Collapse
|
28
|
Bazzocchi C, Genchi C, Paltrinieri S, Lecchi C, Mortarino M, Bandi C. Immunological role of the endosymbionts of Dirofilaria immitis: the Wolbachia surface protein activates canine neutrophils with production of IL-8. Vet Parasitol 2004; 117:73-83. [PMID: 14597281 DOI: 10.1016/j.vetpar.2003.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Filarial nematodes, including Dirofilaria immitis and D. repens, harbour intracellular bacteria belonging to the genus Wolbachia. These bacteria have been implicated in the pathogenesis of filarial diseases, possibly through their endotoxins. Recent studies have shown that a major surface protein of Wolbachia (WSP) induces a specific IgG response in hosts infected by D. immitis. WSP from the Wolbachia of D. immitis was produced in recombinant form. The purified protein was used in stimulation assays on canine neutrophils. The assays performed using a modified Boyden chamber showed that WSP stimulates neutrophil chemokinesis. In addition, RT-PCR revealed increased production of chemokine IL-8 by cells incubated with this protein. Neutrophils have been shown to play a major role in the pathogenesis of river blindness, and to accumulate in the nodules of onchocerciasis patients. In dogs infected by D. immitis, neutrophils accumulate in kidneys and in the wall of pulmonary arteries. As shown by our studies, Wolbachia could contribute to these inflammatory phenomena through its surface protein WSP, independently from its endotoxin component.
Collapse
Affiliation(s)
- C Bazzocchi
- Dipartimento di Patologia Animale Igiene e Sanità Pubblica Veterinaria, Sezione di Patologia Generale e Parassitologia, Università di Milano, Via Celoria 10, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Felek S, Telford S, Falco RC, Rikihisa Y. Sequence analysis of p44 homologs expressed by Anaplasma phagocytophilum in infected ticks feeding on naive hosts and in mice infected by tick attachment. Infect Immun 2004; 72:659-66. [PMID: 14742506 PMCID: PMC321609 DOI: 10.1128/iai.72.2.659-666.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 44-kDa immunodominant outer membrane proteins (P44 proteins) of Anaplasma phagocytophilum are encoded by the p44 polymorphic multigene family. The present study examined p44 expression and analyzed the cDNA sequences of various p44 transcripts from the spleens and blood of mice infected by the bites of ticks infected with the A. phagocytophilum NTN-1 strain or of naturally infected nymphal ticks and in the salivary glands and midgut tissues of these ticks. A total of 300 p44 cDNAs were subjected to sequence analysis. Of these, 40 distinct p44 species were found, and all of these had orthologs in the A. phagocytophilum HZ strain genome that shared 95 to 100% base sequence identity. The number of unique p44 species expressed in mouse blood was greater than that for mouse spleens. Higher numbers of different p44 transcripts were also expressed in the salivary glands of ticks than in the midgut tissues. Variations in the sequences of the same p44 cDNA species within a single A. phagocytophilum strain and among different strains were concentrated in the conserved regions flanking the central hypervariable region of p44 genes. No mosaic sequences derived from two or more p44 species were found within the p44 hypervariable region. The conservation of the hypervariable region of each p44 cDNA species of A. phagocytophilum in naturally infected ticks and in different geographic isolates suggests that each A. phagocytophilum genome carries a set of p44 paralogs to be expressed. Thus, a large but restricted repertoire of p44 hypervariable sequences exists in A. phagocytophilum strains in the Northeastern United States.
Collapse
Affiliation(s)
- Suleyman Felek
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210-1093, USA
| | | | | | | |
Collapse
|
30
|
Carlyon JA, Akkoyunlu M, Xia L, Yago T, Wang T, Cummings RD, McEver RP, Fikrig E. Murine neutrophils require alpha1,3-fucosylation but not PSGL-1 for productive infection with Anaplasma phagocytophilum. Blood 2003; 102:3387-95. [PMID: 12869507 DOI: 10.1182/blood-2003-02-0621] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Anaplasma phagocytophilum causes human granulocytic ehrlichiosis, the second most common tick-borne disease in the United States. Mice are natural reservoirs for this bacterium and man is an inadvertent host. A phagocytophilum's tropism for human neutrophils is linked to neutrophil expression of P-selectin glycoprotein ligand-1 (PSGL-1), as well as sialylated and alpha1,3-fucosylated glycans. To determine whether A phagocytophilum uses similar molecular features to infect murine neutrophils, we assessed in vitro bacterial binding to neutrophils from and infection burden in wild-type mice; mice lacking alpha 1,3-fucosyltransferases Fuc-TIV and Fuc-TVII; or mice lacking PSGL-1. Binding to Fuc-TIV-/-/Fuc-TVII-/- neutrophils and infection of Fuc-TIV-/-/Fuc-TVII-/- mice were significantly reduced relative to wild-type mice. A phagocytophilum binding to PSGL-1-/- neutrophils was modestly reduced, whereas sialidase treatment significantly decreased binding to both wild-type and PSGL-1-/- neutrophils. A phagocytophilum similarly infected PSGL-1-/- and wild-type mice in vivo. A phagocytophilum induced comparable levels of chemokines from wild-type and PSGL-1-/- neutrophils in vitro, while those induced from Fuc-TIV-/-/Fuc-TVII-/- neutrophils were appreciably reduced. Therefore, A phagocytophilum infection in mice, as in humans, requires sialylation and alpha1,3-fucosylation of neutrophils. However, murine infection does not require neutrophil PSGL-1 expression, which has important implications for understanding how A phagocytophilum binds and infects neutrophils.
Collapse
Affiliation(s)
- Jason A Carlyon
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8031, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Anaplasma phagocytophilum is an aetiological agent of human granulocytic ehrlichiosis, an emerging tick-borne zoonosis in the United States and Europe. This obligate intracellular bacterium is unique in that it colonizes polymorphonuclear leucocytes (neutrophils). Neutrophils are key players in innate immunity. These short-lived phagocytes ingest invading microorganisms and destroy them by various means, which include fusing the bacteria-containing phagosome with acidic lysosomes as well as directing toxic oxidative and proteolytic compounds into the phagosomal lumen. Its tropism for neutrophils indicates that A. phagocytophilum uses strategies for evading and/or neutralizing these microbicidal activities. This review focuses on some of the mechanisms that A. phagocytophilum uses for neutrophil adhesion, surviving within the hostile intracellular environment of its host neutrophil and for effectively disseminating to naïve host cells.
Collapse
Affiliation(s)
- Jason A Carlyon
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, Room 525A, 300 Cedar Street, New Haven, CT 06520-8031, USA
| | | |
Collapse
|
32
|
Zhi N, Ohashi N, Rikihisa Y. Activation of a p44 pseudogene in Anaplasma phagocytophila by bacterial RNA splicing: a novel mechanism for post-transcriptional regulation of a multigene family encoding immunodominant major outer membrane proteins. Mol Microbiol 2002; 46:135-45. [PMID: 12366837 DOI: 10.1046/j.1365-2958.2002.03143.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunodominant 44 kDa major outer membrane proteins of Anaplasma phagocytophila (human granulocytic ehrlichiosis agent) are encoded by the p44 multigene family. One of the paralogues, p44-18 is predominantly expressed by A. phagocytophila in mammalian hosts, but is downregulated in the arthropod vector. The expression of p44-18 was upregulated in A. phagocytophila cultivated in HL-60 cells at 37 degrees C compared with 24 degrees C. However, the molecular mechanism of such gene expression was unclear, as p44-18 has a pseudogene-like structure, i.e. it lacks an AUG start codon and is out of frame with an upstream overlapping paralogue, p44-1. In the present study, we found that an amplicon detected by reverse transciption-polymerase chain reaction (RT-PCR) [808 basepair (bp)] for the p44-1/p44-18 gene locus was smaller than that detected by PCR with the genomic DNA (1652 bp) in the A. phagocytophila-infected HL-60 cells cultured at 37 degrees C. A circularized RNA molecule corresponding to the 844 bp region missing from the locus in the RT-PCR product was detected by inverse RT-PCR, indicating that this is an intron (designated p44-1 intervening sequence, p44-1 IVS). The splicing event of p44-1 IVS was also observed when the p44-1 IVS-carrying plasmid was introduced into Escherichia coli, suggesting that the splicing is sequence-dependent. Structural analysis and in vitro splicing experiments of p44-1 IVS suggested that this is likely to represent a new class of introns in eubacteria. The primer extension analysis showed the presence of a putative sigma(32)-type promoter in region upstream from p44-1. Collectively, the novel RNA splicing and the temperature-dependent transcription may account for the dominant p44-18 expression in mammals.
Collapse
Affiliation(s)
- Ning Zhi
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, 1925 Coffey Road, 43210-1093, USA
| | | | | |
Collapse
|
33
|
Kim HY, Mott J, Zhi N, Tajima T, Rikihisa Y. Cytokine gene expression by peripheral blood leukocytes in horses experimentally infected with Anaplasma phagocytophila. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:1079-84. [PMID: 12204963 PMCID: PMC120081 DOI: 10.1128/cdli.9.5.1079-1084.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human granulocytic ehrlichiosis (HGE), a tick-borne zoonosis, is caused by an obligatory intragranulocytic bacterium, the HGE agent, a strain of Anaplasma phagocytophila. The equine model of HGE is considered valuable in understanding pathogenic and immune mechanisms of HGE. In the present study, cytokine mRNA expression by peripheral blood leukocytes (PBLs) in horses was examined during the course of infection by intravenous inoculation of A. phagocytophila or by allowing feeding by infected ticks. The p44 genes encoding the major outer membrane protein P44s of A. phagocytophila were detected by PCR in PBLs of all four horses from 4 to 20 days postexposure. During the 20-day infection period, interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) mRNA expression was upregulated in PBLs of all four horses, and IL-8 mRNA expression was upregulated in three horses. Gamma interferon, IL-10, and IL-12 p35 mRNAs were weakly expressed in only one horse each. IL-2, IL-4, IL-6, and IL-12 p40 mRNA expression, however, could not be detected in the PBLs of any of the four horses. These results suggest that IL-1beta, TNF-alpha, and IL-8 generation during A. phagocytophila infection has a primary role in HGE pathogenesis and immunomodulation.
Collapse
Affiliation(s)
- Hyung-Yong Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210-1093, USA
| | | | | | | | | |
Collapse
|
34
|
Lin Q, Zhi N, Ohashi N, Horowitz HW, Aguero-Rosenfeld ME, Raffalli J, Wormser GP, Rikihisa Y. Analysis of sequences and loci of p44 homologs expressed by Anaplasma phagocytophila in acutely infected patients. J Clin Microbiol 2002; 40:2981-8. [PMID: 12149362 PMCID: PMC120678 DOI: 10.1128/jcm.40.8.2981-2988.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophila is an obligatory intragranulocytic bacterium that causes human granulocytic ehrlichiosis. Immunodominant 44-kDa outer membrane proteins of A. phagocytophila are encoded by a p44 multigene family. In the present study, expression profiles of p44 genes in the blood of acutely infected patients in the year 2000 were characterized. A single p44 gene was predominantly expressed in peripheral blood leukocytes from one patient, while up to 17 different p44 genes were transcribed without a single majority in the other two patients. The cDNA sequences of the central hypervariable region of several p44 genes were identical among the isolates from the three patients and a 1995 A. phagocytophila isolate. A. phagocytophila was isolated by cell culture from all of the three 2000 patients. Genomic Southern blot analysis of the three 2000 and two 1995 A. phagocytophila isolates with probes specific to the most dominant p44 transcript in each patient showed that the p44 loci in the A. phagocytophila genome were conserved. Analysis of the predicted amino acid sequences of 43 different p44 genes including 19 new sequences found in the present study, revealed that five amino acids were absolutely conserved. The hypervariable region was subdivided into five domains, including three extremely hypervariable central domains. These results suggest that variations in the sequences of p44 are not random but are restricted. Furthermore, several p44 genes are not hypermutatable in nature, based on the conservation of gene sequences and loci among isolates obtained 5 years apart.
Collapse
Affiliation(s)
- Quan Lin
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim HY, Rikihisa Y. Roles of p38 mitogen-activated protein kinase, NF-kappaB, and protein kinase C in proinflammatory cytokine mRNA expression by human peripheral blood leukocytes, monocytes, and neutrophils in response to Anaplasma phagocytophila. Infect Immun 2002; 70:4132-41. [PMID: 12117921 PMCID: PMC128199 DOI: 10.1128/iai.70.8.4132-4141.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Revised: 02/15/2002] [Accepted: 04/24/2002] [Indexed: 11/20/2022] Open
Abstract
Anaplasma phagocytophila, an obligately intracellular bacterium of granulocytes, causes human granulocytic ehrlichiosis. Within 2 h after addition of A. phagocytophila, interleukin-1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha), and IL-6 mRNAs are induced in human peripheral blood leukocytes (PBLs) or monocytes in vitro. However, neutrophils generate only IL-1beta mRNA. In the present study, signaling pathways for induction of these three cytokines were examined. TNF-alpha and IL-6 mRNA expression by PBLs was inhibited with SB 203580 (a p38 mitogen-activated protein kinase [MAPK] inhibitor), MG-132 (a proteasome inhibitor), and SN-50 (an NF-kappaB inhibitor). Activation of p38 MAPK and NF-kappaB mRNAs in monocytes was detectable within 15 to 30 min after addition of A. phagocytophila. Expression of these two cytokine mRNAs in PBLs and monocytes was also dependent on protein kinase C (PKC), protein kinase A (PKA), and protein tyrosine kinase (PTK). IL-1beta mRNA expression by neutrophils was not dependent on p38 MAPK, and p38 MAPK was not activated in neutrophils incubated with A. phagocytophila. IL-1beta mRNA induction by PBLs, monocytes, and neutrophils was dependent on PKC and PKA. Neutrophil expression of IL-1beta mRNA was dependent on transglutaminase, phospholipase C, and PTK, all of which are also required for internalization of A. phagocytophila. However, monocyte expression of IL-1beta mRNA was less dependent on these enzymes. These results suggest that A. phagocytophila transduces different signals between its host neutrophils and monocytes for proinflammatory cytokine generation.
Collapse
Affiliation(s)
- Hyung-Yong Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus 43210-1093, USA
| | | |
Collapse
|
36
|
Aga E, Katschinski DM, van Zandbergen G, Laufs H, Hansen B, Müller K, Solbach W, Laskay T. Inhibition of the spontaneous apoptosis of neutrophil granulocytes by the intracellular parasite Leishmania major. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:898-905. [PMID: 12097394 DOI: 10.4049/jimmunol.169.2.898] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages are the major target cell population of the obligate intracellular parasites Leishmania. Although polymorphonuclear neutrophil granulocytes (PMN) are able to internalize Leishmania promastigotes, these cells have not been considered to date as host cells for the parasites, primarily due to their short life span. In vitro coincubation experiments were conducted to investigate whether Leishmania can modify the spontaneous apoptosis of human PMN. Coincubation of PMN with Leishmania major promastigotes resulted in a significant decrease in the ratio of apoptotic neutrophils as detected by morphological analysis of cell nuclei, TUNEL assay, gel electrophoresis of low m.w. DNA fragments, and annexin V staining. The observed antiapoptotic effect was found to be associated with a significant reduction of caspase-3 activity in PMN. The inhibition of PMN apoptosis depended on viable parasites because killed Leishmania or a lysate of the parasites did not have antiapoptotic effect. L. major did not block, but rather delayed the programmed cell death of neutrophils by approximately 24 h. The antiapoptotic effect of the parasites could not be transferred by the supernatants, despite secretion of IL-8 by PMN upon coculture with L. major. In vivo, intact parasites were found intracellularly in PMN collected from the skin of mice 3 days after s.c. infection. This finding strongly suggests that infection with Leishmania prolongs the survival time of neutrophils also in vivo. These data indicate that Leishmania induce an increased survival of neutrophil granulocytes both in vitro and in vivo.
Collapse
Affiliation(s)
- Eresso Aga
- Institute for Medical Microbiology and Hygiene, Medical University of Lübeck, Lübeck, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhi N, Ohashi N, Tajima T, Mott J, Stich RW, Grover D, Telford SR, Lin Q, Rikihisa Y. Transcript heterogeneity of the p44 multigene family in a human granulocytic ehrlichiosis agent transmitted by ticks. Infect Immun 2002; 70:1175-84. [PMID: 11854198 PMCID: PMC127761 DOI: 10.1128/iai.70.3.1175-1184.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human granulocytic ehrlichiosis (HGE) is an emerging tick-borne zoonosis caused by a strain of Anaplasma phagocytophila called the HGE agent, an obligatory intracellular bacterium. The agent expresses immunodominant 44-kDa outer membrane proteins (P44s) encoded by a multigene family. The present study established an experimental process for transmission of the HGE agent from infected mice (a reservoir model) to nymphal Ixodes scapularis ticks (a biological vector) and subsequently to horses (a patient model) by the adult infected ticks. Overall, a total of 20 different p44 transcripts were detected in the mammals, ticks, and cell cultures. Among them, a transcript from a p44-18 gene was major at acute stage in mice and horses but minor in ticks. Both mRNA and protein produced from the p44-18 gene were detected in the HGE agent cultivated in HL-60 cells at 37 degrees C, but their expression levels decreased in the organisms cultivated at 24 degrees C, suggesting that temperature is one of the factors that influence the expression of members of the p44 multigene family. Several additional p44 transcripts that were not detected in the mammals at the acute stage of infection were detected in ticks. Phylogenetic analysis of the 20 different p44 transcripts revealed that the major transcripts found in mammals and ticks were distinct, suggesting a difference in surface properties between populations of the HGE agent in different host environments. The present study provides new information for understanding the role of the p44 multigene family in transmission of the HGE agent between mammals and ticks.
Collapse
Affiliation(s)
- Ning Zhi
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210-1093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Human ehrlichioses represent one of the best examples of newly emergent infectious diseases in which the classic triad of host, infectious agent, and environment are intertwined closely. These pathogens have existed for eons on the planet, and some were described as veterinary pathogens decades ago. Because of dramatic increases of deer and small mammal populations in certain areas and the subsequent increased populations of particular blood-feeding ticks, the risk of developing these diseases is higher than before. Increasing human populations in suburban areas and increased immunosuppressed populations (transplant patients, human immunodeficiency virus patients, and cancer survivors) also have increased risk of developing severe forms of these diseases.
Collapse
Affiliation(s)
- Juan P Olano
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | |
Collapse
|
39
|
Akkoyunlu M, Malawista SE, Anguita J, Fikrig E. Exploitation of interleukin-8-induced neutrophil chemotaxis by the agent of human granulocytic ehrlichiosis. Infect Immun 2001; 69:5577-88. [PMID: 11500432 PMCID: PMC98672 DOI: 10.1128/iai.69.9.5577-5588.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The agent of human granulocytic ehrlichiosis (HGE) is an obligate intracellular bacterium with a tropism for neutrophils; however, the mechanisms of bacterial dissemination are not yet understood. Interleukin-8 (IL-8) is a chemokine that induces neutrophil migration to sites of infection for host defense against pathogens. We now show that HGE bacteria, and the HGE-44 protein, induce IL-8 secretion in a promyelocytic (HL-60) cell line that has been differentiated along the neutrophil lineage with retinoic acid and in neutrophils. Infected HL-60 cells also demonstrate upregulation of CXCR2, an IL-8 receptor, but not CXCR1. Human neutrophils migrate towards Ehrlichia sp.-infected cells in a chemotaxis chamber assay, and this movement can be blocked with antibodies to IL-8. Finally, immunocompetent and severe combined immunodeficient mice administered CXCR2 antisera, and CXCR2(-/-) mice that lack the human IL-8 receptor homologue, are much less susceptible to granulocytic ehrlichiosis than are control animals. These results demonstrate that HGE bacteria induce IL-8 production by host cells and, paradoxically, appear to exploit this chemokine to enhance infection.
Collapse
Affiliation(s)
- M Akkoyunlu
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
40
|
Bandi C, Trees AJ, Brattig NW. Wolbachia in filarial nematodes: evolutionary aspects and implications for the pathogenesis and treatment of filarial diseases. Vet Parasitol 2001; 98:215-38. [PMID: 11516587 DOI: 10.1016/s0304-4017(01)00432-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The presence of intracellular bacteria in the body of various species of filarial nematodes, including important parasites such as Brugia malayi, Dirofilaria immitis, and Onchocerca volvulus, was observed as early as the mid-1970s. These bacteria were shown to be transovarially transmitted (from the female worm to the offspring) and to be present in significant amounts in the body of the nematode. As highlighted by their discoverers, the potential importance of these bacteria is fairly obvious: (1) bacteria-derived molecules should be considered as having an immunological and pathological role in filarial diseases; (2) the interaction between the bacteria and the filarial host deserves investigation, in view of the possibility that the bacteria are needed by the host nematode and could thus represent a target for therapy. Other authors, independently from the discovery of these intracellular bacteria, showed that the antibiotic tetracycline (which is well known for its efficacy on intracellular bacteria) had detrimental effects on two species of filarial nematodes (Brugia pahangi and Litomosoides sigmodontis). It is therefore surprising that for more than 20 years, no further investigations focused on the bacteria of filarial nematodes, nor on the anti-filarial properties of tetracycline. Recently, the bacteria of filarial nematodes have been independently "rediscovered" by research groups from the schools of Hamburg, Liverpool and Milan. These bacteria are now classified as Wolbachia, and the basic aspects of their phylogenetic history and relationship with the Wolbachia of arthropods have been reconstructed. In addition, their implications for the pathogenesis and treatment of filarial diseases have started to be uncovered. This paper, which is authored by representatives of the three European schools who reopened this research area, reviews our present knowledge of these fascinating microorganisms, highlighting the complexity of a symbiotic system which involves, in addition to the nematode and its bacterium, the vertebrate host.
Collapse
Affiliation(s)
- C Bandi
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Sezione di Patologia, Generale e Parassitologia, Università di Milano, 20133 Milan, Italy
| | | | | |
Collapse
|
41
|
Ohashi N, Rikihisa Y, Unver A. Analysis of transcriptionally active gene clusters of major outer membrane protein multigene family in Ehrlichia canis and E. chaffeensis. Infect Immun 2001; 69:2083-91. [PMID: 11254561 PMCID: PMC98133 DOI: 10.1128/iai.69.4.2083-2091.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia canis and E. chaffeensis are tick-borne obligatory intramonocytic ehrlichiae that cause febrile systemic illness in humans and dogs, respectively. The current study analyzed the pleomorphic multigene family encoding approximately 30-kDa major outer membrane proteins (OMPs) of E. canis and E. chaffeensis. Upstream from secA and downstream of hypothetical transcriptional regulator, 22 paralogs of the omp gene family were found to be tandemly arranged except for one or two genes with opposite orientations in a 28- and a 27-kb locus in the E. canis and E. chaffeensis genomes, respectively. Each locus consisted of three highly repetitive regions with four nonrepetitive intervening regions. E. canis, in addition, had a 6.9-kb locus which contained a repeat of three tandem paralogs in the 28-kb locus. These total 47 paralogous and orthologous genes encoded OMPs of approximately 30 to 35 kDa consisting of several hypervariable regions alternating with conserved regions. In the 5'-end half of the 27-kb locus or the 28-kb locus of each Ehrlichia species, 14 paralogs were linked by short intergenic spaces ranging from -8 bp (overlapped) to 27 bp, and 8 remaining paralogs in the 3'-end half were connected by longer intergenic spaces ranging from 213 to 632 bp. All 22 paralogs, five unknown genes, and secA in the omp cluster in E. canis were transcriptionally active in the monocyte culture, and the paralogs with short intergenic spaces were cotranscribed with their adjacent genes, including the respective intergenic spaces at both the 5' and the 3' sides. Although omp genes are diverse, our results suggest that the gene organization of the clusters and the gene locus are conserved between two species of Ehrlichia to maintain a unique transcriptional mechanism for adaptation to environmental changes common to them.
Collapse
Affiliation(s)
- N Ohashi
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210-1093, USA
| | | | | |
Collapse
|
42
|
Mott J, Rikihisa Y. Human granulocytic ehrlichiosis agent inhibits superoxide anion generation by human neutrophils. Infect Immun 2000; 68:6697-703. [PMID: 11083784 PMCID: PMC97769 DOI: 10.1128/iai.68.12.6697-6703.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human granulocytic ehrlichiosis (HGE) agent, which replicates in neutrophils, was found not to induce superoxide anion (O(2)(-)) generation or extracellular release by human peripheral blood neutrophils, as measured by a luminol-dependent chemiluminescence assay or a cytochrome c reduction assay, respectively. Furthermore, the HGE agent completely prevented O(2-) release by neutrophils upon stimulation with phorbol myristate acetate (PMA), formylmethionyl-leucyl-phenylalanine, or Escherichia coli. The inhibition was HGE agent dose dependent, required ehrlichial contact with the host cells, and was reversible upon removal of the extracellular HGE agent bound to the host cells prior to PMA stimulation. Structural integrity of or new protein synthesis by the HGE agent was not required for the inhibition; carbohydrate but not surface protein of the HGE agent was required. The HGE agent did not prevent O(2-) generation in human peripheral blood monocytes derived from the same individual. This neutrophil-specific prevention of O(2-) generation by the HGE agent would be critical in survival of the HGE agent. This is the first demonstration of the rapid inhibition of preexisting NADPH oxidase in human neutrophils by the HGE agent.
Collapse
Affiliation(s)
- J Mott
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210-1092, USA
| | | |
Collapse
|