1
|
Wang XY, Cai DZ, Li X, Bai SF, Yan FM. Identification and Physicochemical Properties of the Novel Hemolysin(s) From Oral Secretions of Helicoverpa armigera (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:12. [PMID: 34750634 PMCID: PMC8575691 DOI: 10.1093/jisesa/ieab082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Hemolysins cause the lysis of invading organisms, representing major humoral immunity used by invertebrates. Hemolysins have been discovered in hemolymph of Helicoverpa armigera larvae as immune factors. As oral immunity is great important to clear general pathogens, we presumed that hemolysins may be present in oral secretions (OS). To confirm this hypothesis, we conducted four testing methods to identify hemolysin(s) in larval OS of H. armigera, and analyzed physicochemical properties of the hemolysin in comparison with hemolytic melittin of Apis mellifera (L.) (Hymenoptera: Apidae) venom. We found hemolysin(s) from OS of H. armigera for the first time, and further identified in other lepidopteran herbivores. It could be precipitated by ammonium sulfate, which demonstrates that the hemolytic factor is proteinaceous. Labial gland showed significantly higher hemolytic activity than gut tissues, suggesting that hemolysin of OS is mainly derived from saliva secreted by labial glands. Physicochemical properties of hemolysin in caterpillar's OS were different from bee venom. It was noteworthy that hemolytic activity of OS was only partially inhibited even at 100°C. Hemolytic activity of OS was not inhibited by nine tested carbohydrates contrary to bee venom melittin. Moreover, effects of metal ions on hemolytic activity were different between OS and bee venom. We conclude that there is at least a novel hemolysin in OS of herbivorous insects with proposed antibacterial function, and its hemolytic mechanism may be different from melittin. Our study enriches understanding of the potential role of hemolysins in insect immunity and provides useful data to the field of herbivorous insect-pathogen research.
Collapse
Affiliation(s)
- Xiong-Ya Wang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Dong-Zhang Cai
- Department of Conservation of Natural Resources, National Nature Reserve Administration of Henan Jigongshan Mountain, Xinyang, Henan, 464000, China
| | - Xin Li
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Su-Fen Bai
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Feng-Ming Yan
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
2
|
Hille MM, Clawson ML, Dickey AM, Lowery JH, Loy JD. MALDI-TOF MS Biomarker Detection Models to Distinguish RTX Toxin Phenotypes of Moraxella bovoculi Strains Are Enhanced Using Calcium Chloride Supplemented Agar. Front Cell Infect Microbiol 2021; 11:632647. [PMID: 33796479 PMCID: PMC8007961 DOI: 10.3389/fcimb.2021.632647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Moraxella bovoculi is the bacterium most often cultured from ocular lesions of cattle with infectious bovine keratoconjunctivitis, also known as bovine pinkeye. Some strains of M. bovoculi contain operons encoding for a repeats-in-toxin (RTX) toxin, which is a known virulence factor of multiple veterinary pathogens. We explored the utility of MALDI-TOF MS and biomarker detection models to classify the presence or absence of an RTX phenotype in M. bovoculi. Ninety strains that had undergone whole genome sequencing were classified by the presence or absence of complete RTX operons and confirmed with a visual assessment of hemolysis on blood agar. Strains were grown on Tryptic Soy Agar (TSA) with 5% sheep blood, TSA with 5% bovine blood that was supplemented with 10% fetal bovine serum, 10 mmol/LCaCl2, or both. The formulations were designed to determine the influence of growth media on toxin production or activity, as calcium ions are required for toxin secretion and activity. Mass spectra were obtained for strains grown on each agar formulation and biomarker models were developed using ClinProTools 3.0 software. The most accurate model was developed using spectra from strains grown on TSA with 5% bovine blood and supplemented with CaCl2, which had a sensitivity and specificity of 93.3% and 73.3%, respectively, regarding RTX phenotype classification. The same biomarker model algorithm developed from strains grown on TSA with 5% sheep blood had a substantially lower sensitivity and specificity of 68.0% and 52.0%, respectively. Our results indicate that MALDI-TOF MS biomarker models can accurately classify strains of M. bovoculi regarding the presence or absence of RTX toxin operons and that agar media modifications improve the accuracy of these models.
Collapse
Affiliation(s)
- Matthew M Hille
- School of Veterinary Medicine and Biomedical Sciences, Institute for Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Michael L Clawson
- U.S. Meat Animal Research Center, United States Department of Agriculture, Agricultural Research Service, Clay Center, NE, United States
| | - Aaron M Dickey
- U.S. Meat Animal Research Center, United States Department of Agriculture, Agricultural Research Service, Clay Center, NE, United States
| | - Justin H Lowery
- School of Veterinary Medicine and Biomedical Sciences, Institute for Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - John Dustin Loy
- School of Veterinary Medicine and Biomedical Sciences, Institute for Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
3
|
Postma GC, Carfagnini JC, Minatel L. Moraxella bovis pathogenicity: An update. Comp Immunol Microbiol Infect Dis 2008; 31:449-58. [DOI: 10.1016/j.cimid.2008.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2007] [Indexed: 11/15/2022]
|
4
|
Erova TE, Sha J, Horneman AJ, Borchardt MA, Khajanchi BK, Fadl AA, Chopra AK. Identification of a new hemolysin from diarrheal isolate SSU of Aeromonas hydrophila. FEMS Microbiol Lett 2007; 275:301-11. [PMID: 17725618 DOI: 10.1111/j.1574-6968.2007.00895.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A clinical strain SSU of Aeromonas hydrophila produces a potent cytotoxic enterotoxin (Act) with cytotoxic, enterotoxic, and hemolytic activities. A new gene, which encoded a hemolysin of 439-amino acid residues with a molecular mass of 49 kDa, was identified. This hemolysin (HlyA) was detected based on the observation that the act gene minus mutant of A. hydrophila SSU still had residual hemolytic activity. The new hemolysin gene (hlyA) was cloned, sequenced, and overexpressed in Escherichia coli. The hlyA gene exhibited 96% identity with its homolog found in a recently annotated genome sequence of an environmental isolate, namely the type strain ATCC 7966 of A. hydrophila subspecies hydrophila. The hlyA gene did not exhibit any homology with other known hemolysins and aerolysin genes detected in Aeromonas isolates. However, this hemolysin exhibited significant homology with hemolysin of Vibrio vulnificus as well as with the cystathionine beta synthase domain protein of Shewanella oneidensis. The HlyA protein was activated only after treatment with trypsin and the resulting hemolytic activity was not neutralizable with antibodies to Act. The presence of the hlyA gene in clinical and water Aeromonas isolates was investigated and DNA fingerprint analysis was performed to demonstrate its possible role in Aeromonas virulence.
Collapse
Affiliation(s)
- Tatiana E Erova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Shiell BJ, Tachedjian M, Bruce K, Beddome G, Farn JL, Hoyne PA, Michalski WP. Expression, purification and characterization of recombinant phospholipase B from Moraxella bovis with anomalous electrophoretic behavior. Protein Expr Purif 2007; 55:262-72. [PMID: 17709258 DOI: 10.1016/j.pep.2007.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 11/17/2022]
Abstract
Moraxella bovis is the causative agent of infectious bovine keratoconjunctivitis (IBK) also known as pinkeye, a highly contagious and painful eye disease that is common in cattle throughout the world. Vaccination appears to be a reasonable and cost-effective means of control of pinkeye. Identification of genes encoding novel secreted antigens have been reported, and these antigens are being assessed for use in a vaccine. One of the genes encodes phospholipase B, which can be expressed with high purity and yield in recombinant Escherichia coli as a secreted, soluble, non-tagged, mature construct (less signal peptide with predicted mass 63 kDa). The recombinant phospholipase B exhibited anomalous electrophoretic mobility that was dependent on the temperature of the denaturing process, with bands observed at either 52 or 63 kDa. Analysis by in-gel digestion and liquid chromatography-mass spectrometry revealed these two distinct forms most likely had identical sequences. Phospholipase B is a compact, globular protein with a predicted structure typical of a conventional autotransporter. It is suggested that high temperature is required to unfold the protein (to denature the beta-barrel-rich transporter domain) and to ensure accessibility of the reducing agent. Interestingly, the two forms of the enzyme, differing in size and isoelectric points, were also detected in cell-free supernatants of M. bovis cultures, indicating that native phospholipase B may exist in two differentially folded states possibly also differing in oxidation status of cysteine residues.
Collapse
Affiliation(s)
- Brian J Shiell
- Australian Animal Health Laboratory, CSIRO Livestock Industries, Geelong, Vic 3220, Australia
| | | | | | | | | | | | | |
Collapse
|
6
|
Plummer R, Bodkin J, Yau TW, Power D, Pantarat N, Larkin TJ, Szekely D, Bubb WA, Sorrell TC, Kuchel PW. ModellingStaphylococcus aureus–induced septicemia using NMR. Magn Reson Med 2007; 58:656-65. [PMID: 17899589 DOI: 10.1002/mrm.21392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We present a novel NMR-based study of the molecular aspects of the "attack" on human red blood cells (RBCs) by growing bacteria. Staphylococcus aureus expresses virulence factors, including alpha-hemolysin, which contribute to the clinical condition known as septic shock. alpha-Hemolysin is a pore-forming toxin and its secretion increases the permeability of a range of mammalian cell types infected with S. aureus. (31)P NMR spectra of the probe molecules dimethyl methylphosphonate (DMMP) and hypophosphite (HPA) in RBC suspensions show separate intra- and extracellular resonances. These resonances coalesced over time in RBC suspensions inoculated with S. aureus or pure alpha-hemolysin, due to increasing permeability of the RBC membrane. Increased RBC permeability resulted in leakage of intracellular proteins, plus an increase in the exchange rate of the solutes between the intra- and extracellular compartments, both effects contributing to the coalescence of the split peaks. The addition of antibiotics prevented peak coalescence and enabled the minimal inhibitory concentration (MIC) for eight strains of S. aureus to be determined for oxacillin and erythromycin. The MIC values obtained by using (31)P NMR spectroscopy were within one dilution of the MICs obtained using the standard National Committee for Clinical Laboratory Standards (NCCLS) method. The results are encouraging for the use of NMR spectroscopy in clinical microbiology.
Collapse
Affiliation(s)
- R Plummer
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kakuda T, Sarataphan N, Tanaka T, Takai S. Filamentous-haemagglutinin-like protein genes encoded on a plasmid of Moraxella bovis. Vet Microbiol 2006; 118:141-7. [PMID: 16879933 DOI: 10.1016/j.vetmic.2006.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 06/20/2006] [Accepted: 06/26/2006] [Indexed: 11/21/2022]
Abstract
The complete nucleotide sequence of a plasmid, pMBO-1, from Moraxella bovis strain Epp63 was determined. We identified 30 open reading frames (ORFs) encoded by the 44,215bp molecule. Two large ORFs, flpA and flpB, encoding proteins with similarity to Bordetella pertussis filamentous haemagglutinin (FHA), were identified on the same plasmid. The gene for a specific accessory protein (Fap), which may play a role in the secretion of Flp protein, was also identified. Reverse transcriptase PCR analysis of total RNA isolated from M. bovis Epp63 indicated that the flpA, flpB, and fap genes are all transcribed. Southern blot analysis indicated that the flp and fap genes are present in other clinical isolates of geographically diverse M. bovis.
Collapse
Affiliation(s)
- Tsutomu Kakuda
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Higashi 23, 35-1, Towada, Aomori 034-8628, Japan.
| | | | | | | |
Collapse
|
8
|
Cerny HE, Rogers DG, Gray JT, Smith DR, Hinkley S. Effects of Moraxella (Branhamella) ovis culture filtrates on bovine erythrocytes, peripheral mononuclear cells, and corneal epithelial cells. J Clin Microbiol 2006; 44:772-6. [PMID: 16517853 PMCID: PMC1393100 DOI: 10.1128/jcm.44.3.772-776.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bovine keratoconjunctivitis (IBK) is a highly contagious ocular disease that affects cattle of all ages and that occurs worldwide. Piliated hemolytic Moraxella bovis is recognized as the etiologic agent of IBK. According to data from the Nebraska Veterinary Diagnostic Laboratory System, however, Moraxella (Branhamella) ovis has been isolated with increasing frequency from cattle affected with IBK. The objective of this study was, therefore, to examine M. ovis field isolates for the presence of the putative virulence factors of M. bovis. Culture filtrates from selected M. ovis field isolates demonstrated hemolytic activity on bovine erythrocytes and cytotoxic activity on bovine peripheral blood mononuclear cells and corneal epithelial cells. The hemolytic activity of the culture filtrates was attenuated after heat treatment. Polyclonal antibodies raised against the M. bovis hemolysin-cytotoxin also recognized a protein of approximately 98 kDa in a Western blot assay. These data indicate that the M. ovis field isolates examined produce one or more heat-labile exotoxins and may suggest that M. ovis plays a role in the pathogenesis of IBK.
Collapse
|
9
|
Abstract
Infectious bovine keratoconjunctivitis is a common and highly contagious ocular disease affecting cattle worldwide. The tremendous economic losses attributable to this disease warrant continued investigation into methods of prevention. Multiple virulence factors have been linked to the primary aetiologic agent, Moraxella bovis. Efforts to develop an efficacious vaccine have primarily focused upon the use of surface pili or cytolysin to stimulate host immunity; however, M. bovis possesses other virulence determinants that include proteases, fibrinolysins, phospholipases and other cell surface components such as outer membrane proteins. These potentially conserved antigens provide additional possibilities for vaccine development. Examination of appropriate antigen presentation is necessary to attain an adequate immune response. Further, the potential for antigenic diversity as well as epitope conversion requires continuous epidemiological surveillance of isolates recovered from outbreaks. Current work targeting conserved immunogens provides hope for efficacious vaccines that when used in tandem with proper management may control, if not prevent, infectious bovine keratoconjunctivitis.
Collapse
Affiliation(s)
- C S McConnel
- University of Sydney, Faculty of Veterinary Science, Camden, New South Wales 2570
| | | |
Collapse
|
10
|
Lee SH, Kim S, Park SC, Kim MJ. Cytotoxic activities of Leptospira interrogans hemolysin SphH as a pore-forming protein on mammalian cells. Infect Immun 2002; 70:315-22. [PMID: 11748197 PMCID: PMC127624 DOI: 10.1128/iai.70.1.315-322.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Revised: 08/21/2001] [Accepted: 09/25/2001] [Indexed: 11/20/2022] Open
Abstract
Leptospirosis is a spirochetal zoonosis that causes an acute febrile systemic illness in humans. Leptospira sp. hemolysins have been shown to be virulence factors for the pathogenesis of leptospirosis. Previously, we cloned a hemolysin SphH of Leptospira interrogans serovar lai, a homologue of L. borgpetersenii sphingomyelinase (SphA), from a genomic library (S. H. Lee, K. A. Kim, Y. K. Kim, I. W. Seong, M. J. Kim, and Y. J. Lee, Gene 254:19-28, 2000). Escherichia coli lysate harboring the sphH showed high hemolytic activities on sheep erythrocytes. However, it neither showed sphingomyelinase nor phospholipase activities, in contrast to SphA which was known to have sphingomyelinase activity. Interestingly, the SphH-mediated hemolysis on erythrocytes was osmotically protected by PEG 5000, suggesting that the SphH might have caused pore formation on the erythrocyte membrane. In the present study, we have prepared the Leptospira hemolysin SphH and investigated its hemolytic and cytotoxic activities on mammalian cells. SphH was shown to be a pore-forming protein on several mammalian cells: When treated with the SphH, the sheep erythrocyte membranes formed pores, which were morphologically confirmed by transmission electron microscopy. Furthermore, the SphH-mediated cytotoxicities on mammalian cells were demonstrated by the release of LDH and by inverted microscopic examinations. Finally, the immune serum against the full-length hemolysin could effectively neutralize the SphH-mediated hemolytic and cytotoxic activities. In conclusion, these results suggest that the virulence of Leptospira SphH was due to the pore formation on mammalian cell membranes.
Collapse
Affiliation(s)
- Seoung Hoon Lee
- Division of Infectious Diseases, Department of Internal Medicine, Graduate School of Biomedical Sciences, College of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | | | | | | |
Collapse
|
11
|
Abstract
OBJECTIVE To identify the Moraxella bovis cytotoxin gene. PROCEDURE Hemolytic and nonhemolytic strains of M. bovis were compared by use of western blotting to identify proteins unique to hemolytic strains. Oligonucleotide primers, designed on the basis of amino acid sequences of 2 tryptic peptides derived from 1 such protein and conserved regions of the C and B genes from members of the repeats in the structural toxin (RTX) family of bacterial toxins, were used to amplify cytotoxin-specific genes from M. bovis genomic DNA. Recombinant proteins were expressed, and antisera against these proteins were produced in rabbits. RESULTS Several proteins ranging in molecular mass from 55 to 75 kd were unique to the hemolytic strain. An open reading frame encoding a 927-amino acid protein with a predicted molecular mass of 98.8 kd was amplified from M. bovis genomic DNA. The deduced amino acid sequence encoded by this open reading frame was homologous to RTX toxins. Antisera against the recombinant carboxy terminus encoded by this open reading frame neutralized hemolytic and cytolytic activities of native M. bovis cytotoxin. CONCLUSIONS AND CLINICAL RELEVANCE A gene was identified in M bovis that encodes a protein with sequence homology to other RTX toxins. Results of cytotoxin neutralization assays support the hypothesis that M. bovis cytotoxin is encoded by this gene and belongs in the RTX family of bacterial exoproteins. Identification of this gene and expression of recombinant cytotoxin could facilitate the development of improved vaccines against infectious bovine keratoconjunctivitis.
Collapse
Affiliation(s)
- J A Angelos
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis 95616, USA
| | | | | |
Collapse
|