1
|
Ferreira EMS, Garmendia G, Gonçalves VN, Silva JFMDA, Convey P, Rosa LH, Vero S, Pimenta RS. Biocontrol mechanisms of the Antarctic yeast Debaryomyces hansenii UFT8244 against post-harvest phytopathogenic fungi of strawberries. AN ACAD BRAS CIENC 2024; 96:e20240255. [PMID: 39194008 DOI: 10.1590/0001-3765202420240255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/15/2024] [Indexed: 08/29/2024] Open
Abstract
The use of yeasts has been explored as an efficient alternative to fungicide application in the treatment and prevention of post-harvest fruit deterioration. Here, we evaluated the biocontrol abilities of the Antarctic yeast strain Debaryomyces hansenii UFT8244 against the post-harvest phytopathogenic fungi Botrytis cinerea and Rhizopus stolonifer for the protection and preservation of strawberry fruit. The strongest inhibition of germination of B. cinerea (57%) was observed at 0 °C, followed by 40% at 25 °C. In addition, germ tubes and hyphae of B. cinerea were strongly surrounded and colonized by D. hansenii. Production of the enzymes β-1,3-glucanase, chitinase and protease by D. hansenii was detected in the presence of phytopathogenic fungus cell walls. The activity of β-1,3-glucanase was highest on day 12 of incubation and remained high until day 15. Chitinase and protease activities reached their highest levels on the day 15 of incubation. D. hansenii additionally demonstrated the ability to resist oxidative stress. Our data demonstrated that the main biocontrol mechanisms displayed by D. hansenii were the control of phytopathogenic fungal spore germination, production of antifungal enzymes and resistance to oxidative stress. We conclude that isolate D. hansenii UFT8422 should be further investigated for use at commercial scales at low temperatures.
Collapse
Affiliation(s)
- Eskálath Morganna S Ferreira
- Federal University of Tocantins, Laboratory of General and Applied Microbiology, ALC NO14, Ns-15 Ave, 77020-210 Palmas, TO, Brazil
| | - Gabriela Garmendia
- UdelaR, Area Microbiología, Departamento de Biociencias, Facultad de Química, Gral Flores 2124, 11800, Montevideo, Uruguay
| | - Vívian N Gonçalves
- Federal University of Minas Gerais, Departament of Microbiology, Antônio Carlos Ave. 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Juliana F M DA Silva
- Federal University of Tocantins, Laboratory of General and Applied Microbiology, ALC NO14, Ns-15 Ave, 77020-210 Palmas, TO, Brazil
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom
- University of Johannesburg, Department of Zoology, Auckland Park 2006, PO Box 524, Johannesburg, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago, Chile
- Cape Horn International Center (CHIC), O'Higgins 310, Cabo de Hornos, Puerto Williams, Chile
| | - Luiz Henrique Rosa
- Federal University of Minas Gerais, Departament of Microbiology, Antônio Carlos Ave. 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Silvana Vero
- UdelaR, Area Microbiología, Departamento de Biociencias, Facultad de Química, Gral Flores 2124, 11800, Montevideo, Uruguay
| | - Raphael S Pimenta
- Federal University of Tocantins, Laboratory of General and Applied Microbiology, ALC NO14, Ns-15 Ave, 77020-210 Palmas, TO, Brazil
| |
Collapse
|
2
|
McDonald ND, Rosenberger JR, Almagro-Moreno S, Boyd EF. The Role of Nutrients and Nutritional Signals in the Pathogenesis of Vibrio cholerae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:195-211. [PMID: 36792877 DOI: 10.1007/978-3-031-22997-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio cholerae, the agent of cholera, is a natural inhabitant of aquatic environments. Over the past decades, the importance of specific nutrients and micronutrients in the environmental survival, host colonization, and pathogenesis of this species has become increasingly clear. For instance, V. cholerae has evolved ingenious mechanisms that allow the bacterium to colonize and establish a niche in the intestine of human hosts, where it competes with commensals (gut microbiota) and other pathogenic bacteria for available nutrients. Here, we discuss the carbon and energy sources utilized by V. cholerae and what is known about the role of nutrition in V. cholerae colonization. We examine how nutritional signals affect virulence gene regulation and how interactions with intestinal commensal species can affect intestinal colonization.
Collapse
Affiliation(s)
- N D McDonald
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - J R Rosenberger
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - S Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.,National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
3
|
Tocopherol and phytol possess anti-quorum sensing mediated anti-infective behavior against Vibrio campbellii in aquaculture: An in vitro and in vivo study. Microb Pathog 2021; 161:105221. [PMID: 34627940 DOI: 10.1016/j.micpath.2021.105221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 01/21/2023]
Abstract
Phytocompounds have long been well recognized in medicine and pharmacy. The natural compounds are frequently utilized as the fundamental resource in the development of novel therapeutic agents to treat bacterial infections. The rapid emergence of bacterial infections, particularly caused by Vibrio species, is seen as a serious concern for the development of aquaculture industries, resulting in substantial economic losses throughout the world. Notably, the presence of Vibrio campbellii in aquatic environments will be extremely problematic, leading to significant mortality in aquatic organisms. As a result, novel therapeutic agents are desperately needed to treat such diseases. This is the first research to demonstrate that plant-derived active compounds, tocopherol and phytol, are effective against V. campbellii infection in tomato clownfish. The findings showed that tocopherol and phytol significantly decreased the production of biofilm and virulence factors such as hemolysin, protease, lipase, hydrophobic index, and swimming motility in V. campbellii, without influencing the bacterial growth. In vivo experiments with tomato clownfish also proved that these phytocompound treatments significantly increased the survival rates of infected fishes by hindering the intestinal colonization of V. campbellii in tomato clownfish. Further, the disease protection efficacy against the pathognomonic sign of V. campbellii-infection was verified by histopathological investigation of the gills, gut, and kidney. Altogether, the results suggest that tocopherol and phytol could be promising therapeutic agents for the treatment of V. campbellii infections in aquaculture.
Collapse
|
4
|
Kumar S, Kumar CB, Rajendran V, Abishaw N, Anand PSS, Kannapan S, Nagaleekar VK, Vijayan KK, Alavandi SV. Delineating virulence of Vibrio campbellii: a predominant luminescent bacterial pathogen in Indian shrimp hatcheries. Sci Rep 2021; 11:15831. [PMID: 34349168 PMCID: PMC8339124 DOI: 10.1038/s41598-021-94961-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Luminescent vibriosis is a major bacterial disease in shrimp hatcheries and causes up to 100% mortality in larval stages of penaeid shrimps. We investigated the virulence factors and genetic identity of 29 luminescent Vibrio isolates from Indian shrimp hatcheries and farms, which were earlier presumed as Vibrio harveyi. Haemolysin gene-based species-specific multiplex PCR and phylogenetic analysis of rpoD and toxR identified all the isolates as V. campbellii. The gene-specific PCR revealed the presence of virulence markers involved in quorum sensing (luxM, luxS, cqsA), motility (flaA, lafA), toxin (hly, chiA, serine protease, metalloprotease), and virulence regulators (toxR, luxR) in all the isolates. The deduced amino acid sequence analysis of virulence regulator ToxR suggested four variants, namely A123Q150 (AQ; 18.9%), P123Q150 (PQ; 54.1%), A123P150 (AP; 21.6%), and P123P150 (PP; 5.4% isolates) based on amino acid at 123rd (proline or alanine) and 150th (glutamine or proline) positions. A significantly higher level of the quorum-sensing signal, autoinducer-2 (AI-2, p = 2.2e-12), and significantly reduced protease activity (p = 1.6e-07) were recorded in AP variant, whereas an inverse trend was noticed in the Q150 variants AQ and PQ. The pathogenicity study in Penaeus (Litopenaeus) vannamei juveniles revealed that all the isolates of AQ were highly pathogenic with Cox proportional hazard ratio 15.1 to 32.4 compared to P150 variants; PP (5.4 to 6.3) or AP (7.3 to 14). The correlation matrix suggested that protease, a metalloprotease, was positively correlated with pathogenicity (p > 0.05) and negatively correlated (p < 0.05) with AI-2 and AI-1. The syntenic organization of toxS-toxR-htpG operon in V. campbellii was found to be similar to pathogenic V. cholerae suggesting a similar regulatory role. The present study emphasizes that V. campbellii is a predominant pathogen in Indian shrimp hatcheries, and ToxR plays a significant role as a virulence regulator in the quorum sensing-protease pathway. Further, the study suggests that the presence of glutamine at 150th position (Q150) in ToxR is crucial for the pathogenicity of V. campbellii.
Collapse
Affiliation(s)
- Sujeet Kumar
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - Chandra Bhushan Kumar
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India ,grid.473401.50000 0001 2301 4227ICAR - National Bureau of Fish Genetic Resources, Canal Ring Road, Dilkusha Marg, Lucknow, 226002 India
| | - Vidya Rajendran
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - Nishawlini Abishaw
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - P. S. Shyne Anand
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - S. Kannapan
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - Viswas K. Nagaleekar
- grid.417990.20000 0000 9070 5290ICAR -Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 India
| | - K. K. Vijayan
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| | - S. V. Alavandi
- grid.464531.10000 0004 1755 9599ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, MRC Nagar, Chennai, 600 028 India
| |
Collapse
|
5
|
In vitro fermentation of legume cells and components: Effects of cell encapsulation and starch/protein interactions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Moura VS, Pollettini FL, Ferraz LP, Mazzi MV, Kupper KC. Purification of a killer toxin from Aureobasidium pullulans for the biocontrol of phytopathogens. J Basic Microbiol 2020; 61:77-87. [PMID: 33373080 DOI: 10.1002/jobm.202000164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/23/2020] [Accepted: 11/14/2020] [Indexed: 01/08/2023]
Abstract
The objectives of the present study were to purify and assess the killer toxin effect produced by Aureobasidium pullulans under casual agents of green mold (Penicillum digitatum) and sour rot (Geotrichum citri-aurantii). Initially, different methods of protein precipitation were tested. The proteolytic activity and the presence of proteins acting on cell wall receptors, β-1,3-glucanase and chitinase were determined, and toxin purification was conducted by Sephadex G-75 gel exclusion chromatography and cellulose chromatography (medium fibers). Subsequently, purification was confirmed by polyacrylamide gel electrophoresis, and the detection of killer activity was performed in solid YEPD-methylene blue buffered with citrate-phosphate (0.1 M, pH 4.6). Toxin identification was performed by liquid chromatography-mass spectrometry. The results showed that the best protein precipitation method was 2:1 ethanol (vol/vol ethanol/supernatant). It was possible to observe the presence of enzymes with proteolytic activity, including β-1,3-glucanase and chitinase. During the purification process, it was verified that the killer toxin produced by the yeast has a low-molecular-weight protein belonging to the ubiquitin family, which presents killer activity against P. digitatum and G. citri-aurantii.
Collapse
Affiliation(s)
- Vanessa S Moura
- Graduate Agriculture Microbiology Program of the Agrarian and Veterinarian Faculty, "Júlio de Mesquita Filho" Paulista State University, Jaboticabal, São Paulo, Brazil
| | - Flávia L Pollettini
- Graduate Agriculture Microbiology Program of the Agrarian and Veterinarian Faculty, "Júlio de Mesquita Filho" Paulista State University, Jaboticabal, São Paulo, Brazil
| | - Luriany P Ferraz
- Graduate Agriculture Microbiology Program of the Agrarian and Veterinarian Faculty, "Júlio de Mesquita Filho" Paulista State University, Jaboticabal, São Paulo, Brazil
| | - Maurício V Mazzi
- Graduate Program of Biomedical Sciences, University Center of Hermínio Ometto Foundation-FHO, Araras, São Paulo, Brazil
| | - Katia C Kupper
- Graduate Agriculture Microbiology Program of the Agrarian and Veterinarian Faculty, "Júlio de Mesquita Filho" Paulista State University, Jaboticabal, São Paulo, Brazil.,Sylvio Moreira Citriculture Center/IAC, Cordeirópolis, São Paulo, Brazil
| |
Collapse
|
7
|
Sofia MK, Dziejman M. DksA coordinates bile-mediated regulation of virulence-associated phenotypes in type three secretion system-positive Vibrio cholerae. MICROBIOLOGY-SGM 2020; 167. [PMID: 33332258 DOI: 10.1099/mic.0.001006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In order to cause disease, pathogenic strains of Vibrio cholerae rely on intricate regulatory networks to orchestrate the transition between their native aquatic environment and the human host. For example, bacteria in a nutrient-starved environment undergo a metabolic shift called the stringent response, which is mediated by the alarmone ppGpp and an RNA-polymerase binding transcriptional factor, DksA. In O1 serogroup strains of V. cholerae, which use the toxin co-regulated pilus (TCP) and cholera toxin (CT) as primary virulence factors, DksA was reported to have additional functions as a mediator of virulence gene expression. However, little is known about the regulatory networks coordinating virulence phenotypes in pathogenic strains that use TCP/CT-independent virulence mechanisms. We therefore investigated whether functions of DksA outside of the stringent response are conserved in type three secretion system (T3SS)-positive V. cholerae. In using the T3SS-positive clinically isolated O39 serogroup strain AM-19226, we observed an increase in dksA expression in the presence of bile at 37 °C. However, DksA was not required for wild-type levels of T3SS structural gene expression, or for colonization in vivo. Rather, data indicate that DksA positively regulates the expression of master regulators in the motility hierarchy. Interestingly, the ΔdksA strain forms a less robust biofilm than the WT parent strain at both 30 and 37 °C. We also found that DksA regulates the expression of hapR, encoding a major regulator of biofilm formation and protease expression. Athough DksA does not appear to modulate T3SS virulence factor expression, its activity is integrated into existing regulatory networks governing virulence-related phenotypes. Strain variations therefore may take advantage of conserved ancestral proteins to expand regulons responding to in vivo signals and thus coordinate multiple phenotypes important for infection.
Collapse
Affiliation(s)
- Madeline K Sofia
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA
| |
Collapse
|
8
|
Species-Specific Quorum Sensing Represses the Chitobiose Utilization Locus in Vibrio cholerae. Appl Environ Microbiol 2020; 86:AEM.00915-20. [PMID: 32651201 DOI: 10.1128/aem.00915-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/04/2020] [Indexed: 01/30/2023] Open
Abstract
The marine facultative pathogen Vibrio cholerae forms complex multicellular communities on the chitinous shells of crustacean zooplankton in its aquatic reservoir. V. cholerae-chitin interactions are critical for the growth, evolution, and waterborne transmission of cholera. This is due, in part, to chitin-induced changes in gene expression in this pathogen. Here, we sought to identify factors that influence chitin-induced expression of one locus, the chitobiose utilization operon (chb), which is required for the uptake and catabolism of the chitin disaccharide. Through a series of genetic screens, we identified that the master regulator of quorum sensing, HapR, is a direct repressor of the chb operon. We also found that the levels of HapR in V. cholerae are regulated by the ClpAP protease. Furthermore, we show that the canonical quorum sensing cascade in V. cholerae regulates chb expression in an HapR-dependent manner. Through this analysis, we found that signaling via the species-specific autoinducer CAI-1, but not the interspecies autoinducer AI-2, influences chb expression. This phenomenon of species-specific regulation may enhance the fitness of this pathogen in its environmental niche.IMPORTANCE In nature, bacteria live in multicellular and multispecies communities. Microbial species can sense the density and composition of their community through chemical cues using a process called quorum sensing (QS). The marine pathogen Vibrio cholerae is found in communities on the chitinous shells of crustaceans in its aquatic reservoir. V. cholerae interactions with chitin are critical for the survival, evolution, and waterborne transmission of this pathogen. Here, we show that V. cholerae uses QS to regulate the expression of one locus required for V. cholerae-chitin interactions.
Collapse
|
9
|
Ekka M, Mondal A, Singh R, Sen H, Datta S, Raychaudhuri S. Arginine 37 of Glycine Linker Dictates Regulatory Function of HapR. Front Microbiol 2020; 11:1949. [PMID: 32973706 PMCID: PMC7472637 DOI: 10.3389/fmicb.2020.01949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
HapR is designated as a high cell density quorum sensing master regulatory protein of Vibrio cholerae. It is a member of the TetR family protein and functions both as an activator and a repressor by directly communicating with cognate promoters, thus controlling the expression of a plethora of genes in a density-dependent manner. Molecular insights reveal the domain architecture and further unveil the significance of a cross talk between the DNA binding domain and the dimerization domain for the functionality of the wild-type protein. The DNA binding domain is made up of three α-helices, where a helix-turn-helix motif spans between the helices α2 and α3. The essentiality of the glycine-rich linker linking helices α1 and α2 came into prominence while unraveling the molecular basis of a natural non-functional variant of HapR. Subsequently, the importance of linker length was demonstrated. The present study, involving a series of biochemical analyses coupled with molecular dynamics simulation, has illustrated the indispensability of a critical arginine within the linker at position 37 contributing to HapR–DNA binding activity.
Collapse
Affiliation(s)
- Manjula Ekka
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| | - Abhisek Mondal
- Council of Scientific and Industrial Research (CSIR), Indian Institute of Chemical Biology, Kolkata, India
| | - Richa Singh
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| | - Himanshu Sen
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| | - Saumen Datta
- Council of Scientific and Industrial Research (CSIR), Indian Institute of Chemical Biology, Kolkata, India
| | - Saumya Raychaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
10
|
Ayala JC, Benitez JA, Silva AJ. A proteome-wide screen to identify transcription factors interacting with the Vibrio cholerae rpoS promoter. J Microbiol Methods 2019; 165:105702. [PMID: 31454505 DOI: 10.1016/j.mimet.2019.105702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/26/2022]
Abstract
We describe a proteomic approach to identify transcription factors binding to a target promoter. The method's usefulness was tested by identifying proteins binding to the Vibrio cholerae rpoS promoter in response to cell density. Proteins identified in this screen included the nucleoid-associated protein Fis and the quorum sensing regulator HapR.
Collapse
Affiliation(s)
- Julio C Ayala
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW, Atlanta, GA 30310, USA
| | - Jorge A Benitez
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW, Atlanta, GA 30310, USA.
| | - Anisia J Silva
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW, Atlanta, GA 30310, USA.
| |
Collapse
|
11
|
Mewborn L, Benitez JA, Silva AJ. Flagellar motility, extracellular proteases and Vibrio cholerae detachment from abiotic and biotic surfaces. Microb Pathog 2017; 113:17-24. [PMID: 29038053 DOI: 10.1016/j.micpath.2017.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022]
Abstract
Vibrio cholerae of serogroups O1 and O139, the causative agent of Asiatic cholera, continues to be a major global health threat. This pathogen utilizes substratum-specific pili to attach to distinct surfaces in the aquatic environment and the human small intestine and detaches when conditions become unfavorable. Both attachment and detachment are critical to bacterial environmental survival, pathogenesis and disease transmission. However, the factors that promote detachment are less understood. In this study, we examine the role of flagellar motility and hemagglutinin/protease (HapA) in vibrio detachment from a non-degradable abiotic surface and from the suckling mouse intestine. Flagellar motility facilitated V. cholerae detachment from abiotic surfaces. HapA had no effect on the stability of biofilms formed on abiotic surfaces despite representing >50% of the proteolytic activity present in the extracellular matrix. We developed a balanced lethal plasmid system to increase the bacterial cyclic diguanylate (c-di-GMP) pool late in infection, a condition that represses motility and HapA expression. Increasing the c-di-GMP pool enhanced V. cholerae colonization of the suckling mouse intestine. The c-di-GMP effect was fully abolished in hapA isogenic mutants. These results suggest that motility facilitates detachment in a substratum-independent manner. Instead, HapA appears to function as a substratum-specific detachment factor.
Collapse
Affiliation(s)
- Loree Mewborn
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta, 30310, GA, USA
| | - Jorge A Benitez
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta, 30310, GA, USA
| | - Anisia J Silva
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta, 30310, GA, USA.
| |
Collapse
|
12
|
Basu P, Pal RR, Dasgupta S, Bhadra RK. DksA-HapR-RpoS axis regulates haemagglutinin protease production in Vibrio cholerae. MICROBIOLOGY-SGM 2017; 163:900-910. [PMID: 28597815 DOI: 10.1099/mic.0.000469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
DksA acts as a co-factor for the intracellular small signalling molecule ppGpp during the stringent response. We recently reported that the expression of the haemagglutinin protease (HAP), which is needed for shedding of the cholera pathogen Vibrio cholerae during the late phase of infection, is significantly downregulated in V. cholerae ∆dksA mutant (∆dksAVc) cells. So far, it has been shown that HAP production by V. cholerae cells is critically regulated by HapR and also by RpoS. Here, we provide evidence that V. cholerae DksA (DksAVc) positively regulates HapR at both the transcriptional and post-transcriptional levels. We show that in ∆dksAVc cells the CsrB/C/D sRNAs, required for the maintenance of intracellular levels of hapR transcripts during the stationary growth, are distinctly downregulated. Moreover, the expression of exponential phase regulatory protein Fis, a known negative regulator of HapR, was found to continue even during the stationary phase in ∆dksAVc cells compared to that of wild-type strain, suggesting another layer of complex regulation of HapR by DksAVc. Extensive reporter construct-based and quantitative reverse-transcriptase PCR (qRT-PCR) analyses supported that RpoS is distinctly downregulated at the post-transcriptional/translational levels in stationary phase-grown ∆dksAVc cells. Since HAP expression through HapR and RpoS is stationary phase-specific in V. cholerae, it appears that DksAVc is also a critical stationary phase regulator for fine tuning of the expression of HAP. Moreover, experimental evidence provided in this study clearly supports that DksAVc is sitting at the top of the hierarchy of regulation of expression of HAP in V. cholerae.
Collapse
Affiliation(s)
- Pallabi Basu
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | - Ritesh Ranjan Pal
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
- Present address: Department of Microbiology and Molecular Genetics, Hebrew University of Jerusalem, Israel
| | - Shreya Dasgupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
- Present address: Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, India
| | - Rupak K Bhadra
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| |
Collapse
|
13
|
Iiyama K, Takahashi E, Lee JM, Mon H, Morishita M, Kusakabe T, Yasunaga-Aoki C. Alkaline protease contributes to pyocyanin production in Pseudomonas aeruginosa. FEMS Microbiol Lett 2017; 364:3063190. [PMID: 28333255 DOI: 10.1093/femsle/fnx051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
The role of the alkaline protease (AprA) in pyocyanin production in Pseudomonas aeruginosa was investigated. AprA was overproduced when a plasmid carrying the aprA gene was introduced to an aprA-deletion mutant strain, EG03; thus, aprA-complemented EG03 was used as an overproducing strain. The complemented strain produced higher pyocyanin than the mutant strain in all commercially available media evaluated. Particularly, pyocyanin production was higher in the complemented than in the parental strain in brain-heart infusion and tryptic soy broths. These results suggested that protein degradation products by AprA were utilized for pyocyanin production. Protein-rich media were used in subsequent validation studies. Similar results were obtained when the basal medium was supplemented with casein or skim milk as the sole organic nitrogen source. However, gelatin failed to induce abundant pyocyanin production in the complemented strain, despite the presence of protein degradation products by AprA as assessed by SDS-PAGE. Thus, gelatin degradation products may not be suitable for pyocyanin synthesis. In conclusion, AprA could contribute to pyocyanin production in the presence of several proteins or peptides.
Collapse
Affiliation(s)
- Kazuhiro Iiyama
- Laboratory of Insect Pathology and Microbial Control, Institute of Biological Control, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Eigo Takahashi
- Laboratory of Insect Pathology and Microbial Control, Institute of Biological Control, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan.,Laboratory of Insect Genome Science, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Mai Morishita
- Laboratory of Insect Pathology and Microbial Control, Institute of Biological Control, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan.,Laboratory of Insect Genome Science, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Chisa Yasunaga-Aoki
- Laboratory of Insect Pathology and Microbial Control, Institute of Biological Control, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
14
|
Hurley A, Bassler BL. Asymmetric regulation of quorum-sensing receptors drives autoinducer-specific gene expression programs in Vibrio cholerae. PLoS Genet 2017; 13:e1006826. [PMID: 28552952 PMCID: PMC5467912 DOI: 10.1371/journal.pgen.1006826] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/12/2017] [Accepted: 05/17/2017] [Indexed: 12/23/2022] Open
Abstract
Quorum sensing (QS) is a mechanism of chemical communication that bacteria use to monitor cell-population density and coordinate group behaviors. QS relies on the production, detection, and group-wide response to extracellular signal molecules called autoinducers. Vibrio cholerae employs parallel QS circuits that converge into a shared signaling pathway. At high cell density, the CqsS and LuxPQ QS receptors detect the intra-genus and inter-species autoinducers CAI-1 and AI-2, respectively, to repress virulence factor production and biofilm formation. We show that positive feedback, mediated by the QS pathway, increases CqsS but not LuxQ levels during the transition into QS-mode, which amplifies the CAI-1 input into the pathway relative to the AI-2 input. Asymmetric feedback on CqsS enables responses exclusively to the CAI-1 autoinducer. Because CqsS exhibits the dominant QS signaling role in V. cholerae, agonism of CqsS with synthetic compounds could be used to control pathogenicity and host dispersal. We identify nine compounds that share no structural similarity to CAI-1, yet potently agonize CqsS via inhibition of CqsS autokinase activity.
Collapse
Affiliation(s)
- Amanda Hurley
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD, United States of America
| |
Collapse
|
15
|
Bhattarai RR, Dhital S, Wu P, Chen XD, Gidley MJ. Digestion of isolated legume cells in a stomach-duodenum model: three mechanisms limit starch and protein hydrolysis. Food Funct 2017; 8:2573-2582. [DOI: 10.1039/c7fo00086c] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retention of intact plant cells to the end of the small intestine leads to transport of entrapped macronutrients such as starch and protein for colonic microbial fermentation, and is a promising mechanism to increase the content of resistant starch in diets.
Collapse
Affiliation(s)
- Rewati R. Bhattarai
- ARC Centre of Excellence in Plant Cell Walls
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St Lucia
| | - Sushil Dhital
- ARC Centre of Excellence in Plant Cell Walls
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St Lucia
| | - Peng Wu
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St Lucia
- Australia
| | - Xiao Dong Chen
- Department of Chemical Engineering and Biochemical Engineering
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Michael J. Gidley
- ARC Centre of Excellence in Plant Cell Walls
- Centre for Nutrition and Food Sciences
- Queensland Alliance for Agriculture and Food Innovation
- The University of Queensland
- St Lucia
| |
Collapse
|
16
|
Cytotoxic and Inflammatory Responses Induced by Outer Membrane Vesicle-Associated Biologically Active Proteases from Vibrio cholerae. Infect Immun 2016; 84:1478-1490. [PMID: 26930702 DOI: 10.1128/iai.01365-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/20/2016] [Indexed: 11/20/2022] Open
Abstract
Proteases in Vibrio cholerae have been shown to play a role in its pathogenesis. V. cholerae secretes Zn-dependent hemagglutinin protease (HAP) and calcium-dependent trypsin-like serine protease (VesC) by using the type II secretion system (TIISS). Our present studies demonstrated that these proteases are also secreted in association with outer membrane vesicles (OMVs) and transported to human intestinal epithelial cells in an active form. OMV-associated HAP induces dose-dependent apoptosis in Int407 cells and an enterotoxic response in the mouse ileal loop (MIL) assay, whereas OMV-associated VesC showed a hemorrhagic fluid response in the MIL assay, necrosis in Int407 cells, and an increased interleukin-8 (IL-8) response in T84 cells, which were significantly reduced in OMVs from VesC mutant strain. Our results also showed that serine protease VesC plays a role in intestinal colonization of V. cholerae strains in adult mice. In conclusion, our study shows that V. cholerae OMVs secrete biologically active proteases which may play a role in cytotoxic and inflammatory responses.
Collapse
|
17
|
Benitez JA, Silva AJ. Vibrio cholerae hemagglutinin(HA)/protease: An extracellular metalloprotease with multiple pathogenic activities. Toxicon 2016; 115:55-62. [PMID: 26952544 DOI: 10.1016/j.toxicon.2016.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 01/22/2023]
Abstract
Vibrio cholerae of serogroup O1 and O139, the etiological agent of the diarrheal disease cholera, expresses the extracellular Zn-dependent metalloprotease hemagglutinin (HA)/protease also reported as vibriolysin. This enzyme is also produced by non-O1/O139 (non-cholera) strains that cause mild, sporadic illness (i.e. gastroenteritis, wound or ear infections). Orthologs of HA/protease are present in other members of the Vibrionaceae family pathogenic to humans and fish. HA/protease belongs to the M4 neutral peptidase family and displays significant amino acid sequence homology to Pseudomonas aeruginosa elastase (LasB) and Bacillus thermoproteolyticus thermolysin. It exhibits a broad range of potentially pathogenic activities in cell culture and animal models. These activities range from the covalent modification of other toxins, the degradation of the protective mucus barrier and disruption of intestinal tight junctions. Here we review (i) the structure and regulation of HA/protease expression, (ii) its interaction with other toxins and the intestinal mucosa and (iii) discuss the possible role(s) of HA/protease in the pathogenesis of cholera.
Collapse
Affiliation(s)
- Jorge A Benitez
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta, GA, 30310, USA.
| | - Anisia J Silva
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta, GA, 30310, USA.
| |
Collapse
|
18
|
Takahashi E, Lee JM, Mon H, Chieda Y, Yasunaga-Aoki C, Kusakabe T, Iiyama K. Effect of antibiotics on extracellular protein level in Pseudomonas aeruginosa. Plasmid 2016; 84-85:44-50. [DOI: 10.1016/j.plasmid.2016.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 11/25/2022]
|
19
|
Rajalaxmi M, Beema Shafreen R, Iyer PM, Sahaya Vino R, Balamurugan K, Pandian SK. An in silico, in vitro and in vivo investigation of indole-3-carboxaldehyde identified from the seawater bacterium Marinomonas sp. as an anti-biofilm agent against Vibrio cholerae O1. BIOFOULING 2016; 32:1-12. [PMID: 26939983 DOI: 10.1080/08927014.2016.1154545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biofilm formation is a major contributing factor in the pathogenesis of Vibrio cholerae O1 (VCO1) and therefore preventing biofilm formation could be an effective alternative strategy for controlling cholera. The present study was designed to explore seawater bacteria as a source of anti-biofilm agents against VCO1. Indole-3-carboxaldehyde (I3C) was identified as an active principle component in Marinomonas sp., which efficiently inhibited biofilm formation by VCO1 without any selection pressure. Furthermore, I3C applications also resulted in considerable collapsing of preformed pellicles. Real-time PCR studies revealed the down-regulation of virulence gene expression by modulation of the quorum-sensing pathway and enhancement of protease production, which was further confirmed by phenotypic assays. Furthermore, I3C increased the survival rate of Caenorhabditis elegans when infected with VCO1 by significantly reducing in vivo biofilm formation, which was corroborated by a survivability assay. Thus, this study revealed, for the first time, the potential of I3C as an anti-biofilm agent against VCO1.
Collapse
Affiliation(s)
- Murugan Rajalaxmi
- a Department of Biotechnology Science Campus , Alagappa University , Karaikudi , India
| | | | - Prasanth M Iyer
- a Department of Biotechnology Science Campus , Alagappa University , Karaikudi , India
| | - Raja Sahaya Vino
- a Department of Biotechnology Science Campus , Alagappa University , Karaikudi , India
| | | | | |
Collapse
|
20
|
Pilot-scale chitin extraction from shrimp shell waste by deproteination and decalcification with bacterial enrichment cultures. Appl Microbiol Biotechnol 2015; 99:9835-46. [PMID: 26227412 DOI: 10.1007/s00253-015-6841-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
Extraction of chitin from mechanically pre-purified shrimp shells can be achieved by successive NaOH/HCl treatment, protease/HCl treatment or by environmentally friendly fermentation with proteolytic/lactic acid bacteria (LAB). For the last mentioned alternative, scale-up of shrimp shell chitin purification was investigated in 0.25 L (F1), 10 L (F2), and 300 L (F3) fermenters using an anaerobic, chitinase-deficient, proteolytic enrichment culture from ground meat for deproteination and a mixed culture of LAB from bio-yoghurt for decalcification. Protein removal in F1, F2, and F3 proceeded in parallel within 40 h at an efficiency of 89-91 %. Between 85 and 90 % of the calcit was removed from the shells by LAB in another 40 h in F1, F2, and F3. After deproteination of shrimp shells in F3, spent fermentation liquor was re-used for a next batch of 30-kg shrimp shells in F4 (300 L) which eliminated 85.5 % protein. The purity of the resulting chitin was comparable in F1, F2, F3, and F4. Viscosities of chitosan, obtained after chitin deacetylation and of chitin, prepared biologically or chemically in the laboratory, were much higher than those of commercially available chitin and chitosan.
Collapse
|
21
|
Singh NS, Kachhap S, Singh R, Mishra RC, Singh B, Raychaudhuri S. The length of glycine-rich linker in DNA-binding domain is critical for optimal functioning of quorum-sensing master regulatory protein HapR. Mol Genet Genomics 2014; 289:1171-82. [PMID: 24997084 DOI: 10.1007/s00438-014-0878-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 06/06/2014] [Indexed: 01/03/2023]
Abstract
HapR is a quorum-sensing master regulatory protein in Vibrio cholerae. Though many facts are known regarding its structural and functional aspects, much still can be learnt from natural variants of this wild-type protein. While unraveling the underlying cause of functional inertness of a natural variant (HapRV2), the significance of a conserved glycine residue at position 39 in a glycine-rich linker in DNA-binding domain comes into light. This work aims at investigating how the length of glycine-rich linker (R(33)GIGRGG(39)) bridging helices α1 and α2 modulates the functionality of HapR. In pursuit of our interest, glycine residues were inserted after terminal glycine (G39) of the linker in a sequential manner. To evaluate functionality, all the glycine linker variants were subjected to a battery of performance tests under various conditions. Combined in vitro and in vivo results clearly demonstrated a gradual functional impairment of HapR linker variants coupled with increasing length of glycine-rich linker and finally, linker variant harboring four glycine residues resulted in a functionally compromised protein with significant loss of communication with cognate DNAs. Molecular dynamics studies of modeled HapR linker variants in complex with cognate promoter region show that residues namely Ser50, Thr53 and Asn56 are involved in varying degree of interactions with different nucleotides of HapR-DNA complex. The diminished functionality between variants and DNA appears to result from reduced or no interactions between Phe55 and nucleotides of cognate DNA as observed during simulations.
Collapse
Affiliation(s)
- Naorem Santa Singh
- Molecular Biology and Microbial Physiology Division, Institute of Microbial Technology (Council of Scientific and Industrial Research), Sector 39A, Chandigarh, 160036, India
| | | | | | | | | | | |
Collapse
|
22
|
Zielke RA, Simmons RS, Park BR, Nonogaki M, Emerson S, Sikora AE. The type II secretion pathway in Vibrio cholerae is characterized by growth phase-dependent expression of exoprotein genes and is positively regulated by σE. Infect Immun 2014; 82:2788-801. [PMID: 24733097 PMCID: PMC4097608 DOI: 10.1128/iai.01292-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/10/2014] [Indexed: 01/08/2023] Open
Abstract
Vibrio cholerae, an etiological agent of cholera, circulates between aquatic reservoirs and the human gastrointestinal tract. The type II secretion (T2S) system plays a pivotal role in both stages of the lifestyle by exporting multiple proteins, including cholera toxin. Here, we studied the kinetics of expression of genes encoding the T2S system and its cargo proteins. We have found that under laboratory growth conditions, the T2S complex was continuously expressed throughout V. cholerae growth, whereas there was growth phase-dependent transcriptional activity of genes encoding different cargo proteins. Moreover, exposure of V. cholerae to different environmental cues encountered by the bacterium in its life cycle induced transcriptional expression of T2S. Subsequent screening of a V. cholerae genomic library suggested that σ(E) stress response, phosphate metabolism, and the second messenger 3',5'-cyclic diguanylic acid (c-di-GMP) are involved in regulating transcriptional expression of T2S. Focusing on σ(E), we discovered that the upstream region of the T2S operon possesses both the consensus σ(E) and σ(70) signatures, and deletion of the σ(E) binding sequence prevented transcriptional activation of T2S by RpoE. Ectopic overexpression of σ(E) stimulated transcription of T2S in wild-type and isogenic ΔrpoE strains of V. cholerae, providing additional support for the idea that the T2S complex belongs to the σ(E) regulon. Together, our results suggest that the T2S pathway is characterized by the growth phase-dependent expression of genes encoding cargo proteins and requires a multifactorial regulatory network to ensure appropriate kinetics of the secretory traffic and the fitness of V. cholerae in different ecological niches.
Collapse
Affiliation(s)
- Ryszard A Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Ryan S Simmons
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Bo R Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Mariko Nonogaki
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Sarah Emerson
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | - Aleksandra E Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
23
|
Rothenbacher FP, Zhu J. Efficient responses to host and bacterial signals during Vibrio cholerae colonization. Gut Microbes 2014; 5:120-8. [PMID: 24256715 PMCID: PMC4049929 DOI: 10.4161/gmic.26944] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Vibrio cholerae, the microorganism responsible for the diarrheal disease cholera, is able to sense and respond to a variety of changing stimuli in both its aquatic and human gastrointestinal environments. Here we present a review of research efforts aimed toward understanding the signals this organism senses in the human host. V. cholerae's ability to sense and respond to temperature and pH, bile, osmolarity, oxygen and catabolite levels, nitric oxide, and mucus, as well as the quorum sensing signals produced in response to these factors will be discussed. We also review the known quorum sensing regulatory pathways and discuss their importance with regard to the regulation of virulence and colonization during infection.
Collapse
|
24
|
Miyoshi SI. Extracellular proteolytic enzymes produced by human pathogenic vibrio species. Front Microbiol 2013; 4:339. [PMID: 24302921 PMCID: PMC3831164 DOI: 10.3389/fmicb.2013.00339] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/26/2013] [Indexed: 12/19/2022] Open
Abstract
Bacteria in the genus Vibrio produce extracellular proteolytic enzymes to obtain nutrients via digestion of various protein substrates. However, the enzymes secreted by human pathogenic species have been documented to modulate the bacterial virulence. Several species including Vibrio cholerae and V. vulnificus are known to produce thermolysin-like metalloproteases termed vibriolysin. The vibriolysin from V. vulnificus, a causative agent of serious systemic infection, is a major toxic factor eliciting the secondary skin damage characterized by formation of the hemorrhagic brae. The vibriolysin from intestinal pathogens may play indirect roles in pathogenicity because it can activate protein toxins and hemagglutinin by the limited proteolysis and can affect the bacterial attachment to or detachment from the intestinal surface by degradation of the mucus layer. Two species causing wound infections, V. alginolyticus and V. parahaemolyticus, produce another metalloproteases so-called collagenases. Although the detailed pathological roles have not been studied, the collagenase is potent to accelerate the bacterial dissemination through digestion of the protein components of the extracellular matrix. Some species produce cymotrypsin-like serine proteases, which may also affect the bacterial virulence potential. The intestinal pathogens produce sufficient amounts of the metalloprotease at the small intestinal temperature; however, the metalloprotease production by extra-intestinal pathogens is much higher around the body surface temperature. On the other hand, the serine protease is expressed only in the absence of the metalloprotease.
Collapse
Affiliation(s)
- Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Okayama, Japan
| |
Collapse
|
25
|
Edwin A, Rompikuntal P, Björn E, Stier G, Wai SN, Sauer-Eriksson AE. Calcium binding by the PKD1 domain regulates interdomain flexibility in Vibrio cholerae metalloprotease PrtV. FEBS Open Bio 2013; 3:263-70. [PMID: 23905008 PMCID: PMC3722578 DOI: 10.1016/j.fob.2013.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 01/06/2023] Open
Abstract
Vibrio cholerae, the causative agent of cholera, releases several virulence factors including secreted proteases when it infects its host. These factors attack host cell proteins and break down tissue barriers and cellular matrix components such as collagen, laminin, fibronectin, keratin, elastin, and they induce necrotic tissue damage. The secreted protease PrtV constitutes one virulence factors of V. cholerae. It is a metalloprotease belonging to the M6 peptidase family. The protein is expressed as an inactive, multidomain, 102 kDa pre-pro-protein that undergoes several N- and C-terminal modifications after which it is secreted as an intermediate variant of 81 kDa. After secretion from the bacteria, additional proteolytic steps occur to produce the 55 kDa active M6 metalloprotease. The domain arrangement of PrtV is likely to play an important role in these maturation steps, which are known to be regulated by calcium. However, the molecular mechanism by which calcium controls proteolysis is unknown. In this study, we report the atomic resolution crystal structure of the PKD1 domain from V. cholera PrtV (residues 755–838) determined at 1.1 Å. The structure reveals a previously uncharacterized Ca2+-binding site located near linker regions between domains. Conformational changes in the Ca2+-free and Ca2+-bound forms suggest that Ca2+-binding at the PKD1 domain controls domain linker flexibility, and plays an important structural role, providing stability to the PrtV protein. The PKD1 domain was expressed in E. coli and purified to homogeneity. Purified PKD1 domains are not toxic for human HTC8 cells. The atomic 1.1 Å crystal structure of the PKD1 domain revealed a Ca2+-binding site. Ca2+ binding causes large conformational changes in the N-terminal half of the PKD1 domain. Ca2+ stabilizes the 81 kDa pro-protein outside the bacterial cell, preventing its degradation.
Collapse
Affiliation(s)
- Aaron Edwin
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-901 87, Sweden
| | - Pramod Rompikuntal
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-901 87, Sweden
- Department of Molecular Biology, Umeå University, Umeå SE-901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå SE-901 87, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
| | - Gunter Stier
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
| | - Sun N. Wai
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-901 87, Sweden
- Department of Molecular Biology, Umeå University, Umeå SE-901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå SE-901 87, Sweden
| | - A. Elisabeth Sauer-Eriksson
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-901 87, Sweden
- Corresponding author at: Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden. Tel.: +46 90 7865923; fax: +46 90 7865944.
| |
Collapse
|
26
|
A quinazoline-2,4-diamino analog suppresses Vibrio cholerae flagellar motility by interacting with motor protein PomB and induces envelope stress. Antimicrob Agents Chemother 2013; 57:3950-9. [PMID: 23733460 DOI: 10.1128/aac.00473-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Vibrio cholerae strains of serogroups O1 and O139, the causative agents of the diarrheal illness cholera, express a single polar flagellum powered by sodium motive force and require motility to colonize and spread along the small intestine. In a previous study, we described a high-throughput assay for screening for small molecules that selectively inhibit bacterial motility and identified a family of quinazoline-2,4-diamino analogs (Q24DAs) that (i) paralyzed the sodium-driven polar flagellum of Vibrios and (ii) diminished cholera toxin secreted by El Tor biotype V. cholerae. In this study, we provide evidence that a Q24DA paralyzes the polar flagellum by interacting with the motor protein PomB. Inhibition of motility with the Q24DA enhanced the transcription of the cholera toxin genes in both biotypes. We also show that the Q24DA interacts with outer membrane protein OmpU and other porins to induce envelope stress and expression of the extracellular RNA polymerase sigma factor σ(E). We suggest that Q24DA-induced envelope stress could affect the correct folding, assembly, and secretion of pentameric cholera toxin in El Tor biotype V. cholerae independently of its effect on motility.
Collapse
|
27
|
Liang P, Cui X, Du X, Kan B, Liang W. The virulence phenotypes and molecular epidemiological characteristics of Vibrio fluvialis in China. Gut Pathog 2013; 5:6. [PMID: 23522652 PMCID: PMC3636005 DOI: 10.1186/1757-4749-5-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/27/2013] [Indexed: 01/22/2023] Open
Abstract
Background Vibrio fluvialis is considered to be an emerging foodborne pathogen and has been becoming a high human public health hazard all over the world, especially in coastal areas of developing countries and regions with poor sanitation. The distribution of virulence factors, microbiological and molecular epidemiological features of V. fluvialis isolates in China remains to be examined. Methods and results PCR targeted at the virulence determinants and phenotype tests including metabolism, virulence and antibiotic susceptibility were performed. Pulsed-field gel electrophoresis (PFGE) analysis was used to access the relatedness of isolates. A strain with deletion of the arginine dihydrolase system was first reported and proved in molecular level by PCR. Virulence genes vfh, hupO and vfpA were detected in all strains, the ability to produce hemolysin, cytotxin, protease and biofilm formation varied with strains. High resistance rate to β-lactams, azithromycin and sulfamethoxazole were observed. Twenty-seven percent of test strains showed resistant to two and three antibiotics. PFGE analysis demonstrated great genetic heterogeneity of test V. fluvialis strains. Conclusion This study evaluated firstly the biological characteristics and molecular epidemiological features of V. fluvialis in China. Some uncommon biochemical characteristics were found. Virulence genes were widely distributed in the isolates from patient and seafood sources, and the occurrence of virulence phenotypes varied with strains. Continued and enhanced laboratory based-surveillance is needed in the future together with systematically collection of the epidemiological information of the cases or the outbreaks.
Collapse
Affiliation(s)
- Pu Liang
- State Key Laboratory for Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China.
| | | | | | | | | |
Collapse
|
28
|
Manjusha K, Jayesh P, Jose D, Sreelakshmi B, Priyaja P, Gopinath P, Saramma AV, Bright Singh IS. Alkaline protease from a non-toxigenic mangrove isolate of Vibrio sp. V26 with potential application in animal cell culture. Cytotechnology 2013; 65:199-212. [PMID: 22717659 PMCID: PMC3560880 DOI: 10.1007/s10616-012-9472-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 05/31/2012] [Indexed: 10/28/2022] Open
Abstract
Vibrio sp. V26 isolated from mangrove sediment showed 98 % similarity to 16S rRNA gene of Vibrio cholerae, V. mimicus, V. albensis and uncultured clones of Vibrio. Phenotypically also it resembled both V. cholerae and V. mimicus. Serogrouping, virulence associated gene profiling, hydrophobicity, and adherence pattern clearly pointed towards the non-toxigenic nature of Vibrio sp. V26. Purification and characterization of the enzyme revealed that it was moderately thermoactive, nonhemagglutinating alkaline metalloprotease with a molecular mass of 32 kDa. The application of alkaline protease from Vibrio sp. V26 (APV26) in sub culturing cell lines (HEp-2, HeLa and RTG-2) and dissociation of animal tissue (chick embryo) for primary cell culture were investigated. The time required for dissociation of cells as well as the viable cell yield obtained by while administering APV26 and trypsin were compared. Investigations revealed that the alkaline protease of Vibrio sp. V26 has the potential to be used in animal cell culture for subculturing cell lines and dissociation of animal tissue for the development of primary cell cultures, which has not been reported earlier among metalloproteases of Vibrios.
Collapse
Affiliation(s)
- K. Manjusha
- />Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| | - P. Jayesh
- />National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| | - Divya Jose
- />National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| | - B. Sreelakshmi
- />National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| | - P. Priyaja
- />National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| | - Prem Gopinath
- />National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| | - A. V. Saramma
- />Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| | - I. S. Bright Singh
- />National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Cochin, 682016 Kerala India
| |
Collapse
|
29
|
Sikora AE. Proteins secreted via the type II secretion system: smart strategies of Vibrio cholerae to maintain fitness in different ecological niches. PLoS Pathog 2013; 9:e1003126. [PMID: 23436993 PMCID: PMC3578741 DOI: 10.1371/journal.ppat.1003126] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Aleksandra E Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America.
| |
Collapse
|
30
|
Functional characterization of the stringent response regulatory gene dksA of Vibrio cholerae and its role in modulation of virulence phenotypes. J Bacteriol 2012; 194:5638-48. [PMID: 22904284 DOI: 10.1128/jb.00518-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, nutrient deprivation evokes the stringent response, which is mediated by the small intracellular signaling molecule ppGpp. In Gram negatives, the RelA enzyme synthesizes and SpoT hydrolyzes ppGpp, although the latter protein also has weak synthetase activity. DksA, a recently identified RNA polymerase binding transcription factor, acts as a coregulator along with ppGpp for controlling the stringent response. Recently, we have shown that three genes, relA, spoT, and relV, govern cellular levels of ppGpp during various starvation stresses in the Gram-negative cholera pathogen Vibrio cholerae. Here we report functional characterization of the dksA gene of V. cholerae (dksA(Vc)), coding for the protein DksA(Vc). Extensive genetic analyses of the ΔdksA(Vc) mutants suggest that DksA(Vc) is an important component involved in the stringent response in V. cholerae. Further analysis of mutants revealed that DksA(Vc) positively regulates various virulence-related processes, namely, motility, expression of the major secretory protease, called hemagglutinin protease (HAP), and production of cholera toxin (CT), under in vitro conditions. We found that DksA(Vc) upregulates expression of the sigma factor FliA (σ(28)), a critical regulator of motility in V. cholerae. Altogether, it appears that apart from stringent-response regulation, DksA(Vc) also has important roles in fine regulation of virulence-related phenotypes of V. cholerae.
Collapse
|
31
|
Interaction of the histone-like nucleoid structuring protein and the general stress response regulator RpoS at Vibrio cholerae promoters that regulate motility and hemagglutinin/protease expression. J Bacteriol 2011; 194:1205-15. [PMID: 22194453 DOI: 10.1128/jb.05900-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The bacterium Vibrio cholerae colonizes the human small intestine and secretes cholera toxin (CT) to cause the rice-watery diarrhea characteristic of this illness. The ability of this pathogen to colonize the small bowel, express CT, and return to the aquatic environment is controlled by a complex network of regulatory proteins. Two global regulators that participate in this process are the histone-like nucleoid structuring protein (H-NS) and the general stress response regulator RpoS. In this study, we address the role of RpoS and H-NS in the coordinate regulation of motility and hemagglutinin (HA)/protease expression. In addition to initiating transcription of hapA encoding HA/protease, RpoS enhanced flrA and rpoN transcription to increase motility. In contrast, H-NS was found to bind to the flrA, rpoN, and hapA promoters and represses their expression. The strength of H-NS repression at the above-mentioned promoters was weaker for hapA, which exhibited the strongest RpoS dependency, suggesting that transcription initiation by RNA polymerase containing σ(S) could be more resistant to H-NS repression. Occupancy of the flrA and hapA promoters by H-NS was demonstrated by chromatin immunoprecipitation (ChIP). We show that the expression of RpoS in the stationary phase significantly diminished H-NS promoter occupancy. Furthermore, RpoS enhanced the transcription of integration host factor (IHF), which positively affected the expression of flrA and rpoN by diminishing the occupancy of H-NS at these promoters. Altogether, we propose a model for RpoS regulation of motility gene expression that involves (i) attenuation of H-NS repression by IHF and (ii) RpoS-dependent transcription initiation resistant to H-NS.
Collapse
|
32
|
Interplay among cyclic diguanylate, HapR, and the general stress response regulator (RpoS) in the regulation of Vibrio cholerae hemagglutinin/protease. J Bacteriol 2011; 193:6529-38. [PMID: 21965573 DOI: 10.1128/jb.05166-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae secretes the Zn-dependent metalloprotease hemagglutinin (HA)/protease (mucinase), which is encoded by hapA and displays a broad range of potential pathogenic activities. Expression of HA/protease has a stringent requirement for the quorum-sensing regulator HapR and the general stress response regulator RpoS. Here we report that the second messenger cyclic diguanylic acid (c-di-GMP) regulates the production of HA/protease in a negative manner. Overexpression of a diguanylate cyclase to increase the cellular c-di-GMP pool resulted in diminished expression of HA/protease and its positive regulator, HapR. The effect of c-di-GMP on HapR was independent of LuxO but was abolished by deletion of the c-di-GMP binding protein VpsT, the LuxR-type regulator VqmA, or a single-base mutation in the hapR promoter that prevents autorepression. Though expression of HapR had a positive effect on RpoS biosynthesis, direct manipulation of the c-di-GMP pool at a high cell density did not significantly impact RpoS expression in the wild-type genetic background. In contrast, increasing the c-di-GMP pool severely inhibited RpoS expression in a ΔhapR mutant that is locked in a regulatory state mimicking low cell density. Based on the above findings, we propose a model for the interplay between HapR, RpoS, and c-di-GMP in the regulation of HA/protease expression.
Collapse
|
33
|
Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. J Bacteriol 2011; 193:4914-24. [PMID: 21784943 DOI: 10.1128/jb.05396-11] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although it is a human pathogen, Vibrio cholerae is a regular member of aquatic habitats, such as coastal regions and estuaries. Within these environments, V. cholerae often takes advantage of the abundance of zooplankton and their chitinous molts as a nutritious surface on which the bacteria can form biofilms. Chitin also induces the developmental program of natural competence for transformation in several species of the genus Vibrio. In this study, we show that V. cholerae does not distinguish between species-specific and non-species-specific DNA at the level of DNA uptake. This is in contrast to what has been shown for other Gram-negative bacteria, such as Neisseria gonorrhoeae and Haemophilus influenzae. However, species specificity with respect to natural transformation still occurs in V. cholerae. This is based on a positive correlation between quorum sensing and natural transformation. Using mutant-strain analysis, cross-feeding experiments, and synthetic cholera autoinducer-1 (CAI-1), we provide strong evidence that the species-specific signaling molecule CAI-1 plays a major role in natural competence for transformation. We suggest that CAI-1 can be considered a competence pheromone.
Collapse
|
34
|
Abstract
Bacteria of the genus Vibrio are normal habitants of the aquatic environment but the some species are believed to be human pathogens. Pathogenic vibrios produce various pathogenic factors, and the proteases are also recognized to play pathogenic roles in the infection: the direct roles by digesting many kinds of host proteins or indirect roles by processing other pathogenic protein factors. Especially VVP from Vibrio vulnificus is thought to be a major pathogenic factor of the vibrio. Although HA/P, the V. cholerae hemagglutinin/protease, is not a direct toxic factor of cholera vibrio, its significance is an undeniable fact. Production of HA/P is regulated together with major pathogenic factors such as CT (cholera toxin) or TCP (toxin co-regulated pilus) by a quorum-sensing system. HA/P is necessary for full expression of pathogenicity of the vibrio by supporting growth and translocation in the digestive tract. Processing of protein toxins such as CT or El Tor hemolysin is also an important pathogenic role.
Collapse
Affiliation(s)
- Sumio Shinoda
- Faculty of Science, Okayama University of Science, Okayama University of Science, Ridai-cho, Okayama 700-005, Japan.
| | | |
Collapse
|
35
|
Kobayashi RK, Gaziri LC, Vidotto MC. Functional activities of the Tsh protein from avian pathogenic Escherichia coli (APEC) strains. J Vet Sci 2011; 11:315-9. [PMID: 21113100 PMCID: PMC2998742 DOI: 10.4142/jvs.2010.11.4.315] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temperature-sensitive hemagglutinin (Tsh) expressed by strains of avian pathogenic Escherichia (E.) coli (APEC) has both agglutinin and protease activities. Tsh is synthesized as a 140 kDa precursor protein, whose processing results in a 106 kDa passenger domain (Tshs) and a 33 kDa β-domain (Tshβ). In this study, both recombinant Tsh (rTsh) and supernatants from APEC, which contain Tshs (106 kDa), caused proteolysis of chicken tracheal mucin. Both rTsh (140 kDa) and pellets from wild-type APEC, which contain Tshβ (33 kDa), agglutinated chicken erythrocytes. On Western blots, the anti-rTsh antibody recognized the rTsh and 106 kDa proteins in recombinant E. coli BL21/pET 101-Tsh and in the supernatants from APEC grown at either 37℃ or 42℃. Anti-rTsh also recognized a 33 kDa protein in the pellets from APEC13 cultures grown in either Luria-Bertani agar, colonization factor antigen agar, or mucin agar at either 26℃, 37℃, or 42℃, and in the extracts of outer membrane proteins of APEC. The 106 kDa protein was more evident when the bacteria were grown at 37℃ in mucin agar, and it was not detected when the bacteria were grown at 26℃ in any of the culture media used in this study. Chicken anti-Tsh serum inhibited hemagglutinating and mucinolytic activities of strain APEC13 and recombinant E. coli BL21/pET101-Tsh. This work suggests that the mucinolytic activity of Tsh might be important for the colonization of the avian tracheal mucous environment by APEC.
Collapse
Affiliation(s)
- Renata K Kobayashi
- Departamento de Microbiologia-CCB, Campus Universitário, Universidade Estadual de Londrina, Caixa postal 6001, 86051-970 Londrina, Paraná, Brazil
| | | | | |
Collapse
|
36
|
Hernández-Montiel LG, Larralde-Corona CP, Vero S, López-Aburto MG, Ochoa JL, Ascencio-Valle F. Caracterización de levadurasDebaryomyces hanseniipara el control biológico de la podredumbre azul del limón mexicano Characterization of yeastDebaryomyces hanseniifor the biological control of blue mold decay of Mexican lemon. CYTA - JOURNAL OF FOOD 2010. [DOI: 10.1080/19476330903080592] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Jang J, Jung KT, Yoo CK, Rhie GE. Regulation of hemagglutinin/protease expression by the VarS/VarA-CsrA/B/C/D system in Vibrio cholerae. Microb Pathog 2010; 48:245-50. [PMID: 20307644 DOI: 10.1016/j.micpath.2010.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 03/04/2010] [Accepted: 03/04/2010] [Indexed: 11/28/2022]
Abstract
In this study, through the analysis of Vibrio cholerae 2740-80 mutant strains produced by the cholera toxin subunit B gene containing Mariner-based transposon, we found that disruption of the varS gene, a member of the recently reported sensory system VarS/VarA-CsrA/B/C/D, resulted in altered expression of hemagglutinin/protease A. To further investigate the connection between VarS and HapA, we generated an additional varS mutant, V. cholerae 2740-80-VS, and examined the effect of this mutation on expression of HapA and of genes in the VarS/VarA-CsrA/B/C/D system. 2740-80-VS showed decreased expression of varS, csrB/C, hapR, and hapA along with increased biofilm production. Interestingly, expression of the alternative sigma factor sigma(s), which is important for adaptation to environmental stress, was also decreased in this mutant. These results indicate that the VarS/VarA-CsrA/B/C/D system is involved in the control of HapA expression and biofilm production in V. cholerae 2740-80 through HapR regulation, and also that VarS/VarA controls expression of sigma(s) for HapA regulation.
Collapse
Affiliation(s)
- Jeyoun Jang
- Division of High-risk Pathogen Research, Center for Infectious Diseases, National Institute of Health, 194 Tongil-Lo, Eunpyung-gu, Seoul 122-701, Republic of Korea
| | | | | | | |
Collapse
|
38
|
Ali SA, Benitez JA. Differential response of Vibrio cholerae planktonic and biofilm cells to autoinducer 2 deficiency. Microbiol Immunol 2009; 53:582-6. [PMID: 19780972 DOI: 10.1111/j.1348-0421.2009.00161.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The formation of biofilm communities enhances the persistence of Vibrio cholerae in aquatic environments. Biofilm production is repressed by the quorum-sensing regulator HapR in response to the accumulation of CAI-1 and AI-2. CAI-1 is the strongest input signal activating HapR, whereas the role of AI-2 remains ill-defined. In the present study, we show that a V. cholerae luxS (AI-2-defective) mutant made increased biofilm. Interestingly, cells in the biofilm were more responsive to AI-2 deficiency than cells from the planktonic population.
Collapse
Affiliation(s)
- Syed A Ali
- Morehouse School of Medicine Department of Microbiology, SW Atlanta, Georgia 30310, USA
| | | |
Collapse
|
39
|
TetR-type transcriptional regulator VtpR functions as a global regulator in Vibrio tubiashii. Appl Environ Microbiol 2009; 75:7602-9. [PMID: 19837838 DOI: 10.1128/aem.01016-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio tubiashii, a causative agent of severe shellfish larval disease, produces multiple extracellular proteins, including a metalloprotease (VtpA), as potential virulence factors. We previously reported that VtpA is toxic for Pacific oyster (Crassostrea gigas) larvae. In this study, we show that extracellular protease production by V. tubiashii was much reduced by elevated salt concentrations, as well as by elevated temperatures. In addition, V. tubiashii produced dramatically less protease in minimal salts medium supplemented with glucose or sucrose as the sole carbon source than with succinate. We identified a protein that belongs to the TetR family of transcriptional regulators, VtpR, which showed high homology with V. cholerae HapR. We conclude that VtpR activates VtpA production based on the following: (i) a VtpR-deficient V. tubiashii mutant did not produce extracellular proteases, (ii) the mutant showed reduced expression of a vtpA-lacZ fusion, and (iii) VtpR activated vtpA-lacZ in a V. cholerae heterologous background. Moreover, we show that VtpR activated the expression of an additional metalloprotease gene (vtpB). The deduced VtpB sequence showed high homology with a metalloprotease, VhpA, from V. harveyi. Furthermore, the vtpR mutant strain produced reduced levels of extracellular hemolysin, which is attributed to the lower expression of the V. tubiashii hemolysin genes (vthAB). The VtpR-deficient mutant also had negative effects on bacterial motility and did not demonstrate toxicity to oyster larvae. Together, these findings establish that the V. tubiashii VtpR protein functions as a global regulator controlling an array of potential virulence factors.
Collapse
|
40
|
Hasegawa H, Häse CC. The extracellular metalloprotease of Vibrio tubiashii directly inhibits its extracellular haemolysin. MICROBIOLOGY-SGM 2009; 155:2296-2305. [PMID: 19389767 DOI: 10.1099/mic.0.028605-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vibrio tubiashii is a re-emerging pathogen of molluscs that secretes a variety of extracellular products (ECPs), including a metalloprotease and a cytolysin/haemolysin. Previously, we reported that the V. tubiashii haemolysin locus consists of two ORFs (vthB and vthA), similar to that of the homologous haemolysin genes (vvhB and vvhA) found in Vibrio vulnificus. Here, we demonstrate that the concomitant expression of both V. tubiashii genes resulted in significantly higher haemolytic activity than the vthA gene alone. In addition, we created a VthAB- mutant strain of V. tubiashii that was virtually devoid of haemolytic activity in liquid media. Interestingly, significant production of an additional haemolysin(s) was observed on blood plates. Moreover, we have previously reported that in V. tubiashii, proteolytic and haemolytic activities are inversely produced during bacterial growth. Here, we study this correlation in more detail and present evidence that the VtpA metalloprotease inhibits haemolytic activity in culture supernatants, based on the following evidence: (i) loss of metalloprotease activity by either mutation or EDTA inhibition resulted in increased haemolytic activity; (ii) overexpression of the vtpA gene resulted in decreased haemolytic activity; (iii) purified VtpA metalloprotease directly diminished haemolytic activity by purified VthA haemolysin. Importantly, we found not only that vthAB gene expression remained high throughout growth but also that there were no dramatic differences in vthAB gene expression between the parent and VtpA- mutant strains. Thus, our results strongly suggest that the V. tubiashii metalloprotease directly targets its haemolysin.
Collapse
Affiliation(s)
- Hiroaki Hasegawa
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Claudia C Häse
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
41
|
Liang W, Sultan SZ, Silva AJ, Benitez JA. Cyclic AMP post-transcriptionally regulates the biosynthesis of a major bacterial autoinducer to modulate the cell density required to activate quorum sensing. FEBS Lett 2008; 582:3744-50. [PMID: 18930049 PMCID: PMC2586060 DOI: 10.1016/j.febslet.2008.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/29/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
Abstract
In Vibrio cholerae, expression of the quorum sensing regulator HapR is induced by the accumulation of a major autoinducer synthesized by the activity of CqsA. Here we show that the cAMP-cAMP receptor protein complex regulates cqsA expression at the post-transcriptional level. This conclusion is supported by the analysis of cqsA-lacZ fusions, the ectopic expression of cqsA in Deltacrp mutants and by Northern blot analysis showing that cqsA mRNA is unstable in Deltacrp and Deltacya (adenylate cyclase) mutants. Addition of cAMP to the culture of a Deltacya mutant restored cqsA mRNA stability and cholera autoinducer 1 production. Lowering intracellular cAMP levels by addition of d-glucose increased the cell density required to activate HapR. These results indicate that cAMP acts as a quorum modulator.
Collapse
Affiliation(s)
- Weili Liang
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta Georgia 30310
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206
| | - Syed Zafar Sultan
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta Georgia 30310
| | - Anisia J. Silva
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta Georgia 30310
| | - Jorge A. Benitez
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta Georgia 30310
| |
Collapse
|
42
|
Dongre M, Tripathi R, Jain V, Raychaudhuri S. Functional independence of a variant LuxOPL91 from a non-O1 non-O139 Vibrio cholerae over the activity of CsrA and Fis. J Med Microbiol 2008; 57:1041-1045. [PMID: 18628511 DOI: 10.1099/jmm.0.47606-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Mitesh Dongre
- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Ranjana Tripathi
- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Vibhu Jain
- Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | | |
Collapse
|
43
|
Role of the histone-like nucleoid structuring protein in the regulation of rpoS and RpoS-dependent genes in Vibrio cholerae. J Bacteriol 2008; 190:7335-45. [PMID: 18790865 DOI: 10.1128/jb.00360-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Production of the Zn-metalloprotease hemagglutinin (HA)/protease by Vibrio cholerae has been reported to enhance enterotoxicity in rabbit ileal loops and the reactogenicity of live cholera vaccine candidates. Expression of HA/protease requires the alternate sigma factor sigma(S) (RpoS), encoded by rpoS. The histone-like nucleoid structuring protein (H-NS) has been shown to repress rpoS expression in Escherichia coli. In V. cholerae strains of the classical biotype, H-NS has been reported to silence virulence gene expression. In this study we examined the role of H-NS in the expression of HA/protease and motility in an El Tor biotype strain by constructing a Deltahns mutant. The Deltahns mutant exhibited multiple phenotypes, such as production of cholera toxin in nonpermissive LB medium, reduced resistance to high osmolarity, enhanced resistance to low pH and hydrogen peroxide, and reduced motility. Depletion of H-NS by overexpression of a dominant-negative allele or by deletion of hns resulted in diminished expression of HA/protease. Epistasis analysis of HA/protease expression in Deltahns, DeltarpoS, and Deltahns DeltarpoS mutants, analysis of RpoS reporter fusions, quantitative reverse transcription-PCR measurements, and ectopic expression of RpoS in DeltarpoS and DeltarpoS Deltahns mutants showed that H-NS posttranscriptionally enhances RpoS expression. The Deltahns mutant exhibited a lower degree of motility and lower levels of expression of flaA, flaC, cheR-2, and motX mRNAs than the wild type. Comparison of the mRNA abundances of these genes in wild-type, Deltahns, DeltarpoS, and Deltahns DeltarpoS strains revealed that deletion of rpoS had a more severe negative effect on their expression. Interestingly, deletion of hns in the rpoS background resulted in higher expression levels of flaA, flaC, and motX, suggesting that H-NS represses the expression of these genes in the absence of sigma(S). Finally, we show that the cyclic AMP receptor protein and H-NS act along the same pathway to positively affect RpoS expression.
Collapse
|
44
|
Tian Y, Wang Q, Liu Q, Ma Y, Cao X, Zhang Y. Role of RpoS in stress survival, synthesis of extracellular autoinducer 2, and virulence in Vibrio alginolyticus. Arch Microbiol 2008; 190:585-94. [PMID: 18641971 DOI: 10.1007/s00203-008-0410-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/30/2008] [Accepted: 07/03/2008] [Indexed: 11/29/2022]
Abstract
Vibrio alginolyticus, a marine bacterium, is an opportunistic pathogen capable of causing vibriosis with high mortality to fishes in the South China Sea. Stress resistance is very important for its survival in the natural environment and upon infection of the host. RpoS, an alternative sigma factor, is considered as an important regulator involved in stress response and virulence in many pathogens. In this study, the rpoS gene was cloned and characterized to evaluate the role of RpoS in V. alginolyticus. The predicted protein showed high identity with other reported rpoS gene products. The in-frame deleted mutation of rpoS in V. alginolyticus led to sensitivity of the strain to ethanol, hyperosmolarity, heat, and hydrogen peroxide challenges. Further studies showed that extracellular autoinducer 2 level, four of seven detected protease activities, and cytotoxicity of extracellular products were markedly decreased in the rpoS mutant compared with that in the wild-type strain. The results indicated that the global regulator RpoS was part of the regulatory networks of virulence and LuxS quorum sensing system.
Collapse
Affiliation(s)
- Yang Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Lutfullah G, Amin F, Khan Z, Azhar N, Azim MK, Noor S, Shoukat K. Homology modeling of hemagglutinin/protease [HA/P (vibriolysin)] from Vibrio cholerae: sequence comparision, residue interactions and molecular mechanism. Protein J 2008; 27:105-14. [PMID: 18074211 DOI: 10.1007/s10930-007-9113-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Vibrio cholerae produces a zinc-containing and calcium-stabilized soluble hemagglutinin/protease, which has been earlier shown to have the ability to cleave several physiologically important substrates including mucin, fibronectin and lactoferin. This study presents homology modeling of hemagglutinin/protease (vibriolysin) from Vibrio cholerae in the presence of inhibitor HPI [N-(1-carboxy-3-phenylpropyl)-phenylalanyl-alpha-aspargine]. The 3D structure was predicted based on its sequence homology with Pseudomonas aeruginosa elastase (PAE). Comparison of the 3D structures of PAE and HA/P reveals a remarkable similarity having a conserved alpha + beta domain. The inhibitor shows similar binding features as seen in other metalloproteases of M4 peptidase family. The study also highlights the key catalytic residues as well as the residues at the S1 and S1' binding sub-sites. The similarities between the two proteins provide support for the hypothesis that the two enzymes have similar three-dimensional structures and a common mechanism of action. The fact that both enzymes are secreted as zinc-containing proteases, led us to further hypothesize that they may play similar role in pathogenesis.
Collapse
Affiliation(s)
- Ghosia Lutfullah
- Center of Biotechnology, University of Peshawar, Peshawar, Pakistan
| | | | | | | | | | | | | |
Collapse
|
46
|
The extracellular metalloprotease of Vibrio tubiashii is a major virulence factor for pacific oyster (Crassostrea gigas) larvae. Appl Environ Microbiol 2008; 74:4101-10. [PMID: 18456850 DOI: 10.1128/aem.00061-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vibrio tubiashii is a recently reemerging pathogen of larval bivalve mollusks, causing both toxigenic and invasive disease. Marine Vibrio spp. produce an array of extracellular products as potential pathogenicity factors. Culture supernatants of V. tubiashii have been shown to be toxic to oyster larvae and were reported to contain a metalloprotease and a cytolysin/hemolysin. However, the structural genes responsible for these proteins have yet to be identified, and it is uncertain which extracellular products play a role in pathogenicity. We investigated the effects of the metalloprotease and hemolysin secreted by V. tubiashii on its ability to kill Pacific oyster (Crassostrea gigas) larvae. While V. tubiashii supernatants treated with metalloprotease inhibitors severely reduced the toxicity to oyster larvae, inhibition of the hemolytic activity did not affect larval toxicity. We identified structural genes of V. tubiashii encoding a metalloprotease (vtpA) and a hemolysin (vthA). Sequence analyses revealed that VtpA shared high homology with metalloproteases from a variety of Vibrio species, while VthA showed high homology only to the cytolysin/hemolysin of Vibrio vulnificus. Compared to the wild-type strain, a VtpA mutant of V. tubiashii not only produced reduced amounts of protease but also showed decreased toxicity to C. gigas larvae. Vibrio cholerae strains carrying the vtpA or vthA gene successfully secreted the heterologous protein. Culture supernatants of V. cholerae carrying vtpA but not vthA were highly toxic to Pacific oyster larvae. Together, these results suggest that the V. tubiashii extracellular metalloprotease is important in its pathogenicity to C. gigas larvae.
Collapse
|
47
|
Xu Y, Gallert C, Winter J. Chitin purification from shrimp wastes by microbial deproteination and decalcification. Appl Microbiol Biotechnol 2008; 79:687-97. [PMID: 18418590 DOI: 10.1007/s00253-008-1471-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 03/23/2008] [Indexed: 11/25/2022]
Abstract
Chitin was purified from Penaeus monodon and Crangon crangon shells using a two-stage fermentation process with anaerobic deproteination followed by decalcification through homofermentative lactic acid fermentation. Deproteinating enrichment cultures from sewage sludge and ground meat (GM) were used with a proteolytic activity of 59 and 61 mg N l(-1) h(-1) with dried and 26 and 35 mg N l(-1) h(-1) with wet P. monodon shells. With 100 g wet cells of proteolytic bacteria per liter, protein removal was obtained in 42 h. An anaerobic spore-forming bacterium HP1 was isolated from enrichment GM. Its proteolytic activity was 76 U ml(-1) compared to 44 U ml(-1) of the consortium. Glucose was fermented with Lactobacillus casei MRS1 to lactic acid. At a pH of 3.6, calcium carbonate of the shells was solubilised. After deproteination and decalcification of P. monodon or C. crangon shells, the protein content was 5.8% or 6.7%, and the calcium content was 0.3% or 0.4%, respectively. The viscosity of the chitin from P. monodon and C. crangon was 45 and 135 mPa s, respectively, whereas purchased crab shell chitin (practical grade) had a viscosity of 21 mPa s, indicating a higher quality of biologically purified chitin.
Collapse
Affiliation(s)
- Y Xu
- Institut für Ingenieurbiologie und Biotechnologie des Abwassers, Universität Karlsruhe, Am Fasanengarten, Karlsruhe, Germany
| | | | | |
Collapse
|
48
|
Liang W, Pascual-Montano A, Silva AJ, Benitez JA. The cyclic AMP receptor protein modulates quorum sensing, motility and multiple genes that affect intestinal colonization in Vibrio cholerae. Microbiology (Reading) 2007; 153:2964-2975. [PMID: 17768239 DOI: 10.1099/mic.0.2007/006668-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae is the causative agent of cholera, which continues to be a major public health concern in Asia, Africa and Latin America. The bacterium can persist outside the human host and alternates between planktonic and biofilm community lifestyles. Transition between the different lifestyles is mediated by multiple signal transduction pathways including quorum sensing. Expression of the Zn-metalloprotease haemagglutinin (HA)/protease is subject to a dual regulation which involves the quorum-sensing regulator HapR and the cAMP receptor protein. In a previous study, we observed that a mutant defective in the cAMP-receptor protein (CRP) expressed lower levels of HapR. To further investigate the role of CRP in modulating HapR and other signal transduction pathways, we performed global gene expression profiling of a Deltacrp mutant of El Tor biotype V. cholerae. Here we show that CRP is required for the biosynthesis of cholera autoinducer 1 (CAI-1) and affects the expression of multiple HapR-regulated genes. As expected, the Deltacrp mutant produced more cholera toxin and enhanced biofilm. Expression of flagellar genes, reported to be affected in DeltahapR mutants, was diminished in the Deltacrp mutant. However, an epistasis analysis indicated that cAMP-CRP affects motility by a mechanism independent of HapR. Inactivation of crp inhibited the expression of multiple genes reported to be strongly induced in vivo and to affect the ability of V. cholerae to colonize the small intestine and cause disease. These genes included ompU, ompT and ompW encoding outer-membrane proteins, the alternative sigma factor sigma(E) required for intestinal colonization, and genes involved in anaerobic energy metabolism. Our results indicate that CRP plays a crucial role in the V. cholerae life cycle by affecting quorum sensing and multiple genes required for survival of V. cholerae in the human host and the environment.
Collapse
Affiliation(s)
- Weili Liang
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr. SW, Atlanta, GA, USA
| | - Alberto Pascual-Montano
- Computer Architecture Department, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Anisia J Silva
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr. SW, Atlanta, GA, USA
| | - Jorge A Benitez
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr. SW, Atlanta, GA, USA
| |
Collapse
|
49
|
Hazra A, Silva AJ, Benitez JA. Expression of foreign proteins in a Vibrio cholerae vaccine strain using the stationary phase hemagglutinin/protease promoter. Biotechnol Lett 2007; 29:1093-7. [PMID: 17431549 DOI: 10.1007/s10529-007-9359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 03/07/2007] [Indexed: 11/25/2022]
Abstract
The use of the hemagglutinin(HA)/protease promoter and secretion signals to drive expression and secretion of a foreign antigen in a live genetically attenuated cholera vaccine candidate is demonstrated. A Vibrio cholerae vaccine strain, containing a HA/protease-tetanus toxin C fragment (TCF) fusion, produced soluble-and cell-associated TCF. The fraction of TCF secreted to the culture medium was degraded unless expressed in a HA/protease-defective vaccine strain. Comparison of the hapA promoter with the strong Tac promoter using quantitative real time PCR revealed that at least five times more TCF mRNA was produced when expressed from the hapA promoter.
Collapse
Affiliation(s)
- Anupam Hazra
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | |
Collapse
|
50
|
Nielsen AT, Dolganov NA, Otto G, Miller MC, Wu CY, Schoolnik GK. RpoS controls the Vibrio cholerae mucosal escape response. PLoS Pathog 2006; 2:e109. [PMID: 17054394 PMCID: PMC1617127 DOI: 10.1371/journal.ppat.0020109] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 09/06/2006] [Indexed: 11/22/2022] Open
Abstract
Vibrio cholerae causes a severe diarrhoeal disease by secreting a toxin during colonization of the epithelium in the small intestine. Whereas the initial steps of the infectious process have been intensively studied, the last phases have received little attention. Confocal microscopy of V. cholerae O1-infected rabbit ileal loops captured a distinctive stage in the infectious process: 12 h post-inoculation, bacteria detach from the epithelial surface and move into the fluid-filled lumen. Designated the “mucosal escape response,” this phenomenon requires RpoS, the stationary phase alternative sigma factor. Quantitative in vivo localization assays corroborated the rpoS phenotype and showed that it also requires HapR. Expression profiling of bacteria isolated from ileal loop fluid and mucus demonstrated a significant RpoS-dependent upregulation of many chemotaxis and motility genes coincident with the emigration of bacteria from the epithelial surface. In stationary phase cultures, RpoS was also required for upregulation of chemotaxis and motility genes, for production of flagella, and for movement of bacteria across low nutrient swarm plates. The hapR mutant produced near-normal numbers of flagellated cells, but was significantly less motile than the wild-type parent. During in vitro growth under virulence-inducing conditions, the rpoS mutant produced 10- to 100-fold more cholera toxin than the wild-type parent. Although the rpoS mutant caused only a small over-expression of the genes encoding cholera toxin in the ileal loop, it resulted in a 30% increase in fluid accumulation compared to the wild-type. Together, these results show that the mucosal escape response is orchestrated by an RpoS-dependent genetic program that activates chemotaxis and motility functions. This may furthermore coincide with reduced virulence gene expression, thus preparing the organism for the next stage in its life cycle. Vibrio cholerae, a pathogenic microbe, causes a severe diarrhoeal disease mainly in Third World countries. Although the pathogenicity of this organism has been intensively studied for more than a century, most research has focused on the initial stages of the infection, especially colonization of the intestine and virulence gene expression. However, the last stages of the infectious process have received very little attention. In the present manuscript, the authors use the rabbit ileal loop model of cholera to show how this organism, late in the infection, detaches from the epithelial surface and migrates into the luminal fluid, a process the authors termed the “mucosal escape response.” This study identifies, for the first time, how the alternative starvation sigma factor RpoS regulates this process. Features of this genetic program include the dramatic induction of genes involved in motility and chemotaxis functions. This study furthermore identifies RpoS as an important regulator of virulence gene expression and shows that the mucosal escape response may coincide with diminished virulence gene expression. This work is essential for understanding a key and under-appreciated step in the life cycle of this important human pathogen: its exit from the intestine and how this serves to prepare it for transmission into environmental reservoirs or to new human hosts.
Collapse
Affiliation(s)
- Alex Toftgaard Nielsen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nadia A Dolganov
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Glen Otto
- Department of Comparative Medicine, Stanford University, Stanford, California, United States of America
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas, United States of America
| | - Michael C Miller
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Cheng Yen Wu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gary K Schoolnik
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|